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Abstract

In this paper, we pursue the work of H. Haller and al. (2005, [10]) and ex-

amine the existence of equilibrium networks, called Nash networks, in the non-

cooperative two-way flow model (Bala and Goyal, 2000, [1]) with partner hetero-

geneous agents. We show through an example that Nash networks do not always

exist in such a context. We then restrict the payoff function, in order to find condi-

tions under which Nash networks always exist. We give two properties: increasing

differences and convexity in the first argument of the payoff function, that ensure

the existence of Nash networks. It is worth noting that linear payoff functions

satisfy the previous properties.

Key Words: Nash networks, two-way flow models, partner heterogeneity.

JEL Classification: C72, D85.
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1 Introduction

As researchers have become increasingly aware of the importance of networks in

determining the outcome of many economic situations, the theoretical analysis

of the formation of networks has grown. In particular, Bala and Goyal (2000,

[1]) propose a non-cooperative two-way flow model of network formation. In this

model agents form links unilaterally with others agents in order to get access to

information. A distinctive aspect of this model is that the cost of a link between

two agents is incurred only by the agent who forms the link, while both agents

can get access to information of each other thanks to this link. Several examples

are given that can be interpreted in this spirit, as telephone call in which people

exchange information, or investment in personal relationships which creates a so-

cial tie yielding values to both agents involved in the tie.

This model has been extended in various directions. Hojman and Szeidl (2006,

[12]) develop a general model of decay where the resources obtained by an agent

from another agent depend on the distance between the two agents. Bala and

Goyal (2000, [2]) and Haller and Sarangi (2005, [11]) propose models with imper-

fect link reliability. Billand and Bravard (2004, [3]) take into account congestion

effect in the values obtained by agents. Goyal, Galeotti and Kamphorst (2006,

[9]), Billand Bravard and Sarangi (2011, [5]) propose a model with heterogeneous

agents with respect to values as well as the costs of forming links.

In the previous works the central issue concerns the architectures of networks that

will emerge in equilibrium. In comparison with this issue, existence of equilibrium

networks has been less systematically explored. H. Haller has initiated the study

of the existence of equilibrium networks for the non-cooperative network forma-

tion models with heterogeneous agents and linear payoff functions (see Haller and
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Sarangi 2005, [11], and Haller, Kamphorst and Sarangi 2007, [10]).1

In this paper, we pursue the work of H. Haller and examine the existence of

equilibrium networks, called Nash networks, in the non-cooperative two-way flow

model with partner heterogeneous agents. In the context of partner heterogeneity,

the cost for agent i to invest in a link with an agent j, and the benefits to i from

accessing j’s resources, only depend on the identity of j.2 Such situations have

been examined by Billand, Bravard and Sarangi (2011, [5]). The authors only

focus on the characterization of strict Nash networks. Here, we ask under what

conditions Nash networks always exist.

We start by considering a general payoff function, where the payoff of an agent i in

a network g is increasing in the total value of the resources accessed by i in g and

decreasing in the total cost of forming links in g. We show through an example

that Nash networks do not always exist in such a context. We then restrict the

payoff function, in order to find conditions under which Nash networks always

exist. We give two properties, increasing differences and convexity in the first ar-

gument of the payoff function, that have economic interpretation and ensure the

existence of Nash networks.

Our work contributes to the literature on the existence of equilibrium networks

for the non-cooperative network formation models with heterogeneous agents in

two ways.

1Billand, Bravard and Sarangi (2008, [4], [6]) and Derks and Tennekes (2009, [7]) have examined

the existence of Nash networks in non-cooperative one-way flow model with heterogeneous agents.
2If we consider the phone call example, our model takes into account the fact that the cost incurred

by a caller i typically depends on the identity of the receiver j. For instance, if j is a busy person,

then it is difficult to access her. It follows that the time that i spends (the cost that i incurs) to obtain

an answer from j will depend on j’s characteristics. Likewise, the value obtained by i depends on the

information owned by j, and this information depends both on the characteristics of j and on her social

network.
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1. We give conditions which ensure the existence of Nash networks in non-

cooperative network formation models with partner heterogeneity. In other

words, we delineate situations where the partner heterogeneity framework is

consistent with the concept of Nash network. Hence, we complete the work

of Billand, Bravard and Sarangi (2011, [5]) who focus on the characterization

of strict Nash networks.

