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Efficient machine learning implementations optimized for inference in hardware have wide-
ranging benefits, depending on the application, from lower inference latency to higher data
throughput and reduced energy consumption. Two popular techniques for reducing
computation in neural networks are pruning, removing insignificant synapses, and
quantization, reducing the precision of the calculations. In this work, we explore the
interplay between pruning and quantization during the training of neural networks for ultra
low latency applications targeting high energy physics use cases. Techniques developed
for this study have potential applications across many other domains. We study various
configurations of pruning during quantization-aware training, which we term quantization-
aware pruning, and the effect of techniques like regularization, batch normalization, and
different pruning schemes on performance, computational complexity, and information
content metrics. We find that quantization-aware pruning yields more computationally
efficient models than either pruning or quantization alone for our task. Further,
quantization-aware pruning typically performs similar to or better in terms of
computational efficiency compared to other neural architecture search techniques like
Bayesian optimization. Surprisingly, while networks with different training configurations
can have similar performance for the benchmark application, the information content in the
network can vary significantly, affecting its generalizability.
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1 INTRODUCTION

Efficient implementations of machine learning (ML) algorithms provide a number of advantages for
data processing both on edge devices and at massive data centers. These include reducing the latency
of neural network (NN) inference, increasing the throughput, and reducing power consumption or
other hardware resources like memory. During the ML algorithm design stage, the computational
burden of NN inference can be reduced by eliminating nonessential calculations through a modified
training procedure. In this paper, we study efficient NN design for an ultra-low latency, resource-
constrained particle physics application. The classification task is to identify radiation patterns that
arise from different elementary particles at sub-microsecond latency. While our application domain
emphasizes low latency, the generic techniques we develop are broadly applicable.

Two popular techniques for efficient ML algorithm design are quantization and pruning.
Quantization is the reduction of the bit precision at which calculations are performed in a NN
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to reduce the memory and computational complexity. Often,
quantization employs fixed-point or integer calculations, as
opposed to floating-point ones, to further reduce computations
at no loss in performance. Pruning is the removal of unimportant
weights, quantified in some way, from the NN. In the most
general approach, computations are removed, or pruned, one-by-
one from the network, often using their magnitude as a proxy for
their importance. This is referred to as magnitude-based
unstructured pruning, and in this study, we generically refer to
it as pruning. Recently, quantization-aware training (QAT),
accounting for the bit precision at training time, has been
demonstrated in a number of studies to be very powerful in
efficient ML algorithm design. In this paper, we explore the
potential of combining pruning with QAT at any possible
precision. As one of the first studies examining this
relationship, we term the combination of approaches
quantization-aware pruning (QAP). The goal is to understand
the extent to which pruning and quantization approaches are
complementary and can be optimally combined to create even
more efficiently designed NNs.

Furthermore, as detailed in Section. 1.1, there are multiple
approaches to efficient NN optimization and thus also to QAP.
While different approaches may achieve efficient network
implementations with similar classification performance, these
trained NNs may differ in their information content and
computational complexity, as quantified through a variety of
metrics. Thus, some approaches may better achieve other
desirable characteristics beyond classification performance
such as algorithm robustness or generalizability.

This paper is structured as follows. Section 1.1 briefly
recapitulates related work. Section 2 describes the low latency
benchmark task in this work related to jet classification at the
CERN Large Hadron Collider (LHC). Section 3 introduces our
approach to QAP and the various configurations we explore in
this work. To study the joint effects of pruning and quantization,
we introduce the metrics we use in Section 4. Themain results are
reported in Section 5. Finally, a summary and outlook are given
in Section 6.

1.1 Related Work
While NNs offer tremendous accuracy on a variety of tasks, they
typically incur a high computational cost. For tasks with stringent
latency and throughput requirements, this necessitates a high
degree of efficiency in the deployment of the NN. A variety of
techniques have been proposed to explore the efficient processing
of NNs, including quantization, pruning, low-rank tensor
decompositions, lossless compression and efficient layer
design. We refer the reader to Sze et al. (2020) for a survey of
techniques for efficient processing of NNs, and focus on related
work around the key techniques covered in this paper.

