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Summary 

Human-caused restrictions like the fragmentation of the landscape poses a major 

challenge to wildlife conservation. Large and mobile species such as red deer (Cervus 

elaphus) are subject to increasing effects of isolation and a decrease of primary habitats. 

This can result in a reduction of the exchange of individuals or even a long-term loss of 

gene flow. In order to counteract these negative effects and to promote genetic exchange, 

suitable approaches for estimating functional connectivity of the landscape are necessary. 

In most cases, landscape models of functional connectivity for a given study 

species are based on expert knowledge, habitat suitability, or movement data. However, 

there is an ongoing debate whether these methods are representative of actual dispersal 

or effective gene flow. Landscape genetic analyses correlate estimates of genetic 

differentiation between populations or individuals with landscape composition. The 

advantage of genetic data is that it reflects both successful dispersal between populations, 

as well as subsequent reproduction with other individuals. Therefore, landscape genetics 

represent an innovative approach for assessing functional connectivity of the landscape 

matrix. 

The aim of this dissertation is to compare different species-specific models of 

functional connectivity utilizing genetic and movement data. Using red deer in Northern 

Germany as an example, the methodological and conceptual differences of multiple 

approaches are demonstrated. Overall, the presented thesis provides important insights 

for applied conservation of wildlife and planning of corridors. 

The first chapter provides a general introduction to the issue of landscape 

fragmentation and illustrates the effects on red deer in the study area of Schleswig-

Holstein. Furthermore, the potential applications of landscape genetics and movement 

ecology to assess landscape connectivity are presented. For example, movement ecology 

provides an integral framework to explore the potential factors shaping the movements 

of organisms and the ecological consequences of these movements such as gene flow.  
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The second chapter comprises a study on the genetic diversity and structure of 

red deer populations in Northern Germany. The results indicate that local populations are 

best described as an hierarchical network of subpopulations with different levels of gene 

flow. Overall, genetic diversity of red deer from the study area is quite low compared to 

other populations from Central Europe. This underlines that a better understanding of the 

isolation effects caused by landscape fragmentation and species-specific assessment of 

landscape connectivity for red deer are needed to address the observed loss of genetic 

diversity. 

One possible approach for estimating functional connectivity is by linking 

telemetry data with landscape variables in order to gain insights into the habitat 

requirements of a target species. However, habitat preferences are very likely to change 

with different movement behaviors. This represents an important point to consider when 

studying the effects of landscape composition on actual dispersal movements. The third 

chapter of this thesis presents an extensive overview on different methods for identifying 

behavioral patterns from movement data. Furthermore, it provides guidelines for deciding 

among the available methods of path-segmentation and shows how they can be applied 

to answer research questions within the movement ecology paradigm. 

The study described in the fourth chapter utilizes such a path-segmentation 

method to detect potential dispersal movements from telemetry data of multiple red deer 

individuals. The observed movements are then linked to landscape variables in order to 

model functional connectivity based on landscape resistance towards dispersal of red deer 

throughout the study area. In addition, the study applies and compares different 

methodological approaches for modeling functional connectivity based on expert 

knowledge, habitat models and other analyses of movement data. A landscape genetic 

approach is used as a means to compare the resulting resistance models. Effective 

distances derived from the models are compared with estimates on genetic distance. The 

highest ranked models are further used to illustrate methodological differences in the 

designation of conservation corridors. The results show that for large scale dispersal red 

deer rely on primary habitat conditions within the landscape matrix. However, 

connectivity based on the identified dispersal movements showed that areas of poor 

habitat quality can be traversed by red deer at shorter distances. 



6 

Finally, in the fifth chapter, the results of the presented studies are summarized 

and discussed. In particular, the contribution of landscape genetics and movement 

ecology to applied conservation and landscape planning are elaborated. The results of this 

thesis could ultimately increase the effectiveness of conservation measures such as the 

placement of corridors. 
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Zusammenfassung 

Die anthropogen bedingte Zerschneidung der Landschaft stellt eine wichtige 

Herausforderung für den Natur- und Artenschutz dar. Große Säugetiere, wie zum Beispiel 

der Rothirsch (Cervus elaphus) sind durch die Fragmentierung einer Verkleinerung und 

zunehmenden Isolierung der Lebensräume ausgesetzt. Dies kann weitreichende Folgen 

wie einen verringerten Austausch an Individuen und damit langfristig an Genen mit sich 

ziehen. Um diesen Folgen entgegenzuwirken und den genetischen Austausch zu 

verbessern sind objektive Beurteilungsverfahren über die Konnektivität der Landschaft 

notwendig. 

Die Erfassung und Modellierung der funktionellen Landschaftskonnektivität für 

eine Zielart basiert häufig auf Grundlagen wie Expertenwissen, Habitatmodellen oder 

Bewegungsdaten. Allerdings werden diese Methoden hinsichtlich ihrer Repräsentativität 

für tatsächliche Abwanderungen oder effektivem Genfluss diskutiert. Im Rahmen von 

landschaftsgenetischen Analysen werden Informationen über den genetischen Austausch 

zwischen Populationen oder einzelnen Individuen mit entsprechenden Ausprägungen der 

Landschaft korreliert. Genetische Daten haben dabei den Vorteil, dass sie sowohl eine 

erfolgreiche Wanderung zwischen Verbreitungsgebieten als auch die anschließende 

Reproduktion mit anderen Individuen, widerspiegeln können. Daher stellt die 

Landschaftsgenetik eine innovative Ansatzmöglichkeit zur Beurteilung der funktionellen 

Landschaftskonnektivität dar.  

Ziel der Dissertation ist die Konzipierung und Evaluierung von artspezifischen 

Modellen der Landschaftskonnektivität mit Hilfe von Gendaten und Telemetrie-

Ergebnissen. Der Rothirsch in Schleswig-Holstein dient dabei als Beispielart, mit der die 

Unterschiede bezüglich der methodischen und konzeptionellen Herangehensweisen 

demonstriert werden sollen. Insbesondere für die naturschutzfachliche Praxis und 

Korridorplanung ist dies von grundlegender Bedeutung.  
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Im ersten Kapitel wird zunächst eine generelle Einleitung in die Problematik der 

Landschaftszerschneidung gegeben und anhand des Rothirschs in Schleswig-Holstein 

verdeutlicht. Anschließend werden die verschiedenen Ansatzmöglichkeiten der 

Landschaftsgenetik als auch der Bewegungsökologie zur Beurteilung der 

Landschaftskonnektivität dargestellt. Die Bewegungsökologie setzt sich unter anderem 

damit auseinander, welche Faktoren die Bewegungen von Organismen in ihrem 

Lebensraum beeinflussen. Durch die Verknüpfung von Bewegungsdaten mit 

Landschaftsvariablen lassen sich so wichtige Erkenntnisse über die 

Lebensraumansprüche einer Zielart gewinnen. Dabei können unter anderem die 

Habitatpräferenzen während unterschiedlicher Bewegungsmuster, wie zum Beispiel der 

Abwanderung in neue Gebiete, differenziert betrachtet werden. 

Das zweite Kapitel befasst sich mit der genetischen Diversität und 

Differenzierung der lokalen Rothirschvorkommen in Schleswig-Holstein. Anhand der 

genetischen Daten wird dabei verdeutlicht, dass die regionalen Managementeinheiten 

(Hegeringe) nicht immer in sich geschlossene Populationen darstellen. Die 

Rothirschpopulationen weisen vielmehr eine hierarchische Struktur auf.  Zum Beispiel ist 

der Genfluss, je nach Dichte der benachbarten Populationen, unterschiedlich stark 

ausgeprägt. Insgesamt konnte für mehrere Populationen eine im europäischen Vergleich 

geringe genetische Diversität festgestellt werden. Dies unterstreicht, dass ein besseres 

Verständnis über die Auswirkungen der Landschaftszerschneidung sowie eine 

Bewertung der Landschaftskonnektivität aus Sicht des Rothirschs notwendig ist, um dem 

Verlust an genetischer Vielfalt entgegenzuwirken. 

Eine Möglichkeit die Landschaftskonnektivität zu bewerten stellt die Analyse von 

Telemetrie-Daten dar. Für die Auswertung von solchen Bewegungsdaten stehen eine 

Vielzahl an Methoden zur Verfügung. Im dritten Kapitel werden die verschiedenen 

Ansätze zur Differenzierung unterschiedlicher Bewegungsmuster aus Telemetrie-Daten 

zusammengestellt. Durch eine umfangreiche Methodenübersicht werden 

Entscheidungshilfen für die Anwendung solcher Pfad-Segmentierungen zur 

Beantwortung bestimmter Fragestellungen in der Bewegungsökologie gegeben. 

Das vierte Kapitel greift unter anderem auf eine solche Methode der Pfad-

Segmentierung zurück, um potentielle Ausbreitungsbewegungen innerhalb der 

Telemetrie-Daten von besenderten Rothirschen zu ermitteln. Diese Bewegungsdaten 
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werden anschließend mit Landschaftsvariablen verknüpft und ein Modell abgeleitet, 

welches den Widerstand für Wanderbewegungen darstellt (Widerstandsmodell). Darüber 

hinaus werden in dieser Studie weitere methodische Ansätze zur Modellierung der 

funktionellen Landschaftskonnektivität verglichen. Diese basieren unter anderem auf 

Expertenwissen und Habitatmodellen sowie weiteren Auswertungsansätzen der 

Bewegungsdaten. Für den Vergleich der resultierenden Widerstandsmodelle wird die 

Landschaftsgenetik hinzugezogen. Dabei werden effektive Distanzen basierend auf den 

jeweiligen Modellen den genetischen Distanzmaßen gegenübergestellt. Die Modelle mit 

der höchsten Übereinstimmung werden ferner genutzt, um methodische Unterschiede in 

der Ausweisung von Korridoren darzustellen. Es zeigte sich, dass für weitreichende 

Abwanderungen die Rothirsche auf geeignete Habitatverhältnisse innerhalb der 

Landschaftsmatrix angewiesen sind. Die Auswertung der Bewegungsdaten ergab 

hingegen, dass für kürzere Distanzen auch suboptimale Gebiete durchquert werden 

können.  

Abschließend werden im fünften Kapitel die Ergebnisse zusammengefasst und 

diskutiert. Besonderer Schwerpunkt liegt dabei auf dem Beitrag der Anwendung von 

Landschaftsgenetik und Bewegungsökologie im angewandten Naturschutz und welche 

Erkenntnisse für die Ausweisung und Effektivität von Korridoren gewonnen werden 

können. 
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CHAPTER 1 

General Introduction 

 

Fragmentation and Connectivity of the Landscape  

Habitat loss along with changing climatic conditions are indisputably the leading drivers 

for biodiversity loss worldwide (Bellard et al. 2012; Devictor et al. 2012). Next to the net 

loss of suitable habitat, human development leads to an increased fragmentation of 

remaining habitat with various consequences for remaining populations residing in these 

more or less isolated habitat patches (Templeton et al. 1990; Keyghobadi 2007).  Studying 

the genetic and demographic effects of fragmentation has become a central focus for 

nature conservation (Moilanen et al. 2005; Cushman et al. 2006; Epps et al. 2007). 

While landscape fragmentation per se describes also natural processes of dividing, 

isolating and reducing of once continuous habitats (Fahrig 2003) the amount and speed 

at which these processes act under human action is not to be underestimated. The isolation 

of primary habitat and the restriction of dispersal and gene flow among those remaining 

habitats (Jaeger and Holderegger 2005; Balkenhol and Waits 2009) can cause the 

emergence of metapopulations (Opdam 1991; Hanski 1998; Hanski and Ovaskainen 

2003) as well as long-term loss of genetic diversity and inbreeding (Andersen et al. 2004; 

Keyghobadi et al. 2005) and even the local extinction of affected populations (Merriam 

and Wegner 1992). 
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To mitigate these negative effects, knowledge on landscape connectivity for 

species of special concern is of major importance for an effective conservation 

management. Connectivity comprises to what degree the landscape matrix allows for the 

exchange of individuals among remaining habitat patches (Taylor et al. 1993; Crooks and 

Sanjayan 2006). This can either be due to spatial alignment of certain landscape features 

(i.e., structural connectivity; Kindlmann and Burel 2008) or because the landscape matrix 

(i.e., non-habitat) still facilitates movements of a given species (i.e., functional 

connectivity; Baguette and Van Dyck 2007). Understanding connectivity is hence vital 

for species in fragmented landscapes as maintaining dispersal movements and gene flow 

between habitats can counteract the negative consequences caused by fragmentation 

(Fahrig and Merriam 1994; Goodwin and Fahrig 2002; Kindlmann and Burel 2008). 

While one option for ensuring or reestablishing connectivity of the landscape is the 

delineation of conservation corridors (Chetkiewicz et al. 2006; Hilty et al. 2012) design 

and identification of the ideal locations for those corridors remains challenging. 

Landscape models emerged as a central application in conservation and landscape 

planning to delineate areas of high connectivity between remaining habitats and to 

conserve their current composition (Tischendorf and Fahrig 2000; Rudnick et al. 2012). 

In addition, artificial linkages can be placed accordingly to compensate barrier effects 

originating from e.g. linear infrastructures (Epps et al. 2005; Balkenhol and Waits 2009). 

However, in order to increase the effectiveness and functionality of such rather structural 

mitigation measures, objective approaches for assessing functional connectivity for a 

target species need to be applied (Böttcher et al. 2004; Beier et al. 2008). 

Assessing functional connectivity 

A major challenge for researchers and practitioners remains the objective assessment of 

functional connectivity. Both, effects of fragmentation as well as the degree of 

connectivity, are highly species specific (Chetkiewicz et al. 2006; Beier et al. 2008) as 

landscape permeability is defined by an organisms movement capacity and perceptual 

range (Diniz et al. 2020) as well as habitat requirements during dispersal (Revilla and 

Wiegand 2008; Fattebert et al. 2015). 
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For all these reasons, there has been a plethora of methodological approaches 

proposed and applied in connectivity research and for corridor planning (Beier et al. 2008; 

Zeller et al. 2012). The majority of studies have relied either on expert opinion (Clevenger 

et al. 2002; Milanesi et al. 2016), on empirical data on species’ space use such as habitat 

models based on occurrence data (Wang et al. 2008), or different types of resource-

selection functions derived from movement data (reviewed in Zeller et al. 2012), as well 

as simulation models based on experimental data or a combination of different 

information sources (Vuilleumier and Metzger 2006; Aben et al. 2014). Depending on 

the focal species also experiments, such as translocations, can be applied (Volpe et al. 

2014; Betts et al. 2015). Nevertheless, with all the different methods available there is an 

ongoing debate on which approaches are best suited, especially in terms of representing 

effective dispersal or actual gene flow (Spear et al. 2010; Richardson et al. 2016). 

Models derived from expert opinion utilize previous studies and reviews of 

literature or from interviews on the expertise of local managers and experts (Jacobs et al. 

2014; Reed et al. 2016). The main advantage of these approaches is their easy 

development, making them less time consuming and cost efficient as they do not depend 

on long term research and data acquisition (Murray et al. 2009; Milanesi et al. 2016). 

However, expert-opinion based models have been criticized for being subjective and 

hardly reproducible since assumptions or opinions are difficult to quantify (Epps et al. 

2007; Beier et al. 2008). Furthermore, results from other studies cannot always simply be 

transferred and extrapolated to completely different systems or landscapes (Oyler-

McCance et al. 2013; Richardson et al. 2016). 

Next to expert opinion, there are various approaches depending on empirical data 

to derive functional connectivity (Spear et al. 2010; Zeller et al. 2012). For example, 

habitat models (also referred to as species distribution models; Franklin 2009; Guisan et 

al. 2013) describing the habitat requirements for a given species became a popular tool 

for estimating functional connectivity (Engler et al. 2014; Milanesi et al. 2016). There is 

a multitude of statistical models available to researches and practitioners for correlating 

habitat covariates with (often opportunistic) presence data (e.g., MAXENT, BIOMOD; 

Franklin 2009). However, a key assumption of the application of these models is that the 

target species requires the same habitat features during dispersal movements as for 

selecting resources and establishing a home range or maintaining a population in primary 
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habitats (Spear et al. 2015, Zeller et al. 2012). Depending on functional grain and the 

species’ niche, this can hold true for some species and certain study questions (Engler et 

al. 2014; Razgour 2015) but not for others (Wasserman et al. 2010; Mateo-Sanchez et al. 

2015). 

Information on actual movements of the study species (i.e., based on telemetry 

relocations) has been utilized extensively in the past decade for modeling landscape 

connectivity (Spear et al. 2010; Centeno-Cuadros et al. 2017). Most notably the 

establishment of the movement ecology paradigm by (Nathan et al. 2008) provided a 

unified framework for studying the causes and consequences of individual movements on 

different aspects of ecology. For example, one fundamental aspect of movement ecology 

is the influence of individual movements on effective dispersal and gene flow (Holyoak 

et al. 2008). Therefore, the movement ecology paradigm provides a means to model 

functional connectivity which can be accomplished at multiple scales (review in Zeller et 

al. 2012). First of all, resource selection functions can be estimated from relocations 

sampled via GPS telemetry (Manly et al. 1993; Boyce et al. 2002). This should provide 

comparable estimates on space use as habitat models which in return can be used to infer 

connectivity (Chetkiewicz et al. 2006; Shafer et al. 2012; Squires et al. 2013). Other 

models account for the actual composition of the observed movements and model space 

use at the step-level (Thurfjell et al. 2014) or path-level (Reding et al. 2013; Zeller et al. 

2015). Finally, movement patterns and the underlying behaviors can be differentiated 

(Edelhoff et al. 2016, Chapter 3). As illustrated in Figure 1.1, habitat requirements of 

species during dispersal movements could differ from movements in primary habitat or 

within the established home range (Roever et al. 2013; Abrahms et al. 2017). However, 

movement data also holds some analytical restrictions and drawbacks that need to be 

accounted for to make full use of this data source. First, sample sizes are often restricted 

to a limited number of individuals. Second, such data is rarely derived from individuals 

doing actual dispersal since the main dispersal happens in offspring  before their first 

(attempted) reproduction (i.e. natal dispersal, Colbert et al. 2001; Whitmee and Orme 

2013). Hence most information from tracking data most likely quantifies habitat use but 

not dispersal movements (Spear et al. 2015; Centeno-Cuadros et al. 2017; Zeller et al. 

2017). 
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Figure 1.1 Illustration of different movement patterns derived from two separate behaviors: one being the 

regular movements in established home ranges or primary habitats characterized by many circular steps 

within a restricted area (top). The second one is a dispersal movement (middle) leaving the home range. 

The trajectory consists of long steps without any turns in direction. After the dispersal phase the individual 

returned to the normal movement behavior with area restricted movement patterns (bottom). Habitat 

requirements could substantially change during these two phases and deriving estimates on connectivity 

from all or only the regular movements could very likely be biased. 

 

Information on gene flow among populations inhabiting different parts of a 

landscape can also be used to infer functional connectivity. Genetic data based on highly 

variable markers, such as microsatellites or single nuclear polymorphisms (SNPs; 

Sunnucks 2000), allow the estimation of effective dispersal through gene flow. Genetic 

data has the advantage over occurrence or movement information as it not only indicates 

the  successful dispersal of individuals among populations but also their successful 

reproduction at these locations (Coulon et al. 2004). The data can be used to gain a better 

understanding of how well populations are connected effectively; therefore, one can 

derive estimates on functional connectivity. However using genetic data alone also has 

its restrictions as assessments of gene flow depend on theoretical assumptions on 

equilibrium (e.g.,  Wrights island model for all F statistics; Wright 1965) which are rarely 
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met in empirical systems e.g. non-random mating, uneven effective population sizes, 

recent demographic changes and drift as well as population bottlenecks (Jost et al. 2018). 

Therefore, combining genetic data with multiple information from other data sources 

within a holistic analytical framework, could offer the most promising approach to assess 

functional landscape connectivity. The young field of landscape genetics aims for this 

multidisciplinary approach.  

Landscape Genetics 

The framework of combining genetic data with information on landscape 

composition was established by Manel et al. (2003) and has since then grown rapidly in 

application (Holderegger and Wagner 2006; Storfer et al. 2010; Manel and Holderegger 

2013). Basically, landscape genetics comprise of two main components that are correlated 

with each other: a spatial and a genetic component. The latter quantifies genetic 

differentiation or gene flow between considered entities (populations or individuals in a 

given study area). The spatial component estimates the potential influence of landscape 

features as an effective distance often referred to as resistance or permeability (Storfer et 

al. 2007; Balkenhol et al. 2009). By this a major research focus of applying landscape 

genetic methods is to quantify the effects of fragmentation and to estimate functional 

connectivity and corridors for conservation management (Cushman et al. 2006; Epps et 

al. 2007; Kool et al. 2013). For example, this quantification includes the identification of 

specific barriers to dispersal (Frantz et al. 2010), the effects of both historical and 

anthropogenic landscape changes (Epps and Keyghobadi 2015), as well as the potential 

spread of diseases or invasive species (Storfer et al. 2010).  

A vast number of evaluation methods have been developed and used for landscape 

genetic analyzes, which can be divided into three analytical steps (Balkenhol et al. 2009; 

Storfer et al. 2010, Spear et al. 2015) quantifying: 1) spatial (effective) distances, 2) 

genetic distances and 3) correlating both (Figure 1.3).  

Spatial and effective distances 

To assess spatial distances in a landscape genetic context three different theories are 

commonly used: isolation by distance (IBD), isolation by barrier (IBB), and isolation by 

resistance (IBR). The theory of isolation by distance (IBD; Wright 1943) hypothesizes 
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that genetic distance is positively correlated with geographic distance among considered 

entities (Figure 1.2.a). For example, a positive correlation with IBD would indicate that 

effective dispersal (leading to gene flow) occurs only at shorter distances and therefore 

counteracts genetic drift at the regional scale (Hutchison and Templeton 1999). Here, a 

homogenous landscape without any restrictions is assumed and distances are measured 

as Euclidean distances among entities  (Balkenhol et al. 2009; Spear et al. 2010; Ruiz-

Gonzalez et al. 2015).  

 

Figure 1.2 Schematic description of the three different models of spatial distances commonly applied in 

landscape genetics: a) isolation by distance (IBD) tests for correlation of gene flow with geographic / 

Euclidean distance between entities like red deer populations; b) isolation by barrier (IBB) accounts for 

the potential effects of barriers and distance is derived from the presence or lack thereof between two 

entities; c) isolation by resistance (IBR) models the effects of the landscape connectivity by calculating the 

effective distance between sites based on costs of movements through the landscape matrix. 

 

The second theory, IBB, assumes effects of potential barriers or boundaries 

(Figure 1.2.b) which restrict gene flow and therefore increase genetic differentiation 

between entities located at separate sides of the putative barrier (Epps et al. 2005; 

Balkenhol et al. 2009). For example, two entities from the same side of the barrier are 

assigned a minimum effective distance value, whereas entities from two separate sides 

exhibit maximum effective distance. 

The two former theories do not account for any restrictions to movement or gene 

flow derived from the composition of the landscape matrix (McRae 2006; van Strien et 

al. 2015). For this manner, the third theory explicitly refers to isolation by resistance (IBR; 

Figure 1.2.c) and correlates genetic distances with effective distances based on landscape 

heterogeneity (Ricketts 2001; Kindlmann and Burel 2008). The degree to which 

landscape features either impede or promote (effective) dispersal are summarized in so 

called resistance surfaces (Spear et al. 2010). Therefore, the approaches for estimating 
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connectivity described above are transferable to the assessment of landscape resistance. 

Instead of permeability, resistance models assign values to different landscape features 

describing their “cost of movement” (Koen et al. 2012; Zeller et al. 2012; Spear et al. 

2015).  

For example, empirical data can be turned into resistance surfaces by taking the 

inverse of habitat suitability estimates or resource selection probabilities derived from 

movement data (Keeley et al. 2016). However, not always an inverse linear relationship 

holds true and different transformation functions between estimates of space use and 

resistance should be compared (see for example Zeller et al. 2018). Expert-opinion or 

hypotheses on landscape features potentially impacting resistance can be tested in a causal 

modeling framework (Cushman et al. 2006; Shirk et al. 2010). By this, single or 

multivariate landscape data are transformed into resistance using various functions and 

are iteratively compared to genetic distances (Wasserman et al. 2010; Cushman et al. 

2013). 

 

Figure 1.3 Flowchart of the major components of landscape genetic analyses: 1) spatial component: 

geographic distances between sampling locations are calculated to model isolation by distance (IBD), 

presence of barriers determines isolation by barrier (IBB) and resistance surfaces are used to derive 

effective distances to test for isolation by resistance (IBR). 2) Genetic component: either population- or 

individual-based distances are derived from genetic samples. 3) distances are correlated to each other to 

infer functional connectivity. 
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Effective distances based on the resistance models can be derived using least-cost 

(Adriaensen et al. 2003) or least-resistance (McRae 2006) algorithms (Figure 1.3). The 

first one calculates the distance based on a least-cost path (LCP) which is a single vector 

of minimal cumulative resistance (cost) between two locations (Graves et al. 2014). 

Although LCPs have been shown to provide effective estimates of dispersal (Driezen et 

al. 2007; Zeller et al. 2018) and gene flow (Stevens et al. 2006; Wang et al. 2008) their 

key assumption – that there is only a single best route known by the organism a priori – 

limits its biological significance and interpretation (McRae and Beier 2007). To overcome 

this caveat, McRae (2006) proposed to model effective distances based on circuit-theory 

which accounts for multiple randomized movement paths between two locations (McRae 

et al. 2008). This concept has been shown to outperform LCPs in some landscape-genetic 

studies, in particular for wide-ranging species (McRae and Beier 2007; Spear et al. 2015).  

Genetic Distances 

Most importantly, for landscape genetic analyses samples from multiple individuals and 

their spatial reference (location) are needed. In general, genetic data can be used to 

delineate genetic clusters or sub-populations (assignment tests like STRUCTURE; Wang 

2017), for estimating genetic diversity and to infer gene flow among populations (Waits 

and Storfer 2015). For the majority of landscape genetic applications the determination 

of genetic distances between individuals or populations (Figure 1.3) is most relevant. 

Various parameters have been developed for this over time (Storfer et al. 2010; Shirk et 

al. 2017). Depending on the study or sampling design either population-based estimates 

of genetic differentiation e.g. FST (Wright 1949) and its several derivates such as Nei´s D 

(Nei 1972), or individual-based distances like Roussets´s a (Rousset 2000) or the 

proportion of shared alleles are being used (Bowcock et al. 1994).  

Statistical Model Comparison 

In the final step of a landscape genetic analysis the genetic distances are modeled or 

correlated with the spatial and effective distances (Figure 1.3). The three models of 

isolation (IBD, IBB, IBR) do not necessarily have to be mutually exclusive but can also 

be combined, e.g., by partialing out the effect of IBD when modeling IBR (Balkenhol et 

al. 2009). Again, there are multiple statistical approaches for accomplishing this (Storfer 

et al. 2007; Balkenhol et al. 2009; Shirk et al. 2018). Because of the pairwise comparison 

between the sampled entities the applied statistical tests are mostly based on correlations 
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of distance matrices such as the Mantel tests (Mantel 1967; Perez et al. 2010). Linear 

models like multiple regressions on distance matrices (Legendre and Fortin 2010; Wang 

2013) or mixed models accounting for the pairwise data structure (van Strien et al. 2012; 

Peterman et al. 2014; Shirk et al. 2018) are increasingly utilized, in particular, because 

they enable a multivariate model comparison or selection. However, there is still an 

ongoing debate on the appropriate statistical procedure to model pairwise distances 

(Guillot and Rousset 2013; Zeller et al. 2016). 

In summary, it should have become clear that landscape genetics are a valuable 

tool for modeling species-specific connectivity, but there are a lot of forks in the road that 

need to be considered when applying them to new study systems.  The myriad of 

techniques to parameterize resistance models calls for benchmark studies that compare 

their performance and the assumptions behind them (Reed et al. 2016; Zeller et al. 2018). 

In particular the pairing of movement and genetic data remains a profound challenge in 

order to define concrete conservation actions (Jeltsch et al. 2013).  

The majority of studies examining functional connectivity for terrestrial animals 

using landscape genetics focused on large predators (Wasserman et al. 2013; Balkenhol 

et al. 2014; Mateo-Sanchez et al. 2015; Zeller et al. 2017). Therefore, more species need 

to be assessed in order to gain a better picture on the key factors that optimize landscape 

genetic studies for conservation purposes. In particular, large ungulates which are highly 

impacted by anthropogenic fragmentation (e.g., Frantz et al. 2012). For this reason, the 

presented thesis studies landscape genetics in combination with movement ecology of red 

deer in Northern Germany. 

Red Deer in Northern Germany 

Red deer (Cervus elaphus) are among the most widespread ungulates in Europe and one 

of the most iconic game species. They have been heavily impacted by anthropogenic 

influences such as habitat fragmentation, translocations and selective hunting for 

centuries (Hartl et al. 2003). As such, red deer have been the target of many population 

and conservation genetic studies analyzing the genetic diversity and population structure 

in human-dominated landscapes (Kuehn et al. 2003; Frantz et al. 2007; Zachos et al. 2007; 

Haanes et al. 2011; Fickel et al. 2012).  
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On the one hand, red deer are sensitive to human disturbance (Westekemper et al. 

2018), but on the other hand they play a key role in shaping their habitats (Riesch et al. 

2019) and as distribution vectors for plants (von Oheimb et al. 2005). Therefore, in 

regions where red deer are still capable to disperse this species can serve as an indicator 

for intact habitat networks with low levels of restrictions caused by humans (Tillmann 

and Reck 2003; Meißner et al. 2008).  

 

Figure 1.4: Distribution of red deer within the study area of Schleswig-Holstein. Red deer are divided into 

12 management units (deer silhouettes). Since the last decade the species started to spread and establish 

in areas south of the border to Denmark. The map also shows important landcover features such as 

cultivated (urban) areas, forests and water bodies. Roads and canals form potential barriers to dispersal. 

Landcover data based on ATKIS (Official topographic and cartographic information system of Germany, 

http://www.atkis.de). 
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However, in Schleswig-Holstein, Germany’s northernmost federal state, red deer 

populations are unevenly distributed, mostly concentrating at the few larger patches of 

forest and remaining complexes of marshes, moor- and heathlands (Meißner et al. 2008, 

see Figure 1.4). Fragmentation caused by primary roads, canals and increasing cultivation 

along with other restrictions in the past (i.e., individuals were only allowed in designated 

deer areas; Wotschikowsky 2010) lead to a decrease in gene flow and, consequently, loss 

of genetic diversity. A previous study actually indicated first signs of inbreeding for one 

of the local populations (Zachos et al. 2007). In summary, these genetic conditions 

emphasize the need for an improved state-wide functional connectivity of this species. 

Given its role as indicator species, landscape genetic studies on red deer might ultimately 

help to improve the connectivity of many other species as well, hence serving an 

important role for conservation. 

 

Aim of this thesis 

Gaining a better understanding of the processes driving differentiation and loss of genetic 

diversity of populations inhabiting fragmented landscapes is integral for conservation and 

wildlife management (Cushman et al. 2010). The aim of the thesis is to utilize genetic 

information to study the consequences of fragmentation and other anthropogenic 

restrictions on red deer populations in Schleswig-Holstein. Mitigation measures for 

enhancing connectivity such as the delineation of conservation corridors need to be 

founded on objective information about the effects of  landscape composition on  

dispersal and gene flow (Mateo-Sanchez et al. 2015).  

Movement is a key factor when it comes to gaining a better understanding of how 

landscape features impede or facilitate dispersal of mobile species such as large ungulates 

(Diniz et al 2020). Therefore, a major focus of this thesis is to derive different models on 

red deer space use and test their performance in terms of describing functional 

connectivity. The key strength working on this system is the availability of high quality 

spatial and genetic information which provides ideal conditions to run extensive 

benchmark analyses for landscape genetic model construction and validation. In 

summary, the thesis provides important insights for applied conservation and 
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management of wildlife in terms of counteracting the negative effects of anthropogenic 

fragmentation. 

Structure of this thesis 

Next to this general introduction the dissertation comprises three individual studies on 

separate topics of applied landscape genetics and movement ecology: 

The first study depicted in chapter two focuses on the genetic diversity and 

structure of red deer populations in Schleswig-Holstein. An extensive overview on 

different methods for identifying behavioral patterns from movement data is presented in 

the third chapter. The final study shown in chapter four utilizes such a path-

segmentation method along with other approaches to model landscape resistance and 

compares them in a landscape genetic framework. The fifth chapter summarizes and 

discusses the findings of the three studies with particular focus on the potential 

contribution to applied conservation. 
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Abstract 

Red deer (Cervus elaphus) throughout central Europe are impacted by different 

anthropogenic activities including habitat fragmentation, selective hunting and 

translocations. This has substantial influences on genetic diversity and the long-term 

conservation of local populations of this species. Here we use genetic samples from 480 

red deer individuals to assess genetic diversity and differentiation of the 12 administrative 

management units located in Schleswig Holstein, the northernmost federal state in 

Germany. 

We applied multiple analytical approaches and show that the history of local 

populations (i.e., translocations, culling of individuals outside of designated red deer 

zones, anthropogenic infrastructures) has led to comparably low levels of genetic 

diversity. Mean expected heterozygosity was below 0.6 and we observed on average 4.2 

alleles across 12 microsatellite loci. Effective population sizes below the recommended 

level of 50 were estimated for multiple local populations. 

Our estimates of genetic structure and gene flow show that red deer in northern 

Germany are best described as a complex network of asymmetrically connected 

subpopulations, with high genetic exchange among some local populations and reduced 

connectivity of others. Genetic diversity was also correlated with population densities of 

neighbouring management units.  