2. In the characterization studies of equilibrium networks for the non-cooperative

network formation models with heterogeneous agents, the authors generally

assume that the payoff function is linear. More precisely, the payoff of an

agent i in a network g is equal to the sum of the values of resources that

agent i obtains from the other agents in g minus the sum of the costs in-

curred by i due to the links she forms in g. However, it is worth noting that

the results qualitatively carry on when relaxing the linearity assumption of

the payoff function. In particular, if we introduce a more general payoff

function, which is increasing in the total value of the resources accessed by

the agent i and decreasing in the total cost that i incurs, then the character-

ization results given by Galeotti, Goyal and Kamporst (2006, [9]) or Billand,

Bravard and Sarangi (2011, [5]) remain qualitatively the same. By contrast,

we show that existence of Nash networks results are very different when the

payoff function is linear and when the payoff function is more general. More

specifically, we show that even if there always exists a Nash network when

the payoff function is linear, this existence result is no longer true when we

introduce the more general payoff function.

The paper is organized as follows. In section 2 we present the model setup.

In section 3 we establish that Nash networks do not always exist for a general

payoff function in the partner heterogeneity framework. In section 4 we give two

conditions on the payoff function and show that under these conditions, Nash
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networks always exist. Section 5 concludes.

2 Model setup

Let N = {1, . . . , n} be the set of agents. Each agent is assumed to possess some

information of value to himself and to other players. She can augment her infor-

mation by communicating with other people; this communication takes resources,

time and effort and is made possible via pair-wise links.

Each agent i chooses a strategy gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n) where gi,j ∈

{0, 1} for all j ∈ N \ {i}. The interpretation of gi,j = 1 is that agent i forms an

arc with agent j "= i, and the interpretation of gi,j = 0 is that i forms no arc with

agent j. By convention, we assume that agent i cannot form an arc with herself.

In the following we only use pure strategies. Let Gi be the set of strategies of

agent i ∈ N . The set G =
∏n

i=1 Gi is the set of pure strategies of all the agents. A

strategy profile g = (g1, . . . , gi, . . . , gn) can be represented as a directed network.

We use g + gi,j (g − gi,j) to refer to the network obtained when a link gi,j = 1 is

added in (deleted from) g. The empty network is a network in which there is no

arc. For a directed network, g, a path from agent k to agent j, j "= k, is a finite

sequence j0, j1, . . . , jm of distinct agents such that j0 = j, jm = k and gj!,j!+1 = 1

for ! = 0, . . . ,m − 1. We define a chain between agent k and agent j, j "= k by

replacing gj!,j!+1 = 1, by max{gj!,j!+1 , gj!+1,j!} = 1.

DefineNi(g) = {i}∪{j ∈ N\{i} | there is a chain between i and j in g} as the

set of agents who are observed by agent i with the convention that agent i always

“observes” herself. We assume that values and costs are partner heterogeneous.

More precisely, each agent i obtains Vj > 0 from each agent j ∈ Ni(g) \ {i}, and

incurs a cost Cj > 0 when she forms an arc with agent j "= i. Also since we wish

to focus only on the network formed, we assume that agent i obtains no additional

resources from herself. Indeed, agent i obtains her own resources even if she forms
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no arcs and there is no network. We now introduce the set of agents who have

the minimal cost of being linked, S = {j ∈ N | j ∈ argminj∈N{Cj}}.

Let φ : 2
+ → be a function such that φ(x, y) is strictly increasing in x and

strictly decreasing in y. The payoff of agent i is given by:

πi(g) = φ




∑

j∈Ni(g)\{i}

Vj ,
∑

j∈N
gi,jCj



 . (1)

Given the properties we have assumed for the function φ, the first term can be in-

terpreted as the “benefits” that agent i receives in network g, while
∑

j∈N\{i} gi,jCj

measures the “costs” that i incurs from forming her arcs. In the following, we de-

fine
∑

j∈Ni(g)\{i} Vj = v(i; g) and
∑

j∈N gi,jCj = c(i; g).