Pruning
Early work (LeCun et al., 1990) in NN pruning identified key
benefits including better generalization, fewer training examples
required, and improved speed of learning the benefits through
removing insignificant weights based on second-derivative
information. Recently, additional compression work has been

developed in light of mobile and other low-power applications,
often using magnitude-based pruning (Han et al., 2016). In
Frankle and Carbin (2019), the authors propose the lottery
ticket (LT) hypothesis, which posits that sparse subnetworks
exist at initialization which train faster and perform better
than the original counterparts. Renda et al. (2020) proposes
learning rate rewinding in addition to weight rewinding to
more efficiently find the winning lottery tickets. Zhou et al.
(2019) extends these ideas further to learning “supermasks”
that can be applied to an untrained, randomly initialized
network to produce a model with performance far better than
chance. The current state of pruning is reviewed in Blalock et al.
(2020), which finds current metrics and benchmarks to be
lacking.

Quantization
Reducing the precision of a static, trained network’s operations,
post-training quantization (PTQ), has been explored extensively
in the literature (Han et al., 2016; Duarte et al., 2018; Banner et al.,
2019; Meller et al., 2019; Nagel et al., 20192019; Zhao et al., 2019).
QAT (Courbariaux et al., 2015; Rastegari et al., 2016a; Li and Liu,
2016; Zhou et al., 2016; Moons et al., 2017; Hubara et al., 2018;
Micikevicius et al., 2018; Wang et al., 2018; Zhang et al., 2018;
Zhuang et al., 2018; Ngadiuba et al., 2020) has also been suggested
with different frameworks like QKERAS (Coelho, 2019; Coelho
et al., 2021) and BREVITAS (Blott et al., 2018; Pappalardo, 2020)
developed specifically to explore quantized NN training. Hessian-
aware quantization (HAWQ) (Dong et al., 2019; Dong et al.,
2020) is another quantization approach that uses second
derivative information to automatically select the relative bit
precision of each layer. The Bayesian bits approach attempts
to unify structured pruning and quantization by identifying
pruning as the 0-bit limit of quantization (van Baalen et al.,
2020). In Hacene et al. (2020), a combination of a pruning
technique and a quantization scheme that reduces the
complexity and memory usage of convolutional layers, by
replacing the convolutional operation by a low-cost
multiplexer, is proposed. In partuclar, the authors propose an
efficient hardware architecture implemented on field-
programmable gate array (FPGA) on-chip memory. In Chang
et al. (2021), the authors apply different quantization schemes
(fixed-point and sum-power-of-two) to different rows of the
weight matrix to achieve better utilization of heterogeneous
FPGA hardware resources.

Efficiency Metrics
Multiple metrics have been proposed to quantify NN efficiency,
often in the context of dedicated hardware implementations. The
artificial intelligence quotient (aiQ) is proposed in Schaub and
Hotaling (2020) as metric to measure the balance between
performance and efficiency of NNs. Bit operations (BOPs)
(Baskin et al., 2021) is another metric that aims to generalize
floating-point operations (FLOPs) to heterogeneously quantized
NNs. A hardware-aware complexity metric (HCM)
(Karbachevsky et al., 2021) has also been proposed that aims
to predict the impact of NN architectural decisions on the final
hardware resources. Our work makes use of some of these metrics
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and further explores the connection and tradeoff between
pruning and quantization.

2 BENCHMARK TASK

The LHC is a proton-proton collider that collides bunches of
protons at a rate of 40 MHz. To reduce the data rate, an online
filter, called the trigger system, is required to identify the most
interesting collisions and save them for offline analysis. A crucial
task performed on FPGAs in the Level-1 trigger system that can
be greatly improved byML, both in terms of latency and accuracy,
is the classification of particles coming from each proton-proton
collision. The system constraints require algorithms that have a
latency of O(μs) while minimizing the limited FPGA resources
available in the system.

We consider a benchmark dataset for this task to demonstrate our
proposed model efficiency optimization techniques. In Coleman et al.

(2018), Duarte et al. (2018), andMoreno et al. (2020), a dataset (Pierini
et al., 2020) was presented for the classification of collimated showers
of particles, or jets, arising from the decay and hadronization of five
different classes of particles: light flavor quarks (q), gluons (g), W and
Z bosons, and top quarks (t). For each class, jets are pair-produced
(W+W−,ZZ, qq, tt, gg) in proton-proton collisions at a center-of-mass
energy of 13 TeV from the same qq initial state. The jets are selected
such that the unshowered parton or boson has a transversemomentum
of 1 TeV within a narrow window of ± 1%(10GeV) such that
transverse momenta spectra is similar for all classes. Each jet is
represented by 16 physics-motivated high-level features which are
presented in Table 1 of Coleman et al. (2018). The dataset contains
870,000 jets, balanced across all classes and split into 472,500 jets for
training, 157,500 jets for validation, and 240,000 jets for testing.
Adopting the same baseline architecture as in Duarte et al. (2018),
we consider a fully-connectedNN consisting of three hidden layers (64,
32, and 32 nodes, respectively) with rectified linear unit (ReLU) (Nair
and Hinton, 2010; Glorot et al., 2011) activation functions, shown in

TABLE 1 | Performance evolution of the jet substructure classification task for this NN architecture.