Based on these findings, we suggest that connectivity among existing 

management units needs to be considered in the practical management of the species, 

which means that some administrative management units should be managed together, 

while the effective isolation of other units needs to be mitigated.   

Keywords: meta-population, wildlife management, genetic connectivity, isolation, 

local populations 
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Introduction 

Red deer (Cervus elaphus) are among the most widespread ungulates in Europe and one 

of the most iconic game species. They have been heavily impacted by anthropogenic 

influences such as habitat fragmentation, translocations and selective hunting for 

centuries (Hartl et al. 2003). As such, red deer have been the target of many population 

and conservation genetic studies analyzing the genetic diversity and population structure 

in human-dominated landscapes (e.g., Kuehn et al. 2003; Pérez-Espona et al. 2008, 2009; 

Fickel et al. 2012; Frantz et al. 2017). The aims of these studies varied, and included the 

quantification of genetic diversity in isolated and sometimes inbred populations (e.g., 

Zachos et al. 2007), estimating the amount and genetic consequences of translocations 

(e.g., Haanes et al. 2010), or characterizing the genetic impacts of postglacial 

recolonization (e.g., Krojerova-Prokesova et al. 2015).  

In Schleswig-Holstein, Germany’s northernmost federal state, red deer are 

distributed across the north, southeast, and center of the state (Figure 2.1). The local 

populations are managed in 12 administrative units. These units were not established on 

the basis of population structure, but rather were opportunistically located in areas with 

high red deer densities, mostly located around larger patches of forest (Meißner et al. 

2008; Wotschikowsky 2010). Units located in close proximity to each other such as 

Barlohe (BAL), Iloo (ILO) and Schierenwald (SCW) are demarcated by spatial 

jurisdictions (e.g., municipalities or communities) or landmarks (e.g., rivers or roads), 

rather than by natural boundaries or population structure. Such administrative 

considerations are commonly included when delineating wildlife management units 

(Taylor and Dizon 1999). 

From a genetic standpoint, populations should only be treated as separate 

management units when their genetic divergence is high enough to suggest demographic 

independence, meaning that the rate of dispersal among populations must be low (Palsbøll 

et al. 2007). To emphasize that red deer management units in our study area (Schleswig-

Holstein) are not based on population structure, we refer to them as administrative 

management units (AMUs) and distinguish them from units defined by genetic 

divergence (i.e., genetic management units; GMUs). 
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Figure 2.1: Map of Schleswig-Holstein (study area). Inset indicates location within Germany. The blue line 

in the center indicates the Kiel Canal. Broad dashed black lines represent major highways (Autobahn). Red 

deer management units are delineated with thin dashed black lines. Forested areas are indicated by dark 

green shading. Local deer management units of which samples were included are Northern Friesland 

(NFL), Elsdorf (ELD), Barlohe (BAL), Iloo (ILO), Schierenwald (SCW), Hasselbusch (HAB), Segeberger 

Heide (SEG), Duvenstedter Brook (DUV), Lauenburg West (LAW), East (LAE) and South (LAS) as well as 

Sachsenwald (SAW). The two reference areas Denmark (DK) and Mecklenburg-Western Pomerania 

(MWP) are delineated in red. Triangles represent larger cities throughout that area.  

 

Historically, red deer within the AMUs in Schleswig-Holstein (SH) have been 

subject to various anthropogenic restrictions. For instance, until recently (i.e., 1980), red 

deer were only allowed to freely range in so called ‘designated red deer zones’ (Meißner 

et al. 2008; Wotschikowsky 2004, 2010). This policy was intended to prevent damages 

to crops and forests by red deer. Culling of all individuals outside these zones 

consequently limited gene flow between established populations (Ströhlein et al. 1993; 

Willems et al. 2016). Today, infrastructures such as fenced highways (Autobahn) or the 

Kiel Canal form potential barriers to gene flow across the entire state (Figure 2.1). 

Additionally, estimated population sizes vary greatly among the AMUs (range 35-530; 

see Table 2.1) and many of them contain fewer than 100 individuals. This population was 
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founded by dispersed individuals from the Segeberger Heide (SEG) in the second half of 

the 19th century (ca. 1870), but has been isolated from its source for decades. More 

recently, a fenced highway has prevented any potential migration between SEG and HAB 

(Meißner et al. 2008). A previous study found low genetic diversity as well as the first 

signs of inbreeding for the Hasselbusch AMU (Zachos et al. 2007). For example, multiple  

animals with brachygnathia inferior (shortened lower jaw), a condition linked to 

inbreeding depression, have been found in the HAB population (Zachos et al. 2007). 

Furthermore, there are influences of translocations: the Duvenstedt (DUV) population is 

not native but goes back to an enclosure population founded with red deer from Austria, 

Hungary and Poland which was released in the 1950s (Jessen 1988; Meißner et al. 2008). 

Within the last decade, red deer have dispersed from Denmark, established themselves 

south of the German border and are increasing in numbers (Reinecke et al. 2013). As a 

consequence, the latest red deer AMU established in Schleswig-Holstein was the 

Nordfriesland unit (NFL). In the neighboring state of Mecklenburg-Western Pomerania 

(MWP) located south-east of Schleswig-Holstein, red deer are more abundant and have 

been roaming the state with less restrictions while occupying a large area (Kinser et al. 

2015). Therefore, an exchange of individuals from these populations could result in 

higher levels of genetic diversity in the three AMUs located in the Lauenburg area (LAW, 

LAE, LAS). 

Hunters and landowners participate in the management of red deer within the 12 

AMUs in order to set different management goals such as hunting quotas 

(Wotschikowsky 2010). Therefore, managing the AMUs separately assumes that these 

units equate to GMUs, thus representing more or less disconnected (i.e., closed or 

genetically separated) populations that experience limited reproductive exchange of 

individuals with other populations (Moritz 1994). However, several recent studies have 

shown that if this implicit assumption is violated in wildlife management, actions in one 

management unit (MU) can substantially influence management effectiveness in 

neighboring units (Hemami et al. 2005; Robinson et al. 2008; Olea and Mateo-Tomás 

2014; Stillfried et al. 2017). In such cases, management would need to be extended 

towards a larger spatial scale that includes multiple MUs and considers the degree of 

connectivity among them (e.g., Robinson et al. 2008; Wäber et al. 2013). Genetic 

approaches have been suggested for delineating more meaningful management units 

based on biological population entities (e.g., Moritz 1994, Palsbøll et al. 2007). Strong 
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genetic sub-structuring or varying levels of genetic diversity among areas are still the 

metrics of choice commonly used to justify the separation of MUs (e.g., Wilting et al. 

2015; Grosser et al. 2017; Gaillard et al. 2017). However, novel analytical tools now 

allow researchers to derive estimates of directed dispersal rates from genetic samples, 

which can provide important information on potential source-sink dynamics and gene 

flow (e.g., Draheim et al. 2016).  

Overall, the history of red deer in SH and the different anthropogenic influences 

on the local populations raise the question of whether the current practice of managing 

each AMU as a separate, closed population is appropriate. In particular, it is questionable 

whether genetic diversity within AMUs is high enough in order to sustainably counteract 

genetic drift, thereby preventing a loss of genetic diversity and inbreeding. We expect 

some AMUs to be linked by dispersal and gene flow rates high enough to warrant 

management as a single unit. If this is the case, red deer AMUs in SH can be interpreted 

as a network of subpopulations where local populations are connected by gene flow of 

varying degrees (Pannell and Charlesworth 2000). If so, we should observe different 

levels of genetic exchange among AMUs and of genetic diversity within AMUs, with 

migration depending on connectivity among neighboring AMUs, and genetic diversity 

depending on a combination of connectivity and population size of neighboring AMUs.  

To assess the genetic structure of red deer AMUs in Schleswig-Holstein, we make 

use of an extensive data set consisting of over 500 tissue samples collected over multiple 

years. Using those samples, we estimate different measures of genetic diversity and test 

the hypothesis that diversity will vary between the AMUs in Schleswig-Holstein but still 

be relatively low compared to other populations throughout Europe (Zachos et al. 2016). 

For this, we also added samples from two references areas located in the neighboring state 

of Denmark and the federal state Mecklenburg-Western Pomerania. By combining 

analyses of genetic differentiation and population structure with a novel approach of 

genetically-derived estimates of relative migration rates (Sundqvist et al. 2016), we also 

delineate clusters of AMUs that are connected by gene flow and thus should be managed 

as one GMU. In order to further confirm the genetic structure of the AMUs, we correlate 

observed patterns of genetic diversity, differentiation and gene flow to available 

information on current population size and density at the local and regional scale. 
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Methods 

Study Area 

The study area extends over approximately 15,580 km² and covers the entire mainland of 

the federal state of Schleswig-Holstein in Northern Germany, south of the border with 

Denmark (Figure 2.1). The state comprises a mosaic of different types of land use, 

predominantly agriculture and pastures. Forested areas are scattered across the state but 

vary substantially in size and composition of tree species. Larger forest complexes such 

as the Segeberger Heide (SEG) form the core areas of the red deer distribution throughout 

the study area (Figure 2.1). Often, red deer habitats are further characterized by mixtures 

of marshes, heathlands and moors. Administrative management units vary in size from 

13,000 up to 48,000 ha (Reinecke et al. 2013). Distances between AMUs range from a 

few kilometers (< 5km) up to 63km between the NFL and ELD units. Available 

information suggests that local populations range in size from 30 to nearly 600 individuals 

within the AMUs (Table 2.1). Schleswig-Holstein is not densely populated (182 people 

per km²; Statistisches Bundesamt 2018) compared to the German average (237 people per 

km²), with human settlements and villages scattered across the state. The landscape is 

fragmented by roads, major highways (Autobahn) and canals (e.g., the Kiel Canal), all of 

which form potential barriers to the movements of red deer (Pérez-Espona et al. 2008; 

Frantz et al. 2012). 

Sampling 

We obtained 279 genetic samples from red deer harvested during the hunting seasons of 

2013 to 2015. In order to ensure a sufficient sample size across all 12 AMUs, we included 

186 samples collected in previous studies (Zachos et al. 2007; Reinecke et al. 2013) 

during the years 2003 and 2004. Additionally, we used samples obtained from two 

reference areas for comparative purposes: 1) 34 samples from the Froslev forest located 

in Southern Denmark (DK) close to the German border , and 2) 46 samples from several 

forests within the federal state of Mecklenburg-Western Pomerania (MWP) neighboring 

Schleswig-Holstein in the Southeast (Figure 2.1). This lead to a total sample size of 545 

(149 female, 104 male, 292 with no sex ID) red deer individuals (overview on sampling 

periods and sample sizes provided in supplement S2.3). Since free ranging red deer can 
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live up to over 12 years (e.g., Guinness et al. 1978) the gap between the two sampling 

periods corresponds to a maximum of only one deer generation.  

All samples were re-genotyped for our marker set in order to be fully comparable. 

We only considered samples for which the spatially referenced location of harvest (e.g., 

the forest complex) was reported.  Individuals from MWP originated from areas not 

directly neighbouring our study area. Therefore, these samples were only included for 

comparative measures regarding genetic diversity whereas the DK samples were also 

used throughout the analyses on differentiation and gene flow. 

DNA extraction and genotyping  

DNA was extracted using the ‘all tissue DNA’ kit (Gen-Ial, Troisdorf, Germany) 

following the manufacturer’s instructions (final DNA-elution in 80 µl). DNA 

concentrations were measured spectrophotometrically using a NanoDrop1000 (PeqLab 

GmbH, Erlangen Germany). To genotype each individual, we used a panel of 14 

microsatellite loci (see supplement S2.1). One primer of each of the 14 pairs was 5’-

labelled with a fluorescent dye (6-FAM or HEX). To save time and costs, primers were 

combined (after optimization) in multiplex mixes (CerMix1 – CerMix4). CerMix1 

contained primers for four loci (INRA6, C143, T40, and T115), CerMix2 combined three 

loci (C105, C180, and C229), CerMix3 combined four loci (T107, Haut14, ILSTS06, and 

BM757), and CerMix4 included three loci (CSSM14, FSBH, and BM1818). The 

genotyping reaction mixture (10 µl) consisted of 1 buffer (Promega, Germany), 2mM 

MgCl2, 1 µl multiplex primer mix [final concentrations per forward and reverse primers 

varied and were either 0.25 µM (INRA6, T115, T40, C180, C105, C229), 0.3µM (T107, 

BM757), 0.5µM (C143, Haut14), 1µM (BM1818), 3.5µM (CSSM14), 4µM (FSHB), or 

6µM (ILSTS06)], 150ng DNA, 0.25 U GoTaq polymerase (Promega, Germany) and 5.2 

µl A.dest. (sterile). Cycling conditions were the same for all four multiplex mixes: 95°C 

5 min, 5x (95°C 30s, touchdown beginning at 63°C, with a decrease of 2°C per cycle 

down to 55°C 90s, 72°C 30s), 40x (95°C 30s, 55°C 90s, 72°C 30s), final extension at 

60°C for 30 min. Size of amplicons was determined by calibration using the GENESCAN™ 

500 ROX™ size standard. Separation of fragments was carried out on an A3130xl 

automated capillary sequencer using the software GeneMapper v.3.7 for allele scoring 

(all Applied Biosystems).  
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Genotyping error estimation 

Microsatellite amplicons were screened for genotyping errors (large allele dropouts, 

stutter bands) and probability of null alleles being present using MICRO-CHECKER 

(version 2.23, Van Oosterhout et al. 2004). We tested all loci across all populations for 

consistent patterns of deviation from Hardy-Weinberg expectations (HWE) using 

GENEPOP (version 4.5.1; Rousset 2008). All pairs of loci were further checked for 

linkage disequilibrium within all sampling units applying the algorithms implemented in 

GENEPOP and ARLEQUIN (version 3.5; Excoffier et al. 2005) including Bonferroni 

correction for multiple comparisons (Rice 1989). Additionally, we calculated the number 

of identified alleles and estimated expected and observed heterozygosities as well as the 

polymorphic information content (PIC) for each marker using the adegenet R package 

(Jombart 2008). Monomorphic markers were excluded from further analyses.  

Estimating genetic diversity 

All statistical analyses were performed using the R environment (R Core Team 2017). 

We assessed the amount of genetic variation within each AMU by estimating expected 

and observed heterozygosities (HE, HO), allelic richness (AR) and the degree of 

heterozygote deficiency (FIS) in each management unit. Estimation of AR was based on 

rarefaction to correct for the smallest sample size (n=12). Confidence intervals for AR 

and FIS metrics were obtained using bootstraps with 999 replications. All metrics were 

estimated applying the diveRsity package (Keenan et al. 2013). We estimated effective 

population sizes (NE) for all administrative management units using the NeEstimator v2 

software (Do et al. 2014). NE values were based on the linkage disequilibrium method 

with bias correction developed by (Waples and Do 2008). The same critical thresholds 

(0.05, 0.02, 0.01) as in Zachos et al. (2016) were applied to correct for linkage of rare 

alleles with frequencies below these values. The NFL unit was excluded to avoid any 

potential bias in population size estimates due to low sample size below 15 individuals 

(Do et al. 2014). 

Estimating genetic structure 

We assessed genetic structure at the level of the AMUs based on pairwise FST values 

(Wright 1965) as well as the pairwise Jost's D metric (Jost 2008) using the strataG R 
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package (Archer et al. 2017). While Jost’s D is more appropriate for quantifying genetic 

(allelic) differentiation of populations showing varying levels of genetic diversity, FST 

better reflects past demographic processes and fixation (Whitlock 2011, Jost et al. 2018). 

Significance of differences in pairwise comparisons was estimated with 9,999 

replications and subsequent Bonferroni correction. 

To assess whether AMUs actually constituted genetically separate clusters, we 

applied a Bayesian clustering approach. Specifically, we used the program STRUCTURE 

(version 2.3.4, Pritchard et al. 2000) and tested for the presence of genotypic clusters (K), 

with the number of possible clusters ranging between K=1 and K=14, using an admixture 

model and correlated allele frequencies. After having checked for the likelihood to have 

converged, we estimated the probability for each K-value in five independent runs with 

500,000 iterations as burn-in followed by 1,000,000 MCMC iterations. The optimal 

number of K was determined using log-likelihood plots and the ΔK method by Evanno et 

al. (2005) implemented in the STRUCTURE Harvester platform (Earl and vonHoldt 

2012). Individual likelihoods of cluster memberships (q) were averaged over the five runs 

using the CLUMPAK online program (Kopelman et al. 2015).  

We used STRUCTURE in a hierarchical framework by re-running the clustering 

algorithm for each of the detected genetic clusters in the previous analysis (Coulon et al. 

2008; Balkenhol et al. 2014). The procedure was repeated until the optimal number of 

inferred genetic clusters was equal to one (K=1). By doing this, subtle structuring is more 

likely to be detected because the largest break in the dataset is reiteratively removed so 

that this strong signal does not blur a weaker signal at lower hierarchical levels (Janes et 

al. 2017). We performed the hierarchical STRUCTURE analysis with ‘sampling location’ 

(i.e., the AMU) as a prior (locprior; Hubisz et al. 2009). All AMUs from Schleswig-

Holstein and the reference area from Denmark were included in this analysis, as these are 

the sampling areas among which gene flow can be substantial enough to form actual 

genetic clusters (i.e., MWP samples were excluded). 

Estimating directional migration rates 

Relative, directional migration was estimated using the divMigrate method (Sundqvist et 

al. 2016) which is implemented in the diveRsity R package (Keenan et al. 2013). While 

other, more complex algorithms are available for estimating asymmetric migration rates 
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(e.g., BayesAss, Rannala 2007; MIGRATE-N, Beerli 2004), we chose divMigrate 

(Sundqvist et al. 2016) because it can be calculated from standard measures of genetic 

differentiation and does not require multiple additional parameters to be estimated 

(Sundqvist et al. 2016). The method tests for significant directionalities in gene flow 

between pairs of populations based on asymmetric distributions of allele frequencies and 

generates an output with relative migration rates scaled to values between 0 and 1 

(Sundqvist et al. 2016). 

We chose the GST measure of genetic differentiation (Nei 1972) from the options 

provided by divMigrate since it is similar to the FST values applied above (Whitlock 

2011). Again, the analysis was performed for all AMUs within the study area as well as 

the Danish reference population, which we included because of suspected ongoing 

migration from Denmark into Germany. Based on the pairwise migration rates, we 

calculated the mean immigration (I) and emigration (E) rates as well as their ratio (RI/E) 

for each AMU. RI/E >1 would indicate that the rate of immigration in a population is 

higher than the emigration rate and vice versa for RI/E <1. Finally, we note that the results 

of the divMigrate analysis do not necessarily represent actual migration but rather 

estimate the probability of the exchange of genes between two sampling locations 

(Marrotte et al. 2017, Bohling et al. 2019). Further, relative migration rates are estimated 

across all pairs of included populations and do not account for spatial context or distance 

between them. 

Modeling of genetic patterns 

In the next step, we used regression modelling to correlate genetic variation within and 

among the AMUs with available ecological and environmental information. Specifically, 

we tested whether genetic diversity, differentiation and migration rates can be explained 

by local population sizes (Si) or densities (Di) within each AMU i, or as a function of the 

cumulative sizes (∑ 𝑆𝑗
𝑛
𝑗=1 ) or cumulative densities (∑ 𝐷𝑗)

𝑛
𝑗=1  of the three AMUs j (j = 1-

3) closest to the focal AMU i.  The first two indices, Si (number of individuals in AMU 

i) and Di (individuals per hectare in AMU i), assume that genetic patterns and migration 

are only influenced by local population characteristics (i.e., size or density). In contrast, 

the latter two indices essentially are metrics used to describe isolation of multiple, 

potentially connected populations, and assume that the existence of large or densely 

populated neighboring AMUs is important for explaining observed population structure 
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(e.g., Balkenhol et al. 2013). The three closest AMUs were chosen to calculate the 

connectivity indices because this included, in all cases, all the directly neighboring 

management units that could potentially exchange dispersing individuals with the focal 

unit. 

We used officially available population size estimates (Meißner et al. 2008; 

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des 

Landes Schleswig-Holstein 2012; Reinecke et al. 2013) for each AMU to represent S, and 

estimated D by dividing population size by the area of potential red deer habitat in the 

AMU. Potential habitat for each AMU was based on official thematic landscape data 

(authoritative topographic cartographic information system, ATKIS) and included all 

patches of forest, heathland and moors within the range of each AMU (Reinecke et al. 

2013). 

We then modelled genetic diversity (AR), genetic differentiation (Jost’s D) and 

mean immigration (I) as well as emigration (E) rates as a function of the four different 

indices, as well as a null model (intercept-only). We chose AR as a measure of genetic 

diversity as it was corrected for varying sampling sizes across AMUs. Similarly, we chose 

Jost’s D as an estimate of genetic differentiation because it measures the fraction of allelic 

variation among populations and thus accounts for varying genetic diversities within 

AMUs (Jost et al. 2018). Finally, we chose immigration and emigration rates as measures 

of directional dispersal. To compare models, we used an information-theoretic approach 

based on Akaike’s Information Criterion corrected for small sample size (AICc; Akaike 

1973; Burnham and Anderson 2002). The model with the lowest AICc value was deemed 

best, but models with ΔAICc <= 2 were considered equally plausible (Burnham and 

Anderson 2002). 

Genetic drift and isolation by distance 

Following Jordan and Snell (2008) we tested for the potential effect of drift in isolation 

assuming that historic drift as represented in low genetic variation in smaller populations 

caused higher levels of differentiation. Therefore, we expect to see a negative relationship 

between the mean pairwise FST values of each AMU with all other AMUs and their 

expected heterozygosities HE (i.e., AMUs with larger FST should show lower HE values 
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than AMUs with smaller FST-values). We further correlated mean pairwise FST values 

with allelic richness (AR) as the predictor variable (Whitley et al. 2010; Funk et al. 2016). 

Finally, we tested for isolation-by-distance (IBD; Wright 1943) using a Mantel 

test between genetic distances (linearized FST, i.e. FST/1-FST; and Jost's D values) and the 

natural log of the geographic distance among AMUs (Slatkin 1993). A significant IBD 

pattern in both FST and Jost’s D indicates that gene flow occurs among AMUs but is 

spatially limited, which hints at subpopulations connected via dispersal (Hutchison and 

Templeton 1999; Aguillon et al. 2017).  

Results 

We excluded 65 samples from further analyses because of insufficient numbers of 

successfully sequenced loci (≤ 11 markers). Therefore, the final dataset consisted of 480 

samples including 68 individuals from the two reference regions located in Mecklenburg-

Western Pomerania (46 samples) and Denmark (22 samples; Table 2.1). Two (T40, C105) 

of the original 14 microsatellite markers were dropped as they had only two alleles and 

were near monomorphic in the vast majority of samples with frequencies below 0.15 

observed for one of the two alleles. The number of alleles of the remaining markers 

ranged between three and 14. Polymorphic information content ranged from 0.3 up to 

0.86 with a mean PIC of 0.62 (SD=0.2) across all loci (more information on marker 

diversity is provided in the supplement; file S2.2). None of the retained markers showed 

issues with null alleles or consistent deviations from HWE. We did not find evidence for 

significant linkage for any of the compared pairs of loci across all sampling units. Private 

alleles were detected within samples from one reference area (MWP: three alleles) and 

from two management units (ILO and NFL one allele each). 

Genetic diversity 

We observed a mean expected heterozygosity of 0.59 (SD=0.04) and a mean allelic 

richness of 4.20 (SD=0.47) alleles with a minimum of 3.41 and a maximum of 5.12 alleles 

(based on 12 diploid individuals, see Table 2.1). The Hasselbusch administrative 

management unit (HAB) showed the lowest values regarding these two metrics. Samples 

from the two reference areas differed with regard to their genetic diversity with Denmark 

showing the lowest values of HE and AR (Table 2.1). The samples from Mecklenburg-
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Western Pomerania actually exhibited the highest estimates for all diversity metrics 

compared to DK and the AMUs from Schleswig-Holstein. We did not find any indications 

for significant heterozygote deficiency. With the exception of Barlohe (BAL) and 

Schierenwald (SCW), confidence intervals of all estimated FIS values were low and 

overlapped with zero (Table 2.1), conforming with expectations for random mating 

within AMUs.  

Genetic structure 

We observed a global fixation (FST) value of 0.09 and a global Jost’s D of 0.12 across all 

12 AMUs of Northern Germany (p<0.0001 for both values). Pairwise estimates of FST 

and Jost's D ranged between 0.006 and 0.225 with an average of 0.1 for FST and 0.09 for 

Jost's D, respectively (Table 2.2). Overall, estimates of the two metrics agreed in most 

cases regarding the significant differentiation between the considered AMUs. However, 

not all AMUs were genetically differentiated. We were able to distinguish three groups 

of administrative management units which did not show significant structuring for both 

estimates. The first  consists of BAL, ILO and SCW, the second one includes the three 

AMUs from the Lauenburg area (LAW, LAS and LAE), and the third group comprising 

NFL and DK where the lowest level of differentiation was observed (FST: 0.015; Jost's 

D: 0.007). In some pairwise comparisons, Jost's D estimates differed from FST values, 

e.g. for the SCW-HAB value (Table 2.2). 
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Figure 2.2: Results of hierarchical STRUCTURE analysis. Upper part shows partitioning among clusters. 

The map presents the final results for all MUs showing the proportions of the most likely origin of the 

sampled individuals. The overall sample size of this analysis is 434 out of 480 individuals. Samples from 

MWP (n = 46) were excluded since they originated from regions not directly neighboring the study area. 

 

We observed a complex, hierarchical genetic structure of three different levels 

based on the STRUCTURE analysis. Using the ΔK method (Evanno et al. 2005) the 
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optimal number of genetic clusters K at the first level was three, essentially dividing the 

individuals into a northern (Cluster North), central (Cluster Center) and southern (Cluster 

South) group of origin (Figure 3). The northern as well as the southern cluster was again 

split into another two subgroups whereas the central cluster comprised three different 

genetic groups at the second hierarchical level. Finally, we only found additional 

substructures of K=3 at the third level for one of the two southern clusters (South 2, Figure 

3; see also supplemental file S2.4). The majority of individuals were clearly assigned to 

the different clusters with high ancestry values (q) above 0.7 (supplemental file S2.4). 

Directional migration 

Based on the divMigrate analysis, we observed variation in directionality and degree of 

gene flow among the AMUs and between some of them and the Danish reference area. 

Estimated rates of relative gene flow ranged from 0.04 up to 1 with an average of 0.15. A 

pairwise matrix with all directional estimates of gene flow is provided in the supplement 

(file S5). We observed the highest rates of directional gene flow (> 0.2) between AMUs 

in the southeastern region (LAW, LAE, and LAS) as well as the central region (BAL, 

ILO, SCW; Figure 3). The results further suggested that gene flow was more likely to 

occur from DK towards AMUs in the southern regions (e.g., the Lauenburg management 

units) than vice versa. 

Differences with regard to directed migration rates were also detected by mean 

immigration and emigration rates (Table 2.3) with several AMUs either exhibiting similar 

rates of emigration (LAW, LAS, SAW) or very low values of overall gene flow (DUV, 

NFL). The HAB administrative deer management unit exhibited one of the lowest 

migration ratios (RI/E =0.63), together with the reference area from Denmark (RI/E =0.57). 

With an RI/E value >1, five out of the 13 local deer populations potentially received more 

migrants than they produced (DUV, LAE, LAS,  ILO, SEG)), while the eight remaining 

ones contributed more migrants than they received (RI/E < 1:BAL, ELD, HAB, LAW, 

NFL, SAW, SCW and DK; Table 2.3). 
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Figure 2.3: Direction and magnitude (indicated by arrow thickness) of estimated gene flow between 

management units (sources) based on the divMigrate analysis. Only results with migration rates above 

average (higher than 0.2) for the south-eastern region of Schleswig-Holstein without the DK reference area 

are shown here for illustrative purposes.  
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Table 2.3: Mean immigration (I) and emigration (E) rates as well as their ratio (RI/E) estimated for all 

administrative deer management units in Schleswig-Holstein. The results summarize the pairwise estimates 

of directed gene flow between AMUs based on the divMigrate analysis. Values indicate whether a 

population is more likely to receive (migration ratio above one) or send out individuals (ratio below a value 

of one). 

Management 

Unit 

Immigration rate 

(mean) 

Emigration rate 

(mean) 

migration ratio 

BAL 0.126 0.128 0.98 

DUV 0.108 0.102 1.06 

ELD 0.104 0.127 0.82 

HAB 0.08 0.126 0.63 

LAE 0.345 0.297 1.16 

LAS 0.273 0.24 1.14 

LAW 0.229 0.283 0.81 

ILO 0.175 0.14 1.25 

NFL 0.105 0.121 0.87 

SAW 0.128 0.159 0.81 

SCW 0.106 0.129 0.82 

SEG 0.179 0.16 1.12 

DK 0.09 0.157 0.57 

 

Influence of population size and neighboring population densities 

Our regression analysis (Table 2.4), allelic richness was best explained by the neighboring 

population densities (adj. R² = 0.57, p = 0.003), i.e., AR within AMUs increased with 

higher cumulative densities of red deer in the neighboring management units (Figure 5). 

Mean emigration rates (E) were best explained by both neighboring population size and 

by the density of the neighboring management units (Table 2.4). Neither mean Jost’s D 

nor mean immigration rates (I) were explained by any of the indices. 
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Table 2.4: Meta-population study linking genetic metrics of diversity, differentiation and gene flow with 

estimates of meta-population structure. Only results for variables without null-model among candidates 

with ΔAICc smaller than two are shown. 

Genetic 

Metric 

Meta-Population 

Metric 

Δ AICc AICc 

Weight 

adj. R2 p-value 

AR neighbor pop.density 0.00 0.74 0.57 0.003 

AR neighbor pop.size 2.89 0.18 0.46 0.009 

AR focal pop.size 6.29 0.01 0.25 0.054 

AR nullmodel 7.73 0.02 0.00 - 

AR focal pop.density 7.97 0.03 0.17 0.099 

JostD nullmodel 0.00 0.58 0.00 - 

JostD focal pop.size 3.13 0.12 -0.05 0.527 

mig.into nullmodel 0.00 0.28 0.00 - 

mig.into neighbor pop.density 0.07 0.27 0.19 0.004 

mig.from neighbor pop.size 0.00 0.63 0.55 0.004 

mig.from Neighbor pop.density 1.40 0.31 0.49 0.007 

mig.from focal pop.size 6.11 0.03 0.25 0.058 

mig.from nullmodel 6.97 0.02 0.00 - 

mig.from focal pop.density 9.44 0.01 0.04 0.33 

Genetic drift and isolation by distance 

Genetic differentiation based on mean pairwise FST values was negatively correlated with 

higher estimates of genetic diversity. This indicates that drift is influencing genetic 

diversity and drives divergence between AMUs in our study area. For example, we 

observed the highest r² score of 0.73 (p < 0.001) between FST and expected heterozygosity 

(Figure 2.4). Allelic richness also significantly decreased with higher values of mean FST 

(r²=0.58, p = 0.004). Further, we detected effects of spatially limited gene flow and 

significant isolation by distance. Results of the Mantel analyses indicated significant IBD 

among AMUs using both linearized FST (r = 0.42; p = 0.003) and Jost’s D (r = 0.28; p = 

0.015), respectively.  
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Figure 2.4: Scatterplot showing the significant decrease of mean pairwise FST values and genetic diversity 

of administrative deer management units in Schleswig-Holstein based on allelic richness (AR) Results are 

based on a linear regression model (r²=0.58, p = 0.004). 

 

Figure 2.5: Linear regression model showing the significant increase (adj. R² = 0.57, p = 0.003) of allelic 

richness (AR) with higher cumulative densities of neighbouring deer management units (deer per 100 

hectares). 
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Discussion 

We investigated the genetic structure and differentiation of administrative management 

units to find out whether the practice of managing the local red deer populations as 

separate populations is effective or if future management should account for substructures 

and genetic exchange among them. This is particularly relevant when populations are low 

in abundance and experienced different types of restrictions in the past as in the presented 

study. Limited gene flow caused by anthropogenic fragmentation and management goals 

(culling of individuals outside of designated deer areas) lead to genetic drift and decreased 

genetic diversity. 

We want to point out that comparisons of genetic diversity estimates across 

studies have to be performed with caution (Reiner et al. 2019). Although our data set 

shares only four loci with the most comprehensive microsatellite study of red deer in 

Europe to date (Zachos et al. 2016), our study nevertheless shows that there is a clear 

trend towards low genetic diversity in red deer from Northern Germany. The HO values 

observed in our study are rare for red deer and usually only found in populations with 

long-term low effective population sizes such as the red deer from Sardinia or from 

Mesola in northern Italy (Hmwe and Zachos 2006). Both, HO and HE values, in the 

Hasselbusch AMU are among the lowest ever found in a population of this species 

(Zachos and Hartl 2011; Zachos et al. 2016). A very similar pattern can be seen in NE 

values of all AMUs (Table 2.1).  Although the NE values for several of the northern 

German deer AMUs are within the range of reported values from other European 

populations, many of the Schleswig-Holstein populations, again including HAB, are 

clearly at the lower end and below the effective population size threshold of 50 

individuals, a value below which inbreeding depression is likely to occur (Frankham et 

al. 2010).  