Definition 1 If v2 > v1 and c2 > c1 implies φ (v2, c2) − φ (v1, c2) ≥ φ (v2, c1) −

φ (v1, c1), then the function φ admits increasing differences (ID).

To present situations captured by this property, let us define the following

networks. Let gx,y, x ∈ {1, 2} and y ∈ {1, 2}, be networks where agent i obtains

benefits equal to vx and incurs a cost equal to cy, with v2 > v1 and c2 > c1.

Consider two alternative networks changes, from g2,1 to g2,2 (case 1), and from

g1,1 to g1,2 (case 2). Note that in both cases only the cost incurred by i varies when

the network changes. Property ID says that, although in both cases the increase

in i’s cost is equal, the variation in i’s payoffs are different. More precisely, this

variation is higher in the first case (when benefits that i incurs are high) than in

the second case (when benefits that i incurs are low).

To sum up, if the payoff function of agent i admits ID, then the marginal loss

that agent i incurs due to an higher cost decreases with the benefits she obtains.

Below, in Example 3, we illustrate how this property can capture some economic

effects.

Definition 2 Suppose v1, v2 ∈
(
0,
∑

j∈N Vj

)
, v2 > v1 and κ ∈ (0, v1]. If φ (v2, c)−

6



φ (v2 − κ, c) ≥ φ (v1, c)−φ (v1 − κ, c), then the function φ is convex in its first ar-

gument.

If the payoff function of agent i is convex in its first argument, then the variation

in i’s payoff increases with the resources she obtains when the cost of forming

arcs is given. More precisely, for given cost of forming arcs, the higher are the

benefits already obtained by player i, the more this player will take advantage of

an increase in the benefits obtained.

Example 1 Suppose φ is an additively separable function, that is φ (x, y) =

ϕ(x) + η(y). Then φ admits ID.

Example 2 Suppose φ (x, y) = ax−by. Then φ admits ID since it is an additively

separable function. Likewise φ is convex in its first argument since if x > x′, then

φ (x, y)− φ (x− k, y)− (φ (x′, y)− φ (x′ − k, y)) = 0. It follows that the following

linear payoff function πi(g) = v(i; g) − c(i; g) is convex in its first argument and

admits ID.

In the following example, we present a payoff function which is not additively

separable. Till now this kind of function has not been used in the literature on

networks with heterogeneous agents (Galeotti, Goyal and Kamphorst, 2006, [9],

Galeotti, 2005, [8] use additively separable functions).

Example 3 Suppose φ (x, y) = x3−(y2−xy). Then φ admits ID. Indeed, if x > x′

and y > y′, then we have: φ (x, y)−φ (x′, y)− (φ (x, y′)−φ (x′, y′)) = (y− y′)(x−

x′) > 0. Likewise φ is convex in its first argument. Indeed, if x > x′, then we

have: φ (x, y)−φ (x− k, y)− (φ (x′, y)−φ (x′ − k, y)) = 3k(x−x′)(x+x′−k) > 0,

for k < x′.

Let πi(g) = φ (v(i; g), c(i; g)) = (v(i; g))3 −
[
(c(i; g))2 −v(i; g)c(i; g)]. This payoff

function is increasing in v(i; g), decreasing in c(i; g), convex in its first argument

and admits ID.

7



In the previous payoff function, there is some synergy between benefits and costs,

captured by the interactive term v(i; g)c(i; g). The assumption built into this

function is that as agents handle more resources, their ability to manage the arcs

with other agents increases.

Given a network g ∈ G, let g−i denote the network obtained when all of agent

i’s arcs are removed. The network g can be written as g = gi ⊕ g−i where ‘⊕’

indicates that g is formed as the union of the arcs of gi and g−i. The strategy gi

is said to be a best response of agent i to the network g−i if:

πi(gi ⊕ g−i) ≥ πi(g
′
i ⊕ g−i), for all g′

i ∈ {0, 1}n−1.