Model Precision BN or L1 Pruned [%] BOPs Accuracy [%] 〈ϵϵs = 0.5b 〉 [%] 〈AUC〉 [%]

Nominal 32-bit floating-point L1 + BN 0 4,652,832 76.977 0.00171 94.335
Pruning + PTQ 16-bit fixed-point L1 + BN 70 631,791 75.01 0.00210 94.229
QAT 6-bit fixed-point L1 + BN 0 412,960 76.737 0.00208 94.206
QAP 6-bit scaled-integer L1 + BN 80 189,672 76.602 0.00211 94.197

“Nominal” refers to an unpruned 32-bit implementation, “pruning + PTQ” refers to a network with FT pruning at 32-bit precision with PTQ applied to reduce the precision to 16 bits, “QAT”
refers to a QKERAS implementation, and “QAP” is this result. The bolded value in each column indicates the best value of each metric.

FIGURE 1 |Baseline fully-connected neural network architecture, consisting of 16 inputs, five softmax-activated outputs, and three hidden layers. The three hidden
layers contain 64, 32, and 32 hidden nodes each with ReLU activation. A configuration with batch normalization (BN) layers before each ReLU activation function is also
considered. The red and blue lines represent positive and negative weights, respectively, and the opacity represents the magnitude of each weight for this randomly
initialized network.
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Figure 1. The output layer hasfive nodes, yielding a probability for each
of thefive classes through a softmax activation function.We refer to this
network as the baseline floating-point model.

3 QUANTIZATION-AWARE PRUNING

Applying quantization and pruning to a NN can drastically
improve its efficiency with little to no loss in performance.
While applying these changes to a model post-training can be
successful, to be maximally effective, we consider these effects at
the time of NN training. Because computational complexity, as
defined in Section 4, is quadratically dependent on precision
while it is linearly dependent on pruning, the first step in our QAP
approach is to perform QAT. This is followed by integrating
pruning in the procedure.

3.1 Quantization-Aware Training
Quantized (Hubara et al., 2018; Gong et al., 2014; Wu et al., 2016;
Vanhoucke et al., 2011; Gupta et al., 2015) and even binarized
(Courbariaux et al., 2015; Gupta et al., 2015; Hubara et al., 2016;
Rastegari et al., 2016b; Merolla et al., 2016) NNs have been studied
as a way to compress NNs by reducing the number of bits required
to represent each weight and activation value. As a common
platform for NNs acceleration, FPGAs provide considerable
freedom in the choice of data type and precision. Both choices
should be considered carefully to prevent squandering FPGA
resources and incurring additional latency. For example, in
QKERAS and hls4ml (Duarte et al., 2018), a tool for transpiling
NNs on FPGAs, fixed-point arithmetic is used, which requires less
resources and has a lower latency than floating-point arithmetic.
For each parameter, input, and output, the number of bits used to
represent the integer and fractional parts can be configured
separately. The precision can be reduced through PTQ, where
pre-trained model parameters are clipped or rounded to lower
precision, without causing a loss in performance (Gupta et al.,
2015) by carefully choosing the bit precision.

Compared to PTQ, a larger reduction in precision can be
achieved through QAT (Li and Liu, 2016; Moons et al., 2017),
where the reduced precision of the weights and biases are
accounted for directly in the training of the NN. It has been
found that QAT models can be more efficient than PTQ models
while retaining the same performance (Coelho et al., 2021). In
these studies, the same type of quantization is applied everywhere.
More recently (Dong et al., 2019; Wang et al., 2019; Dong et al.,
2020), it has been suggested that per-layer heterogeneous
quantization is the optimal way to achieve high accuracy at
low resource cost. For the particle physics task with a fully-
connected NN, the accuracy of the reduced precision model is
compared to the 32-bit floating-point implementation as the bit
width is scanned. In the PTQ case (Duarte et al., 2018), the
accuracy begins to drop below 14-bit fixed-point precision, while
in the QAT case implemented with QKERAS (Coelho et al., 2021)
the accuracy is consistent down to 6 bits.