However, observed FIS values were quite low (Table 2.1) with no clear signs of 

heterozygote deficiency and fixation. We assume that existing gene flow at short ranges 

seems to compensate for drift effects on genetic diversity in some cases. This assumption 

is supported by significant isolation by distance which indicates that drift and gene flow 

are in equilibrium at regional scales (Hutchison and Templeton 1999, Jordan and Snell 

2008). 
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Ultimately, the lack of such restrictions to dispersal as experienced by red deer in 

our study area should result in higher levels of genetic diversity. This was confirmed by 

relatively high values of genetic variability (HE, NE) in the reference population from 

MWP where red deer have not been restricted to declared red deer zones in the past and 

range throughout the state in higher abundance compared to Schleswig-Holstein (Kinser 

et al. 2010). Comparable values of genetic diversity were also confirmed for the three 

AMUs of the Lauenburg area (LAE, LAS, LAW) which could also be explained by the 

relatively large population size in Lauenburg in combination with gene flow from the east 

(Mecklenburg-Western Pomerania).  

Furthermore, we observed a significant decrease in differentiation (FST) with 

higher levels of genetic diversity (HE, AR). This could be due to potential effects of 

historic drift in isolation and small populations which is expected to be the predominant 

cause for genetic differentiation (Jordan and Snell 2008; Whiteley et al. 2010; Funk et al. 

2016). Only AMUs in close proximity did not exhibit any significant values of 

differentiation based on both FST and Jost’s D estimates (e.g., BAL, ILO and SCW or the 

Lauenburg populations).  

Hierarchical structure and gene flow 

We observed a hierarchical genetic structure comprising three main clusters: North, 

Center and South. The first cluster was located north of the Kiel Canal (an effective 

barrier to deer dispersal due to the steep embankments) and also included the Danish red 

deer. The small population of the NFL management unit was founded by red deer 

individuals dispersing from Denmark into northern Germany. The assignment of ELD to 

the northern cluster was surprising because its founders came from BAL crossing the Kiel 

Canal in the late 1960s (when the embankments were not yet in their present state; 

Meißner et al. 2008). However, low population size and genetic drift have apparently 

resulted in divergence from the central cluster, which is located just south of the canal. In 

addition, immigration from Denmark into the ELD population has been shown by means 

of genetic data (mtDNA sequences; Reinecke et al. 2013). Therefore, it seems in 

accordance with the population’s history to consider ELD as a separate northern sub-

cluster. 



56 

The sub-structure of the central cluster can also be explained based on geography 

and historic background. The three sample sites just south of the Kiel Canal (BAL, ILO, 

SCW) have historically been separated from the ones further south because of limited 

dispersal of red deer outside the ‘designated red deer zones’ (Wotschikowsky 2010, 

Reinecke et al. 2013). The HAB population was founded by dispersed individuals from 

SEG but a fenced highway has prevented any potential migration between these two 

AMUs. Due to its low census and effective sizes, drift has been high in HAB, which is 

mirrored by its substantial differentiation from SEG today. The separate status of 

Duvenstedt (DUV) is understandable since the population is not native but was founded 

with red deer from other parts of Europe (Jessen 1988; Meißner et al. 2008). In the 

southeast, LAS is separated from LAW and LAE by a highway, but this is a relatively 

recent barrier (completion during the 1990s), obviously not yet reflected in the gene pools 

on either side. Interestingly, the SAW population comprises three different subclusters, 

two of which were only found there (South 2b and 2c). A red deer hunting enclosure 

located in that area perhaps suggests a similar historical development as with the DUV 

population. Individuals from other parts of Europe introduced into the private enclosure 

could potentially have escaped the fenced area and established themselves within the local 

population (cf. Frantz et al. 2017).  

As expected, we observed high levels of gene flow between AMUs with low 

differentiation (Figure 3), which were again the complex consisting of BAL, SCW, and 

ILO, as well as the local deer populations from the Lauenburg area in the south-eastern 

region of Schleswig-Holstein.  

Overall, diversity within and gene flow among AMUs was best explained by size 

and density of the surrounding local populations as our modeling analyses (Table 2.4) 

showed. Deer populations that were adjacent to larger or higher-density populations had 

higher rates of gene flow and higher levels of diversity.  

Most of the AMUs with lower mean rates of immigration as compared to 

emigration rates (Table 2.3) are characterized by either small population sizes, low 

densities or higher levels of isolation. Because of that they probably received fewer genes 

from other populations in the past. Relative to the other populations they are therefore 

more likely to send out individuals (Bohling et al. 2019). Genetic similarity, for example 

due to historical reasons, will also lead to positive values of inferred migration. Since the 
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HAB population was founded by migrants from SEG, migration values are not zero and 

reflect population history. This is in accordance with the Duvenstedt unit (DUV) showing 

no signs of migration to or from other populations because it was founded with non-native 

deer (Jessen 1988). Still, anecdotal reports of dispersing red deer further support the 

conclusion that there is some level of gene flow (Reinecke et al. 2013). Single individuals 

have been seen outside established population ranges, the Lauenburg red deer are known 

to be in contact with the neighboring populations in Mecklenburg-Western Pomerania to 

the east, and in 1986 and 1987 single stags migrated from Hasselbusch (HAB) to Barlohe 

(BAL) and from Duvenstedt (DUV) to Segeberg (Jessen 1988; Peters 2000; Zachos et al. 

2007; Meißner et al. 2008). The latter is also supported by the results of the STRUCTURE 

analysis. Whether they successfully reproduced in SEG, however, is unknown.  

Within the last decade red deer from Denmark have established themselves south 

of the German border and are increasing in numbers. We were able to detect first signs of 

genetic exchange between the NFL / DK population and the ELD management unit. This 

shows the high potential of the species to migrate throughout the state and establish new 

ranges. 

Management Implications and Future Research 

In summary, based on our analyses on genetic structure and gene flow we were able to 

distinguish two major groups of AMUs which essentially represent single GMUs: in the 

central part of Schleswig-Holstein the three AMUs of BAL, ILO and SCW form one 

genetically distinct cluster. The same holds for the AMUs in the Lauenburg area (LAE, 

LAS, LAW) in the south-east of the state. This indicates a discrepancy between the 

current administrative delineation of management units and actual levels of genetic 

exchange among these areas (see also Figure 2.3). Our results also show that observed 

genetic patterns (diversity and gene flow) in a local deer population are largely explained 

by the densities of populations in its close vicinity. Local management decisions that 

change local abundance could have genetic impacts not only on the local population but 

also on neighboring AMUs, especially if AMUs are interpreted as single GMUs when 

they are actually well connected to others. Therefore, future management of red deer 

populations in Schleswig-Holstein needs to incorporate parameters such as deer 

population sizes and habitat availability for neighboring administrative MUs. Data on 

dispersal or gene flow and population structure derived from genetic studies like ours 
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should ideally be incorporated when new units for wildlife management are spatially 

delineated (Paetkau 1999; Lowe and Allendorf 2010).  

Another important factor are temporal changes regarding age- and sex-structure 

of the local populations. Recording these parameters could help to gain a better 

understanding of potential source-sink dynamics (Draheim et al. 2016). In particular, 

younger males are more likely to disperse at higher local densities (Loe et al. 2009). 

Therefore, future research should also focus on the proportions of young males in local 

populations and how density-dependent dispersal could potentially influence gene flow 

and the genetic differentiation of the subpopulations. For example, estimating dispersal 

among localities using capture-mark-recapture or telemetry could be applied to assess the 

demographic effects of inter-population movements. 

In particular, the exchange of individuals between isolated populations such as  

HAB needs to be enhanced in the near future to counteract the continuing loss of genetic 

diversity. HAB is not far away (approximately 10km) from the larger GMU formed by 

SCW, ILO and BAL. Still, we observe high levels of differentiation and hardly any gene 

flow. The STRUCTURE analysis assigned one single individual sampled in HAB to the 

cluster of SCW, ILO and BAL (Figure 2.2 .and Supplement S2.4). Similar patterns can 

be observed for DUV and SEG which are also not far apart (ca. 15km) but only two 

individuals sampled in DUV were assigned to the SEG cluster (Supplement S2.4). This 

leads to the conclusion that landscape characteristics between AMUs affect the genetic 

exchange among them and thus influence size and density of populations; we will need 

further analyses to identify landscape features that facilitate or impede natural dispersal 

among AMUs. Based on the results, migration corridors and locations for crossing-

structures (e.g., green bridges) can then be identified to mitigate the effects of barriers 

and landscape resistance on the migratory movements of red deer.  
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Supplement 

S2.1: information on microsatellite markers 

- INRA6 (Vaiman et al. 1994; Slate et al. 1998),  

- C105, C143, C180, C229, T40, T107, T115 (all tetranucleotide loci; Meredith et 

al. 2005),  

- HAUT14 (Thieven et al. 1995),  

- BM757, BM1818, ILSTS06 (Bishop et al. 1994),  

- CSSM14 (Moore et al. 1994),  

- and FSHB (Moore et al. 1992).  

Four of these loci were also included in the 13 loci of (Zachos et al. 2016): Haut 14, 

ILSTS06, CSSM14 and BM1818. 
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S2.2: marker diversity 

Locus Nr.Alleles H.obs H.exp Ae Fis PIC 

BM1818 8 0.758 0.825 5.718 0.082 0.803 

BM757 14 0.687 0.752 4.037 0.087 0.725 

C105 2 0.41 0.423 1.734 0.032 0.334 

C143 6 0.396 0.464 1.867 0.147 0.437 

C180 5 0.526 0.556 2.254 0.055 0.493 

C229 6 0.275 0.333 1.5 0.175 0.302 

CSSM14 3 0.409 0.446 1.804 0.083 0.365 

FSHB 10 0.742 0.847 6.549 0.125 0.83 

Haut14 11 0.672 0.855 6.894 0.214 0.839 

ILSTS06 12 0.712 0.808 5.196 0.118 0.785 

INRA6 5 0.536 0.621 2.636 0.136 0.574 

T107 4 0.553 0.551 2.229 -0.002 0.493 

T115 12 0.785 0.869 7.606 0.096 0.855 

T40 2 0.033 0.041 1.042 0.183 0.04 

S2.3: distribution of samples across red deer management units and sampling 

periods 

Management Unit Period 

2003-2004 

Period 

2013-2015 

Barlohe (BAL) 2 17 

Denmark (DK) 22 0 

Duvenstedter Brook (DUV) 13 10 

Elsdorf (ELD) 21 25 

Hasselbusch (HAB) 15 32 

Lauenburg East (LAE) 46 30 

Lauenburg South (LAS) 13 24 

Lauenburg West (LAW) 0 22 

Mecklenburg-Western 

Pomerania (MWP) 

46 0 

Moerel/Iloo (ILO) 10 21 

Nordfriesland (NFL) 4 8 

Sachsenwald (SAW) 15 2 

Schierenwald (SCW) 0 14 

Segeberger Heide (SEG) 9 64 
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S2.4: Results of hierarchical STRUCTURE analysis with locprior 

Figure S.2.4.1: results of hierarchical STRUCTURE analysis using sampling location (administrative 

management unit) as locprior.  

Figure S.2.4.2: First level of the hierarchical STRUCTURE analysis: the number of genetic clusters (K=3) 
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was determined with the Evanno method. Probabilities of group membership (Q-values) are presented for 

all individuals from the AMUs in Schleswig-Holstein and the reference area from Denmark (DK).  

Figure S2.4.3: Results for the northern cluster at the second level of the hierarchical STRUCTURE 

analysis. Probabilities of cluster memberships are shown for the two AMUs from Schleswig-Holstein 

located north of the Kiel Canal and the reference area from Froslev (Denmark, DK). 

Figure S2.4.4: Results for the center cluster at the second level of the hierarchical STRUCTURE analysis. 

The Evanno method indicated the most likely value of K=3 
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Figure S2.4.5: Results for the southern cluster at the second level of the hierarchical STRUCTURE 

analysis. 

Figure S2.4.6: Results for the third level of our hierarchical STRUCTURE analysis. The second southern 

cluster was divided into another three different clusters (K=3, Evanno method). 
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CHAPTER 3 

Path segmentation for beginners: An 

overview of current methods for detecting 

changes in animal movement patterns 

Published as: Edelhoff, H., Signer, J., and Balkenhol, N. (2016). Path segmentation for 

beginners: an overview of current methods for detecting changes in animal movement 

patterns. Movement Ecology, 4(1), 21 
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Abstract 

Increased availability of high-resolution movement data has led to the development of 

numerous methods for studying changes in animal movement behavior. Path 

segmentation methods provide basics for detecting movement changes and the behavioral 

mechanisms driving them. However, available path segmentation methods differ vastly 

with respect to underlying statistical assumptions and output produced. Consequently, it 

is currently difficult for researchers new to path segmentation to gain an overview of the 

different methods, and choose one that is appropriate for their data and research questions.  

Here, we provide an overview of different methods for segmenting movement 

paths according to potential changes in underlying behavior. To structure our overview, 

we outline three broad types of research questions that are commonly addressed through 

path segmentation: 1) the quantitative description of movement patterns, 2) the detection 

of significant change-points, and 3) the identification of underlying processes or ‘hidden 

states’. We discuss advantages and limitations of different approaches for addressing 

these research questions using path-level movement data, and present general guidelines 

for choosing methods based on data characteristics and questions. Our overview 

illustrates the large diversity of available path segmentation approaches, highlights the 

need for studies that compare the utility of different methods, and identifies opportunities 

for future developments in path-level data analysis. 

Keywords: path topology, telemetry, GPS, animal behavior, state-space models, bio-

logging, path segmentation, path-level analyses 
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Introduction 

Movement is an important life history trait in organismal ecology. Individual movement 

decisions and capacities affect habitat-dependent space-use and foraging strategies, as 

well as dispersal and migration (Bowler and Benton 2005; Wilson et al. 2012). Changes 

in movement behavior impact individual fitness, reproductive success and survival (Kays 

et al. 2015; Owen-Smith et al. 2010), ultimately driving population dynamics and 

evolution of species. The importance of movement has led to the emergence of the 

movement ecology paradigm, which provides a fundamental conceptual framework for 

studying movement in a holistic and mechanistic manner (Nathan et al. 2008). 

For animals, modern tracking devices (e.g., GPS or ARGOS) make it possible to 

gather relocation data at increasingly fine spatial and temporal resolutions, thereby 

providing the data necessary to address comprehensive questions about how individuals 

perceive, react to, utilize or even change their environment (Cagnacci et al. 2010; Schick 

et al. 2008).Traditionally, animal relocation data were used in different variants of point 

pattern analyses in order to describe space use and resource selection as well as home 

ranges and territorial behavior (Moorcroft and Barnett 2008; Powell 2000; Worton 1987). 

These methods are especially useful when relocations are sampled at low frequencies 

(e.g., several hours or days) or with large temporal gaps. However, researchers can now 

collect relocation data for mobile animals at intervals of minutes (e.g., Weber and Norman 

2015) or even seconds (e.g., Thiebault and Tremblay 2013). Rather than analyzing such 

high-frequency data as mere point patterns, they are often treated as movement paths, 

which provide a temporal sequence of the steps an animal took through space (Cushman 

2010). An important advantage of analyzing animal movements at the path-level is the 

enhanced opportunity to learn about the behavior driving the observed movement 

patterns. 

Path segmentation methods are perhaps most widely-used for identifying 

behavioral states from path-level movement data. These methods essentially dissect 

movement paths into segments that are assumed to reflect different underlying behaviors. 

By defining behavioral states from the paths and then linking state-dependent movements 

to the environment, scientists can gain an enhanced understanding of the biological 
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processes influencing the movement behavior of animals (Killeen et al. 2014; Roever et 

al. 2013). 

Given the tremendous capabilities of path segmentation for movement ecology, it 

is not surprising that the number of approaches suggested for segmenting a path and 

detecting behavioral states is growing rapidly. However, many of these methods have 

their roots in non-ecological scientific disciplines and gaining a comprehensive 

understanding of the plethora of available methods can be time-consuming and even 

frustrating, which likely results in path-level analyses not being used as often and as 

efficiently as possible. 

Here, we offer an overview of available methods for segmenting animal 

movement paths to detect underlying behavioral states. For this, we first introduce the 

basics of path-level analyses and relevant terms for distinguishing different movement 

types. Next, we outline some of the major differences between analytical approaches and 

suggest general considerations for matching available methods to three broad types of 

research questions: 1) the quantitative description of movement patterns, 2) the detection 

of significant change-points, or 3) the identification of underlying processes (“hidden 

states”). To illustrate our suggestions, we also apply multiple methods to a simulated 

dataset. We include examples of different ecologically relevant movement processes at 

varying temporal scales (e.g., diel and annual time scales), as well as behavioral responses 

to habitat configuration to provide more insight on the application of the presented 

segmentation approaches. Finally, we discuss remaining challenges and suggest future 

research avenues for path segmentation. Our overview is specifically intended as a 

starting point for beginners with little or no experience in path-level analysis of telemetry 

data, and we therefore avoid statistical details as much as possible. These details can be 

found in the supplement and also the references given for the individual methods. 

Basics of path-level analyses  

Movement paths and trajectories 

Usually, we cannot observe the complete, continuous movement path of an animal. 

Instead, we sample a set of discrete relocations to approximate the animals’ actual 

movement path (Calenge et al. 2009; Step 1 in Figure 3.1). The resulting sequence of 

consecutive records of the location of the animal (e.g., spatial coordinates, ordered by 
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time) is termed a movement track or trajectory (Getz and Saltz 2008). How well a 

trajectory reflects the actual movement path of an animal depends on the sampling regime 

as well as the recording systems (GPS, Argos, VHF, light-level geolocation), which 

influences the spatial accuracy and frequency of relocations.  

In path-level movement data, consecutive relocations are either sorted by an 

ordering factor, for example as the result of direct tracking or following of an animal 

(Fryxell et al. 2008; McKellar et al. 2014) or by the time at which the relocations were 

recorded (Calenge et al. 2009; Morales and Ellner 2002). Sampling frequency influences 

the resolution of the data and the level of inferential detail that can be obtained (Johnson 

and Ganskopp 2008; Nathan et al. 2008; Van Moorter et al. 2010). For example, shorter 

temporal intervals allow detailed insight into fine-scale behaviors, but are more sensitive 

to sampling errors (e.g., spatial inaccuracies of relocations). In contrast, movements 

sampled at longer temporal intervals can only be interpreted on a broader scale (e.g., 

encamped vs. dispersal movements). Additionally, recorded relocations can be spurious 

or lack spatial accuracy due to habitat induced sampling errors (Bradshaw et al. 2007; 

Hurford 2009; Jerde and Visscher 2005; Williams et al. 2012). Importantly, trajectories 

also differ with regard to their regularity of the time intervals between successive steps. 

Irregular data commonly results from missing relocation fixes or varying sampling 

frequencies throughout a study period (e.g., Graves and Waller 2006). Further, irregular 

intervals between relocation samples can stem from different behaviors of the study 

species. For example, relocation devices applied with marine animals can usually provide 

the measured position data only when the species is close to the surface (Gurarie et al. 

2009; Jonsen et al. 2007; Laidre et al. 2004). 
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Figure 3.1: Overview of important steps throughout a segmentation analysis. In general, the actual 

continuous movement path of an organism is sampled as a set of consecutive relocations (Step 1; e.g., field 

work). Step 2: exploratory and descriptive analyses of path-characteristics; exploring and visualizing of 

the data structure. Step 3: applying one or several path segmentation method(s) to objectively distinguish 

different movement states. Step 4: Some methods require the use of clustering and summary statistics to 

quantify differences in distinguished movement states, and to facilitate biological interpretation in terms of 

behavioral modes. 
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Basics of path segmentation 

We use the term segmentation as a general paraphrase for determining changes in an 

animal's movement behavior based on the observed trajectory. The process of 

segmentation involves the partitioning of a trajectory, τ, into a number of K 

subtrajectories (τ1, τ2, ..., τK) called segments (Steps 1-3 in Figure 3.1; see also Barraquand 

and Benhamou 2008; Buchin et al. 2011). Path segmentation can be accomplished 

directly, by designating each observation to different states or clusters (e.g., Franke et al. 

2004; Van Moorter et al. 2010). However, path segmentation commonly relies on 

detecting significant changes (so called change- or breaking-points) in the trajectory as 

cut-offs for separating the trajectory into distinct segments (e.g., Gurarie et al. 2009). For 

this, a variety of path characteristics can be derived from the trajectory, for example the 

step length or velocity. These path characteristics should accurately capture movement 

patterns and allow the detection of changes in these patterns. Given the importance of 

these path characteristics for successfully segmenting movement paths, we discuss them 

in more detail in the next section. 

Path characteristics 

The various path characteristics used by current segmentation methods are summarized 

in Table 3.1. These characteristics have also been called movement metrics, movement 

parameters, path-signals or indices in the literature, and should convey relevant 

information about individual movement behavior (Barraquand and Benhamou 2008; 

Dodge et al. 2008; Gurarie et al. 2016). The majority of path characteristics are derived 

from consecutive relocations (stepwise), for example the speed of travel. However, some 

signals are calculated across multiple relocations, for example the straightness of a 

trajectory (Table 3.1). 

Dodge et al. (2008) distinguished primitive path parameters from primary and 

secondary derived parameters. The information on the absolute spatial position (e.g., xy-

coordinates) and the temporal dimension (time stamp) provide the primitive signals from 

which other parameters can be derived. For example, displacement and step length (see 

Table 3.1) are primary derivatives of the position parameter, whereas time lag (duration) 

is derived from the temporal primitive. Path-signals exclusively based on spatial criteria 

are particularly sensitive to sampling intervals and errors (Calenge et al. 2009; Van 
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Moorter et al. 2010). However, other signals such as the persistence or turning velocity 

avoid possible biases caused by varying sampling intervals by relating speed to the 

observed turning angles .  Furthermore, signals such as the first passage (Fauchald and 

Tveraa 2003) and residence time (Barraquand and Benhamou 2008) constitute summary 

properties accounting for the temporal scales within the movement paths and can be seen 

as secondary derivatives of the distance and duration signals.  

Table 3.1 also lists characteristics which are calculated over multiple relocations 

and can be applied to describe the signals of single segments, certain sub-samples of 

trajectories, or entire trajectories. Such summary signals like the straightness index 

(Batschelet 1981), sinuosity (Benhamou 2004) and the fractal dimension (Nams 1996) 

provide information on the spatial complexity of a given path segment and can be used 

to cluster segments into groups that are similar with respect to movement complexity 

(Step 4 in Figure 3.1). Sinuosity constitutes another example of a secondary derivative of 

the step length signal (Dodge et al. 2008). 

Overall, a large number of different measures can be used to describe path 

characteristics and a chosen parameter should ideally convey relevant information about 

the underlying movement behavior (Barraquand and Benhamou 2008). This requires a 

good understanding of the species and a precise definition of research questions, and 

should also involve extensive exploratory analyses to understand the structure of obtained 

relocation data and to test the feasibility of different segmentation approaches (Step 2 in 

Figure 3.1; see also below and Gurarie et al. 2016) 

Finding and interpreting segments 

Regardless of how and which path characteristics are quantified, significant changes 

within these signals are then used to determine the K-1 break-points (τ*1, ..., τ*K-1) which 

can be used to divide the trajectory into K segments (Step 3 in Figure 3.1). Although 

preliminary visual analyses can provide useful indications about a meaningful value for 

K, an objective, data driven way is desirable. Therefore, path segmentation often involves 

quantitative approaches for detecting an unknown number of segments within a given 

trajectory, and many of these approaches have originated in non-ecological disciplines 

(e.g., Lavielle 1999). This is an important point, as many segmentation methods only 

provide information on significant change-points along the trajectory, without any further 
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ecological context. Thus, it is often not trivial or even possible to directly associate the 

individual segments to specific activities and behaviors (Zhang et al. 2015). To facilitate 

the ecological and ethological interpretation of the defined segments, some methods 

require subsequent analyses to classify the determined segments based on different 

descriptive parameters or summary statistics (Step 4 in Figure 3.1). For example, either 

the mean values of stepwise characteristics or multi-step summary parameters, such as 

the straightness index (see Table 3.1), of the segments can be further analyzed in an 

additional classification analysis (e.g., Zhang et al. 2015). This generates clusters of 

segments that are similar with respect to relevant path parameters (e.g. calculated across 

multiple steps, Table 3.1), which can help to identify underlying movement patterns and 

associated behaviors. For example, short, meandering movement segments during within-

patch foraging vs. long, straight segments during inter-patch movements (Madon and 

Hingrat 2014; Nams 2014). Other methods determine the state (also called class or 

cluster) of each individual relocation directly and no further classification is necessary 

(Franke et al. 2004; Van Moorter et al. 2010). 

In sum, path segmentation involves at least three and sometimes four major steps 

(Figure 3.1). In the following, we focus on the third step, in which signals derived from 

trajectories are used to objectively define movement segments.  

Overview of path segmentation methods 

Types of methodological approaches 

Methods for path segmentation can be distinguished or classified using many different 

criteria, for example based on their underlying statistical framework (e.g., maximum-

likelihood versus Bayesian; parametric or non-parametric, inference-based etc.). 

Alternatively, Gurarie et al. (2016) recently classified broad types of movement analysis 

tools based on the analytical traditions they stem from. Since our overview is specifically 

intended for beginners wanting to apply path segmentation, we do not categorize methods 

based on their statistical properties or analytical traditions, but instead focus on the 

practical utility of the analyses, e.g., the research questions that can most readily be 

answered with a certain approach. Hence, we structure our overview based on three broad 

types of questions that are commonly addressed using path segmentation.  
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First, movement patterns within the trajectory can be quantified to test whether 

different movement components are identifiable within the data. For example, such 

‘movement pattern description’ is used to distinguish active from resting phases (e.g., van 

Beest and Milner 2013), or encamped foraging from traveling movements (e.g. Dzialak 

et al. 2015). Second, path segmentation can also be used to locate significant changes in 

movement behavior and determine the timing of these changes. For example, such 

‘change-point detection’ has been used to quantify behavioral responses to seasonal 

environmental changes (e.g., Garstang et al. 2014), or to identify the timing of migration 

events (e.g., Le Corre et al. 2014). Finally, path segmentation can be used to take a 

detailed look at the processes underlying observed movement patterns. Such ‘process 

identification’ can be used to examine the factors influencing diel variation in movement 

rates among individuals (e.g., Jonsen et al. 2006), or to quantify how sex and reproductive 

status influence the duration of, and transition among, different behavioral modes (van de 

Kerk et al. 2014). These three broad types of research questions can be matched to three 

basic categories of analytical approaches for path segmentation (Figure 3.2).  

Topology-based approaches to describe movement patterns 

If the study aim is to quantitatively describe movement patterns, one can use methods that 

focus on the description of geometric properties of the trajectory itself, or on one or 

several signals calculated from the trajectory. Based on this path topology, movement 

steps are then assorted into groups that are relatively similar with respect to these signals 

(Figure 2a). The exact way this is accomplished depends on the method, but can be 

achieved either by a) simply grouping individual movement steps based on similarity in 

topology-based signals, regardless of whether these steps are consecutive (e.g. 

thresholding or clustering; (Dzialak et al. 2015; Van Moorter et al. 2010); or b) identifying 

changes observed among the signals between successive relocations to detect so-called 

change-points (e.g., spatio-temporal criteria segmentation; Buchin et al. 2011). These 

change-points are assumed to correspond to changes in underlying movement behavior, 

therefore separating the trajectory into segments consisting of multiple consecutive steps 

based on pronounced changes in observed movement characteristics. These topology-

based methods are mostly non-parametric and rather descriptive. Their application is 

usually based on predefined hypotheses on how movement behaviors might differ among 

habitats, seasons, times of day, sexes, social status, etc. .  
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Time-series analyses to detect significant change-points 

If the goal of a study is to detect points in time when a significant change in the movement 

behavior occurs, path segmentation methods based on time-series analyses can be used. 

Such time-series analyses are widely used in ecology and related disciplines (see Lange 

2006). In the context of path segmentation, these analyses treat signals calculated from 

consecutive movement steps as time-ordered observations. Essentially, the majority of 

these approaches try to find significant change-points along the time axis of the signal-

sequence derived from the movement trajectory (Figure 3.2b). In contrast to the topology-

based approaches that analyze the changes between temporally ordered relocations, most 

of the time-series methods treat movement patterns as a function of time and can directly 

account for the temporal correlations of the sequential signal data. The time-series 

approaches sometimes depend on certain information like the maximum number of 

change-points or the minimum length of the detected segments. However, they could also 

potentially be used to “blindly” search for all possible change-points of a given path-

signal sequence.  

State-space models to identify underlying processes 

Finally, to increase our understanding of the behavioral processes underlying complex 

movement patterns, methods derived from the state-space modeling framework are most 

suitable. These state-space models represent a special type of time-series analysis 

(Patterson et al. 2008) and intend to identify latent or hidden behavioral states based on 

the observed movement data. The aim is to derive deeper insight into the underlying 

processes by formulating a movement model that explains observed movement patterns. 

Within these frameworks, the future state of a system is modeled to depend on its current 

state through a probabilistic model (see Figure 3.2c). Therefore, the models typically 

assume a so-called Markov process structure, meaning that a hidden future state depends 

on the state of the current step (Jonsen et al. 2013). Essentially, state-space models couple 

two stochastic time-series models, one based on an unobservable state process, and 

another based on a known observation process (Jonsen et al. 2013; Patterson et al. 2016). 

When applied to movement data, state-space models assume that animals have several 

‘hidden behavioral states’ with certain characteristics (e.g., path-signals) that can be 

modeled using stochastic processes (e.g., correlated random walks; Morales et al. 2004). 

A basic result of a state-space model are the estimated transition probabilities between 
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the considered states. Another outcome is the probability of a given relocation belonging 

to one of the hidden behavioral states. These probabilities are then used to assign steps to 

their most probable behavioral state (Figure 3.2c) and to segment the trajectory according 

to state memberships. Additionally, the transition probabilities can also be linked to 

different environmental factors to test various hypotheses on behavioral and ecological 

dependencies of the observed movement patterns (Beyer et al. 2013; DeRuiter et al. 2016; 

Morales et al. 2004). For example, the transition probabilities can be used to test whether 

switching between states depends on certain habitat characteristics (see simulation study 

below). 
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Figure 3.2: The main study aims of path segmentation and types of methods to answer them. a) Pattern 

description: Topology-based analyses rely directly on signals calculated from the movement trajectory (e.g. 

step length and bearing). They combine movement steps into groups based on similarity in the considered 
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path-signals, for example by applying clustering algorithms. b) Change-point detection: Time-series 

analyses assess a path-signal (y-axis) along its time-axis. For example, a moving window (rectangle) can 

be used to search for points along the time-series where local parameters (e.g. the mean) of the path-signal 

are significantly different from the global averages of these parameters. Significant change-points are 

assumed to indicate switches in underlying movement modes or behavioral states, and are used to separate 

the trajectory into segments (dashed lines). c) Process identification: The majority of the presented state-

space models link two stochastic models describing the state process and its observation. For example, the 

state process could consist of two discrete behavioral states (red and blue). The process model describes 

how the hidden state (x) emerges based on a Markov process. Therefore, it accounts for the conditional 

probability of a future state depending on the one of the current relocation. The observation model links 

the actual observed data (y) at given points in time to the hidden state. As a result, the most probable state 

of each observation, the switching probabilities between the states, as well as the distributions of the 

measured path-signals within each state are provided. 

 

Choosing among methods for path segmentation 

Multiple methods for path segmentation exist within each of the three types of analytical 

approaches described above. Thus, multiple methods exist to answer each of the broad 

categories of research questions (study aims). Table 3.2 provides an overview of the 

available path segmentation methods and lists basic properties, and important background 

papers for each method. More detailed descriptions and further information on each path 

segmentation method, including implementations in the program R (R Core Team 2015), 

can be found in supplement S1. 

Available path segmentation methods vary substantially with regard to their 

demands on data structure and underlying theory. This raises the question of how 

scientists can identify the most appropriate segmentation method(s) for their specific 

research goals. In the following, we provide some general guidelines for method 

selection. Additionally, the guidelines are visually summarized in Figure 3.3. 
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Preliminary Data Analyses 

Because the structure and composition of movement data dictate the applicability of 

certain methods (Figure 3.3; blue panel), the first step in any segmentation study should 

be a preliminary analysis of the available location data. Various analyses can be carried 

out to gain a better understanding of data properties, but a preliminary analysis for path 

segmentation should contain at least the following four steps. 

1) Sampling Regime 

Movement data usually varies substantially with regard to the sampling regime, spatial 

accuracy and temporal resolution. Therefore, preliminary analyses should include 

checking for regularity of time-intervals between relocations as well as testing for 

temporal autocorrelation of the path-parameter data (Calenge et al. 2009; Dray et al. 

2010). Depending on the results of these analyses, several segmentation methods may no 

longer be suitable (Figure 3.3). 

2) Data Regularity 

Irregular data can be the product of missing relocation fixes and varying sampling regimes 

which can be a challenge, as some of the statistics used to analyze movement paths 

assume regular intervals within the trajectory and are valid only under those 

circumstances (Gurarie et al. 2009). Different processing tools can be applied to 

relocation data in order to fulfill the assumptions of regularity. For example, trajectories 

can be re-discretized (Benhamou 2004; Calenge et al. 2009), which means that relocations 

can be removed until the remaining data fulfills the requirement of temporal regularity 

(“thinning”). Alternatively, missing relocations can be replaced by applying techniques 

such as spatial interpolation (Lonergan et al. 2009; Thiebault and Tremblay 2013) or 

dead-reckoning (Bidder et al. 2015; Liu et al. 2015; Wensveen et al. 2015). Furthermore, 

only subsets limited to continuous and regularly sampled relocations of the original 

trajectory can be selected for further analyses (Benhamou 2004; Calenge et al. 2009). 

Approaches modeling movement in continuous time are also capable of dealing with 

irregular data structures (e.g., Johnson et al. 2008; Patterson et al. 2016). 