The set of all of agent i’s best responses to g−i is denoted by BRi(g−i). A network

g is said to be a Nash network if gi ∈ BRi(g−i) for each agent i ∈ N .

3 Existence of Nash Networks in Pure Strate-

gies

First, we show that there does not always exist a Nash network in the partner

heterogeneity two-way flow model.

Proposition 1 Suppose payoff function satisfies (1). Then there does not always

exist a Nash network in pure strategies

Proof To prove this result, we construct an example where there is no Nash

network.

Let N = {1, 2, 3} be the set of agents. We assume that C3 > C1 = C2 > 0,

V2 = V1 > 0 and V3 > V1 + V2. Set φ(0, 0) = 0.

1. We assume that φ(V2 + V1, C2) < 0. Therefore agent 3 will never form an

arc.
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2. We assume that φ(V3, C3) > 0. In the empty network agent 1 and agent 2

have an incentive to form an arc with agent 3.

3. We assume that φ(V1, C1) < 0. Agent 2 has no incentive to form an arc with

agent 1 if 1 is an isolated agent and vice versa.

4. We assume that φ(V2 + V3, C2) > 0. Agent 1 (agent 2) has an incentive to

form an arc with agent 2 (agent 1) if the latter allows him to obtain resources

from agent 3.

5. We assume that φ(V2, 0) > φ(V2+V3, C3). Agent 1 (agent 2) has no incentive

to form an arc with agent 3 if agent 2 (agent 1) forms an arc with her.

6. Let Y = {Y ∈ 2N | |Y | = 2} be the set of subsets of N which have a size

equal to 2. We suppose that φ
(∑

!∈Y,Y ∈Y V!,
∑

!∈Y,Y ∈Y C!

)
< 0. Therefore

no agent has an incentive to form two arcs.

These assumptions on the payoff function do not contradict the fact that φ is

strictly increasing in its first argument and strictly decreasing in its second argu-

ment.

Clearly a Nash network contains at most 2 arcs. Moreover, the empty network is

not Nash by point 2.

Firstly, we show that networks with one arc cannot be Nash. Let g1 be the net-

work where the only link agents have formed is g11,3 = 1 and let g2 be the network

where the only link agents have formed is g22,3 = 1. We know by Point 1, Point

3, and Point 4 that g1 and g2 are the only networks with one arc which can be

Nash. These networks are not Nash since agent 2 (agent 1) has an incentive to

form an arc with agent 1 (agent 2) by point 4 in g1 (in g2).

Secondly, we show that networks with two arcs cannot be Nash. Let g3 be the

network where the only links agents have formed are g31,3 = g32,1 = 1, Let g4 be the

network where the only links agents have formed are g42,3 = g41,2 = 1, and let g5

be the network where the only links agents have formed are g52,3 = g51,3 = 1. We
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know by point 1 and point 6 that g3, g4 and g5 are the only networks with two

arcs which can be Nash. By Point 5, g3 (g4) is not Nash since agent 1 (agent 2)

has an incentive to remove her arc with agent 3. Finally, g5 is not Nash. Indeed,

since C1 < C3, we have φ(V1 + V3, C1) > φ(V1 + V3, C3). It follows that agent 2

has an incentive to replace her arc with agent 3 by an arc with agent 1. !

Now we give conditions that ensure the existence of Nash networks. To estab-

lish this existence result we use two lemmas. The first one shows that there always

exists a Nash network when the payoff function is convex in its first argument,

admits ID and there is an agent ! ∈ S who has an incentive to form an arc in the

empty network. The second lemma shows that there always exists a Nash network

if the payoff function is convex in its first argument, admits ID and there is no

agent ! ∈ S who has an incentive to form an arc in the empty network.