In this work, we take a different approach to training
quantized NNs using BREVITAS (Pappalardo, 2020), a PYTORCH

library for QAT. BREVITAS provides building blocks at multiple

levels of abstraction to compose and apply quantization
primitives at training time. The goal of BREVITAS is to model
the data type restrictions imposed by a given target platform
along the forward pass. Given a set of restriction, BREVITAS

provides several alternative learning strategies to fulfill them,
which are exposed to the user as hyperparameters. Depending on
the specifics of the topology and the overall training regimen,
different learning strategies can be more or less successful at
preserving the accuracy of the output NN. Currently, the available
quantizers target variations of binary, ternary, and integer data
types. Specifically, given a real valued input x, the integer
quantizer Qint(x) performs uniform affine quantization,
defined as

Qint(x) � s clamp
ymin ,ymax

(round(x
s
)) (1)

where

clamp
ymin ,ymax

(y) � ⎧⎪⎨⎪⎩
ymin y < ymin ,
y ymin ≤ y ≤ ymax ,
ymax y > ymax ,

(2)

round(·) : R→Z is a rounding function, s ∈ R is the scale factor,
and ymin ∈ Z and ymax ∈ Z are the minimum and maximum
thresholds, respectively, which depend on the available word
length (number of bits in a word).

In this work, we adopt round-to-nearest as the round function,
and perform per-tensor quantization on both weights and
activations, meaning that s is constrained to be a scalar
floating-point value. As the ReLU activation function is used
throughout, unsigned values are used for quantized activations.
Thus, for a word length of n, the clamp function,
champAmin ,Amax

(·), is used with Amin � 0 and Amax � 2n − 1.
Quantized weights are constrained to symmetric signed values
so champwmin ,wmax

(·) is used with wmax � 2n−1 − 1 and wmin �
−wmax.

In terms of learning strategies, we apply the straight-through
estimator (STE) (Courbariaux et al., 2015) during the backward
pass of the rounding function, which assumes that quantization
acts as the identity function, as is typically done in QAT. For the
weights’ scale, similar to Jacob et al. (2018), sw is re-computed at
each training step such that the maximum value in each weight
tensor is represented exactly

sw � maxtensor(|W|)
2n−1 − 1

, (3)

whereW is the weight tensor for a given layer and maxtensor(·) is
the function that takes an input tensor and returns the maximum
scalar value found within. For the activations, the scale factor sA is
defined as:

sA � sA,learned
2n−1

, (4)

where sA,learned is a parameter individual to each quantized
activation layer, initialized to 6.0 (in line with the ReLU6(·)
activation function), and learned by backpropagation in
logarithmic scale, as described in Jain et al. (2020). In the
following, we refer to this scheme as scaled-integer quantization.
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3.2 Integrating Pruning
Network compression is a common technique to reduce the size,
energy consumption, and overtraining of deep NNs (Han et al.,
2016). Several approaches have been successfully deployed to
compress networks (Cheng et al., 2018; Choudhary et al., 2020;
Deng et al., 2020). Here we focus specifically on parameter
pruning: the selective removal of weights based on a particular
ranking (Louizos et al., 2018; Frankle and Carbin, 2019; Blalock
et al., 2020; Renda et al., 2020).

Prior studies (Duarte et al., 2018) have applied pruning in an
iterative fashion: by first training a model then removing a fixed
fraction of weights per layer then retraining the model, while
masking the previously pruned weights. This processed can be
repeated, restoring the final weights from the previous iteration,
several times until reaching the desired level of compression. We
refer to this method as fine-tuning (FT) pruning. While the above
approach is effective, we describe here an alternative approach
based on the LT hypothesis (Frankle and Carbin, 2019) where the
remaining weights after each pruning step are initialized back to
their original values (“weight rewinding”). We refer to this method
as LT pruning. We propose a new hybrid method for constructing
efficient NNs, QAP, which combines a pruning procedure with
training that accounts for quantized weights. As a first
demonstration, we use BREVITAS (Pappalardo, 2020) to perform
QAT and iteratively prune a fraction of the weights following the
FT pruning method. In this case, we FT prune approximately 10%
of the original network weights (about 400 weights) each iteration,
with a reduction in the number of weights to prune once a sparsity
of 90% is reached. Weights with the smallest L1 norms across the
full model are removed each iteration.