Additionally, habitat induced sampling errors and spatial inaccuracies can occur 

and need to be addressed throughout the preliminary analyses (Hurford 2009; Jerde and 
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Visscher, 2005; Williams et al. 2012). This includes checking the data for extreme outliers 

or estimating the error of the applied tracking technology (e.g., provided by ARGOS 

systems; (Lowther et al.  2015). Some types of state-space models include location 

filtering where such information can be implemented as a prior in order to estimate the 

true positions of erroneous relocation data (e.g., Kalman Filtering; Austin et al. 2003; 

Sibert et al. 2003; Silva et al. 2014). 

3) Data Visualization and Signal Distributions 

Visual inspection of the movement trajectory can already indicate the existence of 

different behavioral modes (Brillinger et al. 2004; Demšar et al. 2015; Shamoun-Baranes 

et al. 2012). Also, in order to choose appropriate path-signals conveying information on 

potential changes within the movement behavior, investigations of their variability and 

distributions (e.g., histograms) should be considered. For example, multi-modality within 

the path-signal distributions can also indicate the potential existence of different 

behavioral modes (see applied examples). Further, depending on the intended 

segmentation method, knowledge on the parameter distributions is also needed for fitting 

of movement models within the various types of state-space models (Codling et al. 2008; 

Morales et al. 2004). As a substantial part of the methods stem from the time-series 

framework, time-ordered plotting of the path-signals can indicate the existence of changes 

in the sequence over time (see applied examples below). Visual inspection of the variation 

of the signals over time can provide insight on the ranging and movement behavior. For 

example, Bunnefeld et al. (2011) and Killeen et al. (2014) inspected time-ordered values 

of net-squared displacement (Table 3.1) for single or multiple modality in order to detect 

potential migratory individuals. Further, the visual inspection of movement trajectories 

can help to identify unusual relocations and movements (Demšar et al. 2015; Shamoun-

Baranes et al. 2012). Thus, visual inspection of the trajectory is important for error 

checking and can help to refine biological hypotheses to be tested with a given data set. 

4) Scales of Movement and Data Transformation 

Detectability and observability of changes in movement behavior can also change with 

temporal and spatial scale (Fryxell et al. 2008; Gurarie and Ovaskainen 2011). There are 

multiple options of indexes and transformations providing information on the varying 

spatial and temporal scales of the path-characteristics (e.g., trigonometric circle space; 
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Thiebault and Tremblay 2013). Further, sub-sampling, re-discretization or moving-

windows can be applied to alter the temporal grain (e.g. daily, nocturnal, weekly or 

monthly relocations) in order to summarize the means or variances of path-parameters 

(Ganskopp and Johnson 2007; Laidre et al. 2004; Long et al. 2013; Postlethwaite and 

Dennis 2013). Also, multi-step signals (see Table 3.1) such as the simple straightness 

index (Batschelet 1981) and its different extensions (Postlethwaite et al. 2013; Wilson et 

al. 2007) can be applied to investigate the variation of path straightness within a trajectory 

over time and multiple temporal resolutions. Path-parameters such as the first passage or 

residence time (Table 3.1) can be calculated at varying spatial and temporal scales and 

allow further insight in underlying spatial and temporal scales of individual movement 

behavior (Barraquand and Benhamou 2008; Byrne and Chamberlain 2012; Frair et al. 

2005). Finally, different transformations of the path parameters can be applied to 

determine dominant and constant periodic frequency patterns in the movement data. For 

example, Fourier and wavelet transformations provide valuable insight in periodic 

structures of movement, such as circadian, seasonal or diurnal rhythms (Gaucherel 2011; 

Polansky et al. 2013; Sur et al. 2014; Wittemyer et al. 2008). 

Study aims 

After the preliminary analysis of the data structure and relevant path characteristics, 

choosing appropriate segmentation methods is mostly influenced by the aims of the study 

(Figure 3.3; green panels). Thus, depending on the study aims and data structure, different 

methods can be applied.  

1) Movement pattern description 

The majority of appropriate methods for quantitatively describing movement patterns are 

based on the path-topology approaches such as simple threshold or multivariate 

classification algorithms (detailed information for each method in supplement S3.1). 

These approaches are least demanding with regard to data properties like regularity and 

do not require any data transformations as they make minimal assumptions about 

underlying data structures, movement models, or behavioral states. However, they can be 

valuable exploratory tools for determining the potential number of different behavioral 

states within the observed movement data (e.g., Dzialak et al. 2015; Gutenkunst et al. 

2007; Van Moorter et al. 2010). Furthermore, the methods can be applied for testing 



94 

certain hypotheses on how particular path-signals change with different behaviors or at 

certain time-periods. Therefore, for some study aims it might be sufficient to split 

movements into two or more different behavioral states (e.g., long- vs. short-range 

movements) based on a threshold within a selected path-signal (e.g., step length; Zeller 

et al. 2014). Similarly, the time when the relocations were recorded could be used to 

distinguish different types of behavior (e.g., daytime vs. nocturnal movements).  

In sum, methods for pattern description can be applied to gain insight on potential 

behavioral states and even for detecting potential drivers of the observed patterns (e.g., 

nocturnal movement behaviors with longer step length). However, the considered path-

signals have to be chosen carefully and according to expected changes in movement 

behaviors and underlying behaviors (Gurarie et al. 2016; Van Moorter et al. 2010). 

Furthermore, due to their relative simplicity, topology-based methods offer little 

explanatory power and are usually not suitable for analyzing complex movement patterns 

(Gurarie et al. 2016). 

2) Change-point detection  

The second example of general study aims is the determination of important (significant) 

change-points in the movement behavior or trajectory of an animal. The presented 

approaches either focus on the path-topology or on a time-series of a path-signal. In both 

cases, the sequential relationship between consecutive relocations is accounted for.  

The relevant topology-based methods either focus on the changes within the 

absolute spatial position (e.g., the change point test; Byrne et al. 2009; Table 3.2) or 

different path-signals and their shape along the trajectory (e.g., using Spatio-Temporal 

Criteria Segmentation; Figure 3.3). However, the change-points resulting from the 

topology-based methods usually do not provide any information on the significance of 

the observed changes within the data composition. If identifying significant change-

points is the aim, for example, to detect the onset of migratory events, then methods from 

the time-series category are the better choice, as they specifically estimate the significance 

of changes within a time-ordered data sequence (Figure 3.2b). The majority of time-series 

approaches are capable of accounting for temporal autocorrelation within the data 

sequence which can be an important advantage, because non-independence of relocations 

is a challenge for many standard statistics (Gurarie et al. 2009). As can be seen in our 
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example, the autocorrelation structure of the data can also contain valuable information 

about the underlying behavioral states (Cushman 2010). As a caveat, most time-series 

methods show higher demands on data properties, especially regularity of the time 

intervals between relocations (an exception is the behavioral change-point analysis; 

BCPA). Furthermore, many of the appropriate time-series methods listed in Table 3.2 

depend on one or multiple parameters which need to be defined prior to the analyses such 

as the size of a moving window (e.g., for the behavioral change point analysis; Gurarie et 

al. 2009) or the minimum number of relocations within a determined segment (e.g., for 

the penalized contrast method; Lavielle 1999). Therefore, several assumptions, about the 

number of potential changes or the length of a behavioral state, need to be made before 

setting these parameters, which increases the susceptibility to errors and bias and limits 

reproducibility. 

In contrast to that, topology-based methods for change-point detection are less 

dependent on such parameter settings and mostly focus on changes within the spatial 

composition of the trajectory. However, the scale at which these methods can detect 

changes in movement behavior is highly dependent on the temporal resolution of the data. 

Relocations recorded at higher frequencies can provide more detailed information on 

fine-scale behaviors. Low frequencies usually limit the scale at which the topology-based 

algorithms can determine changes in the underlying behavior (Byrne et al. 2009; Getz 

and Saltz 2008). 

Time-series approaches are usually less sensitive to the temporal sampling 

frequency of the data for detecting change-points when appropriate input signals 

conveying meaningful information are used (e.g., persistence velocity; Gurarie et al. 

2009). However, time-series based methods need to be chosen carefully as their 

assumptions on data distributions (e.g., Gaussian vs. non-Gaussian time-series) and 

applied statistics can differ (see Supplement S3.1 for more details).  

3) Underlying process identification 

To identify processes underlying complex movement behaviors, various types of state-

space models (SSM) are suitable choices. SSMs intend to identify latent states or hidden 

models based on the observed movement data. In this context, hidden states represent 

different behavioral modes, assuming that they can be described with different parametric 
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distributions of the path characteristics. The majority of SSMs can be interpreted as a 

multi-state random walk and are usually based on assumptions about the density functions 

of the step length and turning angle distributions (Gurarie et al. 2016; Morales et al. 2004). 

Hierarchical approaches can be used to estimate different numbers and compositions of 

behavioral states for each of the studied individuals and further draw model inferences at 

the population level (Jonsen et al. 2013; Jonsen et al. 2005; Flemming et al. 2010; Morales 

et al. 2004). Another advantage of these models is that some can account explicitly for 

issues of animal movement data, such as irregularities caused by missing relocations and 

measurement errors (e.g., location filtering; Jonsen et al. 2013; Patterson et al. 2008). In 

particular, SSMs fitted with Bayesian estimation techniques allow the integration of prior 

knowledge on sampling errors (Jerde and Visscher, 2005; Jonsen et al. 2013; Jonsen et 

al. 2005). For example, information on the accuracy and quality of the acquired relocation 

data as provided by the ARGOS system can be implemented in the observational model 

of such a SSM framework (Jonsen et al. 2005; Flemming et al. 2010; Silva et al. 2014). 

Importantly, state-space models can integrate the influence of habitat features and other 

environmental information, such as sea depth or temperature obtained from electronic 

tagging data, on behavioral changes (Beyer et al. 2013; Dowd and Joy 2011; Patterson et 

al. 2008). Therefore, they provide a valuable framework for estimating and comparing 

the responses of state compositions and their transition probabilities to different 

covariates (DeRuiter et al. 2016; Morales et al. 2004; van de Kerk et al. 2014). 

Furthermore, due to their mechanistic basis, many of the SSM methods provide 

information on the differences in the estimated parameter distributions of the considered 

movement models. Thus, state-space models can also be used to simulate or predict 

movement patterns under varying environmental settings (Patterson et al. 2008). The 

biggest challenge of using state-space models is the necessity to estimate the various 

model parameters, which can require mathematically and computationally complex 

procedures (Jonsen et al. 2005; Patterson et al. 2016). In summary, state-space models 

offer much flexibility towards a mechanistic understanding of animal movements, 

because the process models make it possible to fit specific underlying movement patterns 

(e.g., different correlated-random walks) to the observed movements (Jonsen et al. 2005; 

Patterson et al. 2008). 

However, the number of potential states considered within the models usually 

needs to be determined prior the application (Patterson et al. 2016). Also, the general 
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composition of the considered movement models within the states has to be predefined. 

This limits SSM mostly to variations of discrete correlated random walks (Morales et al. 

2004). 

Another option for identifying “hidden states” with different compositions of 

movement parameters  is the Bayesian partitioning of Markov models (Gueguen 2000; 

Gurarie et al. 2016). Technically, this approach is not a state-space model but it represents 

a simple solution for detecting different models within the observed movement data. The 

method estimates the distributions of a path-signal for a given number of potential states 

and assigns each relocation to one of them (Calenge 2011; Gueguen 2000). However, 

BPMM does not provide any information on the potential processes, the transition 

probabilities between the detected states, or the potential influence of covariates. 

Illustration using simulated data 

To illustrate the three types of research questions and related analytical approaches, we 

next apply one method of each type of analytical approaches to a single data set.  For this, 

we used a simple individual-based simulation model to generate the annual movement 

track of an animal in R (R Core Team 2015). Details on the simulations and all relevant 

parameters can be found in supplement S3.2. In essence, we simulated an animal that is 

more active during the day than during the night, moved faster in its habitat than in the 

matrix (unfavorable habitat) and migrated between two centers of activity (e.g., 

summering and wintering range). We simulated a movement track for 12 months with 

relocations taken every hour in a landscape consisting of 400 * 400 cells (Figure 3.4a). 
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Figure 3.4: Simulated trajectory and results of preliminary analyses. a) overview of the simulated 

movement path and habitat configuration. b) distributions of observed step lengths within and outside the 

habitat (matrix) of the tracked animal. Results of preliminary analyses for the net-squared displacement 

signal including the distribution (c) and the time-series across the entire tracking period (d). Distributions 

of observed step lengths at different hours of the day (e). 

For this data set, we were interested in three different research questions. First, 

we evaluated the hypothesis that the movement intensity of the animal somehow differed 

between its habitat and the (potentially hostile) matrix, sensu stricto non-habitat. To 

address this question, we chose a topology-based method using a threshold to distinguish 

short- from long-range movements and compared the proportions of these two stages 

within the habitat and matrix. Second, we wanted to assess whether the animal showed a 

seasonal migration pattern and, if so, to detect the times when migration movements 

occurred throughout the year. For this, we applied a time-series analysis to segment the 

movement data based on changes in an observed path-signal. Finally, we assessed 

whether two different behavioral states could be distinguished and whether the switching 

probability between those two states could be linked to time of day and habitat. To answer 

this research question, we used a state-space model approach with two discrete states 

differing with regard to their distributions of certain path parameters. Before addressing 

these research questions, we performed different preliminary analyses to gain insight 
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about data properties and guide the decision process on meaningful path-signals and an 

appropriate segmentation method for each question (Figure 3.3). 

Results  

Preliminary analyses 

As pointed out above, preliminary analyses are a fundamental part of path-level analyses 

and should be performed thoroughly prior to the application of any segmentation 

approach. As our simulated data set consisted of relocation data sampled at an hourly 

interval, we did not test for regularity of the sampling regime. However, such tests can be 

performed by inspecting the distribution of the time-lags between the sampled relocations 

(e.g., using histograms). More analyses for checking the regularity of a trajectory or 

testing the independence of missing data points are implemented in the adehabitatLT 

package (Calenge 2011). In the next step, one should test for potential correlation 

structures within the observed movement data. We applied different tests based on Dray 

et al. (2010) and detected significant correlations between consecutive measures of the 

step length and also turning angles up to a time lag of five relocations. Therefore, 

following our guidelines (Figure 3.3), we chose among methods accounting for such 

temporal autocorrelations.  

Meaningful path parameters conveying relevant information about potential 

changes in movement behavior are essential for a sound path-segmentation analysis. 

Thus, comparisons of different signals (e.g., primary and secondary derivatives, Table 

3.1) with regard to their distributions and variation over time should be performed in the 

preliminary analysis. We applied several exploratory analyses for the step length (due to 

the hourly sampling regime this is also the speed signal), turning angles and net-squared 

displacement (NSD) signals (more details in supplement S3.2). For example, Figure 3.4 

shows the distributions of NSD and step length as well as their variation over time. The 

NSD signal provides meaningful information on the ranging behavior of an animal as it 

represents the distance to the point where the tracking period started. Inspection of this 

signal over the entire sampling period revealed that there was a steep increase in the 

values of this parameter followed by a plateau and decrease until the values were in the 

same range as at the beginning (Figure 3.4d). Further, we observed a trend for a bimodal 

distribution of NSD (Figure 3.4d). As described above, behavioral changes might be 
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detectable at different temporal scales. Plotting the distribution of step lengths against the 

time of the day they were recorded revealed that the animal was potentially more active 

during the day as during the night (Figure 3.4e). Finally, we used all three path signals, 

step length (in our case equivalent with speed), turning angles and NSD for the different 

segmentation approaches. 

Habitat-specific movement patters 

We applied a thresholding method to distinguish two different movement patterns within 

the simulated dataset. A simple cut-off value was used to split relocations into short-range 

(e.g., encamped) and long-range (e.g., roaming or dispersing) movements. Relocations 

with an observed step length shorter than 2 units were considered short-range movements 

whereas those with a longer step length were classified as long-range movements. As can 

be seen in Figure 3.5a, the proportion of the two movement behaviors varied between 

habitat and non-habitat. For example, the majority of short-range movements (about 

73.3%) occurred within the habitat of the animal. More than half of the movements (about 

58.5%) outside the habitat stemmed from the long-range behavioral state. Further, a chi-

square test indicated a significant (non-random) distribution of the two stages between 

habitat and non-habitat (p < 0.001). Clearly, results highly depend on the chosen threshold 

value. Therefore, cut-off values need to be chosen carefully and based on well-reasoned 

inferences, especially when they are applied with real movement data (see examples in 

Dzialak et al. 2015; Zeller et al. 2014). 
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Figure 3.5 Results of three different segmentation methods using the simulated movement data. a) the left 

panel shows the distribution of the observed step lengths as well as the applied cut-off value (threshold = 

2 units). The proportions of the resulting behavioral states (short- and long-range movements) within and 

outside of the habitat are shown in the right panel. b) Results from the behavioral change point analyses 
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applied with the net-squared displacement signal. The observed time-series was segmented at significant 

change-points (vertical lines) to distinguish movements within the main ranges of the animal and two 

migratory periods. The color of the estimated parameter ρ^ indicates the level of temporal autocorrelation. 

c) Change in switching probabilities between the two states (resting vs. active) dependent on the different 

hours of the day. Switching probabilities also differed with regard to whether the animal was in its habitat 

or not. Black lines indicate the switches from the resting state to the active state. Red lines are showing the 

switching probabilities from active to resting state. 

Timing of migration 

In our applied example, we chose the behavioral change-point analysis (BCPA  Gurarie 

et al. 2009; see Table 3.2) to demonstrate how significant changes can be detected within 

a time-series of a path-signal in order to find segments of potential migratory behavior. 

We chose the sequence of the net-squared displacement parameter (NSD, Table 3.1) as 

the model input. As can be seen in Figure 3.5b) the BCPA determined multiple segments 

with comparably low net-squared displacement prior to the simulated migration event 

(from 0 to 3000 hours after the start of tracking). That period is followed by a segment 

with increasing displacement and also higher autocorrelation which can be interpreted as 

potentially migratory behavior. The plateau within the NSD time-series (around 4000 to 

5500 hours after start of tracking) marks the arrival of the simulated animal track in its 

second range (e.g., summering grounds). The second migratory event is once again 

detected by a segment with decreasing NSD but also high autocorrelation values. Finally, 

the last two segments have low values of NSD comparable to the beginning indicating 

that the animal has returned to the first range where the tracking was started (e.g., 

wintering grounds). In summary, the time-series based analysis was successful at 

determining multiple segments, including a distinction of within-range movements from 

migratory movements, as well as an identification of the starting time of migration.  

Underlying processes 

In the third example, we addressed the question whether the switches between different 

movement states could be linked to two covariates, the time of the day and whether the 

animal was within or outside its habitat. We applied a hidden Markov model (HMM; 

Table 3.2) with two discrete behavioral states which differed with regard to their means 

of the step length and turning angle parameter distributions (more details are presented in 

Supplement S2). The model was fitted using the moveHMM package (Michelot et al. 

2016). The first state consisted of relocations with very low step length values (mean of 

0.11 units) and mostly negative turning angles. Therefore, this state was considered to 
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represent resting or sedentary movement behavior. In contrast, the second state comprised 

of relocations with longer step lengths (mean of 3.4 units) and positive turning angles 

potentially representing active movement phases. The probability for the animal to switch 

from the resting to the active state was lower during the beginning of the day and 

increased with daytime (Figure 3.5c).  The switching-probability from active to resting 

decreased during daytime and was higher during the night. Further, the probability to 

switch from resting to active was slightly higher when the animal was outside its habitat. 

Complementary to that, the animal was less probable to switch from active to resting 

when it was in non-habitat (Figure 3.5c). Overall, the model output represents the 

simulated movement behavior which consisted of higher movement activity during the 

daytime and faster movements outside the habitat. This underlines the high potential of 

different state-space model approaches for gaining a better understanding of the processes 

and mechanisms potentially driving the observed movement patterns (Gurarie et al. 2016; 

Patterson et al. 2008). 

Discussion 

The aim of movement ecology is to gain a deeper understanding of the mechanisms and 

ecological processes shaping organismal movement patterns and their consequences for 

ecology and evolution (Kays et al. 2015; Nathan et al. 2008). The methods presented here 

can be applied to define behavioral states from the observed movement paths and link 

these behavioral states to different environmental covariates to gain an enhanced 

understanding of the biological processes influencing the movement behavior of animals 

(Killeen et al. 2014; Roever et al. 2013). However, there is no single method that can be 

universally applied to any kind of study scenario. As illustrated above, path segmentation 

methods vary substantially with regard to their demands on data structure and underlying 

theory. Given this analytical variability, there are certainly several possibilities on how to 

group and categorize the different methods for path segmentation (Gurarie et al. 2016). 

Here, we chose to contrast different analytical approaches with regard to their 

applicability for answering certain research questions, rather than their underlying 

statistical frameworks. Nevertheless, we encourage researchers interested in applying 

path segmentation methods to read about the statistical details of the different methods 

(supplement S3.1) and consult the original method papers to fully understand the 

statistical properties of the method(s) they intend to apply.  
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We used a simulated dataset to demonstrate how our proposed decision process 

(Figure 3.3) can be performed to answer different research questions using methods from 

the three analytical categories of topology-based, time-series and state-space analyses. 

Certainly, each of these categories have advantages and disadvantages one has to account 

for when choosing among them. 

The majority of methods focusing on path-topology (Table 3.2) are purely 

descriptive and usually just draw new observations based on the tracked movement 

pattern (Franke et al. 2004; Gurarie et al. 2016). However, for certain analyses this might 

already be sufficient to answer the defined research questions. For example, we showed 

how a relatively simple thresholding approach can be used to distinguish between two 

extrema of a potential movement behavior (short- vs long-range movements) based on a 

path characteristic and linked them to different habitat configurations. Thus, topology-

based approaches are useful when specific hypotheses regarding movement patterns can 

be formulated a priori (Van Moorter et al. 2010). Also, topology-based methods are least 

demanding in terms of data composition and regularity, as they make no specific 

assumptions about data properties or the distribution of the considered path 

characteristics. Furthermore, they are analytically the most straightforward and can serve 

as exploratory tools e.g., for determining the number of potential movement states that 

could be further analyzed in a more inference- or process-based approach such as a SSM 

(Franke et al. 2004). However, these methods should not generally be applied as end-

point analyses since they are mostly ignoring other valuable information like the serial 

autocorrelation of path parameters.  

Time-series based approaches are usually more demanding with regard to data 

composition but provide deeper insight to significant changes in movement behaviors and 

account for important correlation structures present in movement data (Gurarie et al. 

2009). Such methods can easily be used for finding single or multiple change-points in a 

trajectory to determine the moment of important changes in movement behavior.  

State-space models are arguably the most powerful way for analyzing animal 

movement data, providing a “bottom-up” (holistic) approach where behavioral states and 

switching probabilities between them are modeled within the same process (Beyer et al. 

2013; Jonsen et al. 2013; Patterson et al. 2008). However, the estimated state 

configurations are also based on certain model assumptions about the movement 
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properties (e.g., variants of correlated random walks) and the observed pattern in the 

considered data (Patterson et al. 2016). Therefore, SSMs do not ultimately convey a 

biological meaningful differentiation between different (“true”) movement behaviors 

(Beyer et al. 2013; Patterson et al. 2016). Furthermore, many of the presented SSMs are 

quite complex and hence perhaps the most challenging to apply to empirical data. In order 

to foster the application of state-space models in movement ecology, we encourage 

biologists to cooperate with statisticians and modelers when designing studies and 

analyzing data. Such interdisciplinary research teams should refer to the growing number 

of R packages for fitting state-space models (e.g., Albertsen et al. 2015; Michelot et al. 

2016; see supplement S3.1), and to the increasing number of papers providing practical 

advice for using these models (e.g., Jonsen et al. 2013; Patterson et al. 2008; Pedersen et 

al. 2011). 

Finally, the majority of the presented methods of the time-series and state-space 

analyses are based on discrete-time models and therefore require regular sampling 

regimes (Figure 3.3; McClintock et al. 2014). Such data regularity is not always possible 

to obtain, even though various procedures reaching regular sampling are available (see 

above). However, there are multiple approaches using diffusion processes which model 

movements in continuous time and are capable of dealing with irregular data 

compositions (Fleming et al. 2014; Patterson et al. 2016). For example, highly 

infrequently sampled movement data can be analyzed using a spatial HMM with a 

discrete space structure (Jonsen et al. 2013; Pedersen et al. 2011). Furthermore, methods 

implementing continuous time processes and estimating switches between different 

behavioral states were presented by (Blackwell 2003; Blackwell et al. 2015; Hanks et al. 

2012; Harris and Blackwell 2013; Johnson et al. 2008). 

As highlighted by Gurarie et al. (2015), preliminary data analysis is a very 

important part of working with movement data, and we emphasize that it will often result 

in a much deeper understanding of observed patterns, can help to identify optimal 

analytical approaches for a given data set, and can eventually lead to more meaningful 

conclusions. A main focus should be to determine what characteristic of the movement is 

changing in order to choose optimal path-signals representing these changes. Further, the 

functional relevant time frames at which the observed species moves and potentially 

changes its behavior needs to be assessed carefully (Benhamou 2014; Postlethwaite and 
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Dennis 2013). In general, there are multiple path-signals that are commonly used for 

certain segmentation methods only. For example, in the literature the penalized contrast 

method (Lavielle 2005) is almost exclusively applied with either the first passage or 

residence time parameters (e.g. Barraquand and Benhamou 2008; Henry et al .2016; Le 

Corre et al. 2014). However, as outlined above (Table 3.1) there are multiple options for 

drawing information from the observed trajectory using different path parameters. We 

suggest that new combinations of path-signals or hybrids of different techniques might 

lead to valuable insights on movement behavior. For instance, instead of the typically 

used velocity measures for the BCPA (e.g., persistence velocity; Gurarie et al. 2009) we 

chose the net-squared displacement parameter as the in input signal to determine the 

timing of migratory behaviors in our simulated dataset. Different analytical methods can 

also be combined in a multi-stage approach where, in a first step, a movement path is 

segmented using one of the methods for detecting change-points within the movement 

data (e.g., a time-series approach like BCPA). In a second step, a clustering algorithm 

could be applied for determining groups of segments with the potentially same behavior 

(e.g., Step 4 in Figure 3.1). In a final step, the segments of the different clusters of 

movement behavior could be linked to various types of environmental data (e.g., using a 

step-selection analysis (Thurfjell et al. 2014; Zeller et al. 2015). For example, Zhang et 

al. (2015) applied such a multi-stage approach to determine a number of distinct behaviors 

within the movement data of little penguins (Eudyptula minor) and compared the location 

and timing of the behavioral switches between the sampled individuals. However, 

throughout this “top-down” process uncertainties of the chosen segmentation method are 

potentially projected on to the results of the subsequent analyses which could lead to 

biased results and interpretations. Currently, it is not clear how severe such uncertainties 

are for subsequent analyses and ecological inferences. 

Future Research Needs 

The continuing improvement of tracking devices will provide researchers with long-term 

movement data at high spatial and temporal resolutions (Cagnacci et al. 2010). 

Additionally, the establishment of collaborative projects and data collections will 

continue to facilitate analyses across many individuals, species, and study areas (Kays et 

al. 2015; Urbano et al. 2010). To fully realize the potential of this abundant high quality 

data, powerful analytical techniques are needed. While a substantial variety of methods 
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for path segmentation already exists, we have only just begun to explore the analytical 

options for path-level movement data, and many more methods will likely be developed 

in the future. Ideally, these future methods will allow us to quantitatively compare 

multiple trajectories within and among individuals, so that we can gain a better 

understanding of the drivers of individual movement paths and underlying behaviors 

across time and space. For example, this could be accomplished by new topology-based 

methods using similarity comparisons (Long and Nelson 2013) and pattern recognition 

(Gudmundsson et al. 2004), as well as data mining of either time-series or the original 

trajectory data (Fu 2011; Wang et al. 2013). 

Future methods should also combine path characteristics with other relevant 

information such as activity, metabolic and acceleration data (Brown et al. 2013) or 

information on body temperature derived from bio-logging devices (Bestley et al. 2010). 

Furthermore, the effects of habitat and weather on individual movement behavior could 

be incorporated into path-level analyses using high resolution environmental and climate 

data (Dodge et al. 2013; Sapir et al. 2014). 

Regardless of how path segmentation will be improved in the future, a crucial 

aspect is the evaluation and comparison of available approaches, and the development of 

guidelines for matching methods to specific research questions. We have provided 

general suggestions for choosing among methods for three broad types of research 

questions. However, we feel that it is currently not yet possible to provide a detailed 

assessment of each of the listed methods we identified for path segmentation (Table 3.2). 

For this, it would be necessary to analyze multiple data sets with different characteristics 

and with different research questions in mind. While suitable data sets for this can 

probably be identified, we also encourage researchers to make stronger use of individual-

based simulations to compare and evaluate segmentation approaches (e.g., Getz and Saltz 

2008; Hooten and Wikle 2010). Such validation and accuracy assessment of different 

methods could also be improved by direct observations (McKellar et al. 2014), via 

unmanned aerial vehicles (UAVs; Ditmer et al. 2015), or other animal-born logging 

devices such as video cameras (Gómez-Laich et al. 2015; Moll et al. 2007). 
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Conclusions 

Overall, future studies will likely provide a more detailed understanding of the advantages 

and limitations of different methods for path segmentation. However, given the 

complexity of segmentation analyses, and considering the variety of research questions 

that can be addressed with them, it is unlikely that a single method will universally be 

‘best’ for all questions and data sets. Hence, while method development and evaluation 

are clearly crucial, the most important aspect of working with movement data is to define 

precise research questions (Fieberg and Börger 2012). We hope that our overview of 

currently available segmentation methods provides a first starting point for researchers 

interested in applying these approaches, so that they can dedicate even more time and 

energy to defining meaningful questions related to individual movement behavior. 
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Supplement  

S3.1: Description of individual segmentation methods 

Introduction 

Here we provide more detailed information on available methods for path segmentation 

listed in the publication. Further, we cite literature with applied examples to illustrate the 

utility of the different methods. Table S3.1.1 summarizes basic statistical properties of 

the discussed methods and lists background papers and availability of code for 

implementing methods in the program R (R Core Team 2015). 

As outlined in the main article, the presented methods could generally be distinguished 

based on their analytical background. For a better overview, we assigned the presented 

methods to three different categories based on whether they focus predominantly on path-

topology or apply different time-series based analyses. Within the latter, one can further 

distinguish state-space modeling approaches from other general time-series analyses 

which focus on the detection of significant changes in within a time-ordered data 

sequence. 

 

Table S3.1.1: Statistical characteristics of the different methodological approaches within the three 

categories of segmentation methods SI indicates the required sampling interval, which can be either 

irregular (-), strictly regular (+) or both (-/+). AC provides information on whether a method accounts for 

(+), neglects (-) or only partly implements (~) estimates of temporal autocorrelation. Further, for each 

method an outline of the analytical approach, necessary specifications (e.g., parameter settings) and the 

generated output (results) are listed. 

Table shown on the following pages. 
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Thresholding 

In this most basic segmentation approach, movement modes can be defined directly from 

observed values of path-signals. Commonly, a set of thresholds is needed as a filtering 

scheme to separate the relocations into different groups of movement behavior. In many 

cases, thresholding is used to partition path-signals into either high or low values (Franke 

et al. 2004; Zeller et al. 2015), or to differentiate between localized and long-range 

movements (Tremblay et al. 2007; Dzialak et al. 2015). The applied thresholds can either 

be absolute or relative values based on certain observations or hypotheses. The selection 

of one or more path-signals is mostly based on the research question and data resolution 

and could be any kind of spatial or temporal property of the movement track (primary or 

secondary derivatives, see Table 3.1 in publication). Further, no data regularity is required 

in case that signals of relative displacement (e.g. velocity or persistence velocity) are 

chosen. Absolute thresholds usually constitute a cut-off value where a signal is split into 

two different groups. For example, Zeller et al. (2015) defined relocations with a step 

length less than 200m as “resource use” whereas a step length larger than this threshold 

was interpreted as actual “movement” (e.g., dispersal). Similarly, Gutenkunst et al. (2007) 

applied a low-pass filter on the ratio between the net-squared displacement and the total 

length of a movement track of Atlantic bluefin tuna (Thunnus thynnus). A predefined 

threshold of this ratio was used to distinguish localized from long-ranged movements. In 

contrast to that, relative thresholds are often based on the distribution of the considered 

path-signal, for example by testing whether the observed values are higher or lower than 

those contained within the 95% confidence interval across all observations (Sur et al. 

2014).  

Thresholding can also be extended to multiple path-signals summarized around 

one or more relocations (e.g., using a moving-window or circular neighborhood) which 

in the next step are classified according to a thresholding scheme. For example, LaPoint 

et al. (2013) identified potential corridor use behavior of fishers (Martes pennanti) based 

on multiple relocations which were parallel and comparably linear in direction at a certain 

speed. To calculate this kind of parallelism of multiple movements, they introduced a 

path parameter called “pseudo-azimuth” (Table 3.1 in the main manuscript) which is 

based on a buffer around midpoints between consecutive relocations. 



122 

Supervised Classification 

These algorithms have been applied to assign relocations (steps) to different classes of 

movement behavior based on multiple path-signals. For this, individual steps of a subset 

of available data (e.g., a training dataset) are assigned to certain classes of movement 

behavior either visually or by applying a threshold approach as described above. The 

remaining data sets are then fitted to this classification scheme using either decision trees 

(Soleymani et al. 2014), support vector machines (Dodge et al. 2009) or classification 

trees (Shamoun-Baranes et al. 2012). 