In the proof of these lemmas given in Appendix, for each agent j ∈ N we need

the set X ∗
j defined as follows:

X ∗
j =




X ′
j ∈ 2N\{j} | φ




∑

i∈X′
j

Vi,
∑

i∈X′
j

Ci



 ≥ φ




∑

i∈Xj

Vi,
∑

i∈Xj

Ci



 , ∀Xj ∈ 2N\{j}




 .

We denote by X∗
j a typical member of X ∗

j .

Lemma 1 Suppose payoff function satisfies (1), φ is convex in its first argument

and satisfies ID. If there is ! ∈ S for whom φ
(∑

i∈X∗
!
Vi,

∑
i∈X∗

!
Ci

)
≥ φ (0, 0),

X∗
! ∈ X ∗

! , then there exists a Nash network in pure strategies.

The intuition is as follows. Suppose that there is a minimal partner cost agent !

who has an incentive to form arcs in the empty networks ge. We build a process

in two steps. In Step 1, we let agent ! play a best response in ge. We denote by

g0 the resulting network. If ! forms n− 1 arcs, then g0 is a Nash network and the

process stops. Suppose now that ! has formed less than n− 1 arcs in g0. In Step

2, we let all agents who are not linked with ! in g0 form an arc with !. Let j′ be
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one of these agents. We denote by g1 the resulting network. We show that g1 is a

Nash network. First, no agent has an incentive to form additional arcs since each

agent already receives all resources in g1. Moreover agent j′ has no incentive to

replace her arc with ! since agent ! is a minimal partner cost agent. Let us now

show that no agent has an incentive to delete arcs in g1.

We begin with agent j′. By construction (a) j′ obtains more resources in g1 than

! obtained in g0 and (b) the cost incurred by j′ in g1 cannot be higher than the

cost incurred by ! in g0. It follows that the payoff of j′ in g1 is higher than the

payoff of ! in g0. Since agent ! obtains a higher payoff in g0 than in ge, agent j′

obtains a higher payoff in g1 than in ge -if j′ deletes her arc with !, then she will

obtain the same payoff as in ge.

We now give an intuition about the fact that agent ! has no incentive to delete

some arcs in g1. We restrict our attention on situations where ! removes one

of her arcs, say the arc with agent j (in the proof we deal with the deletion of

several arcs). We define two networks which will be useful in the following. Let

ĝk, k ∈ {0, 1}, be a network similar to gk except that ĝk!,j = 0 and ĝkj,! = 1. Firstly,

we note that agent ! obtains the same resources in gk and in ĝk, for k ∈ {0, 1}.

Likewise, agent ! incurs the same cost in gk − gk!,j and in ĝk, for k ∈ {0, 1}. We

show that in network g1 agent ! has less incentive to delete the arc she has formed

with agent j than in network g0. The proof is divided into two parts.

1. By construction for agent !, the variation of cost between g1 and ĝ1 is the

same as the variation of cost between g0 and ĝ0. But, agent ! obtains more

resources in g1 and ĝ1 than in g0 and ĝ0. Consequently, by ID, we have

π!(g1)− π!(ĝ
1) ≥ π!(g0)− π!(ĝ

0).

2. By construction for agent !, the variation of value between ĝ1 and g1 − g1!,j

is the same as the variation of total value between ĝ0 and g0 − g0!,j . But,

the total value obtained by agent ! is greater in ĝ1 than in ĝ0. Clearly,
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agent ! incurs the same cost in networks g0 − g0!,j , g
0 − g0!,j , ĝ

0 and in ĝ1.

Consequently, by convexity, we have π!(ĝ
1)−π!(g1−g1!,j) ≥ π!(ĝ

0)−π!(g0−

g0!,j).

Therefore, we have π!(g1)−π!(g1−g1!,j) = π!(g1)−π!(ĝ
1)+π!(ĝ

1)−π!(g1−g1!,j) ≥

π!(g0)− π!(ĝ
0) + π!(ĝ

0)− π!(g0 − g0!,j) = π!(g0)− π!(g0 − g0!,j). In other words,

agent ! has less incentive to delete the arc she has formed with agent j in network

g1 than in network g0.