Our procedure for FT and LT pruning are demonstrated in
Figure 2, which shows the training and validation loss as a function

of the epoch. To demonstrate the effect of QAP, we start by
training a network using QAT for our jet substructure task
constraining the precision of each layer to be 6 bits using
BREVITAS. This particular training includes batch normalization
(BN) layers and L1 regularization described in more detail in
Section 3.3, although we also present results without these aspects.

In Figure 2A, the FT pruning procedure iteratively prunes the
6-bit weights from the network. Each iteration is denoted by the
dotted red lines after which roughly 10% of the lowest magnitude
weights are removed. At each iteration, we train for 250 epochs
with an early stopping criteria of no improvement in the validation
loss for 10 epochs. The FT pruning procedure continues to
minimize or maintain the same loss over several pruning
iterations until the network becomes so sparse that the
performance degrades significantly around epoch 300. In
Figure 2B, the LT pruning procedure is shown. Our approach
deviates from the canonical LT pruning study (Frankle andCarbin,
2019) in that we fully train each pruning iteration until the early
stopping criteria is satisfied instead of partially optimizing the
network. This is because we would like to explore the performance
of the network at each stage of pruning to evaluate a number of
metrics. However, the behavior is as expected—at each pruning
iteration the loss goes back to its initial value. Similar to the FT
pruning case, when the LT pruning NN becomes very sparse,
around epoch 1,500, the performance begins to degrade. We note
that because of the additional introspection at each iteration, our
LT pruning procedure requires many more epochs to train than
the FT pruning procedure.

3.3 Neural Network Training Configurations
In this section, we describe BN and L1 regularization, which have
the power to modify the efficiency of our QAP models. We also

FIGURE 2 | The loss function for the QAP procedure for a 6-bit jet classification neural network. FT pruning is demonstrated on the left (A) and LT pruning is shown
on the right (B).
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describe Bayesian optimization (BO), which we use to perform a
standard neural architecture search for comparison to QAP.

3.3.1 Batch Normalization and L1 Regularization
BN (Ioffe et al., 2015) was originally proposed to mitigate internal
covariate shift, although others have suggested its true benefit is in
improving the smoothness of the loss landscape (Santurkar et al.,
2018). The BN transformation y for an input x is

y � γ
x − μ





σ2 + ϵ

√ + β, (5)

given the running mean μ and standard deviation σ, the learnable
scale γ and shift β parameters, and ϵ a small number to increase
stability. Practically, the BN layer shifts the output of dense layers
to the range of values in which the activation function is
nonlinear, enhancing the network’s capability of modeling
nonlinear responses, especially for low bit precision (Ngadiuba
et al., 2020). For this reason, it is commonly used in conjunction
with extremely low bit precision.

We also train models with and without L1 regularization (Han
et al., 2015; Duarte et al., 2018), in which the classification loss
function Lc is augmented with an additional term,

L � Lc + λ||w||1 , (6)

where w is a vector of all the weights of the model and λ is a
tunable hyperparameter. This can be used to assist or accelerate
the process of iterative pruning, as it constrains some weights to
be small, producing already sparse models (Ng, 2004). As the
derivative of the penalty term is λ whose value is independent of
the weight, L1 regularization can be thought of as a force that
subtracts some constant from an ineffective weight each update
until the weight reaches zero.

3.3.2 Bayesian Optimization
BO (Jones et al., 1998; O’Hagan, 1978; Osborne, 2010) is a
sequential strategy for optimizing expensive-to-evaluate
functions. In our case, we use it to optimize the
hyperparameters of the NN architecture. BO allows us to tune
hyperparameters in relatively few iterations by building a smooth
model from an initial set of parameterizations (referred to as the
“surrogate model”) in order to predict the outcomes for as yet
unexplored parameterizations. BO builds a smooth surrogate
model using Gaussian processes (GPs) based on the
observations available from previous rounds of
experimentation. This surrogate model is used to make
predictions at unobserved parameterizations and quantify the
uncertainty around them. The predictions and the uncertainty
estimates are combined to derive an acquisition function, which
quantifies the value of observing a particular parameterization.
We optimize the acquisition function to find the best
configuration to observe, and then after observing the
outcomes at that configuration a new surrogate model is fitted.
This process is repeated until convergence is achieved.