Clustering 

Clustering can be regarded as a type of unsupervised classification, where no training data 

is used to define the groups that the data should be assigned to. In the context of 

movement data, clustering methods aim to identify distinctive groups within a 

multivariate set of path-signals without any prior assumptions on the underlying 

processes (Van Moorter et al. 2010). For cluster analyses in general, test statistics have 

been developed to assess classification accuracy and to find the optimal value for the k 

number of clusters that should be distinguished (e.g. Steinley 2006; Legendre and 

Legendre, 2012). Further, algorithm performance will depend on the distribution of the 

parameter values used for clustering (usually one ore multiple path-signals). For example, 

Van Moorter et al. (2010) used a classic k-means clustering approach with several 

parameters including step-length, turning angles and activity data to group movements of 

elk (Cervus elaphus) into within and between feeding patch behaviors. The expectation-

maximization binary clustering algorithm (EmBC; Garriga et al. 2016) was used by 

Louzao et al. (2015) to distinguish four different behavioral modes in the movements of 

wandering albatrosses (Diomedea exulans). This method essential splits the relocations 

into different groups based on a combination of either high or low values for two different 

path-signals (e.g., speed and turning angles). 

Spatio-Temporal Criteria Segmentation 

This special type of thresholding relies on a search algorithm that extends an initial 

segment as long as path-signals at each step fulfill a certain criterion (Buchin et al. 2011, 

2013). Thus, the approach essentially attempts to obtain an optimal segmentation of a 

trajectory, in terms of a minimum number of homogeneous segments. For example, path-
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signals can be compared to predefined ranges of values such as upper and lower bounds 

for movement speeds or directional changes that are expected to occur during known 

movement modes (Buchin et al. 2013). Consecutive steps are then included in the same 

segment as long as observed values fall within these bounds, but separated if outside of 

expected values. In contrast to simple thresholding, spatio-temporal criteria segmentation 

is based on the concept of monotone criteria, which means that within each segment 

defined by certain criteria, any subsegment must also fulfill the criteria (e.g., speed and 

heading within predefined bounds). For example, Buchin et al. (2013) applied this 

algorithm to differ segments of migration flights from stopovers within the trajectories of 

white-fronted geese (Anser albifrons). The monotone criterion for a segment to be 

determined as migration flight behavior was that all consecutive relocations had to have 

bounded headings (angles) of around 120°. Therefore, these segments comprised of 

approximately linear movements. In contrast to that, segments were identified as 

stopovers when they fulfilled the criterion of containing relocations that where within a 

disk (radius) of 30km and remained within this disk for a duration of minimum of 48 

hours (Buchin et al. 2013). Finally, the change-points, where the trajectories switched 

between one of these behavioral states were detected and linked to their recorded timing 

of the year. 

Change Point Test 

The method detects significant changes in the observed movement direction or orientation 

of a trajectory (Byrne et al. 2007). For this, a subset of the trajectory based on a potential 

attraction point (e.g., food source) and the previous relocations back to a starting point 

(e.g., den or roosting spot) is used as an input. Each of the previous relocations prior to 

the attraction point is tested “backwards in time” for a change in total direction (Byrne et 

al. 2007). The collinearity of the movement vectors before and after a potential change-

point are calculated to assess whether movements after a given point are aligned with 

movements before that point. The significance of the change in directionality is tested 

using a permutation test, which avoids any assumptions about the distributions of turning 

angles (Byrne et al. 2007). The approach is most useful when attraction points can be 

defined a priori. For example, Noser and Byrne (2014 ) applied the change point test to 

daily travel routes of baboons (Papio ursinus) and were able to identify locations where 

the animals decided to return back towards their sleeping sites, and locations were they 
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adjusted their movements due to important landmarks (e.g., change of topographic slope 

or tire tracks).  

Line Simplification 

Line simplification is an approach commonly used in cartography and geographic 

information science to reduce the number of vertices in geometric objects while 

maintaining their basic structure (Saalfeld 1999; Douglas and Peucker 1973). For 

movement data, this method can be applied to test whether simplifying a trajectory by 

deleting relocations has a significant impact on the topology of the trajectory. 

Consecutive relocations that do not change path-topology when being removed can be 

grouped into the same segment. In contrast, change-points are indicated if their exclusion 

strongly alters path-topology. As the most prevalent method, the Douglas-Peucker 

algorithm (Douglas and Peucker 1973) excludes points which do not add variation along 

a simplified line between two non-consecutive relocations. For example, Thiebault and 

Tremblay (2013) used this algorithm to segment movement paths of Cape gannets (Morus 

capensis) by calculating the distance between the original path and the simplified, straight 

line connection of relocations before and after a potential change-point has been removed. 

If the distance between true and simplified paths was larger than a specified threshold, a 

change-point was detected. Since small threshold values lead to small-scale segmentation, 

and high values to broader-scale segmentation, multiple threshold values should be 

assessed and compared (Theibault and Tremblay 2013). The cited example shows that 

line simplification can also be applied to segment time-ordered data, such that these 

methods are at the convergence between the two categories of topology-based and time-

series analyses. 

Bayesian Partitioning of Markov Models (BPMM) 

This algorithm can also be interpreted as a hybrid between a method focusing on path-

topology on the one hand and accounting for sequential time-series data on the other hand. 

It is originally derived from a DNA classification method developed by Guéguen (2001) 

and applies randomized likelihood estimation for determining the optimal number and 

sequence of a list of candidate Markov models (Calenge 2011). The input path-signal for 

the candidate models needs to be ordered in time and derived from a regular trajectory. 

The input data could be any primary or secondary signal conveying spatial or temporal 
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information (e.g., step length). The candidate models, for example, could have Gaussian 

distributions with a range of different means while keeping a constant variance (Gurarie 

et al. 2016 ). As a result, the trajectory is split into homogeneous segments based on the 

optimal sequence of Markov models. The BPMM method assumes that the path-signals 

within these segments are independent, an assumption that is often violated for movement 

data (Gurarie et al. 2016). Additionally, for each relocation (step) the associated candidate 

model is specified (Calenge 2011). Therefore, BPMM has been viewed as a sophisticated 

classification algorithm (e.g., Gurarie et al. 2016 ). However, the list of candidate models 

could also be interpreted as “hidden states” and therefore we point out that this method 

could also be potentially applied for identifying hidden processes (see Table 3.2 of main 

article). 

Methods based on time-series analyses 

Piecewise Regression 

This approach is also termed “broken-stick” or “segmented” regression and is essentially 

a type of curve fitting (Neter et al. 1985). Basically, the approach finds breakpoints where 

the relationships between the dependent variable and the independent variable change 

abruptly. The data are then split at these breakpoints and a separate regression line is fit 

in each interval. For movement data, the dependent data is a path-signal of interest (e.g., 

primary or secondary descriptors like net-squared displacement), which is analyzed as a 

function of time. Detected breakpoints can be interpreted as a change in movement 

behavior, so that the trajectory can be segmented at that given point in time. For example, 

Liminana et al. (2007) used piecewise linear regression to detect the start of the migratory 

phase in the movement paths of Montagu’s harriers (Circus pygargus). Similar, non-

linear types of curve-fitting approaches have been used to determine breaks regarding 

individual scales of movements (Johnson et al. 2002; Sibly et al. 1990; Saher and 

Schmiegelow 2005). 

Penalized Contrast Method (PCM) 

This method developed by Lavielle (1999, 2005) has been widely applied in animal 

movement analyses (e.g. Sur et al. 2014; Barraquand and Benhamou 2008 ). The optimal 

number of segments is determined by minimizing a contrast function which rates the 

differences between signals of the entire trajectory versus the signals of the segmented 
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series. The contrast functions are either based on the mean, standard deviation or a 

combination of both. The method implies that the contrast function decreases with 

increasing numbers of segments in the series (Lavielle 1999). In order to avoid visual 

(and potentially subjective) splitting of the trajectory, Lavielle (2005) proposed to use the 

second derivative of the contrast function and the value at which it reaches a certain 

threshold. Le Corre et al. (2014) used this approach to objectively determine departure 

and arrival dates in migration patterns of caribou, (Rangifer tarandus). In addition, the 

method requires the definition of the minimum length of resulting segments to avoid over-

splitting, and a maximum amount of possible segments in order to limit processing time 

(Calenge 2011). PCM is also less susceptible to biases from temporal autocorrelation 

(Lavielle 1999, Barraquand and Benhamou 2008). The majority of studies applying the 

PCM algorithm used either the first passage- or residence-time (see Table1 of publication) 

as the input signal (e.g., Sommerfeld et al. 2013 ). However, potentially any primary or 

secondary signal conveying spatial or temporal information on movement properties 

(e.g., step length) could be applied. 

Behavioral Change Point Analysis (BCPA) 

The behavioral change point analysis introduced by Gurarie et al. (2009) consists of 

several consecutive analytical steps. First, either the persistence or turning velocity is 

chosen as the input signal as these parameters are less sensitive to irregular sampling (see 

Table 3.1 of publication). The signal is modeled as a continuous autocorrelated time-

series with three local components (e.g., mean, variance, and temporal autocorrelation). 

In a second step, the likelihood of a significant change-point within the three local 

parameters is estimated for a subsample (window) of the time-series (Gurarie et al. 2009). 

Subsequently, the window is moved forward along the entire time-series. Whether a 

relocation is a change-point is then evaluated based on a Bayesian Information Criterion 

(BIC; Burnham and Anderson 2012 ), which compares different model assumptions 

ranging from a null-model (no changes) to one, any two, or all three parameters changing 

at a potential change point. The BCPA does not depend on regular sampling and is able 

to cope with missing data because primary descriptive features of movements are 

captured in the velocity signal and the continuous-time modeling framework (Gurarie et 

al. 2009; Zhang et al. 2015). However, a set of multiple input parameters, such as the 

window size and the minimum number of detections of each change-point, have to be set 
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prior to the analysis (see Table S1). For example, Zhang et al. (2015) applied the BCPA 

to detect different behaviors (e.g., foraging) in the movement tracks of little penguins 

(Eudyptula minor). 

Pruned Exact Linear Time (PELT) Algorithm 

This algorithm searches for an optimal combination of the number and locations of 

change-points along a time-series (Killick et al. 2011). Simply put, the algorithm treats 

the segmentations produced by different change-points as competing models, and 

assesses which model best fits the mean, variance, or a combination of both within the 

produced segments. Optimality of any set of change-points is defined by a cost function 

that needs to be minimized and with a penalty term to avoid over-splitting (for example 

via BIC). Madon and Hingrat (2014) used the PELT algorithm to segment movement 

paths of Macqueen’s bustards (Chlamydotis macqueenii) and subsequently classified the 

identified segments into migratory, non-migratory, and staging movements. Similar to 

the BCPA, the PELT approach is able to detect a set of change-points in an individual 

movement signal without any a priori knowledge on the total number of behavioral 

modes and switches (see Table S1). Any primary or secondary derivative of path-signals 

could be used as an input. However, the data is assumed to follow a normal distribution 

with constant mean, and relocations are assumed to be independent (non-autocorrelated). 

Behavioral Movement Segmentation (BMS) 

This approach characterizes a behavioral state by a specific mean for one or several path-

signals which can be estimated from the data (e.g., any primary or secondary derivative 

parameter or even acceleration data; Nams 2014). The positions of change-points are also 

treated as a parameter that can be estimated from the data. The BMS approach attempts 

to find the most parsimonious set of these two parameters and again uses the BIC 

(Burnham and Anderson 2012) to quantify parsimony. For this, a series of different 

combinations for the number of segments and number of behavioral states is compared 

and the combination with lowest BIC is chosen. A cluster analysis is then performed to 

group similar segments and infer behavioral states. One major advantage of the approach 

is that the estimation of the most likely number and location of behavioral switches can 

easily be extended to include data other than movement signals. Additionally, the 

grouping of the resulting segments into clusters of potentially similar movement 
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behaviors is already implemented within the algorithm. For example, Nams (2014) 

combined GPS-relocations and accelerometer (activity) data within the BMS approach to 

analyze movement behavior of a fisher (Martes pennant). When only using movement 

speed and turning angles to distinguish behavioral states, four different movement stages 

could be identified. When additionally accounting for acceleration data, seven behavioral 

stages could be distinguished, revealing greater complexity in movement behavior than 

could be inferred from the trajectory alone. 

Methods based on state-space models 

Methods within this category stem from the broad state-space modeling (SSM) 

framework. From a statistical perspective, state-space models are special types of time-

series analyses also accounting for the correlation structure of consecutive measurements 

(Patterson et al. 2008). In general, within this framework the future state of a system is 

estimated from its previous state(s) through a probabilistic model. For this, two stochastic 

time-series models, one based on an unobservable state process, and another based on a 

known observation process are coupled (Jonsen et al. 2013; Patterson et al. 2008). SSMs 

differ with regard to the number and composition of the state variables (e.g., discrete vs. 

continuous), the statistical estimation technique as well as the structure of the main 

components, the two stochastic process and observation models. Nomenclature for 

differentiating is unfortunately inconsistent in the literature (e.g., Jonsen et al. 2013; 

Patterson et al. 2008; Gurarie et al. 2016; Patterson et al. 2016). 

In order to provide better guidance for deciding among different SSMs we distinguished 

three general classes of state-spaces modeling approaches. For example, Hidden Markov 

models are based on a predefined number of discrete states and typically neglect 

observation errors within the data. In contrast to that, state-space models can also be 

extended to include a location filtering component essentially estimating probabilities of 

different parameters of the movement process including the probable relocations of error-

prone movement data. Further, they can work with an undefined number of either discrete 

or even continuous behavioral states and fit various movement models (e.g., different 

variants of a correlated random walk; Gurarie et al. 2016; Patterson et al. 2008, 2016). 

Therefore, certain state-space models can also be applied in hierarchical and meta-

analyses accounting for individual variations in the number and composition of the hidden 
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states (Jonsen et al. 2003; Jonsen et al. 2006; Eckert and Moore 2008; Flemming et al. 

2010). 

Hidden Markov Models (HMM) 

These are special cases of SSMs that estimate properties of a fixed set of discrete hidden 

states (Franke et al. 2004; Zucchini et al. 2008). In an HMM, state transitions are usually 

driven by first order Markovian processes, which means that a state depends only on the 

previous state. However, State transitions in HMMs can be modified, so that the switching 

probability can also depend on several previous states or their durations (Patterson et al. 

2009; Langrock et al. 2012), environmental and social factors (Bergman et al. 2008), as 

well as habitat data (Morales et al. 2004; Beyer et al. 2013). Some HMMs integrate 

extensions of the random walk framework (see Codling et al. 2008 for more details) as 

part of their process model (Gurarie et al. 2016; Patterson et al. 2016). For example, 

Morales et al. (2004) used a Bayesian approach to model movements of elk (Cervus 

elaphus) as a mixture of different random walks, and found that elk movements were 

either exploratory or encamped, with the latter occurring in open habitats during foraging. 

Recently, HMMs have also been applied to model behavior based on bio-logger data (e.g., 

Patterson et al. 2009; Dean et al. 2013). In summary, the focus of HMM methods is on 

the estimation of switching probabilities between states, the most likely sequence of the 

hidden states as well as their length (Franke et al. 2004; Zucchini et al. 2008). Parameters 

in HMMs can be estimated through various statistical techniques, including expectation-

maximization (Franke et al. 2004; Rabiner 1989), likelihood-maximization (Patterson et 

al. 2009; Zucchini et al. 2008; Langrock, et al. 2015) or Bayesian likelihood estimation 

(Morales et al. 2004; Beyer et al. 2013; Roberts et al. 2004). Similarly, several test 

statistics for evaluating the association between the observed data sequences and the 

estimated HMM have been suggested, including correct percentage statistics or pseudo-

residuals (Franke et al. 2004; Patterson et al. 2009, Jonsen et al. 2013). 

SSMs with Location Filtering 

The majority of SSMs applied in movement-based studies are multi-state random walks 

integrating different forms of movement models, such as extensions of the random walk 

framework, as part of their process component (Patterson et al. 2008; Gurarie et al. 2016). 

However, in contrast to HMMs some SSMs do not neglect potential sampling errors of 
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the relocation data but account for them within their observation model structure (Jonsen 

et al. 2013, Patterson et al. 2016). Typically, these models include both continuous (e.g., 

estimated true locations) and one or several discrete behavioral states in the process 

component (Jonsen et al. 2005; Hopcraft et al. 2014). 

Different Bayesian estimation techniques (e.g., Markov Chain Monte Carlo, MCMC; 

Jonsen et al. 2005) are usually required since multiple probability distributions need to be 

integrated along with non-linear structures within the models. Further, MCMC estimation 

also allows for non-Gaussian error structures in the observation model (Jonsen et al. 2013; 

Patterson et al. 2008). Besides MCMC, there are also different so called filtering methods 

for fitting such SSMs. Filtering methods can be applied to obtain parameters of linear 

state-space models (Patterson et al. 2016, Anderson-Sprecher and Ledolter 1991) as well 

as to estimate the most likely position of missing or biased relocations (Sibert et al. 2003; 

Austin et al. 2003). For example, Kalman Filtering (KF; Kalman and Bucy 1961 ) provides 

unbiased estimates of a first-order autoregressive model (e.g., the diffusion coefficient in 

a random walk model) given that the movement model is strictly linear with a Gaussian 

error distribution (Royer et al. 2005). Kalman filtering can further account for the 

influence of environmental covariates (Forester et al. 2007). However, the KF is not 

applicable for estimation of time-varying and discrete behavioral states. Particle Filters 

(PF) represent Bayesian approaches which overcome those limitations and can also fit 

non-linear SSMs. They are based on Sequential Monte Carlo sampling using ensembles 

of random sampling units (particles) which are moved forward by the process model of 

the state-space framework (Patterson et al. 2008, 2016). The importance of each particle 

is weighted in order to estimate the likelihood or posterior distributions of the model 

parameters. PFs are able to estimate non-linear and non-stationary movement models and 

can also implement non-Gaussian error structures in the process model (Dowd and Joy 

2011; Royer et al. 2005; Andersen et al. 2007). Overall, these types of SSMs are highly 

useful for error-prone or incomplete relocation data with large gaps in sampling 

frequency. For example, many studies use different SSMs with location filtering in order 

to account for errors in Argos telemetry data (Patterson et al. 2010; Costa et al. 2010; 

Silva et al. 2014). However, all of these algorithms can be quite complex and 

computational intensive. More detailed explanations on different statistical options, 

including model fitting and diagnostics are provided in Jonsen et al. (2013). Different 
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examples for implementations and applications in R are presented in (Dowd and Joy 2011; 

Albertsen et al. 2015; Jonsen et al. 2005; Pedersen et al. 2011). 
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S2: Applied Illustration of Path Segmentation Approaches 

Aim of this supplement 

In this supplement we illustrate the basic approach of how to segment a path. We simulate 

tracking data, go through explorative steps, and then apply three different segmentation 

methods. 

Set up 

library(secr) 
library(raster) 
library(moveHMM) 
library(adehabitatLT) 
library(lubridate) 
library(bcpa) 
 
 
set.seed(12322211) 
 
genHabitat <- function(nc, p = 0.1, A = 0.1) { 
  r <- make.mask(nx = nc, ny = nc, spacing = 1) 
  h <- randomHabitat(r, p = p, A = A) 
  r <- raster(xmn=0, xmx=nc, ymn=0, ymx=nc, ncols=nc, nrows=nc) 
  r <- rasterize(data.frame(h), r, field=1, background=0) 
  r <- as.matrix(r) 
  r <- list(hab = r, p = p, A = A, nc = nc) 
  class(r) <- c("hab", "matrix") 
  r 
} 

Data generation 

We use a simple individual based simulation model for 12 months with 24 relocations per 

day. The movement of the animal was influenced by the time of the day, habitat and 

attraction to a temporally varying home range center. Turning angles where uniformily 

distributed between −𝑝𝑖 and 𝑝𝑖, and step lengths where drawn from a Gamma distribution 

with scale and shape of 2.9 and 0.9 for habitat and 1.2 and 5 for the matrix respectively 

Animals moved with a probability of 0.3 during the night and a probability of 1 during 

the day. At each location 𝑡, the animal chose 20 candidate locations and chose one at 

random with probably weighted towards the home range center. 

n_months <- 12 
n <- 24 * 30 * n_months  # one relocation every hour 
 
pm_day <- 1 
pm_night <- 0.3 
 
b0 <- rep(c(rep(pm_night, 5), seq(pm_night, pm_day, length.out = 2), rep(pm_day, 10),  
            seq(pm_day, pm_night, length.out = 2), rep(pm_night, 5), 30 * n_months) 
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b1 <- rep(c(1, 0, 1), each = n/3) * 1 
b2 <- as.numeric(b1 == 0) * 1 
 
b3 <- 10 # hab matrix 
 
xy0 <- c(100, 100) 
 
x_c1 <- 100 
y_c1 <- 100 
 
x_c2 <- 300 
y_c2 <- 300 
 
tpl <- raster(xmn = 0, xmx = 400, ymn = 0, ymx = 400, res = 1) 
hab <- raster(genHabitat(400, A = 0.5, p = 0.5)$hab, template = tpl) 

## Loading required namespace: igraph 

hab0 <- hab 
hab <- hab0 
hab[] <- ifelse(hab[] == 0, 1, 2) 
 
set.seed(2090160703) 
xy <- matrix(NA, nrow = n, ncol = 2) 
xy[1, ] <- xy0 
 
 
for (i in 2:n) { 
  # cand locations 
  if (runif(1) < b0[i]) { 
    ta <- runif(20, -pi, pi) 
     
    if (raster::extract(hab, xy[i-1, ,drop = FALSE]) == 2) { 
      scl <- 2.9 
      shp <- 0.9 
    } else { 
      scl <- 1.2 
      shp <- 5 
    } 
    slen <- rgamma(20, scale = scl, shape = shp) 
    x1 <- xy[i - 1, 1] + (cos(ta) * slen) 
    y1 <- xy[i - 1, 2] + (sin(ta) * slen) 
     
    d1 <- sqrt((x1 - x_c1)^2 + (y1 - y_c1)^2) 
    d2 <- sqrt((x1 - x_c2)^2 + (y1 - y_c2)^2) 
    w <- (dexp(d1, rate = 1/25) * b1[i] + 
            dexp(d2, rate = 1/25) * b2[i])  
    w[is.na(w)] <- 0 
    w <- sample(20, 1, prob = w) 
    xy[i, ] <- c(x1[w], y1[w]) 
  } else { 
    xy[i, ] <- xy[i-1, ] 
  } 
} 
 
xy[, 1] <- xy[, 1] + runif(nrow(xy), -0.1, 0.1) 
xy[, 2] <- xy[, 2] + runif(nrow(xy), -0.1, 0.1) 
xy <- xy[, 1:2] 
xy <- data.frame(xy) 
names(xy) <- c("x", "y") 
xy$time <- ymd_hm("2000-01-01 00:00") + hours(0:(n-1) 
xy$hour <- rep(1:24, n/24) # hour of the day 
xy$id <- 1:nrow(xy) 
xy$hab <- raster::extract(hab, xy[, 1:2]) 
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The simulated data: 

plot(xy[, 1:2], pch = 20, xlab = "", ylab = "", las = 1, type = "l", lwd = 0.5
) 

 

Simulated movement path and habitat composition: 

plot(hab) 
lines(xy[,1:2]) 
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Path metrics 

As a next step we calculate and inspect three path metrics. Namely, the step length, the 

net squared displacement and finally the turning anlges. 

xy$sl <- c(NA, with(xy, sqrt((head(x, -1) - tail(x, -1)^2 + (head(y, -1) - tai
l(y, -1)^2)) 
xy$nsd <- with(xy, sqrt((x - xy0[1])^2 + (y - xy0[2])^2) 
dat <- prepData(xy[, c("x", "y", "hour", "nsd", "hab")], type = "UTM") 

Plotting path metrics as time series and histograms. First we look at the signals 

for 1 week. 

par(mfrow = c(3, 2) 
with(dat[1:(24 * 7), ], plot(step, type = "l") 
with(dat[1:(24 * 7), ], hist(step) 
with(dat[1:(24 * 7), ], plot(angle, type = "l") 
with(dat[1:(24 * 7), ], hist(angle) 
with(dat[1:(24 * 7), ], plot(nsd, type = "l") 
with(dat[1:(24 * 7), ], hist(nsd) 
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Next we look at the path signals for a whole year. 

par(mfrow = c(3, 2) 
with(dat, plot(step, type = "l") 
with(dat, hist(step) 
with(dat, plot(angle, type = "l") 
with(dat, hist(angle) 
with(dat, plot(nsd, type = "l") 
with(dat, hist(nsd) 
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Note, that when plotting path signals for one week we can observe diurnal 

patterns, while when plotting the signals for one year we observe a migratory pattern, 

especially for the net-squared displacement. 

Finally, we can look at the same path signal, but as a funciton of different 

covariates (here habitat and matrix, left column; hour of the day right column). 

par(mfrow = c(3, 2) 
with(dat, boxplot(step ~ hab, main = "step length", xaxt = "n") 
axis(1, at = 1:2, labels = c("matrix", "habitat") 
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with(dat, boxplot(step ~ hour, main = "step length", xlab = "hour of the day") 
with(dat, boxplot(angle ~ hab, main = "turning angles", xaxt = "n") 
axis(1, at = 1:2, labels = c("matrix", "habitat") 
with(dat, boxplot(angle ~ hour, main = "turning angles", xlab = "hour of the day") 
with(dat, boxplot(nsd ~ hab, main = "nsd", xaxt = "n") 
axis(1, at = 1:2, labels = c("matrix", "habitat") 
with(dat, boxplot(nsd ~ hour, main = "nsd", xlab = "hour of the day") 

 

par(mfrow = c(1, 1) 
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Explorative analyses 

First we check if the data is regularly sampled: 

table(diff(xy$time) 

##  
##    1  
## 8639 

All of the 8639 relocations have a time lag of 1 hour. Therefore, the data has a 

regular sampling regime. 

Next we test for independence in the consecutive path-signals: 

# Wald-Wolfowitz Test of Randomness 
 
wawotest(dat$step) 

## 1 NA removed 

##         a        ea        va        za         p  
## 2143.4821   -1.0000 8632.8562   23.0805    0.0000 

wawotest(dat$nsd) 

##          a         ea         va         za          p  
## 8635.65169   -1.00000 8636.99627   92.93173    0.00000 

# correlogram for angular and linear descriptors of a movement path 
 
ind <- acfdist.ltraj(as.ltraj(xy[, 1:2], date = xy$time, id = "a1"), lag = 5) 

 

ind 
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## [[1]] 
##          lag.1    lag.2    lag.3    lag.4    lag.5 
## obs   14.46598 15.92845 16.71358 17.43126 18.36498 
## 2.5%  18.77615 18.83905 18.79915 18.82473 18.82640 
## 50%   19.24214 19.24873 19.24953 19.25300 19.23892 
## 97.5% 19.63601 19.65166 19.65655 19.64178 19.65752 

ind2 <- acfang.ltraj(as.ltraj(xy[, 1:2], date = xy$time, id = "a1"), lag = 5) 

 

ind2 

## [[1]] 
##          lag.1    lag.2    lag.3    lag.4    lag.5 
## obs   2.175379 2.012483 2.022091 1.976375 2.016311 
## 2.5%  1.969032 1.970675 1.968645 1.971118 1.971807 
## 50%   2.000121 1.998833 1.998663 2.000100 2.000147 
## 97.5% 2.029612 2.029967 2.030055 2.028320 2.032133 

both tests suggest for correlated data structures. 

Path segmentation 

We consider three methods: 1. Thresholding, 2. Behavioural Change Point Analysis, and 

3. Hidden Markov Models: 

Threshholding 

An ecologist may assume that due to biological reasoning a step length threshhold of 2 is 

indicating an important biological phenomena. 

hist(xy$sl, main="Histogram of Step Length", xlab="Step Length") 
abline(v=2, col="red", lwd=3) 
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This threshold can than be plotted against the habitat type. 

tb <- table(xy$sl < 2, xy$hab) 
row.names(tb) <- c("step length >= 2", "step length < 2") 
colnames(tb) <- c("matrix", "habitat") 
mosaicplot(tb , main = "Treshholding") 

 

Finally, we can apply a Pearson’s Chi-squared Test to determine if the observed 

proportions of each state within the habitat components are signficantly different from a 

random distribution. 
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prop.table(tb, 1) 

##                    
##                       matrix   habitat 
##   step length >= 2 0.5222560 0.4777440 
##   step length < 2  0.2672242 0.7327758 

prop.table(tb, 2) 

##                    
##                       matrix   habitat 
##   step length >= 2 0.5846487 0.3195266 
##   step length < 2  0.4153513 0.6804734 

chisq.test(tb) 

##  
##  Pearson's Chi-squared test with Yates' continuity correction 
##  
## data:  tb 
## X-squared = 583.03, df = 1, p-value < 2.2e-16 

The test points out that the observed pattern of the state proportions is significant. 

Behavioural change point analysis 

Next, we are interested in finding the points where the animal starts to 

migrate. 

xy$Time <- 1:nrow(xy) 
path_char <- bcpa::MakeTrack(xy$x, xy$y, xy$Time) 
path_char <- bcpa::GetVT(path_char) 
path_char$nsd <- xy$nsd[-(1:2)] 
 
# run the bcpa 
ws <- WindowSweep(path_char, "nsd", windowsize = 30, progress = FALSE) 
 
plot(ws, type = "flat", clusterwidth = 24 * 7, xlab = "time", las = 1, ylab = "net sq
uared displacement") 
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# add trajectory plot 
xy_bc <- data.frame(Time=xy$Time, X=xy$x, Y=xy$y) 
PathPlot(xy_bc,ws, type = "flat",clusterwidth = 24 * 7, plotlegend = T, tauwhere = "t
opleft", n.legend = 4, ncol.legend = 2, bty.legend = T) 

 

Hidden Markov Models 

In the last step we want to find two different states of the animal (e.g., activ and resting) 

and model the transition probabilities as a function of habitat tand time of the day. 
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## moveHMM 
mu0 <- c(0.1, 1) 
sigma0 <- c(0.1, 1) 
zeromass0 <- c(0.1, 0.05) 
stepPar0 <- c(mu0, sigma0) 
angleMean0 <- c(pi, 0) 
kappa0 <- c(1, 1) 
anglePar0 <- c(angleMean0, kappa0) 
dat$hab <- factor(dat$hab) 
 
m0 <- fitHMM(data = dat, nbStates = 2, stepPar0 = stepPar0, anglePar0 = anglePar0,  
             formula = ~ 1) 
 
m1 <- fitHMM(data = dat, nbStates = 2, stepPar0 = stepPar0, anglePar0 = anglePar0,  
             formula = ~ hour + I(hour^2) 
 
m2 <- fitHMM(data = dat, nbStates = 2, stepPar0 = stepPar0, anglePar0 = anglePar0,  
             formula = ~ hour + I(hour^2) + hab) 
 
AIC(m0, m1, m2) 

##   Model      AIC 
## 1    m0 56095.59 
## 2    m2 56161.20 
## 3    m1 56193.31 

# plots 
z <- 1:24 
 
 
plot(0, 0, type = "n", xlim = range(z), ylim = c(0, 1), xlab = "hour of day", ylab = 
"Probability to stay in state") 
lines(z, 1 - plogis(m1$mle$beta[1, 1] + m1$mle$beta[2, 1] * z + m1$mle$beta[3, 1] * z
^2) 
lines(z, 1 - plogis(m1$mle$beta[1, 2] + m1$mle$beta[2, 2] * z + m1$mle$beta[3, 2] * z
^2), col = "red") 

 

plot(0, 0, type = "n", xlim = range(z), ylim = c(0, 1), xlab = "hour of day", 
ylab = "Probability to stay in state") 
lines(z, plogis(m2$mle$beta[1, 1] + m2$mle$beta[2, 1] * z + m2$mle$beta[3, 1] * z^2 + 
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m2$mle$beta[4,1] * 1) 
lines(z, plogis(m2$mle$beta[1, 1] + m2$mle$beta[2, 1] * z + m2$mle$beta[3, 1] * z^2 + 
m2$mle$beta[4,1] * 0), lty = 2) 
 
lines(z, plogis(m2$mle$beta[1, 2] + m2$mle$beta[2, 2] * z + m2$mle$beta[3, 2] * z^2 + 
m2$mle$beta[4, 2] * 1), col = "red") 
lines(z, plogis(m2$mle$beta[1, 2] + m2$mle$beta[2, 2] * z + m2$mle$beta[3, 2] * z^2 + 
m2$mle$beta[4, 2] * 0), lty = 2, col = "red") 
 
legend(17.5,0.25, c("inactive (habitat)", "inactive (matrix)", "active (habitat)", "a
ctive (matrix)"), 
       lty = c(1,2,1,2), lwd = c(2,2,2,2), col=c("black","black", "red","red") 
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CHAPTER 4 

It`s all in the matrix: Comparing models of 

functional connectivity for red deer (Cervus 

elaphus) in Northern Germany using 

landscape genetics 

 

 

 

  



152 

Abstract 

Estimating functional connectivity emerged as a central tool for conservation given its 

huge potential to quantify corridors and barriers to gene flow in increasingly fragmented 

landscapes. A common approach for deriving connectivity is to model resistance of the 

landscape matrix for a given study species. However, there is a plethora of approaches 

that have been proposed to assess landscape resistance. In particular, these methods vary 

with regard to the key assumptions they are established on, which can significantly affect 

how functional connectivity is quantified. 

Here, we apply a landscape genetic approach to compare different models of 

landscape resistance using red deer (Cervus elaphus) in Northern Germany as a case 

study. In order to derive information on optimal placement of conservation corridors we 

utilize an extensive data set consisting of over 400 genetic samples as well as telemetry 

data from 20 red deer individuals. Using a multi-step model selection framework we 

account for a wide range of methodological decisions in quantifying i) resistance surfaces 

(expert-, habitat-, and movement-informed), ii) effective distances (circuit theory and 

least cost paths) as well as iii) correlations with genetic distances (Mantel test, linear 

mixed models, and multiple regression on distance matrices).  