Lemma 2 Suppose payoff function satisfies (1), φ is convex in its first argument

and satisfies ID. If there is no agent ! ∈ S for whom φ
(∑

i∈X∗
!
Vi,

∑
i∈X∗

!
Ci

)

≥ φ (0, 0), X∗
! ∈ X ∗

! , then there exists a Nash network in pure strategies.

The logic behind the intuition of Lemma 2 is similar to those of Lemma 1 and

therefore is omitted.

Proposition 2 Suppose payoff function satisfies (1), φ is convex in its first ar-

gument and satisfies ID. Then, a Nash network always exists in pure strategies.

Proof The proof follows the two previous lemmas. !

Remark 1 Suppose payoff function satisfies (1) where φ is an additively separable

function: φ(x, y) = ϕ(x) + η(y) such that (i) ϕ is an increasing function and is

convex in its first argument, and (ii) η is a decreasing function. Then, a Nash

network always exists.

Remark 2 Suppose payoff function satisfies (1) where φ is linear: φ(x, y) =

ax − by, a, b > 0. By Example 2, we know that φ satisfies ID and convexity. It

follows that a Nash network always exists.

Remark 3 By Proposition 2, a Nash network always exists in a network forma-

tion game associated with the payoff function given in Example 3.
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Conclusion

In this paper, we show two main results. First there does not always exist a Nash

network in the partner heterogeneous two-way flow model with a general payoff

function. Second, we demonstrate that if the payoff function is convex in its first

argument and admits ID, then there always exists a Nash network. In other words,

we show the existence of Nash networks for a large class of payoff functions (in

particular for linear payoff functions) in two-way flow models with heterogeneous

partner.

Appendix

Proof of Lemma 1. To prove this lemma, we construct a two steps process. We

begin with the empty network ge.

Step 1. We let agent ! ∈ S play a best response in ge, that is she chooses to form

an arc with each agent j ∈ X∗
! , X

∗
! ∈ X ∗

! .

At the end of this step we obtain a network called g0. If in g0 agent ! has formed

n − 1 arcs, then g0 is clearly a Nash network. In the following we study the

case where agent ! has not formed n − 1 arcs in g0. We have
∑

j∈N!(g0) Vj =
∑

j∈X∗
!
Vj = v(!; g0) and

∑
j∈N!(g0)Cj =

∑
j∈X∗

!
Cj = c(!; g0).

Step 2. We let agents i "∈ X∗
! ∪ {!} form an arc with agent !.

At the end of Step 2, we obtain a network g1. We show that g1 is a Nash network.

Let v−i =
∑

j∈N\{i} Vj . Clearly, we have for all i ∈ N ,
∑

j∈Ni(g1) Vj = v−i. We

show that no agent has an incentive to modify her strategy in g1, that is g1 is a

Nash network.

1. Each agent j in X∗
! has no incentive to add an arc since j obtains all resources

in g1.

2. Agent ! ∈ S has no incentive to add an arc since she obtains all resources in
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g1. We show that agent ! has no incentive to remove one of her arcs. Indeed, we

have φ
(
v(!; g0), c(!; g0)

)
− φ

(∑
i∈X!

Vi,
∑

i∈X!
Ci

)
≥ 0, for all X! ∈ 2N\{!} so in

particular, we have for all M!(g0) ⊂ N!(g0)

0 ≤ φ
(
v(!; g0), c(!; g0)

)
− φ

(∑
i∈M!(g0) Vi,

∑
i∈M!(g0)Ci

)

= φ
(
v(!; g0), c(!; g0)

)
− φ

(
v(!; g0)− κM!(g0), c(!; g

0)− κ′M!(g0)

)
(2)

with κM!(g0) =
∑

i∈N!(g0)\M!(g0) Vi, κ′M!(g0) =
∑

i∈N!(g0)\M!(g0)Ci.