We use the Ax and BoTorch libraries (Facebook, 2019;
Balandat et al., 2020; Daulton et al., 2020) to implement the
BO based on the expected improvement (EI) acquisition function,

EI(x) � E[min(f (x) − f *), 0] (7)

where f * � miniyi is the current best observed outcome and our
goal is to minimize f. The total number of trials is set to 20 with a
maximum number of parallel trials of 3 (after the initial
exploration). Our target performance metric is the binary
cross entropy loss as calculated on a “validation” subset of the
jet substructure dataset. After the BO procedure is complete, and
a “best” set of hyperparameters is found, each set of
hyperparameters tested during the BO procedure is then fully
trained for 250 epochs with an early stopping condition, and then
metrics are calculated for eachmodel on the “test” subset of the jet
substructure dataset.

4 EVALUATION METRICS

As we develop NNmodels to address our benchmark application,
we use various metrics to evaluate the NNs’ performance.
Traditional metrics for performance include the classification
accuracy, the receiver operating characteristic (ROC) curve of
false positive rate versus true positive rate and the corresponding
area under the curve (AUC). In physics applications, it is also
important to evaluate the performance in the tails of distributions
and we will introduce metrics to measure that as well. The aim of
quantization and pruning techniques is to reduce the energy cost
of NN implementations, and therefore, we need a metric to
measure the computational complexity. For this, we introduce

FIGURE 3 | The ROC curve for each signal jet type class where the
background are the other four classes. Curves are presented for the unpruned
32-bit floating point classifier (solid lines) and 6-bit scaled integer models
(dashed lines). All models are trained with batch normalization layers and
L1 Regularization.
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a modified version of BOPs (Baskin et al., 2021). In addition, in
this study we aim to understand how the network itself changes
during training and optimization based on different NN
configurations. While the performance may be similar, we
would like to understand if the information is organized in the
NN in the same way. Then we would like to understand if that has
some effect on robustness of the model. To that end, we explore
Shannon entropy metrics (Shannon, 1948) and performance
under class randomization.

4.1 Classification Performance
For our jet substructure classification task, we consider the
commonly-used accuracy metric to evaluate for the multi-class
performance: average accuracy across the five jet classes. Beyond
that, we also want to explore the full shape of the classifier
performance in the ROC curve. This is illustrated in Figure 3
where the signal efficiency of each signal class is plotted against
the misidentification probability for the other four classes,
denoted as the background efficiency. The general features of
Figure 3 illustrate that gluon and quark jets are more difficult to
distinguish than higher mass jet signals, W and Z boson, and the
top quark. The Z boson is typically easier to distinguish than the
W boson due to its greater mass. Meanwhile, the top quark is
initially the easiest to distinguish at higher signal efficiency but at
lower signal efficiencies loses some performance—primarily due
to the top quark radiating more because the top quark has color
charge. In particle physics applications, it is common to search for
rare events so understanding tail performance of a classifier is also
important. Therefore, as another performance metric, we define
the background efficiency at a fixed signal efficiency of 50%,
ϵϵs�0.5b . We can report this metric ϵϵs�0.5b for any signal type,
considering all other classes as background processes. From
these ROC curves, we see that ϵϵs�0.5b can range from a few
percent to the per-mille scale for the background samples. In
Figure 3, we show the ROC curves for two NN models: one
trained with 32-bit floating-point precision and another one
trained with QAT at 6-bit scaled-integer precision. The
networks are trained with L1 regularization and BN layers and
do not include pruning.

4.2 Bit Operations
The goal of quantization and pruning is to increase the efficiency
of the NN implementation in hardware. To estimate the NN
computational complexity, we use the BOPs metric (Baskin et al.,
2021). This metric is particularly relevant when comparing the
performance of mixed precision arithmetic in hardware
implementations on FPGAs and ASICs. We modify the BOPs
metric to include the effect of unstructured pruning. For a pruned
fully-connected layer, we define it as

BOPs � mn[(1 − fp)babw + ba + bw + log2(n)] (8)

where n (m) is the number of inputs (outputs), bw (ba) is the bit
width of the weights (activations), and fp is the fraction of pruned
layer weights. The inclusion of the fp term accounts for the
reduction in multiplication operations because of pruning. In
the dominant term, due to multiplication operations (babw),

BOPs is quadratically dependent on the bit widths and linearly
dependent on the pruning fraction. Therefore, reducing the
precision is the first step in our QAP procedure, as described
above, followed by iterative pruning.