First, we selected a final model among each of the three approaches for 

quantifying resistance using Mantel tests to correlate the derived effective distances with 

genetic distances. Additionally, we combined the preselection of resistance models into 

ensemble models. The set of final models served as different hypotheses on potential 

causes of isolation by resistance (IBR). We hypothesized that 1) the ensemble approach 

outperforms other resistance models 2) movement-informed resistance models correlate 

better with observed genetic distance as compared to habitat-informed models and 3) a 

weak performance of models based on expert-knowledge. Additionally, we tested for 

potential effects of isolation by geographic distance (IBD) and modeled isolation by 

barrier (IBB) based on putative barriers such as primary roads in our study area. Finally, 

we fitted univariate and multivariate linear mixed models (MLPE) to correlate pairwise 

genetic distances with effective distances derived from the formulated hypotheses 

(variants of IBR, IBD and IBB). We used a model selection framework to evaluate model 
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performance and also compared the results with multiple regression on distance matrices 

(MRM).  

Resistance model performance heavily relied on how effective distance was 

quantified and how it was compared against genetic distances. Results regarding the 

highest-ranked (best-performing) resistance model were depending on the applied 

effective distance (circuitscape vs least cost path) as well as the statistical approach for 

comparison. The MLPE method indicated a high correlation of the observed genetic 

distances with circuit distances based on an habitat-informed model. For effective 

distances derived from least cost paths we identified a movement-informed approach to 

perform best. Model comparison based on MRM showed that for both distance algorithms 

an ensemble model works well to describe genetic patterns. Model performance improved 

in all cases when IBD and IBB were included.  

For corridor design at a small scale, model-based corridor locations overlapped 

significantly. Our results of a movement-informed model approach indicated that red deer 

are capable of moving through less suitable habitat at short distances in comparison to 

habitat requirements at the home range scale determined with habitat suitability models. 

On the other hand, for dispersal over longer distances, suitable habitat conditions are 

required. For deriving large scale conservation corridors we recommend to apply 

ensembles of multiple resistance surfaces to overcome limitations of single 

methodological approaches. In our case, placement of short range corridors was less 

impacted by the choice of resistance model. Still we caution to apply models with valid 

assumptions and appropriate data such as (movement-informed) resource selection 

functions based on observed dispersal events. 

 

 

Keywords: effective distance, fragmentation, landscape genetics, red deer, ensemble 

model 
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Introduction  

Assessing landscape connectivity between patches of primary habitat is an important, yet 

challenging, task in wildlife conservation. Overall, landscape connectivity describes the 

degree to which a landscape matrix still enables the movement of individuals between 

remaining patches of suitable habitat (Crooks and Sanjayan 2006; Taylor et al. 1993). In 

particular, anthropogenic development and fragmentation have been shown to impede 

such movements which limits effective dispersal and gene flow for certain study species 

(Fahrig 2003; Templeton et al. 1990). Such restrictions can lead to the emergence of 

metapopulations (Hanski 1998; Opdam 1991), a decrease in effective population sizes 

(Keyghobadi 2007) and long-term loss of genetic diversity and inbreeding (Andersen et 

al. 2004; Haddad et al. 2016; Proctor et al. 2005). In contrast, landscape connectivity can 

facilitate the exchange of individuals (i.e., genes) and thus counteracts the negative effects 

of fragmentation which have been shown to be one of the greatest threats to mobile 

species in human dominated landscapes (Epps et al. 2005; Fahrig and Merriam 1994; 

Proctor et al. 2005). Therefore, understanding connectivity is important for maintaining 

the long-term viability of populations in fragmented landscapes (Cushman et al. 2011; 

Flather and Bevers 2002; Hanski and Ovaskainen 2003). 

A distinction is made in the literature between two types of landscape 

connectivity: 1) structural connectivity which only refers to the physical alignment of 

habitable parts of the landscape matrix (Betts et al. 2015; Kindlmann and Burel 2008) and 

2) functional connectivity, which accounts for a species’ capability to move through a 

less favorable landscape matrix where habitat features are not always structurally 

connected (Baguette and Van Dyck 2007; Taylor et al. 1993; With and Crist 1995). In 

terms of conservation, functional connectivity is particularly relevant as it describes to 

what degree a landscape matrix still allows for individuals to disperse (Fahrig 2007; 

Ricketts 2001). Landscape models describing the functional connectivity of an area of 

interest have become a fundamental tool in applied conservation for delineating corridors 

in order to either maintain, facilitate or re-establish dispersal (Beier and Noss 2008; Hilty 

et al. 2012; Rudnick et al. 2012). However, estimating functional connectivity for a given 

target species remains to be one of the major challenges when identifying conservation 

corridors objectively (Abrahms et al. 2017; Beier et al. 2008; Naidoo et al. 2018). Most 

notably, this is due to the fact that functional connectivity is highly species specific: the 
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influence of different landscape components on dispersal is depending, among other 

things, on the movement capacity, perceptual range and habitat requirements of an 

organism (Bélisle 2005; Diniz et al. 2020; Fletcher et al. 2012). 

Functional connectivity is ultimately linked to gene flow as higher probability of 

movement through the landscape matrix should result in effective dispersal and 

eventually reproduction (Baguette et al. 2013). Therefore, information on the degree of 

genetic differentiation and current or historic gene flow derived from genetic data allows 

conclusions to be drawn about recent or contemporary landscape composition (Coulon et 

al. 2004; Keyghobadi et al. 2005; Stevens et al. 2006). Landscape genetic studies which 

link such patterns of genetic differentiation to patterns of the landscape matrix 

(Holderegger and Wagner 2006; Manel et al. 2003; Storfer et al. 2010) have been shown 

to be valid framework for assessing functional connectivity and deriving conservation 

corridors (Braunisch et al. 2010; Keller et al. 2012; Ruiz-González et al. 2014).  Most 

frequently, landscape genetics correlate information on genetic differentiation (i.e., 

estimates of gene flow) with measures of landscape composition among populations or 

individuals to test hypotheses on 1) isolation by distance, 2) isolation by barriers, or 3) 

isolation by effective distance i.e. landscape resistance (Storfer et al. 2007, Balkenhol et 

al. 2009). Isolation by distance (IBD) assumes that genetic differentiation is correlated to 

geographic distance between compared entities (Hutchison and Templeton 1999; Wright 

1943). IBD is commonly tested for as a null model (Balkenhol et al. 2009) since it ignores 

any potential effects of the landscape matrix. Isolation by barrier (IBB) accounts for the 

presence of putative barriers or boundaries being the main cause of differentiation 

between populations or individuals (Epps et al. 2005; Frantz et al. 2012; Ward et al. 2015). 

And finally, isolation by resistance (IBR) hypothesizes that effective distance derived 

from the resistance of the landscape matrix between considered entities and thus best 

describing functional connectivity (McRae 2006; Segelbacher et al. 2010). However, one 

of the biggest challenges in landscape genetic analyses remains to be the parameterization 

of resistance values for different landscape features, i.e. how to weight the cost of 

movement through the landscape matrix (Spear et al. 2010, 2015). As a result, there is a 

multitude of methods available for modeling landscape resistance and deriving effective 

distances from these models.  
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Modelling Landscape Resistance 

First of all, there are important differences with regard to the methodological approaches 

that are available. Next to the data foundation these approaches vary also with hypotheses 

and assumptions behind them. A multitude of studies have relied on expert-opinion for 

parameterizing resistance surfaces for a given study species (Beier et al. 2008; Jacobs et 

al. 2014; Reed et al. 2016). This is often done by assigning  resistance values to different 

classes of landcover based on previous studies, literature reviews, or experience of local 

managers (e.g., Clevenger et al. 2002; Broquet et al. 2006). However, defining these 

resistance effects can be complex and difficult to quantify accurately. Therefore, expert-

informed analyses have been criticized for being subjective and non-transparent (Rayfield 

et al. 2009; Spear et al. 2010). On the other hand, such approaches do not rely on empirical 

data and could provide a less time-consuming and effective solution for inferring 

functional connectivity (Milanesi et al. 2016a; Garroway et al. 2011; Reed et al. 2016). 

Other methodological approaches for estimating landscape resistance depend on 

empirical data such as information on habitat use or species distribution (Razgour, 2015; 

Stevenson-Holt et al. 2014). For example, habitat models (also referred to as species 

distribution models) are widely applied in ecology and conservation to infer primary 

habitat requirements of a target species (Guisan and Zimmermann 2000; Franklin 2009). 

These models rely on information on the species’ presence (occurrence) which can be 

obtained for example from direct sightings, or indirect detections and signs of species 

occurrence via feces or feathers (Braunisch et al. 2010; Mateo Sánchez et al. 2013), and 

camera traps (O’Connell et al. 2010). Subsequently, resistance can be derived from 

habitat suitability or species distribution models (SDMs) through taking the inverse or 

other transformations of the suitability estimate (Keeley et al. 2016). Essentially, this 

approach assumes an inverse relationship between habitat suitability and landscape 

resistance meaning that the species needs good habitat conditions during movement 

through the matrix (Spear et al. 2010; Zeller et al. 2012). However, previous studies have 

challenged this assumption by showing that some study species are capable of moving 

through poor habitat making habitat models weak proxies of functional connectivity 

(Wasserman et al. 2010; Shirk et al. 2010; Mateo-Sánchez et al. 2015). On the other hand, 

this can hold true depending on the modeled scale and ecological niche as well as the 

dispersal abilities of the study species (Engler et al. 2014; Razgour 2015; Wang et al. 

2008) 



157 

Since the last decade movement data derived from telemetry relocations has 

increasingly been used for inferring landscape resistance (Cushman and Lewis 2010; 

Reding et al. 2013; Zeller et al. 2017).The information about the realized movements of 

tracked individuals can be linked to landscape features using different forms of resource 

selection functions (Boyce et al. 2002; Manly et al. 1993; Zeller et al. 2012). Similar to 

habitat suitability models, transformations such as the inverse of the fitted resource 

selection functions can then be used to infer landscape resistance for a given study species 

(Squires et al. 2013; Zeller et al. 2017). In particular, analyzing relocations at the step- 

and path-level has been shown to produce more realistic estimates for modeling resistance 

of landscape features towards movements of a given study species (Coulon et al. 2004; 

Reding et al. 2013; Zeller et al. 2015). Still, the majority of movement-informed 

resistance models provide comparable results to habitat-informed approaches as observed 

relocations are the result of primary habitat selection or within home range movements 

(Chetkiewicz et al. 2006; Shafer et al. 2012; Spear et al. 2015). However, habitat 

requirements during actual dispersal events could potentially differ substantially from 

these primary habitat preferences (Diniz et al. 2020). Therefore, identifying different 

movement behaviors and in particular actual dispersal movements prior to fitting step- or 

path-level resource selection functions has been shown to significantly improve derived 

estimates on functional landscape connectivity (Abrahms et al. 2017; Roever et al. 2013; 

Zeller et al. 2018).  

Besides the differences in methodologies there are also two main concepts for 

deriving effective distances between locations based on the applied resistance surface: 

least-cost analysis (Adriaensen et al. 2003) and circuit-theory analysis (McRae 2006). 

The former estimates a single path of minimal cumulated landscape resistance connecting 

two entities in a landscape assuming that there is only a single best route (Singleton et al. 

2002). In contrast, the circuit-theory based analysis estimates effective distances 

incorporating less informed random walks as alternative pathways between two entities 

(McRae and Beier 2007). Finally, in landscape genetic analyses these effective distances 

are linked to estimates of genetic differentiation using for example distance matrix 

correlations (Legendre and Fortin 2010; Mantel 1967; Storfer et al. 2010) or adaptions of 

linear mixed models (Row et al. 2017; Shirk et al. 2018). 
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Benchmarking Resistance Models  

In order to apply landscape genetics for gaining a thorough understanding of functional 

connectivity and delineating conservation corridors for a given study species one is faced 

with deciding among a plethora of available methods to model landscape resistance, 

derive effective distances and comparing competing hypotheses on IBR, IBD and IBB 

with genetic data. The majority of landscape genetic studies on terrestrial mammals so 

far focused on large carnivores (Balkenhol et al. 2014; Mateo-Sánchez et al. 2015; 

Wasserman et al. 2013). Ungulates, especially from Central Europe, are to our knowledge 

highly underrepresented in studies using landscape genetics for inferring functional 

connectivity. Since estimates on connectivity are highly specific to the movement 

capacities,  perceptual range, and ecological niche of a given organism, insight from the 

extensive literature on fitting resistance models or previous comparative studies on 

multiple approaches (e.g., Cushman et al. 2006; Squires et al. 2013; Zeller et al. 2018) 

are not directly transferable to a new target species.  

For all these reasons, we provide a comparative analysis on estimating functional 

connectivity for red deer (Cervus elaphus) in Northern Germany. Red deer represent an 

interesting model species as they are one of the larges ungulates in Europe inhabiting 

various habitats across the continent (Borkowski and Ukalska 2008; Clutton-Brock et al. 

1982; Kamler et al. 2008; Lande et al. 2013) and showing a high movement capacity with 

potential dispersal for long distances (Catchpole et al. 2004; Jarnemo 2007; Skog et al. 

2009). However, anthropogenic fragmentation, game management and hunting as well as 

other restrictions caused by humans heavily impact this iconic game species (Hartl et al. 

2003; Milner et al. 2006; Zachos et al. 2016). For example, previous studies have found 

indications for limited gene flow between local populations of red deer in our study area 

leading to a substantial loss of genetic diversity and even inbreeding (Zachos et al. 2007); 

Edelhoff et al. 2020; Chapter 2). Therefore, it is necessary to gain a better understanding 

of landscape effects on functional connectivity in order to enhance dispersal between 

local populations. 

Previous studies have compared either a couple or up to multiple methodological 

approaches for estimating functional connectivity (Milanesi et al. 2016b; Reed et al. 2016; 

Squires et al. 2013; Zeller et al. 2018). However, these studies mostly utilize landscape 

genetics as one potential approach using e.g., causal-modelling for deriving a single 



159 

resistance surface (Cushman, et al.  2006) and rarely as a means to validate the different 

models. Here, we utilize an extensive data set consisting of genetic samples and telemetry 

data to fit multiple resistance surfaces using different methodological approaches and 

apply a landscape genetic framework to compare them. Specifically, we distinguish three 

major categories of methodological approaches which are commonly used for modeling 

landscape resistance: expert-informed, habitat-informed and movement-informed 

models. From each category we applied multiple methods to estimate functional 

connectivity for red deer in Schleswig-Holstein. Ultimately, we aim to benchmark the 

various methodological approaches for inferring functional connectivity for red deer in 

our study area. This allows us to directly test the assumptions behind these models in a 

hypothesis framework using genetic data as a means to identifying the ecological 

processes (e.g., dispersal or habitat selection) that most likely influence functional 

connectivity for our target species (Spear et al. 2010).  

For this, we developed a multi-step model selection framework: First, we apply 

both algorithms (circuit-theory and least-cost paths) to derive effective distances and 

correlate them to genetic distances. We rank the individual models within each category 

using Mantel tests and select only the highest-ranked models for the subsequent analyses. 

Further, the selected models are also combined into ensemble models which have been 

shown to perform well as a combination of multiple hypotheses and to overcome 

limitations of single methodological approaches (Araújo and New 2007). Second, we use 

model selection to compare the selected models as well as the ensemble models as 

alternative hypotheses on isolation by resistance while also accounting for isolation by 

distance and barrier as well as combinations of all competing hypotheses (Balkenhol et 

al. 2009). 

Specifically we hypothesize that: 1) the ensemble resistance models essentially 

combining information from multiple approaches outperforms single-method resistance 

models in terms of explaining genetic distances. 2) That red deer are not needing primary 

habitat for dispersal and are capable of moving through unsuitable landscapes for certain 

distances. Therefore, we expect movement-based models to perform better in correlating 

effective distances to genetic distances as compared to habitat-informed models. 3) That 

corridor placement is highly depending on applied resistance surface and that the 
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ensemble approach should ideally represent the information of multiple resistance 

surfaces to provide an effective tool in applied conservation and landscape planning. 

Methods 

Species and Study System 

Our study focused on red deer from the federal state of Schleswig-Holstein (SH) located 

in Northern Germany (Figure 4.1). Despite their general wide distribution the local red 

deer populations are mostly restricted to smaller areas within this range where they are 

managed in administrative units (Edelhoff et al. 2020; see Chapter 2 of the dissertation). 

Primary deer habitat within these units comprises a high amount of forests as well as 

heath, moor- and wetlands (Meißner et al. 2008). Forested areas are mostly concentrated 

in patches which differ in size, level of fragmentation and tree composition. Outside the 

forests, the landscape consists of a mosaic of intensively used land forms, predominantly 

agriculture including crop-land, plantations, and pastures. A regional peculiarity are 

mound hedges, so called “Knicks”, which are a relic of extensive cultural land use in the 

past (Reif and Achtziger 2004). They are still found throughout the entire state and 

constitute linear features connecting forested areas in a landscape otherwise dominated 

by agriculture. Therefore, they are assumed to play an important role as structural element 

providing cover to red deer (Meißner et al. 2008; Davies and Pullin 2007). In terms of 

permeability for red deer the landscape is also impacted by settlements, urban areas and 

other forms of cultivation. Potential barriers such as primary roads and fenced highways 

(Autobahn) as well as larger waterbodies and canals, most prominently the Kiel Canal, 

are spread across the entire state (Figure 4.1).  
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Figure 4.1 Map depicting the study area, main red deer distributions and their administrative management 

units (dashed outlines and abbreviations). The shown landscape features include forested areas, other 

habitats like heath (moorland), developed (cultivated or urban) areas and roads. The rest of the landscape 

is primarily dominated by agriculture (crop-land, pastures). Triangles indicate locations of genetic 

sampling. The inlet in the lower left corner provides information on the location of the study area in Central 

Europe. 
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Telemetry Data 

The movement data utilized throughout the presented study included 61,532 telemetry 

relocations of 20 red deer individuals (14 male, 6 female). The original telemetry study 

was performed from 2009 to 2012 but overall runtime differed among individuals (mean 

runtime of 606 days). All animals were darted and equipped with GPS-collars (Vectronic 

Aerospace GmbH, Berlin, Germany). The considered individuals were located in 

different parts of the study area and covered regions where the majority of genetic 

samples were also obtained (Figure 4.2). Positions were recorded every 4 to 6 hours (on 

average every 5.2 hours). Detailed summary provided in the supplement (S4.1). 

 

 

Figure 4.2 GPS-relocations of 20 red deer individuals across different regions of the study area. Different 

individuals are depicted in different colors. Inlet in upper right corner indicates the position of the mapped 

section of Schleswig-Holstein. 
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Genetic Data 

A total of 434 genetic samples from red deer individuals across the entire distribution 

within Schleswig-Holstein were used for our analyses (Figure 4.1). Tissue samples were 

obtained from harvested animals during regular hunting seasons during the two periods 

of 2003/2004 and 2013/2014. For each sample we recorded the specific forest patch or 

areal unit where the individual was shot and used the centroid of the patch as the input 

location for our spatial analyses. We used 12 variable microsatellite marker to genotype 

the extracted DNA samples (supplement S4.2). All samples were screened for 

inconsistencies such as scoring errors, null alleles, significant deviation from Hardy-

Weinberg equilibrium and linkage disequilibrium across each (Van Oosterhout et al. 

2004; Excoffier et al. 2005; Rousset 2008). Detailed information on lab procedures, 

sequencing and applied microsatellite loci can be found in Edelhoff et al. (2020; Chapter 

2). 

Table 4.1: Summary of genetic samples used throughout the analyses. Information includes the main red 

deer distribution area (administrative management unit), number of red deer sampled in that area, and 

number of forest patches as origin of samples. 

Area Abbreviation Nr. Samples Sampled Patches 

Barlohe BAL 16 6 

Duvenstedter Brook DUV 23 2 

Elsdorf / Westermuehlen ELD 46 2 

Hasselbusch HAB 47 4 

Moerel / Iloo MOE 31 2 

Lauenburg (east) LAE 76 7 

Lauenburg (south) LAS 35 2 

Lauenburg (west) LAW 22 5 

Nordfriesland NFL 12 4 

Sachsenwald SAW 17 1 

Schierenwald / Steinburg SCW 14 2 

Segeberger Heide SEG 73 4 

 

  



164 

Landscape Variables 

We chose a set of different input variables to model resistance of the landscape matrix in 

Schleswig-Holstein. The variables were based on multiple types of landcover 

representing either natural or anthropogenic features of the landscape (Table 4.2). 

Information on the extend of each landcover type was retrieved from ATKIS 

(authoritative topographic cartographic information system of Germany, www.adv-

online.de) and turned into raster grids of 30m resolution. We transformed the categorical 

landcover data into continuous variables by calculating the distance to the closest feature. 

Additionally,  we assessed the proportion (percentage) of each landcover type at radiuses 

of differing size: 100m, 200m, 500m, and 1000m. This allowed us to account for varying 

scales upon which the landcover types could influence landscape resistance (Baguette and 

Van Dyck 2007; Boyce et al. 2003; McGarigal et al. 2016). All grid calculations and 

preparations of spatial data were accomplished using GRASS GIS (Neteler et al. 2012). 

Natural landcover types were hypothesized to decrease resistance and enhance 

permeability of the landscape for red deer whereas anthropogenic features should increase 

resistance and impact permeability negatively. In addition, we expected that linear 

(anthropogenic) structures, such as roads, have a negative impact due to their 

fragmentation effect. Mound hedges on the other hand, could provide cover and serve as 

a connecting element through their linear structure (Meißner et al. 2008). To account for 

the potential impacts of linear units consisting of either settlements (urban areas) or forest, 

we performed a morphological spatial pattern analysis (MSPA; Soille and Vogt 2009) for 

the forest and urban landcover type. The MSPA is implemented in the GUIDOS software 

(Vogt and Riitters 2017) and requires a binary map of a given landcover type (e.g., forest 

vs. non-forest) to partition the landscape into exclusive categories of different patterns 

(also see Soille and Vogt 2009). We chose the two linear categories (bridges and 

branches) and pooled them to form an additional landcover type for urban and forested 

areas (Table 4.2). 
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Table 4.2: List of variables used for modeling landscape resistance. Landcover classes were divided into a 

natural (environmental) and an anthropogenic category. Input variables were either implemented as 

percentage at different scales or as the distance to the nearest feature of a given landcover class. 

Category Landcover Input Variable (units) 

natural 

forest scale: percentage in radius  (%) 

distance to nearest feature (meters) 

forest (linear feature)* scale: percentage in radius  (%) 

Knicks / hedgerows scale: percentage in radius  (%) 

distance to nearest feature (meters) 

heath/moorland scale: percentage in radius  (%) 

distance to nearest feature (meters) 

water (lakes, rivers, canals) scale: percentage in radius  (%) 

distance to nearest feature (meters) 

anthropogenic 

agriculture (crop-land, pastures) scale: percentage in radius  (%) 

distance to nearest feature (meters) 

urban (settlements, cultivated areas) scale: percentage in radius  (%) 

distance to nearest feature (meters) 

urban (linear features)* scale: percentage in radius  (%) 

roads (primary roads: autobahn; 

secondary roads) 

scale: percentage in radius  (%) 

distance to nearest feature (meters) 

   

 *(based on MSPA analysis implemented in the GUIDOS software) 

 

Modeling Landscape Resistance 

All statistical analyses and data processing were performed using the R software 

package (R Core Team 2017) and various extensions for the specific modeling tasks. 

 

Expert-Informed Resistance Models 

We used two different resistance models based on expert-opinion. The first model 

(BUFFER) was originally developed by Meißner et al. (2008) and inferred connectivity 

based on a categorical map with varying buffer zones for different landcover types. The 

expert model distinguished between neutral (e.g., agriculture), positive (e.g., forests) and 

negative (e.g., urban) categories of landcover in terms of their permeability for red deer. 
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Additionally, the functional zone of influence of these categories was extended into the 

landscape with varying buffer sizes. The zone of influence (i.e., buffer) was based on the 

size of the respective areal unit of a given landcover category: for example small 

settlements (built-up areas) were assigned a small negative buffer zone whereas large 

urban patches where buffered with a negative zone of a larger extent (up to 1000m). In 

turn, positive buffer zones were placed around forested areas (more detail provided in 

appendix S4.3). In order to turn the resulting buffermap into a resistance surface we 

ranked the different categories and their buffer zones to values ranging from 0 (low 

resistance) to 1 (high resistance). 

The second model using expert knowledge was based on a landscape mosaic 

analysis (LS_MOSAIC). For this we divided the landscape of our study area into three 

categories: natural, neutral, and developed areas. The division into these three categories 

was based on our assumptions on habitat requirements by red deer. We used the landscape 

mosaic analysis (Riitters et al. 2009; Wickham et al. 1994) implemented in the GUIDOS 

software (Vogt and Riitters 2017) to assign each grid cell of our landscape raster a new 

value accounting also for the categories of the neighboring grid cells. The analysis weighs 

the amount of each category in the surrounding cells and defines new clusters based on a 

trigonometric gradient of influence of the natural, neutral, or developed category (see 

supplement for further detail). In the next step, we used these mosaic clusters as a 

foundation for a linear weighting scheme (Clevenger et al. 2002). Resistance values of 

each mosaic cluster were linearly weighted based on the amount of natural, neutral and 

developed area within the cluster. Finally, we assigned resistance values to each mosaic 

cluster based on the combination of the three weights (table provided in supplement S4.3). 

This resulted in a final landscape model with resistance values ranging from zero to one.  

 

Habitat-Informed Resistance Models 

There were no records of presence or occurrence for red deer based on a systematic study 

available for our analyses. Therefore, we simulated presence data by drawing random 

subsamples of the GPS relocations using a grid-sampling approach (details provided in 

supplement S4.4). We also produced a similar number of random absence points. Among 

the multitude of available methods for modeling habitat suitability we chose the 

MAXENT algorithm (Phillips et al. 2004) as a presence-only model. Additionally, we 
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fitted both, a generalized linear model (GLM) and a random forest model (RF; Breiman 

2001) to our sets of pseudo presence and absence data. In addition, an SDM ensemble 

model was produced by calculating the mean of the three fitted habitat models (Stohlgren 

et al. 2010; Grenouillet et al. 2011). We first performed a preselection procedure to 

determine the final set of landscape variables in each of the three models: using univariate 

model comparison we selected the most relevant radius (scale) of the percentage-based 

variables and accounted for covariation among all considered variables (details provided 

in supplement S4.4). Finally, the remaining variables were applied in a multivariate, 

multi-scale model. The inverse of each model prediction was used to produce four 

different models of landscape resistance based on habitat suitability (Wang et al. 2008; 

Keeley et al. 2016).  

Movement-informed Resistance Models 

We used the GPS relocations of the 20 red deer individuals to estimate resource selection 

at different scales and during different types of movements in order to infer landscape 

resistance from these models. First, we estimated resource selection (RSF) at the home 

range level (third order RSF; Johnson 1980) using the telemetry relocations in a point-

based model (Zeller et al. 2012). Therefore, we compared observed relocations within the 

home ranges of each individual with a set of weighted random points distributed within 

the same home range boundary. Coefficients for resource selection were estimated using 

logistic regression (Manly et al. 1993; Boyce et al. 2002).  

As a second method based on movement data we applied a step-selection function 

(SSF) to account for the actual structure of observed movements (distribution of step 

length and change in direction of movements) when applying a used-availability study 

design (Fortin et al. 2005; Thurfjell et al. 2014). Observed movement steps were 

compared to random movement steps starting from the same origin. Placement of the 

random steps was sampled from the observed distributions of step-lengths and turning 

angles of each individual. Effects of landscape variables on the step-selection process 

were estimated with a conditional logistic regression model (Avgar et al. 2017; Duchesne 

et al. 2010). We further accounted for mixed effects of model coefficients caused by 

comparing multiple individuals (Craiu et al. 2011).  
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For the third movement-informed model we first performed a behavioral change 

point analysis (BCPA; Gurarie et al. 2009) to partition the individual movement paths 

into segments of potentially different behaviors (Gurarie et al. 2016). We clustered the 

resulting segments based on multiple path-characteristics (see Edelhoff et al. 2016; 

Chapter 3) and identified dispersal-like movements based on net-squared displacement 

(NSD; Morelle et al. 2017). Subsequently, we applied a step-selection function but this 

time only considering the relocations from cluster of path-segments with high levels of 

NSD. This way, we aimed to model habitat selection during movement phases which can 

be interpreted as dispersal which should provide a better estimate for landscape resistance 

compared to resource selection at the home-range level or based on all observed steps 

pooled together (Zeller et al. 2012, 2018). The model is referred to as BCPA_SSF. 

Similar to the habitat suitability models we preselected the landscape variables for 

each of the two SSFs and the RSF based on a univariate model selection and tested for 

significant covariation. Subsequently, a final multivariate, multiscale model was fit for 

each of the three selection functions (Zeller et al. 2017). Based on the fitted coefficients 

the probability of selection (usage within home range or selection during movements) 

was predicted for the entire study area. Finally, the inverse of the selection probability 

was used as a resistance surface (Spear et al. 2015; Keeley et al. 2016). More detail on 

the three analytical procedures is provided in the supplement (S4.5). 

Resistance Transformation 

All of the compiled resistance surfaces resulted in values ranging between 0 and 1 as they 

were primarily derived from probability estimates of either habitat suitability or resource 

selection during movements. Other studies have shown that the relationship between 

these probability estimates and landscape resistance are not always strictly linear and 

intermediate conditions regarding, for example suitability, could either already indicate 

high levels of resistance and vice versa (see also Keeley et al. 2016; Zeller et al. 2018). 

Therefore, we applied three different transformation functions to each model in order to 

obtain the final resistance values ranging between 0 and 100. Specifically, we used a 

linear (lin), an inverse-reverse monomolecular (invrev-mono) and a monomolecular 

(mono) transformation function (Figure 4.3). All transformations were performed with 

the ResistanceGA package (Peterman 2014).  
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We further evaluated the distribution of the resistance values of each of the models 

as well as their transformations by placing a grid of 1000 sample points across the 

resulting resistance surfaces and extracting the values at each spatial location. 

Subsequently, we modeled the observed resistance values as a function of either the 

methodological group (EXPERT, HABITAT, MOVEMENT) or type of transformation 

(lin, mono, invrev-mono). We used generalized linear models and ranked them based on 

AIC values and explained deviance (Arnold 2010). In addition, we used a Spearman rank 

correlation to test the level of correlation among all models.  

Isolation by resistance 

Effective distances for each of the resistance surfaces were calculated using 1) circuit-

theory based distance (CS) applying the CIRCUITSCAPE software implementation 

(McRae et al. 2016) and 2) least-cost path distance (LCP; Adriaensen et al. 2003) using 

the gdistance package (van Etten 2017). In order to decrease computational time all 

resistance surfaces were rescaled to 100m resolution using a bilinear interpolation prior 

the calculation of effective distances (Cushman and Landguth 2010b). We applied a 

patch-based sampling design and calculated pairwise distances between all centroids of 

the sampled forest patches (total of 41 locations; see Figure 4.1). Individuals sampled 

within the same focal patch were assigned a distance value of zero (Garroway et al. 2011). 

The resulting effective distances were used to test for isolation by resistance in our multi-

step model selection. 

Isolation by distance and barrier 

We calculated pairwise geographic distances (Euclidean distances) between all sampled 

forest patches in order to account for isolation by distance (Balkenhol et al. 2009). The 

potential limitation of gene flow due to barriers was implemented in an additional 

pairwise distance matrix. We assumed that the Kiel Canal and all primary roads with 

fences (predominantly the Autobahn) constitute barriers to red deer (Figure 4.1 and 

supplement S4.7). Individuals sampled within the same area enclosed by either of this 

linear features where assigned a distance value of zero. Pairwise distances between 

individuals outside the same area were assigned distance values based on the number of 

barriers between their locations (e.g., one primary road between sampling locations = 

distance value of one). The resulting distance matrix was used as our isolation by barrier 

(IBB) hypothesis in our model selection framework (Figure 4.4). 
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Figure 4.3: Flowchart depicting the applied steps for modeling landscape resistance based on different 

methodological approaches (expert-, habitat-, and movement-informed) followed by three different 

transformation functions. Finally, effective distances between sampling locations were calculated using 

circuit distance and least cost path distance (adopted from Zeller et al. 2018). 
 

 

Genetic Distances 

We utilized two different measures of pairwise genetic distances between all 434 sampled 

individuals. One being the inverse of the proportion of shared alleles (PSA; Bowcock et 

al. 1994) calculated as PSA = 1 - (proportion of shared alleles). The second one was 

Rousset’s a (Rousset 2000) calculated with the SPAGEDI software (Hardy and Vekemans 

2002). Both represent individual-based genetic distances commonly used in landscape 

genetics (Shirk et al. 2017). 

Landscape Genetic Model Comparison 

We used a multi-step model selection framework for identifying the best 

performing resistance models (Figure 4.4). First, effective distances derived from all final 

resistance surfaces of each methodological group (Figure 4.3) were correlated to pairwise 
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genetic distance using the Mantel test implemented in the ecodist package (Goslee and 

Urban 2007) with 1000 bootstraps for estimation of confidence intervals. The tests were 

performed separately for the two effective distance algorithms (CS, LCP) and the two 

measures of genetic distance: PSA and Rousset’s a. The aim was to find the model with 

the highest correlation within each methodological group (EXPERT, HABITAT, 

MOVEMENT) and for each effective distance algorithm (step one of Figure 4.4). 