The payoff that agent ! ∈ S obtains in g1 is φ
(
v−!, c(!; g0)

)
since v(!; g1) = v−!

and c(!; g1) = c(!; g0). We have for all M!(g0) ⊂ N!(g0):

φ
(
v−!, c(!; g0)

)
− φ

(
v(!; g0), c(!; g0)

)

≥

φ
(
v−!, c(!; g0)− κ′M!(g0)

)
− φ

(
v(!; g0), c(!; g0)− κ′M!(g0)

)

≥

φ
(
v−! − κM!(g0), c(!; g

0)− κ′M!(g0)

)
− φ

(
v(!; g0)− κM!(g0), c(!; g

0)− κ′M!(g0)

)
.

The first inequality comes from ID since v−! ≥ v(!; g0) and c(!; g0) ≥ c(!; g0) −

κ′M!(g0). The second one comes from convexity of φ. Rearranging terms, we have

for all M!(g0) ⊂ N!(g0):

φ
(
v−!, c(!; g0)

)
− φ

(
v−! − κM!(g0), c(!; g

0)− κ′M!(g0)

)

≥

φ
(
v(!; g0), c(!; g0)

)
− φ

(
v(!; g0)− κM!(g0), c(!; g

0)− κ′M!(g0)

)

It follows that agent ! does not have any incentive to remove arcs since the last

difference is positive by (2).

3. We show that agents i "∈ X∗
! ∪ {!} have no incentive to change their strategy.

Clearly, they have no incentive to replace their arc since they are linked with the
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minimal partner cost agent and they have no incentive to add arcs since they

obtain all the resources in g1. We now show that each agent i "∈ X∗
! ∪ {!} has an

incentive to maintain her arc with agent !. Note that v(!; g0) ≤ v−i. We have:

φ
(
v−i, C!

)
> φ

(
v(!; g0), c(!; g0)

)
≥ φ (0, 0) .

The first inequality comes from the fact that φ is increasing in its first argument

and decreasing in its second argument; the second inequality comes from the

assumption made on the payoff obtained by agent ! ∈ S in g0.

!

Proof of Lemma 2. Suppose that there is no agent in S for whom φ
(∑

i∈X∗
!
Vi,

∑
i∈X∗

!
Ci

)
≥ φ (0, 0), X∗

! ∈ X ∗
! . If there is no agent k ∈ N \ S such that

φ
(∑

i∈Xk
Vi,

∑
i∈Xk

Ci

)
≥ φ (0, 0), for some Xk ∈ 2N\{k}, then the empty net-

work is Nash. We suppose now that such an agent k exists, and we construct

a process similar to the one proposed in Lemma 1. We begin with the empty

network ge.

Step 1. We let agent k play a best response in ge, that is she chooses to form an

arc with each agent j ∈ X∗
k , X

∗
k ∈ X ∗

k .

At the end of this step we obtain a network called g2. If in g2 agent k has formed

n − 1 arcs, then g2 is clearly a Nash network. In the following we study the

case where agent k has not formed n − 1 arcs in g2. We have
∑

j∈Nk(g2) Vj =
∑

j∈X∗
k
Vj = v(k; g2) and

∑
j∈Nk(g2)Cj =

∑
j∈X∗

k
Cj = c(k; g2). It is worth

noting that S ⊂ X∗
k . Indeed, if there is an agent ! ∈ S, such that ! "∈ X∗

k ,

then for X! = X∗
k , we have φ

(∑
i∈X∗

!
Vi,

∑
i∈X∗

!
Ci

)
≥ φ

(∑
i∈X!

Vi,
∑

i∈X!
Ci

)

= φ
(∑

i∈X∗
k
Vi,

∑
i∈X∗

k
Ci

)
≥ φ (0, 0), a contradiction.

Step 2. Agents i "∈ X∗
k ∪ {k} form an arc with an agent ! ∈ S.

At the end of Step 2, we obtain a network g3. Clearly, we have for all i ∈ N ,
∑

j∈Ni(g3) Vj = v−i.

We show that no agent has an incentive to modify her strategy in g3, that is g3
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is a Nash network.

1. Each agent j in X∗
k has no incentive to add an arc since j obtains all resources

in g3.