4.3 Shannon Entropy, Neural Efficiency, and
Generalizability
Typically, the hardware-centric optimization of a NN is a multi-
objective, or Pareto, optimization of the algorithm performance
(in terms of accuracy or AUC) and the computational cost. Often,
we can arrive at a range of Pareto optimal solutions through
constrained minimization procedures. However, we would like to
further understand how the information in different hardware-
optimized NN implementations are related. For example, do
solutions with similar performance and computational cost
contain the same information content? To explore that
question, we use a metric called neural efficiency ηN (Schaub
and Hotaling, 2020).

Neural efficiency measures the utilization of state space, and it
can be thought of as an entropic efficiency. If all possible states are
recorded for data fed into the network, then the probability, ps, of
a state s occurring can be used to calculate Shannon entropy Eℓ of
network layer ℓ

Eℓ � −∑S
s�1

ps log2(ps), (9)

where the sum runs over the total size of the state space S. For a
b-bit implementation of a network layer with Nℓ neurons, this
sum is typically intractable to compute, except for extremely low
bit precision and small layer size, as the state space size is S � 2bNℓ

Therefore, a simplification is made to treat the state of a single
neuron as binary (whether the output value is greater than zero)
so that S � 2Nℓ . The maximum entropy of a layer corresponds to
the case when all states occur with equal probability, and the
entropy value is equal to the number of neurons Eℓ � Nℓ . The
neural efficiency of a layer can then be defined as the entropy of
the observed states relative to the maximum entropy: η

ℓ
� Eℓ/Nℓ .

Neuron layers with neural efficiency close to one (zero) are
making maximal (minimal) usage of the available state space.
Alternatively, high neural efficiency could also mean the layer
contains too few neurons.

To compute the neural efficiency of a fully-connected NN ηN
we take the geometric mean of the neural efficiency of each layer
η
ℓ
in the network

ηN � ⎛⎝∏L
ℓ�1

η
ℓ
⎞⎠1

L

(10)

Although neural efficiency ηN does not directly correlate with
NN performance, in Schaub and Hotaling (2020), it was found
there was connection between NN generalizability and the neural
efficiency. NNs with higher neural efficiency that maintain good
accuracy performance were able to perform better when classes
were partially randomized during training. The interpretation is
that such networks were able to learn general features of the data
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rather than memorize images and therefore are less susceptible to
performance degradation under class randomization. Therefore,
in the results of our study, we also explore the effect of class
randomization on our jet substructure task.

5 RESULTS

In the previous sections, we have introduced the benchmark task,
the QAP approach, and metrics by which we will evaluate the
procedure. In this section, we present the results of our
experiments. Our experiments are designed to address three
conceptual topics:

• In Section 5.1, we aim to study how certain training
configuration choices can affect the performance
(accuracy and ϵϵs�0.5b ) of our QAP procedure and how it
compares to previous works. In particular, we study the
dependence of performance on the pruning procedure, the
bit width, and whether we include batch normalization and
L1 regularization into the network training.

• In Section 5.2, now with an optimized procedure for QAP,
we would like to understand the relationship between
structured (neuron-wise) and unstructured (synapse-wise)
pruning. These two concepts are often overloaded but

reduce computational complexity in different ways. To
do this, we compare the unstructured pruning procedure
we introduced in Section 5.1 to removing whole neurons in
the network. Structured pruning, or optimizing the
hyperparameter choice of NN nodes, is performed using
a Bayesian Optimization approach introduced in
Section 3.3.2.

• In Section 5.3, we make preliminary explorations to
understand the extent to which QAP is removing
important synapses which may prevent generalizability of
the model. While there are a number of ways to test this; in
our case, we test generalizability by randomizing a fraction
of the class labels and checking if we are still able to prune
the same amount of weights from the network as in the non-
randomized case.