Subsequently, the three resulting models were combined into one ensemble model as the 

sum of the three resistance grids and effective distances were again calculated using the 

two ensemble models (ENSEMBLE_CS, ENSEMBLE_LCP) and the corresponding 

algorithm. 

Second, we applied linear mixed effects models to link pairwise genetic distance 

with pairwise values based on effective distance (IBR), geographic distance (IBD) and 

barrier distance (IBB). As effective distances we used the three final models determined 

in the first step (EXPERT, HABITAT, MOVEMENT) as well as their two ensemble 

models. Again, we applied this procedure separately for CS and LCP based measures 

(step 2 in Figure 4). We fitted univariate as well as multivariate combinations of the three 

hypotheses IBR, IBD and IBB. Linear mixed models were fit with maximum likelihood 

population effects (MLPE; Clarke et al. 2002) implemented in the resistanceGA package 

(Peterman 2014). MLPE  accounts for the pairwise structure of the input data and has 

been shown to outperform other statistical tests for correlating multiple distance matrices 

(Row et al. 2017; Shirk et al. 2018). Restricted maximum likelihood was set to false in 

order to make a valid comparison based on AICc values possible (Shirk et al. 2018). 

Models were compared using AICc values and the marginal R2 coefficient for fixed 

effects (van Strien et al. 2012; Nakagawa and Schielzeth 2013). AIC weights were 

calculated separately for effective distances based on CS and LCP. Additionally, we used 

multiple regression on distance matrices (MRM; Legendre and Fortin 2010) to compare 

the same univariate and multivariate models as with the MLPE approach. MRM models 

were fitted with the ecodist package (Goslee and Urban 2007). Model performance of 

MRM was assessed based on R2 (Shirk et al. 2018).  
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Figure 4.4: Illustration of the applied multi-step model selection framework. 1) selection of the highest 

performing resistance models of the expert-, habitat- and movement-informed approaches using Mantel 

correlation tests. The selection was done separately for circuitscape (CS) and least-cost path (LCP) 

measures of effective distance. 2) Mixed models with maximum likelihood population effects (MLPE) and 

multiple regression on distance matrices (MRM) were applied to compare models of isolation by resistance 

based on the highest ranked resistance surfaces along with the added ensemble model.  IBD and IBB were 

also included and tested for individually and also in combination with each other and in addition to IBR 

models. 

 

Corridor Placement 

In order to compare the impact of applied resistance models on the placement of potential 

conservation corridors we assessed the overlap between corridors derived from the three 

highest ranked resistance models determined in the first step of our selection framework 

(Figure 4.4) as well as their ensemble combinations. Results for both effective distances 

(CS, LCP) were compared separately since the derived corridors are directly depending 

on the two applied algorithms. First, we calculated the correlation of the four cumulative 

conductance surfaces (EXPERT, HABITAT, MOVEMENT, ENSEMBLE) resulting 

from the CS analysis. However, conductance values of different resistance models are not 

directly comparable (Rudnick et al. 2012; Poor et al. 2012). Therefore, we additionally 
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partitioned each conductance grid into quantiles and calculated the amount of overlap (in 

percent) for the same quantiles of separate models (Maiorano et al. 2017). Concurrently, 

we assessed the level of overlap between the corridors based on the resistance models 

considered for the least-cost analysis. We calculated LCPs between all focal patches using 

the gdistance package and placed a buffer of 100m around them. Subsequently, we 

calculated the overlap between LCPs of the three input models. In another step, we 

merged all buffered LCPs of the three resistance models into one single buffer-network 

and calculated the amount of overlap with buffered LCPs derived from the retrospective 

ensemble model. Mantel tests were applied to correlate the amount of overlap (calculated 

in percent) of buffered LCPs with geographic distance between patches.  

Finally, we turned all buffered LCPs of the expert, habitat, and movement model 

into a binary raster with values of zero (outside of buffered LCP) and one (part of buffered 

LCP). The sum of all three raster grids was calculated to determine the level of overlap 

of the three LCP sets which resulted in values between zero (no LCP) to three (LCPs of 

all three models present). In turn, we correlated this raster with the four conductance 

surfaces and also calculated the percentage of overlap with their quantiles as described 

above. The aim of these analyses was to determine the level of agreement of the corridors 

derived from the different resistance models and the two algorithms CS and LCP. 

Results 

Resistance Surfaces 

In total we compared 27 resistance surfaces derived from 9 different methodological 

approaches (Figure 4.4). The selected landscape variables as well as their inferred scales 

differed between all input models (see also results in supplements S4.3 – S4.5) but their 

overall influence on connectivity (model coefficients) were comparable among all fitted 

models (e.g., Table 4.7). Resistance values of the two expert-informed models were lower 

as compared to models based on the other two approaches (Figure 4.5). However, the 

highest amount of variation among resistance surfaces was caused by the transformation 

functions (see supplement S4.6 for more detail).  Based on the univariate model 

comparison among a sample of 1000 random points variation in derived resistance values 

was best explained by the influence of the three transformation functions (D2=0.457). 

Overall, the three transformation functions lead to similar shifts of resistance values 
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across all models. Most noticeable, the monomolecular transformation resulted in an 

major increase of resistance whereas the inverse-reverse monomolecular transformation 

resulted in an decrease of the overall resistance (Figure 4.5).  

 

 

Figure 4.5: Distribution of resistance values for all compared models. Distributions are divided according 

to the three methodological categories (columns) and the three transformation functions (rows). Values 

were extracted from each resistance surface using 1000 sample points. 

 

 

Multi-step model selection 

The highest Mantel correlation between effective distances based on CS and both genetic 

distances was observed for the BUFFER model with inverse-reverse monomolecular 

[invrev_mono] transformation (Table 4.3). Comparable results were found for the 

movement-based model using the BCPA_SSF approach and a monomolecular 

transformation [mono]. For the habitat based approach the MAXENT model with 

monomolecular transformation showed the highest correlation using the CS distance 

whereas the invrev_mono transformation was higher correlated with LCP distance. Based 

on these results we calculated one ensemble model for CS distance using the sum of the  

BUFFER[invrev_mono], MAXENT[mono] and BCPA_SSF[mono] resistance surfaces 
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(ENSEMBLE_CS). We repeated this procedure for the LCP based ensemble 

(ENSEMBLE_LCP) but using the invrev_mono transformation of the MAXENT model. 

However, The two ENSEMBLE models did not perform better for any of the effective 

and genetic distances based on the Mantel test results (Table 4.3). Overall, many of the 

correlation coefficients differed only at the third digit (results for all models are presented 

in the supplement S4.7).  

Table 4.3: Results of Mantel tests correlating pairwise genetic distances (PSA, Rousset's a) with effective 

distances based on Circuitscape (CS) and least-cost path distances (LCP). Only Mantel correlation 

coefficients (r2 values) for the highest ranked models of each methodological category (expert-informed, 

habitat-informed, movement-informed) as well as the combination of them (ENSEMBLE) are shown. All 

values were significantly different from zero based on a bootstrap test. 

Resistance Distance PSA  Rousset's a 

    

Circuitscape (CS):    

Expert: BUFFER [invrev-mono] 0.246  0.219 

Habitat: MAXENT [mono] 0.236  0.218 

Movement: BCPA_SSF [mono] 0.241  0.215 

ENSEMBLE_CS 0.241  0.218 

    

Least Cost Path (LCP):    

Expert: BUFFER [invrev-mono] 0.216  0.191 

Habitat: MAXENT [invrev-mono] 0.212  0.187 

Movement : BCPA_SSF [mono] 0.208  0.185 

ENSEMBLE_LCP 0.208  0.183 

 

 

Next, we applied a model selection approach for comparing the top ranked 

resistance surfaces (EXPERT, HABITAT, MOVEMENT, ENSEMBLE) as independent 

hypotheses testing for isolation by resistance (IBR). Overall, the two genetic distances 

produced similar results. Therefore, only data for models using PSA as the dependent 

variable (genetic distance) are shown here.  

The model selection approach based on linear mixed models (MLPE) and AICc 

ranked the habitat-informed model (MAXENT [mono]) combined with IBD and IBB 

highest for the CS distance (Table 4.4).  The ENSEMBLE_CS resistance model in 

combination with IBD and IBB was ranked third but already with an ΔAICc of 160. 

Marginal R2 values of all MLPE models were very similar (Table 4.4). The highest 

correlations (R2
glmm’m = 0.122) were observed for the habitat-informed model both with 
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and without accounting for IBD (habitat; habitat+ibd). For LCP distance the highest 

agreement based on AICc with genetic distance was observed for the movement-informed 

model (BCPA_SSF [mono]) in combination with IBD and IBB (Table 4.4). Again, the 

ensemble+ibd+ibb model combination was ranked third but with an ΔAICc of 741. 

Marginal R2 coefficients did not indicate a lot of variation. The highest correlation 

(R2
glmm’m = 0.143) also supported the movement-informed model but only in combination 

with IBD (Table 4.4). 

Results based on the correlation coefficient of the matrix regression models 

(MRM; Table 4.4) differed from the MLPE results. For both, CS and LC distances, the 

ensemble+ibd+ibb as well as the expert+ibd+ibb model combinations showed the 

highest level of correlation. However, correlation coefficients across all models differed 

mostly at the third digit and did not indicate a lot of variation in terms of the level of 

agreement between genetic and effective distances. 
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Table 4.4: Model selection results for effective distances derived with Circuitscape (CS) and least-cost 

paths (LCP). Coefficients, AICc, ΔAICc, weights and marginal correlation coefficient (R2glmm’m) values 

are shown for the linear mixed models with  maximum likelihood population effects (MLPE). Additionally, 

correlation coefficients R2 based on multiple regression on distance matrices (MRM) are presented. 

Model Coefficients MLPE MRM 

 geo.dist ibb.dist eff.dist AICc ΔAICc weight R2
glmm'm R2 

Circuitscape         

habitat+ibd+ibb -0.01 0.007 0.034 -214299 0 1 0.115 0.063 

habitat+ibb 0.005 0.027 -214214 85 0 0.117 0.061 

ensemble+ibd+ibb -0.007 0.007 0.030 -214139 160 0 0.112 0.066 

habitat+ibd -0.002  0.034 -214124 175 0 0.122 0.056 

habitat   0.032 -214121 178 0 0.122 0.056 

ensemble+ibb 0.005 0.026 -214098 201 0 0.114 0.062 

movement+ibd+ibb -0.002 0.007 0.025 -213979 320 0 0.110 0.065 

movement+ibb 0.007 0.024 -213978 321 0 0.111 0.063 

ensemble   0.032 -213969 330 0 0.118 0.058 

ensemble+ibd 0.001  0.031 -213969 330 0 0.118 0.059 

movement+ibd 0.006  0.025 -213804 495 0 0.117 0.058 

movement  0.031 -213738 561 0 0.116 0.058 

expert+ibd+ibb -0.008 0.005 0.033 -213711 588 0 0.112 0.066 

expert+ibb 0.004 0.027 -213675 624 0 0.111 0.064 

expert+ibd -0.004  0.034 -213638 661 0 0.117 0.061 

expert   0.031 -213630 669 0 0.115 0.061 

ibd+ibb 0.022 0.008  -212871 1428 0 0.100 0.053 

ibd (null) 0.030   -212693 1606 0 0.107 0.046 

ibb  0.023  -211918 2381 0 0.081 0.049 

         

Least-Cost Path         

movement+ibd+ibb -0.138 0.015 0.158 -214024 0 1 0.135 0.053 

movement+ibd -0.085  0.120 -213435 589 0 0.143 0.049 

ensemble+ibd+ibb -0.089 0.010 0.111 -213283 741 0 0.120 0.054 

movement+ibb  0.007 0.024 -213180 845 0 0.109 0.053 

expert+ibd+ibb -0.032 0.005 0.057 -213167 858 0 0.106 0.054 

expert+ibd -0.034  0.064 -213091 934 0 0.111 0.047 

expert+ibb  0.005 0.024 -213067 957 0 0.104 0.053 

movement   0.032 -213032 993 0 0.118 0.043 

ensemble+ibb  0.007 0.023 -213022 1003 0 0.106 0.053 

habitat+ibd+ibb -0.004 0.007 0.026 -212993 1031 0 0.102 0.053 

habitat+ibb  0.007 0.022 -212993 1032 0 0.102 0.053 

expert   0.030 -212981 1043 0 0.110 0.047 

ensemble+ibd -0.056  0.089 -212971 1054 0 0.128 0.050 

ibd+ibb 0.022 0.008  -212871 1153 0 0.100 0.053 

ensemble   0.031 -212854 1170 0 0.115 0.043 

habitat+ibd 0.004  0.027 -212821 1203 0 0.110 0.046 

habitat   0.030 -212821 1204 0 0.110 0.045 

ibd (null) 0.030   -212693 1332 0 0.107 0.046 

ibb  0.023  -211918 2106 0 0.081 0.049 
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Corridor Comparison 

Placement of corridors was depending on the applied methodological approach (Figure 

4.6). Detailed results of conductance surfaces and LCPs for the three highest ranked 

models are presented in supplements S4.10 and S4.11. In case of the conductance surfaces 

the areas of high conductance were more restricted for the BUFFER [invrev-mono] model 

as compared to the MAXENT [mono] and BCPA_SSF [mono] models (see maps in 

supplement S4.10). 

 

 

Figure 4.6: a) comparison of cumulative conductance surface (result from Circuitscape) based on the 

ENSEMBLE_CS resistance model and b) the overlap of the least-cost paths for all three models selected 

based on LCP distance: BUFFER[invrev-mono], MAXENT[invrev-mono], and BCPA_SSF[mono]. 

 

Quantiles of the ENSEMBLE_CS conductance surface largely agreed with those 

of the individual models. In particular, for areas of the lowest and highest quantile we 

observed an overlap of  over 90% between  either the habitat- or movement-informed 

models and the ensemble (Table 4.5). The expert-informed model (BUFFER[invrev-

mono]) showed lower levels of agreement with the output of ENSEMBLE_CS model. 

Here, only up to 52% of the areas within the lowest overlapped with the ensemble results 

and the degree of overlap was even lower within the remaining quantiles (Table 4.5). 
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Comparable results were derived from the Spearman rank correlation (supplement 

S4.12): ENSEMBLE_CS conductance was highly correlated with the habitat- and 

movement-informed models (RS = 0.97) whereas correlation with the conductance 

surface resulting from the expert-informed model was lower (RS = 0.71). 

 

Table 4.5 Results of the overlap analysis between the quantiles of the conductance surfaces of the expert-, 

habitat- and movement- informed resistance models and their ensemble model. Additionally, the sum of 

overlapping LCPs  based on the three highest ranked resistance models and the ensemble conductance are 

shown at the bottom of the table. 

Quantile: 1 2 3 4 

BUFFER[invrev-mono] vs. ENSEMBLE _CS 52% 19% 20% 48% 

MAXENT[mono] vs. ENSEMBLE _CS 93% 84% 84% 92% 

BCPA_SSF[mono] vs. ENSEMBLE _CS 91% 82% 82% 91% 

LCP Overlap vs. ENSEMBLE _CS 26% 2% 0% 1% 

 

 

As shown in Figure 4.6 placement of least cost paths varies between the three 

resistance models. In particular, LCPs between patches located further apart showed less 

overlap as compared to paths between locations at smaller distances (see also supplement 

S4.11). The level of overlap between the LCPs of the three input models 

(BUFFER[invrev-mono], MAXENT[invrev-mono] and BCPA_SSF[mono]) were 

negatively correlated with spatial distance (Mantel R2 = -0.53; p < 0.001). Further, we 

observed a significant decrease (Mantel R2 = -0.46; p < 0.001) in the level of overlap 

between the combined LCPs of the these models and the LCPs derived from their 

ensemble model (ENSEMBLE_LCP] with increasing spatial distance (Figure 4.7). 

Overall, LCPs of different models overlapped up to 30% at short distances (Figure 4.7). 

Finally, we observed only a low level of agreement between the conductance 

surface of  ENSEMBLE_CS model and the sum of overlapping LCPs (Spearman 

correlation RS = 0.27; see S4.12). However, buffered LCPs take up only a small area 

compared to the conductance surfaces and regions where all three LCPs overlapped made 

up 1% of the highest quantile of the ENSEMBLE_CS conductance surface (Table 4.5). 
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Figure 4.7 Correlation of geographic distance  between habitat patches and level of overlap of LCPs 

derived from the highest ranked resistance models. Results shown for percent overlap between buffered 

LCPs of the three highest ranked models only (brown) and overlap between combined LCPs of the three 

models and the LCPs of their ensemble model (green). 

 

Discussion 

Benchmarking Resistance Models 

Performance of resistance models heavily relies on how effective distances are quantified 

and how they are compared against genetic distances. Our results showed major 

differences between the two applied effective distance algorithms (circuitscape vs least-

cost path) as well as the statistical approach for linking these effective distances with 

genetic distances (Mantel tests, MLPE and MRM). In contrast, the choice of the genetic 

distance parameter did not impact the results in our individual-based study design. We 

chose the PSA distance since it indicated higher correlations with effective distances but 

the multi-step model selection produced similar results for genetic-distance based on 

Rousset’s a (data not shown here). 



181 

In general, we observed lower AICc values (MLPE) and higher correlations 

(MRM, Mantel test) for effective distances based on Circuitscape compared to LCP 

distance based models. Based on the multi-step model selection among the 27 resistance 

surfaces we did not find any indications that the ensemble approach clearly outperforms 

all individual resistance models. Still, the ensemble models were among the highest 

ranked models for both CS and LCP effective distances. Ensemble models are 

increasingly used in studies on species distribution to overcome limitations of single 

model algorithms and to delineate areas with high model agreement (Araújo and New 

2007; Stohlgren et al. 2010).  Therefore, corridors derived from such ensembles of 

multiple resistance models could potentially improve the shortcomings of relying only on 

single approaches and the assumptions behind them. 

The answer to our second hypothesis that movement-informed resistance models 

outperform habitat-informed approaches in our study system was highly depending on 

the considered effective distance. Circuitscape distances derived from the selected habitat 

approach (MAXENT [mono]) best described the genetic distances in combination with 

IBD and IBB (Table 4.5). On the contrary, least-cost path distances based on the 

movement-informed resistance model (BCPA_SSF [mono]) performed best, again in 

combination with IBD and IBB. In most of the cases the expert-informed model 

(BUFFER [invrev-mono]) performed less well as the empirical approaches but here as 

well we observed differences between CS and LCP distances. 

Generally, we found evidence for isolation by distance and barriers playing a key 

role in genetic differentiation of red deer in Schleswig-Holstein as both of the best-

performing models for CS and LCP effective distances included the IBD and also IBB 

terms next to accounting for IBR. This confirms the results of a previous study on red 

deer populations in SH (Edelhoff et al. 2020; Chapter 2) which determined significant 

IBD based on population-based differentiation (FST values). The putative barriers tested 

for in our IBB hypothesis were the primary roads which are almost entirely fenced as well 

as the Kiel Canal. All of these have been shown to influence the structure of local red 

deer populations (STRUCTURE analysis in Chapter 2; Edelhoff et al. 2020).  

The most significant cause for variation in resistance values was explained by the 

applied transformation functions (Figure 4.5). Overall, the best-performing models in our 

case indicated non-linear relationships between estimates of habitat suitability which 
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confirms to results of other studies (Keeley et al. 2016; Zeller et al. 2017). In particular, 

models with monomolecular transformation showed higher correlations of effective 

distances with genetic distances. 

We did not observe explicit differences in model performance when applying 

correlation based analyses. Overall, correlation coefficients based on either Mantel tests 

or multiple regression on distance matrices (MRM) showed only little variation with 

differences occurring at the third digit for some of the compared models (see Tables in 

supplement S4.8 and Table 4.4).  Resistance values of the nine original input models 

were, to some extent, highly correlated (Table S4.6.2). This could ultimately lead to a 

high correlation of our tested hypotheses (expert-, habitat- and movement-informed 

models) which potentially limits the explanatory power of analyses relying solely on 

matrix correlations  (Cushman and Landguth 2010a; Cushman et al. 2013; Zeller et al. 

2016). Nevertheless, we assume that the Mantel test is a valid approach to select the 

highest-ranked resistance models within the same methodological group (expert-, habitat- 

and movement-informed) as performed in our first step of the model selection process 

(Cushman et al. 2006). In our case, differences in terms of model performance describing 

observed genetic distances was most prominent in AICc values derived from linear mixed 

models with MLPE. Such AIC-based model selection has been shown to provide an 

effective means with high accuracy for comparing multiple hypotheses on landscape 

resistance (Row et al. 2017; Shirk et al. 2018; Spear et al. 2015). However, the influence 

and non-consistency among the statistical approaches makes it difficult to benchmark the 

different methods for estimating functional connectivity. We therefore primarily focused 

here on the results of the MLPE models in the second part of our multi-step model 

selection analyses.  

Comparing movement- and habitat-informed resistance models 

The resistance model based on step-level resource selection using only potential dispersal 

movements was ranked highest among the three movement-informed models in our pre-

selection (S4.4). This confirms other studies that already pointed out the importance of 

accounting for the actual dispersal process over general resource selection at the home 

range scale for estimating functional connectivity (Blazquez-Cabrera et al. 2016; Squires 

et al. 2013; Zeller et al. 2018). For example, the selected landscape variables and their 

coefficients (i.e., influence on selection probability) varied between the BCPA_SSF 



183 

model in comparison to the highest-ranked, habitat-informed resistance model 

(MAXENT; Table 4.7). The latter represents more the primary habitat requirements of 

red deer without accounting for any movement processes (Vasudev et al. 2015). The 

functional scales of the most important landcover features, such as the amount of forest 

or urban (developed) areas, varied between the two models (Table 4.7). In summary, the 

step-level resource selection accounted for variables at a much smaller scale (100-200m) 

whereas the MAXENT model considered the same variables at a larger scale (1000m). 

This has an major impact on the evaluation of the influence of the landscape matrix on 

functional connectivity. Therefore, we observed the most prominent differences in the 

spatial prediction of these two input models in areas in-between the major habitat 

complexes (see supplement S4.13). 

However, as pointed out earlier, depending on how effective distances are 

estimated, either the movement-informed or the habitat-informed model explained the 

observed genetic patterns better. Previous studies have indicated that wide-range 

connectivity is better represented in CS based distances (McRae and Beier 2007; Spear 

et al. 2015). Whereas others have shown that LCP distances are more suitable for deriving 

short range connectivity or modeling actual dispersal (Driezen et al. 2007; Sawyer et al. 

2011; Zeller et al. 2018). Hence, we interpret our results that for short distances red deer 

are capable of moving through less suitable habitats (i.e. a hostile landscape matrix with 

high resistance) but for large scale connectivity and dispersal over long distances general 

habitat requirements need to be present, e.g. in small areas serving as stepping stones 

(Epps et al. 2007; Saura et al. 2014). 

Overall, movement-informed resistance models are a promising approach for 

estimating connectivity but certainly have their limitations as well (Abrahms et al. 2017; 

Spear et al. 2010; Vasudev and Fletcher 2015). As in our case, telemetry studies, the 

primary source for movement data, are usually limited by the number of tagged (i.e. 

sampled) individuals. Next to that, sampled individuals are a major cause of observed 

variation in resource selection (Gillies et al. 2006; Wirsing and Heithaus 2014; Wittemyer 

et al. 2008). Further, observed movements most likely do not represent actual dispersal. 

This could be due to the age or sex of the sampled individuals in the data set. For example, 

in many species dispersal decisions are primarily found in young individuals (natal 

dispersal) and less likely to occur in adults (Elliot et al. 2014; Roffler et al. 2014). 
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Therefore, a study only tracking adult individuals may get misleading estimates in such 

movement models which might affect subsequent parameterization of resistance models. 

The movement data applied in our study was based on sampled individuals of various 

ages (see Table S4.1.1) and included only a marginal amount of dispersal movements. 

Individuals were mostly stationary (visual inspection; see Figure S4.5.2) with only a few 

excursions to areas outside of the core home ranges. Nevertheless, in our opinion, 

resource selection based on movement data from actual dispersal events is a key element 

for modeling functional landscape connectivity, even if overall sample size is low (see 

for example Zeller et al. 2017). 

Table 4.7 Summary of the most important landcover variables included in the best performing resistance 

models. Since the applied methods are not directly comparable only the type of considered variables and 

their effect (i.e. slope of the coefficient) are presented here: binary (landcover present/not present), distance 

(to nearest feature of landcover) and the zone of influence [m] (e.g. based on a buffer or as the proportion 

of cover within a certain radius). Effects indicate whether the given landcover type increases (+), decreases 

(-) or has neutral influence (0) on landscape resistance. 

Landcover BUFFER MAXENT BCPA_SSF 

Variable Effect Variable Effect Variable Effect 

Agriculture binary 0 distance 0 Not incl. Not. Incl. 

Forest 200m - 1000m - 100m - 

Urban 100m -

1000m 

+ 1000m + 200m + 

Roads binary + distance 

100m 

0 

+ 

100m + 

Water binary 0 distance 

100m 

0 

+ 

distance 0 

Wetland/Heath 200m - distance - distance 0 

 

 

Management Implications 

The most relevant question for applying landscape genetics in conservation is the optimal 

placement (delineation) of corridors to facilitate or establish gene flow between 

populations in fragmented landscapes (Cushman et al. 2010; Koen et al. 2012; Rudnick 

et al. 2012). As many other studies before, our results show that deriving corridors either 

as conductance surfaces using Circuitscape or least-cost paths is highly depending on the 

applied resistance surface (Blazquez-Cabrera et al. 2016; Graves et al. 2014; McRae et 

al. 2016).  
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The results of our study indicated that only at shorter distances the placement of 

corridors is less impacted by the choice of resistance model since we observed significant 

decrease in the degree of overlapping LCPs with geographic distance (Figure 4.7). As 

discussed earlier, the ensemble models did not outperform other resistance models or 

improved the correlation between effective distances and genetic distances. Still, in terms 

of delineation of conservation corridors the ensemble models represented good 

summarizations of the other input models. For example, the conductance surface of the 

ENSEMBLE_CS model showed high correlation and overlap with the surfaces based on 

the three other models (habitat-, expert- and movement-informed) and to a certain degree 

with summarized LCPs of the three models as well. We thus do not want to discourage 

the application of ensembles if multiple sources of information are available to fit various 

types of resistance models based on habitat- or movement-information next to expert-

opinion. Future research should focus on how this approach can be improved for example 

by applying weighting schemes to account for  explanatory power of the individual 

models included in the ensemble (Araújo and New 2007). 

Barriers such as primary roads play an important role in landscape connectivity 

for red deer in Schleswig-Holstein and have produced significant differentiation and 

restricted gene flow between local populations. In terms of landscape planning and 

conservation management, this calls for improvement by providing linkages or 

overpasses to mitigate the negative barrier effects (Beier et al. 2008; Corlatti et al. 2009; 

Epps et al. 2005). Optimal placement of these overpasses along the detected barriers 

should ideally also be derived from the corridors based on the ensemble models to ensure 

maximum efficiency (Epps et al. 2007; Sawyer et al. 2011). 

Overall, the different models show unanimously that forests, the amount of urban 

(cultivated) areas as well as roads are the main factors influencing functional connectivity 

for red deer in Schleswig-Holstein (Table 4.7 and results in S4.3 to S4.5). Other landcover 

classes such as agriculture, water bodies or wetlands and heath play more of a subordinate 

or neutral role. The buffermap model (BUFFER) was the best performing resistance 

surface among the two expert-informed approaches. Although it is not directly 

comparable with the other approaches as it lacks any empirically derived coefficients it 

nevertheless shares many properties that are similar to the regression coefficients of the 

habitat- and movement-informed methods used in our analyses. Although the results are 
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very specific to the study area, the BUFFER model could potentially be a useful tool for 

analyzing landscape connectivity in other parts of Germany where low genetic diversity 

and limited gene flow in red deer occurrences have recently been detected (Reiner and 

Willems 2019). 
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Supplement 

S4.1: Telemetry Data  

Table S4.1.1 Summary and overview of the GPS telemetry data for 20 red deer individuals from Schleswig-

Holstein. For each individual the number of relocations (n), the mean interval between consecutive 

relocations measured in hours (interval), sex, age class as well as start and end date and total runtime in 

days are provided. 

id n Interval sex age start end runtime 

a5504 2284 6.51 m young 2009-02-27 2010-11-09 620 

a5506 1036 6.52 m young 2009-04-05 2010-01-11 281 

c5174 4573 4.65 f young 2009-04-01 2011-09-04 886 

c5175 3261 5.20 m young 2009-02-19 2011-01-26 706 

c5176 4879 4.29 m young 2009-03-31 2011-08-20 872 

c5178 5633 4.19 f young 2010-02-16 2012-10-26 983 

c5181 5178 4.25 m midage 2008-04-03 2010-10-07 917 

c5185 4313 4.39 f old 2010-02-03 2012-04-01 788 

c5186 2790 4.73 f midage 2009-11-16 2011-05-21 551 

c5187 1091 4.53 m midage 2010-02-28 2010-09-22 206 

c5188 895 9.13 m midage 2009-06-21 2010-05-28 341 

c5498 618 5.39 m young 2010-03-07 2010-07-23 138 

c5500 2380 5.04 m midage 2009-05-13 2010-09-24 499 

c5502 5940 3.81 m young 2010-03-30 2012-10-27 942 

c5503 3835 3.67 m young 2010-03-24 2011-10-31 586 

c5506 3156 5.27 f midage 2010-03-05 2012-01-27 693 

c5507 3381 4.64 f midage 2009-11-16 2011-09-01 654 

c5508 1689 4.34 m midage 2010-04-03 2011-02-02 305 

c5574 3042 5.31 m young 2010-02-17 2011-12-22 673 

c5581 1558 7.57 m midage 2010-03-09 2011-07-14 492 
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S4.2: Genetic Data 

The following 12 microsatellite markers were used: 

- INRA6 (Slate et al. 1998; Vaiman et al. 1994),  

- C143, C180, C229, T107, T115 (all tetranucleotide loci; Meredith et al. 2005),  

- HAUT14 (Thieven et al. 1995),  

- BM757, BM1818, ILSTS06 (Bishop et al. 1994),  

- CSSM14 (Moore et al. 1994),  

- and FSHB (Moore et al. 1992).  
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S4.3: Expert-informed Models 

S4.3.1 Buffer Map 

The first model was developed by wildlife biologists at the Institute for Wildlife 

Biology Göttingen Dresden e.V. as part of a long-term research project on red deer in 

Schleswig-Holstein (Meißner et al. 2008). The researchers performed a thorough survey 

including local expertise on red deer behavior and observed dispersal events to define 

potential effects of landscape features on red deer movements. The model distinguished 

between neutral, positive and negative landcover features. Additionally, the functional 

effects of these features were extended into the landscape with varying buffer sizes. The 

main assumption behind the designation of certain landscape features as positive or 

negative was based on how they likely influenced red deer demands on cover and 

security (e.g., as provided by forests) or its potential as a connecting landscape element. 

Urban and cultivated areas as well as settlements of all sizes were considered as 

negative areas. However, the negative influence on to surrounding areas depended on the 

overall size of the single feature (patch unit). Small settlements (size <= 10 ha) were not 

assigned a buffer zone. Intermediate settlements and villages (10ha > size <= 20ha) 

exhibited three buffer zones of decreasing negative influence (100m, 300m, and 500m). 

Large urban and cultivated areas such as cities (size > 20ha) were also assigned three 

buffers of negative influence but of larger extend (300m, 500m and 1000m). Roads were 

assigned high values of resistance but with no buffer as the experts argued that there is 

limited evidence for radiating disturbance and also information on the variation of amount 

of traffic was not available (Meißner et al. 2008). 

Forested areas make up the most prominent parts of the red deer distribution areas 

in Schleswig-Holstein. Therefore, they were considered a key feature with positive value 

for red deer. Next to forests other landcover types with high levels of vegetation and 

structure (cover) such as wetlands, heath and moor areas were also considered as positive 

areas for dispersal. Linear features such as mound hedges (Knicks; Meißner et al. 2008; 

Reif and Achtziger 2004) were also assigned positive values. Agricultural areas were 

interpreted as having a neutral effect on red deer dispersal. In case of overlapping areas 

of positive and negative buffers the negative buffer gets into a lower category (less 

resistant) but is the dominating buffer for that grid cell.  
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Figure S4.3.0.1 Depiction of the input and development of the buffermap. Different categories of landcover 

and their zone of influence are shown on the left. Tables for sizes of the different buffer zones are shown on 

the right. The inlet provides an example of a smaller region of the study area to demonstrate how the zone 

of influence varies with varying size and type of the landcover (especially settlements and forested areas). 

 

 

Originally, the model was developed to determine the potential connectivity of the 

landscape and for local management in order to find optimal locations for wildlife 

passages or determine potential conflicts with new constructions of roads. Here, we used 

the buffer map as an input for different resistance models. In order to assign resistance 

values to the different landscape features and their buffer zones we ranked them to values 

between 0.1 (low resistance) and 1.0 (high resistance). Overview provided in Table 

S4.3.1. 
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Table S4.3.1 Overview of resistance values assigned to different landcover classes in the buffermap. 

Defined classes and buffer sizes are based on the expert model developed by Meißner et al. (2008).   

Landcover Class Resistance 

Habtiat (forest, hedgerows, heith and moors) 0.1 

Habitat Influence Zone 0.2 

Agriculture 0.3 

Water 0.8 

Plantages 0.8 

Cultivated-Areas 0.9 

Build-up Areas 1.0 

Urban (buffer 100m) 1.0 

Urban (buffer 300m) 0.9 

Urban (buffer 500m) 0.8 

Urban (buffer 1000m) 0.7 

 

 

 

S4.3.2 Landscape Mosaic 

 

The idea behind this approach is a situation where only limited knowledge about habitat 

requirements for a certain species are available. In this scenario a landcover model could 

at least be classified in the three categories of potentially positive (natural), neutral and 

negative (developed) areas. The landscape mosaic model accounts for a gradient between 

this three exclusive classifications and estimates which of the three categories is dominant 

in a certain part of the landscape or delineates areas of homogeneous and intermixed 

categories (Riitters et al. 2009). 