2. Agent k has no incentive to add an arc since she obtains all resources in

g3. We show that agent k has no incentive to remove one of her arcs. We have

φ
(
v(k; g2), c(k; g2)

)
− φ

(∑
i∈Xk

Vi,
∑

i∈Xk
Ci

)
≥ 0, for all Xk ∈ 2N\{k} so in

particular, we have for all Mk(g2) ⊂ Nk(g2)

0 ≤ φ
(
v(k; g2), c(k; g2)

)
− φ

(∑
i∈Mk(g2) Vi,

∑
i∈Mk(g2)Ci

)

= φ
(
v(k; g2), c(k; g2)

)
− φ

(
v(k; g2)− κMk(g2), c(k; g

2)− κ′Mk(g2)

)
(3)

with κMk(g2) =
∑

i∈Nk(g2)\Mk(g2) Vi, κ′Mk(g2) =
∑

i∈Nk(g2)\Mk(g2)Ci.

The payoff that agent k obtains in g3 is φ
(
v−k, c(k; g2)

)
since v(k; g3) = v−k

and c(k; g3) = c(k; g2). We have for all Mk(g2) ⊂ Nk(g2):

φ
(
v−k, c(k; g2)

)
− φ

(
v(k; g2), c(k; g2)

)

≥

φ
(
v−k, c(k; g2)− κ′Mk(g2)

)
− φ

(
v(k; g2), c(k; g2)− κ′Mk(g2)

)

≥

φ
(
v−k − κMk(g2), c(k; g

2)− κ′Mk(g2)

)
− φ

(
v(k; g2)− κMk(g2), c(!; g

2)− κ′M!(g2)

)
.

The first inequality comes from ID since v−k ≥ v(k; g2) and c(k; g2) ≥ c(k; g2)−

κ′Mk(g2). The second one comes from convexity of φ. Rearranging terms, we have

for all Mk(g2) ⊂ Nk(g2):

φ
(
v−k, c(k; g2)

)
− φ

(
v−k − κMk(g2), c(k; g

2)− κ′Mk(g2)

)

≥

φ
(
v(k; g2), c(k; g2)

)
− φ

(
v(k; g2)− κMk(g2), c(k; g

2)− κ′Mk(g2)

)
(4)
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There are now two cases.

(a)Suppose ! "∈ Mk(g2). Then the marginal payoff of agent k from deleting arcs

with agents in Mk(g2) is

φ
(
v−k − κMk(g2), c(k; g

2)− κ′Mk(g2)

)
− φ

(
v−k, c(k; g2)

)
.

Agent k does not have any incentive to remove arcs with agents j "= ! since the

last difference is negative by (3) and (4).

(b)Suppose ! ∈ Mk(g2). We know that agent ! allows access to more resources

in g3 than in g2 since some players have formed links with ! in Step 2. It follows

that agent k incurs a loss in resources x > κMk(g2) when she removes the set of

agents Mk(g2). We have

φ
(
v−k − κMk(g2), c(k; g

2)− κ′Mk(g2)

)
> φ

(
v−k − x, c(k; g2)− κ′Mk(g2)

)
,

since φ is increasing in its first argument. Therefore, we have

φ
(
v−k, c(k; g2)

)
− φ

(
v−k − x, c(k; g2)− κ′Mk(g2)

)

≥

φ
(
v−k, c(k; g2)

)
− φ

(
v−k − κMk(g2), c(k; g

2)− κ′Mk(g2)

)

It follows that agent k does not have any incentive to remove arcs with agents

j "= ! since the last difference is positive by (3) and (4).

3. Each agent i "∈ X∗
k ∪ {k} has no incentive to add an arc since she obtains

all resources in g3. She has no incentive to replace an arc since she is linked with

a minimal partner cost agent. We now show that she has no incentive to break

her arc. Note that v(k; g2) ≤ v−i. We have:

φ
(
v−i, C!

)
> φ

(
v(k; g2), c(k; g2

)
) ≥ φ (0, 0) .

The first inequality comes from the fact that φ is increasing in its first argument

and decreasing in its second argument; the second inequality comes from the

assumption made on the payoff obtained by agent k ∈ N in g2. !
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