In order to apply this method we first divided the landscape of our study area into 

three categories: natural, neutral, and developed areas. The division into these three 

categories was based on our assumptions on habitat requirements by red deer. By this, we 

mimic a very simplistic approach based only on basic landcover classifications which can 

be quickly derived from expert knowledge or literature review. Overall, this method can 

be a helpful tool to develop models of landscape resistance. 

All patches of forest, mound hedges (Knicks), wetland and heath or moorland 

were classified as natural areas. Urban, settlements and cultivated areas as well as all 
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types of primary roads were defined as developed areas. The remaining agricultural parts 

of the landscape made up the neutral classification. 

We used the landscape mosaic analysis (Riitters et al. 2009; Wickham and Norton 

1994) implemented in the GUIDOS software (Vogt and Riitters 2017) to assign each grid 

cell of our landscape raster a new value accounting also for the categories of the 

neighboring grid cells. The analysis weighs the amount of each category in the 

surrounding cells and defines new clusters based on a trigonometric gradient of influence 

of the natural, neutral, or developed category (see Figure S4.3.2). 

 

 

Figure S4.3.2 Explanation of the landscape mosaic approach: First, three categories of landcover (natural, 

neutral/agricultural, and developed) are defined (upper left).The landscape mosaic algorithm implemented 

in the GUIDOS software then uses a trigonometric analysis(right hand) to determine for each grid cell the 

dominating landcover category accounting for the composition of the neighboring cells. Based on this 

either just one, two or an intermix of all three categories are present in the surrounding area (output). 

Maps show small subregion of the study area for demonstrative purposes.   

 

In the next step, we used these mosaic clusters as a foundation for a linear weighting 

scheme (Clevenger et al. 2002). Resistance values of each mosaic cluster were derived 

from linearly weighted resistance values of each category (natural = 1, 

neutral/agriculture = 5, developed = 10). Weights were based on the amount of natural, 
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neutral and developed category within the cluster (Table S4.3.2). The final model was 

based on the sum of the weighted resistance values.  

 

Table S4.3.2 Weighting scheme to assign resistance values to different landscape mosaic categories. For 

each Mosaic Cluster the proportion of natural, agriculture (neutral) and developed landcover types were 

calculated. Natural areas were assigned a resistance value (cost) of 1, developed a cost of 10 and 

agricultural areas a cost of 5. The proportions of each category were used to weigh the resistance values 

and subsequently the total sum of costs was derived. Example calculation for first row: 

0.05*1+0.9*5+0.05*10 = 5.05. 

Mosaic 

Cluster Natural Agriculture Developed Cost_N Cost_A Cost_D Cost_Sum 

A 0.050 0.900 0.050 1 5 10 5.050 

D 0.050 0.050 0.900 1 5 10 9.300 

N 0.900 0.050 0.050 1 5 10 1.650 

Ad 0.000 0.750 0.250 1 5 10 6.250 

An 0.250 0.750 0.000 1 5 10 4.000 

Dn 0.250 0.000 0.750 1 5 10 7.750 

Da 0.000 0.250 0.750 1 5 10 8.750 

Na 0.750 0.250 0.000 1 5 10 2.000 

Nd 0.750 0.000 0.250 1 5 10 3.250 

Adn 0.125 0.750 0.125 1 5 10 5.125 

Dan 0.125 0.125 0.750 1 5 10 8.250 

Nad 0.750 0.125 0.125 1 5 10 2.625 

ad 0.500 0.000 0.500 1 5 10 5.500 

an 0.500 0.500 0.000 1 5 10 3.000 

dn 0.500 0.000 0.500 1 5 10 5.500 

adn 0.330 0.330 0.330 1 5 10 5.280 

NN 1.000 0.000 0.000 1 5 10 1.000 

AA 0.000 1.000 0.000 1 5 10 5.000 

DD 0.000 0.000 1.000 1 5 10 10.000 
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S4.4: Habitat-informed Models 

S4.4.1 Subsampling of Relocations 

Presence points for red deer in Schleswig-Holstein were simulated by drawing random 

samples from the GPS relocations since other information on presence (occurrence) or 

true absence of red deer was not available for our study. We subsampled the data for all 

individuals using a grid-based (“fishnet”) approach: a grid with a cell size of 500 by 500m 

was placed over all relocations. For each grid cell containing one or multiple relocations 

only a single relocation was selected as a presence point. In the case of multiple 

relocations from the same or different individuals being present in the same grid cell the 

final relocation was chosen randomly. The process was repeated for ten times resulting 

in ten different sets of pseudo presence points used for our habitat suitability models. We 

fitted both, presence-only (MAXENT; Phillips et al. 2004) and presence-absence 

algorithms: generalized linear mixed (GLM) and random forest (RMF; Breiman 2001) 

models. For the latter we also simulated 1400 pseudo absence points for each of the ten 

runs. A buffer of 1000m was placed around all relocation points and excluded from the 

study area prior generating the random points to assure that they were placed outside the 

core areas of the red deer distribution. 
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Prior fitting the multi-scale multivariate habitat models we selected landcover-based 

variables using the following two steps: 

1. for raster grids describing the proportion of a landcover type the most relevant radius 

(scale) was determined based on AIC (for the GLM) and AUC (for MAXENT and 

RMF; Hijmans 2012) values of univariate models (see also Zeller et al. 2018). 

2. we accounted for covariation among considered variables and chose only landcover 

variables with absolute correlation values below 0.6 (based on Spearman’s rank). If 

two variables showed correlations with |r2| ≥ 0.6 we only included the variable with 

the lowest AIC or AUC value of the univariate model respectively. 

 

The remaining variables were applied in a multivariate, multi-scale model.The ten 

subsets of pseudo presence/absence points were used to run each model algorithm for ten 

times. Subsequently we used the fitted coefficients of each run to produce spatial 

predictions of habitat suitability (Guisan and Thuiller 2005). The mean across all ten runs 

was used as the final model output for the considered algorithm. Additionally, an 

ensemble model (Araújo and New 2007) was calculated using the mean of the three final 

habitat suitability models (referred to as SDM_Ensemble).  

The inverse of the model predictions was used to produce models of landscape 

resistance based on habitat suitability (Keeley et al. 2016). For each habitat suitability 

model the inverse value was transformed into resistance values between 0 and 100 using 

a linear, a monomolecular and an inverse-reverse monomolecular transformation 

(Peterman et al. 2014; Zeller et al. 2018). In total we compared 12 different resistance 

surfaces based on habitat suitability. 
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S4.4.2 Results 

 

Figure S4.4.1 Spatial predictions of habitat suitability based on three different algorithms as well as their 

combination (mean value) as an ensemble model. 
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S4.5: Movement-informed Models 

We applied three different selection functions using the telemetry data of the 20 red deer 

individuals. In the following the different procedures are described with more specific 

detail. All analyses were performed using the amt R package (Signer et al. 2019). 

S4.5.1 Resource Selection Analysis 

We used a point-selection framework (Zeller et al. 2012) to estimate resource selection at 

the home range scale (third order RSF; Johnson 1980; Manly et al. 1993). We placed a 

minimum convex polygon (MCP) around the relocations of each individual and used this 

as a proxy for the utilized home range (Harris et al. 1990). Within each home range we 

produced twice the number of observed relocations as random points. Subsequently we 

extracted landscape variables for all observed relocations (used) and random points 

(available). Used variables were compared against available variables with a logistic 

regression model (Manly et al. 1993).  

Prior fitting a final, multi-scale and multivariate model we determined the 

characteristic scale of each landscape variable. Univariate models were fitted for each 

percentage variable (i.e., percent cover in radius) at different scales (radii) and  compared 

using AIC values (Zeller et al. 2014). The final scale for each type of landcover was 

selected based on the lowest AIC value. Additionally, we tested for covariation and in 

case of two variables showing a Spearman correlation |r2| above 0.6 we only kept the 

variable with the lower AIC value. All of the remaining variables served as input for our 

final multi-scale and multivariate model. 

We used a two-step procedure to model resource selection while also accounting 

for individual variation arising from different sample sizes and levels of selectivity among 

the 20 individuals the data set was based on (Craiu et al. 2011; Murtaugh 2007). 

Therefore, we fitted the multivariate logistic regression model based on the final set of 

variables for each of the individuals separately. Subsequently, we calculated the mean of 

the 20 regression coefficients of each input variable to derive a population-level 

coefficient and applied a t-test to determine if it was significantly different from zero 

(Hosmer and Lemeshow 2004; Squires et al. 2013).  
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In order to spatially predict the probability of use only the significant coefficients 

were plugged in the point-selection function: �̂�(𝑥) = exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝)  

(Johnson 1980). The exponential selection function is fitted with the population-level 

coefficients (β1 to βp) and the respective landscape variables (x1 to xp). The resulting 

selection scores among all grid cells of the landscape model were rescaled to values 

ranging from zero to one using a linear stretch procedure (DeCesare et al. 2016; Johnson 

et al. 2004). Finally, we used the inverse of these values (1 - selection score) to derive the 

final resistance surface based on point-level resource selection (Squires et al. 2013; Zeller 

et al. 2017). 

S4.5.2 Step-Selection Analysis 

In a second approach we again used all relocations of the 20 individuals. However, this 

time we estimated selection of landscape variables at the step-level using so called step-

selection functions (SSF; Thurfjell et al. 2014; Zeller et al. 2012). For each individual the 

distribution of turning angles and step-lengths were sampled separately (Signer et al. 

2019). Every observed step was compared to 10 random steps in used-availability study 

design. Landcover variables at used steps were compared against variables at available 

steps using conditional logistic regression (Thurfjell et al. 2014) models implemented in 

the survival R package (Therneau and Grambsch 2013). 

Prior fitting a final, multi-scale and multivariate model we determined the 

characteristic scale of each landscape variable. Univariate models were fitted for each 

percentage variable (i.e., percent cover in radius) at different scales (radii) and  compared 

using AIC values (Zeller et al. 2014). The final scale for each type of landcover was 

selected based on the lowest AIC value. Additionally, we tested for covariation and in 

case of two variables showing a Spearman correlation |r2| above 0.6 we only kept the 

variable with the lower AIC value. All of the remaining variables served as input for our 

final multi-scale and multivariate model. 

We used a two-step procedure to model resource selection while also accounting 

for individual variation arising from different sample sizes and levels of selectivity among 

the 20 individuals the data set was based on (Craiu et al. 2011; Murtaugh 2007). 

Therefore, we fitted a multivariate, conditional logistic regression model based on the 

final set of variables for each of the individuals separately. Subsequently, we calculated 
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the mean of the 20 regression coefficients of each input variable to derive a population-

level coefficient and applied a t-test to determine if it was significantly different from 

zero (Hosmer and Lemeshow 2004; Squires et al. 2013).  

In order to spatially predict the probability of use only the significant coefficients 

were plugged in the step-selection function �̂�(𝑥) = exp(𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝) 

(Johnson, 1980; Thurfjell et al. 2014). The exponential selection function is fitted with 

the population-level coefficients (β1 to βp) and the respective landscape variables (x1 to 

xp). The resulting selection scores among all grid cells of the landscape model were 

rescaled to values ranging from zero to one using a linear stretch procedure (DeCesare et 

al. 2016; Johnson et al. 2004). Finally, we used the inverse of these values (1 - selection 

score) to derive the final resistance surface based on path-level resource selection (Squires 

et al. 2013; Zeller et al. 2017). 

S4.5.3 Behavioral Change Point Analysis and Step-Selection Function 

In this approach we first selected movement patterns that could potentially be interpreted 

as dispersal behavior. For this we applied a behavioral change point analysis (BCPA, 

Gurarie et al. 2009) to each individual movement trajectory. We chose the BCPA because 

it is also applicable for movement data with irregular sampling intervals between 

relocations (Edelhoff et al. 2015; Chapter 3). The BCPA was based on the resulting time 

series of net-squared displacement values (NSD, Calenge et al. 2009). NSD measures 

(Figure S5.3.1) the squared displacement between the first and a current relocation of the 

trajectory and is commonly applied to characterize dispersal movements or migration 

patterns (Bunnefeld et al. 2011; Edelhoff et al. 2015; Chapter 3). 
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Figure S4.5.1 Time-series of the net-squared displacement values for each individual. The time in days 

since the start of the GPS tagging is plotted on the x-axis. 

The potential change-points in movement behavior estimated by the BCPA were 

then used to cut out segments of different movement patterns within each individual 

trajectory. In order to be able to interpret the underlying behaviors we used a set of path-

characteristics to describe the observed patterns, in particular we calculated the sinuosity 

(i.e., straightness), mean NSD, as well as the cumulative distance and total displacement 

of each segment (Benhamou 2004). 

We then used a cluster analysis two separate the into two distinctive groups based 

on the multiple path-characteristics (see Zhang et al. 2015) for another example). Among 

the two clusters we chose the one with the highest mean of NSD values and interpreted 

the contained path-segments as potential dispersal or “dispersal-like” movement 

behavior. On average 12% of the relocations of an individual were assigned to the 

potential dispersal cluster (min = 2%, max= 30%). The spatial distribution of the regular 

and dispersal relocations are plotted in Figure S5.2. Subsequently, we used the same 

modeling procedure for step-selection as described above only using the steps from the 
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potential dispersal cluster this time. The final result was another resistance surface based 

on this subset of relocations determined by a behavioral change point analysis.  

 

Figure S4.5.2 GPS relocations for all 20 red deer individuals. Green points indicate relocations of the 

potential dispersal cluster. Black points represent relocations from regular movement behavior. The 

amount of relocations of potential dispersal behavior varied substantially. 
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S4.5.4 Result 
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S4.6: Variance and Correlation of Resistance Surfaces 

 

Table S4.6.1 Results of generalized linear models fitted to explain observed resistance values depending 

on either the transformation function, the original input model (SDM, MAXENT, etc.), or the 

methodological category (type). 

Variable AIC Deviance expl (D2) 

Transformation 239488.7 0.456945 

Model 252215.4 0.109733 

Type (Method) 253139.6 0.076731 
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S4.7: Isolation by Barrier 

Figure S4.7.1 Map showing the putative barriers considered in our isolation by barrier hypothesis. 

Distance values between sampled patches increased with number of barriers (canal, primary roads) in-

between them . 

 

  



221 

 

S4.8: Mantel tests 

Table S4.8.1 Results of Mantel correlation tests for all resistance surfaces using effective distance based 

on Circuitscape analysis and genetic distance derived from the proportion of shared alleles. 

Resistance surface Mantel r llim.2.5% ulim.97.5% 

buffer [invrev-mono] 0.246 0.235 0.259 

ensemble [cs] 0.241 0.229 0.256 

bcpa_ssf [mono] 0.241 0.228 0.255 

maxent [mono] 0.236 0.222 0.251 

maxent [lin] 0.230 0.216 0.244 

ls_mosaic [invrev-mono] 0.229 0.217 0.243 

maxent [invrev-mono] 0.226 0.211 0.242 

bcpa_ssf [lin] 0.221 0.209 0.237 

ssf [invrev-mono] 0.221 0.207 0.234 

buffer [mono] 0.216 0.203 0.231 

sdm_ensemble [lin] 0.212 0.198 0.227 

random_forest [mono] 0.211 0.198 0.224 

sdm_ens [mono] 0.211 0.197 0.227 

ssf [mono] 0.211 0.198 0.227 

rsf [mono] 0.210 0.195 0.225 

bcpa_ssf [invrev-mono] 0.208 0.194 0.221 

ssf  [lin] 0.207 0.194 0.222 

ls_mosaic [mono] 0.207 0.193 0.223 

glm [mono] 0.205 0.189 0.218 

rsf [invrev-mono] 0.204 0.190 0.220 

sdm_ens [invrev-mono] 0.203 0.191 0.218 

random_forest [lin] 0.202 0.188 0.217 

rsf [lin] 0.201 0.186 0.217 

glm [lin] 0.196 0.181 0.213 

glm [invrev-mono] 0.192 0.175 0.207 

random_forest [invrev-mono] 0.189 0.174 0.204 

ls_mosaic [mono] -0.039 -0.055 -0.023 
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Table S4.8.2 Results of Mantel correlation tests for all resistance surfaces using effective distance based 

on circuitscape analysis and genetic distance derived from Rousset’s a. 

Resistance surface Mantel r llim.2.5% ulim.97.5% 

buffer [invrev-mono] 0.219 0.205 0.233 

ensemble [cs] 0.218 0.203 0.234 

maxent [mono] 0.218 0.204 0.234 

bcpa_ssf [mono] 0.215 0.200 0.230 

ls_mosaic [invrev-mono] 0.212 0.196 0.226 

maxent [lin] 0.211 0.196 0.228 

maxent [invrev-mono] 0.207 0.192 0.222 

buffer [mono] 0.203 0.188 0.221 

ssf [invrev-mono] 0.203 0.186 0.219 

rsf [mono] 0.199 0.183 0.218 

ssf [mono] 0.199 0.182 0.216 

sdm_ens [mono] 0.198 0.182 0.215 

sdm_ens [lin] 0.198 0.180 0.214 

ls_mosaic [mono] 0.197 0.181 0.215 

random_forest [mono] 0.196 0.180 0.213 

ssf [lin] 0.195 0.180 0.215 

glm [mono] 0.193 0.177 0.210 

rsf [invrev-mono] 0.193 0.177 0.214 

bcpa_ssf [lin] 0.192 0.178 0.208 

rsf [lin] 0.192 0.174 0.210 

sdm_ens [invrev-mono] 0.191 0.176 0.208 

random_forest 0.190 0.174 0.207 

glm [lin] 0.187 0.168 0.205 

glm [invrev-mono] 0.183 0.166 0.200 

random_forest [invrev-mono] 0.180 0.164 0.200 

bcpa_ssf [invrev-mono] 0.177 0.161 0.193 

ls_mosaic [mono] -0.002 -0.023 0.017 
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Table S4.8.3 Results of Mantel correlation tests for all resistance surfaces using effective distance based 

on least-cost analysis and genetic distance derived from the proportion of shared alleles. 

Resistance surface Mantel r llim.2.5% ulim.97.5% 

buffer [invrev-mono] 0.216 0.203 0.229 

maxent [invrev-mono] 0.212 0.199 0.226 

bcpa [mono] 0.208 0.193 0.223 

ensemble [lcp] 0.208 0.196 0.222 

maxent [lin] 0.208 0.194 0.223 

ssf [lin] 0.207 0.192 0.220 

maxent [mono] 0.207 0.191 0.222 

ls_mosaic [lin] 0.206 0.192 0.219 

bcpa_ssf  [lin] 0.206 0.191 0.220 

ssf [mono] 0.205 0.191 0.220 

ls_mosaic [invrev-mono] 0.205 0.192 0.218 

ssf [invrev-mono] 0.200 0.187 0.215 

glm [mono] 0.199 0.186 0.215 

sdm_ensemble [lin] 0.198 0.184 0.212 

ls_mosaic [mono] 0.198 0.185 0.214 

rsf [lin] 0.198 0.184 0.212 

sdm_ens [mono] 0.198 0.182 0.213 

bcpa [invrev-mono] 0.197 0.183 0.213 

rsf [mono] 0.197 0.181 0.211 

random_forest [mono] 0.196 0.182 0.210 

buffer [mono] 0.194 0.180 0.209 

random_forest [lin] 0.194 0.179 0.208 

glm [lin] 0.194 0.181 0.208 

rsf [invrev-mono] 0.193 0.178 0.209 

sdm_ens [invrev-mono] 0.192 0.177 0.206 

random_forest [invrev-mono] 0.184 0.171 0.201 

glm [invrev-mono] 0.182 0.168 0.200 

 

 

  



224 

Table S4.8.4 Results of Mantel correlation tests for all resistance surfaces using effective distance based 

on least-cost analysis and genetic distance derived from Rousset’s a. 

Resistance surface Mantel r llim.2.5% ulim.97.5% 

buffer [invrev-mono] 0.191 0.177 0.209 

maxent [invrev-mono] 0.187 0.171 0.203 

ssf  [lin] 0.186 0.169 0.204 

ssf [mono] 0.185 0.169 0.201 

maxent  [lin] 0.185 0.168 0.199 

bcpa_ssf [mono] 0.185 0.171 0.202 

maxent [mono] 0.184 0.169 0.203 

ensemble [lcp] 0.183 0.167 0.200 

ls_mosaic [lin] 0.183 0.166 0.199 

bcpa_ssf [lin] 0.182 0.166 0.198 

ls_mosaic [invrev-mono] 0.182 0.165 0.202 

glm [mono] 0.180 0.163 0.198 

rsf [lin] 0.180 0.164 0.198 

rsf [mono] 0.180 0.163 0.198 

ssf [invrev-mono] 0.180 0.165 0.196 

sdm_ensemble [mono] 0.179 0.164 0.198 

sdm_ens [lin] 0.178 0.161 0.196 

ls_mosaic [mono] 0.178 0.163 0.198 

random_forest [mono] 0.178 0.162 0.194 

bcpa_ssf [invrev-mono] 0.177 0.161 0.199 

buffer [mono] 0.177 0.161 0.197 

glm  [lin] 0.176 0.158 0.193 

random_forest  [lin] 0.175 0.158 0.193 

rsf [invrev-mono] 0.174 0.156 0.193 

sdm_ens [invrev-mono] 0.172 0.153 0.189 

random_forest [invrev-mono] 0.168 0.151 0.186 

glm [invrev-mono] 0.166 0.148 0.186 

 

 



225 

S4.9: Ensemble Models 

 

Figure S4.9.1 Maps depicting the two ensemble models based on the three highest-ranked models identified 

using the Circuitscape distance and least-cost path distance.. 
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S4.10: Conductance Surfaces 

 

Figure S4.10.1 Cumulative conductance surfaces derived with Circuitscape. Results shown for the three 

selected models based on expert-opinion (BUFFER), habitat suitability (MAXENT) and dispersal 

movements (BCPA_SSF) as well as the ensemble of all three models. 
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S4.11: Least-Cost Paths 

 

Figure S4.11.1 Least-cost paths for the three highest ranked resistance models based on expert-opinion 

(BUFFER), habitat suitability (MAXENT) and a movement-analysis (BCPA_SSF) as well as their ensemble 

model. 

 

S4.12: Corridor Overlap 

Table S4.12.1 Pairwise coefficients based on Spearman rank correlation between the Circuitscape 

conductance surfaces of the selected models based on expert-knowledge (BUFFER[invrev-mono]), habitat 

suitability (MAXENT[mono]) and movement data (BCPA_SSF[mono]), as well as their ensemble 

(ENSEMBLE_CS). Additionally, conductance surfaces were correlated to the raster grid summarizing the 

number of overlapping LCPs. 

 

EXPERT HABITAT MOVEMENT ENSEMBLE LCP Overlap 

EXPERT 1.00 0.68 0.67 0.71 0.27 

HABITAT 0.68 1.00 0.98 0.97 0.27 

MOVEMENT 0.67 0.98 1.00 0.97 0.26 

ENSEMBLE 0.71 0.97 0.97 1.00 0.27 

LCP Overlap 0.27 0.27 0.26 0.27 1.00 
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S4.13: Comparing Movement and Habitat Models 

We visually inspected the differences between the best performing movement-informed 

model (BCPA_SSF) and habitat-informed model (MAXENT). The spatial predictions of 

the step-selection function and habitat suitability respectively (see S4.4.2 and S4.5.4) 

were considered here. We first calculated the quantiles of each model and then subtracted 

the MAXENT model from the BCPA_SSF model. Results are shown in the following 

figure. 

 

Figure S4.13.1 Differences between quantiles of the spatial predictions of the best performing movement-

informed model and the highest ranked habitat-informed model: p(BCPA_SSF) – p(MAXENT). Positive 

values indicate that the BCPA_SSF predicted higher probability of selection as compared to the habitat 

suitability derived from MAXENT: p(BCPA_SSF) > p(MAXENT). A value of zero delineates areas where 

quantiles of the two models are equal: p(BCPA_SSF) = p(MAXENT). Negative values are the result of 

higher quantiles of suitability based on MAXENT as compared to BCPA_SSF resource selection: 

p(MAXENT) > p(BCPA_SSF). 
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General Discussion 

 

The aim of this thesis was to uncover the genetic consequences of fragmentation and other 

restrictions primarily caused by human activities to dispersal and gene flow of red deer 

in Northern Germany. For this, I utilized both, information derived from genetic data as 

well as movement data, and applied a landscape genetic framework to study different 

possibilities for estimating functional connectivity. 

Except for a few studies on detection of barriers to gene flow (Coulon et al. 2008; 

Frantz et al. 2012; Kuehn et al. 2007) large ungulates such as red deer in Europe are 

underrepresented in landscape genetic studies. In order to benchmark the extensive 

toolbox available to landscape genetics and to evaluate the effects of landscape 

fragmentation I used red deer in Schleswig-Holstein as an example to demonstrate the 

methodological and conceptual differences of multiple approaches for estimating 

functional connectivity.  

In summary, the presented thesis provides important insights for applied 

conservation of wildlife and planning of corridors. Furthermore, the potential applications 

of landscape genetics and movement ecology to assess landscape connectivity are 

presented. For example, movement ecology provides an integral framework to explore 

the potential factors shaping the movements of organisms and the ecological 

consequences of these movements such as gene flow (Nathan 2008).  

Effects of landscape fragmentation and other human-related 

restrictions 

As shown in the second chapter of this thesis, genetic data has the great potential to 

illustrate the effects of landscape fragmentation but also of various other anthropogenic 

restrictions on wildlife populations. Genetic data provided valuable insight on the 

hierarchical structure of local populations which indicated multiple causes for the 
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observed patterns of differentiation, some were based on the historic development of the 

populations (e.g., introduction of individuals from other parts of Europe) others were due 

to barriers such as primary roads or the Kiel Canal which separated once connected 

populations. Overall, genetic diversity was comparably low and even populations within 

reachable distances were asymmetrically connected, with high genetic exchange among 

some local populations and reduced connectivity of others. However, current delineation 

of red deer management units does not account for the observed levels of connectivity or 

isolation among them. In addition, the results indicated that population densities in 

neighboring management units also effect the level of genetic diversity within local 

populations. Therefore, densities of red deer should be taken more into consideration by 

local management. In particular, detailed information on the size and age- as well as sex-

structure of local populations is necessary to gain a better understanding of the processes 

driving dispersal and gene flow (Draheim et al. 2016; Tucker et al. 2017). 

Another important observation was that some red deer individuals dispersed from 

Denmark to an established population just north of the Kiel canal. This implies that 

dispersal over longer distances through the fragmented landscape is still possible and 

gives hope that in the future such processes can be revoked or promoted by protecting 

dispersal corridors and building overpasses to link these corridors across barriers. In 

conclusion, a better understanding on how landscape composition either impedes or 

facilitates effective dispersal of red deer is needed to address the observed loss of genetic 

diversity. 

Assessing landscape connectivity and incorporating movement 

data 

Throughout this thesis several methods have been applied for assessing landscape 

connectivity with focus on red deer in Schleswig-Holstein. Utilizing an extensive dataset 

comprising high resolution landcover data as well as telemetry relocations, several 

resistance models were fitted based on expert-knowledge, habitat suitability and 

movement analyses. As described in the first and fourth chapter all of the methodological 

approaches have their pros and cons (Spear et al. 2015). Overall, landscape genetics 

provided a valuable framework for objectively comparing these different models of 

landscape connectivity (Cushman et al. 2006; Storfer et al. 2010). As pointed out in 
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multiple recent studies accounting for dispersal-specific movements and habitat selection 

during these movements turned out to be a promising approach and for some species even 

outperform other commonly applied approaches for estimating landscape connectivity 

(Roffler et al. 2016; Vasudev and Fletcher 2015; Zeller et al. 2018). Based on these 

indications I compared the habitat selected during potential dispersal movements of red 

deer with other regularly used methods for inferring primary habitat requirements. Thus, 

in order to identify potential dispersal movements from regular movements within 

established home ranges, the application of a path-segmentation method was necessary. 

Identifying changes in movement behavior 

The third chapter of this thesis presented an extensive review on the different methods 

for identifying behavioral patterns from movement data and showed how they can be 

applied to answer research questions within the movement ecology paradigm. Movement 

data provides highly relevant information not only for landscape genetics but also for 

studying the ecological consequences of animal space use and movement in general 

(Nathan et al. 2008). For example gaining a better understanding on how behavioral 

patterns and their interaction with the environment shape resource selection and thus the 

distribution of individuals or populations in the landscape (Boyce et al. 2003; Fleming et 

al. 2014; Roever et al. 2013). As shown in the fourth chapter, path-segmentation can also 

be an appropriate tool for identifying potential dispersal movements within a given 

dataset in order to estimate resource selection during these movements and infer 

functional connectivity for a given study species.  

Overall, researchers are capable now of gaining much more insight on species 

movement behavior and with much more detail (Gurarie et al. 2016). In particular, with 

the growing availability of high resolution movement data and constant improvement of 

the applied tagging devices (Cagnacci et al. 2010). The provided overview on path-

segmentation methods should therefore help to utilize the available date to its full 

potential and propagate this kind of analyses or spark new ideas for research in movement 

ecology (e.g., Hansen et al. 2019) 
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Benchmarking resistance models for red deer 

Benchmarking the multitude of methods available for estimating functional connectivity 

with special focus on red deer was not straight forward. As described in the fourth chapter, 

performance of the different methodological approaches was also depending on the 

derived effective distances and applied statistical procedures to link them with genetic 

distances. Nevertheless, the findings indicated that for large scale connectivity the 

habitat-informed resistance model performed best as compared to the movement-

informed model which best explained local scale connectivity derived from least-cost 

paths. This confirmed the hypothesis that at least for short range dispersal movements, 

red deer are capable of moving through less suitable habitats which has been observed in 

many other species as well (Abrahms et al. 2017; Zeller et al. 2018).  

Although, overall performance of ensemble models was not significantly better in 

terms of describing the observed genetic patterns, I want to argue that if multiple data 

formats (telemetry data, presence data) are available an ensemble approach could very 

much overcome and compensate for drawbacks of each of the different analyses (Araújo 

and New 2007). In particular, for deriving conservation corridors from the resulting 

resistance surface the ensemble approach could most likely be more representative of the 

different processes driving connectivity at the  local as well as the large scale.  

The results of the benchmark analysis are especially relevant for other regions of 

Germany where similar issues of low genetic diversity as well as decreased gene flow in 

red deer populations have recently been observed (Reiner and Willems 2019). Although, 

detailed movement data such as GPS telemetry relocations are not always directly 

available at least a presence-based habitat model (Phillips et al. 2004) or even the expert-

informed approach like the applied buffer map could be combined in an ensemble to infer 

landscape connectivity. However, transferring the results from Northern Germany to 

other regions has to be done with caution as habitat requirements and other factors driving 

the dispersal process could vary within the different localities. 
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Outlook 

A major focus of this thesis was on the effects of the landscape matrix on dispersal and 

functional connectivity. However, the dispersal process consists of three important stages: 

the first being the decision by an animal to leave its current home range (emigration), the 

second stage of traversing through the landscape matrix (i.e., actual dispersal) and finally 

the third stage is to establish a new home range (immigration). In particular, the first and 

last stage are driven by local variables such as habitat quality, resource availability and 

population size (Pflüger and Balkenhol 2014). As discussed in chapter two local densities 

also seems to play an important role in genetic diversity and differentiation of red deer 

populations. Therefore, the potential effects of different local variables (e.g., habitat 

availability, population density, sex- and age-structure) need to be addressed in future 

research to obtain a complete picture on the processes driving effective dispersal of red 

deer in the study area (Pflüger and Balkenhol 2014). For example, individual-based 

simulations could be applied to estimate the potential effects of these variables and infer 

dispersal probabilities between populations which in turn could be compared to the 

observed genetic distances (Anadón et al. 2012; Fordham et al. 2014; Hoban 2014; 

Schumaker et al. 2014). Information on local densities and sex-ratio could be derived 

from spatial explicit capture-recapture using fecal samples (Borchers 2012; Royle et al. 

2013). This would have the advantage of also gaining new genetic insight (e.g., diversity, 

gene flow) at the same time.  

As shown in the fourth chapter, the availability of suitable habitats play an 

important role for large scale connectivity. The highest-ranked habitat model (MAXENT) 

could be utilized to delineate major areas of primary habitat for red deer (Franklin 2009). 

Subsequently, network analyses could be applied to test the significance of these habitat 

patches (i.e., stepping stones) on overall connectivity depending on their size and spatial 

arrangement (Bodin and Saura 2010; Rubio et al. 2014; Saura et al. 2014). 

Finally, I expect the outcomes of this thesis to contribute to a better understanding 

on the reliability of available tools in a landscape genetic context and to provide evidence-

based outcomes from the perspective of an important indicator species that might improve 

connectivity measures for environmental management from a regional to a state-wide 
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scale. Overall, providing conservation areas and corridors as well as overpasses that 

facilitate exchange are a very important first step for reestablishing the great mobility 

potential of red deer and most likely leading the way for many other species. After the 

establishment of such mitigation measures a genetic reanalysis of the red deer populations 

should be performed in the future in order to give insight on the actual success of these 

measures and test if management goals (e.g., increasing gene flow) were accomplished. 

Although, this will take time since deer individuals have next to disperse also reproduce 

successfully at new established ranges. 
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