5.1 Quantization—Aware Pruning
Performance
The physics classifier performance is measured with the accuracy
and ϵϵs�0.5b metric for each signal class. We train a number of
models at different precision: 32-bit floating-point precision and
12-, 6-, and 4-bit scaled-integer precision. For each precision
explored, we then apply a pruning procedure. We explore both of
the LT and FT pruning schemes described in Section 3. The result
is illustrated in Figure 4 where each of the colored lines indicates

FIGURE 4 |Model accuracy (A) and background efficiency (B) at 50% signal efficiency versus BOPs for different sparsities achieved via QAP, for both FT and LT
pruning techniques.
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a different model precision, the solid (dashed) lines correspond to
FT (LT) pruning, and each of the points along the curves
represents the percent of the original network weights that
have been pruned. Each NN includes a BN layer after each of
the hidden layers and has been trained including an L1
regularization loss term. Further, each model’s performance
was verified via a k-fold cross-validation scheme, where k � 4
in which training and validation datasets were shuffled over
multiple training instances. Plotted performance is the mean
value and error bars represent the standard error across the
folds. All metrics were calculated on the same test dataset,
which stayed static across each training instance. The first
observation from Figure 4 is that we can achieve comparable
performance to the 32-bit floating-point model with the 6-bit
scaled-integer model. This is consistent with findings in a
previous QKERAS-based study (Coelho et al., 2021) where, with
uniform quantization, the performance was consistent down to 6-
bit fixed-point quantization. When the precision is reduced to 4-
bits, the performance begins to degrade. Then, as we increasingly
prune the models at all of the explored precisions, the
performance is maintained until about 80% of the weights are
pruned. The observations are consistent whether we consider the
accuracy (Figure 4A) or ϵϵs�0.5b (Figure 4B right) metric. For the
case of ϵb, there is an increase of roughly 1.2–2 × with respect to
the 32-bit floating-point model; however, there are statistical
fluctuations in the values because of the limited testing sample
size and the small background efficiencies of 2 × 10−3 that we
probe. Instead, now if we compare the computational cost of our
QAP 6-bit model to the unpruned 32-bit model, we find a greater
than 25× reduction in computational cost (in terms of BOPs) for
the same classifier performance. For the jet substructure
classification task, the quantization and pruning techniques are

complementary and can be used in tandem at training time to
develop an extremely efficient NN. With respect to earlier work
with FT pruning at 32-bit floating-point precision and PTQ
presented in Duarte et al. (2018), we find a further greater
than 3× reduction in BOPs.

In Figure 4, we also find that there is no significant
performance difference between using FT and LT pruning. As
we prune the networks to extreme sparsity, greater than 80%, the
performance begin to degrade drastically for this particular
dataset and network architecture. While the plateau region is
fairly stable, in the ultra-sparse region, there are significant
variations in the performance metrics indicating that the
trained networks are somewhat brittle. For this reason, we
truncate the accuracy versus BOPs graphs at 60% accuracy.

We also explore the performance of the model when
removing either the BN layers or the L1 regularization term,
which we term the no BN and no L1 models, respectively. This is
illustrated in Figure 5 for the 32-bit floating-point and 6-bit
scaled-integer models. For easier visual comparisons, we omit
the 4-bit and 12-bit models because the 6-bit model is the lowest
precision model with comparable performance to the 32-bit
model. In Figure 5A, we see that there is a modest performance
degradation in the no BN configuration for both lower and full
precision models. In our application, we find that batch
normalization does stabilize and improve the performance of
our NN and thus include it in our baseline model definition. In
Figure 5B, we find that including or removing the L1
regularization term in the loss function does not affect the
performance significantly until extreme sparsity where the
variations in performance can be large. However, as we will
see in Section 5.3, this does not mean that the entropic
information content of the NNs are similar.

FIGURE 5 |Comparison of the model accuracy when trained with BN layers and L1 regularization versus when trained without BN layers (A) or L1 regularization (B).
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To highlight the performance of the QAP procedure, we
summarize our result compared to previous results for this jet
substructure classification task with the same NN architecture
shown in Figure 1. The results are summarized in Table 1. In
the nominal implementation, no quantization or pruning is
performed. In Duarte et al. (2018), the 32-big floating-point
model is FT pruned and then quantized post-training. This
approach suffers from a loss of performance below 16 bits.
Using QAT and QKERAS (Coelho et al., 2021), another
significant improvement was demonstrated with a 6-bit fixed-
point implementation. Finally, in this work with QAP and
BREVITAS, we are able to prune the 6-bit network by another
80%. With respect to the nominal implementation we have
reduced the BOPs by a factor of 25, the original pruning + PTQ
approach a factor of 3.3, and the QAT approach by a factor of 2.2.

One further optimization step is to compare against a mixed-
precision approach where different layers have different
precisions (Coelho et al., 2021). We leave the study of mixed-
precision QAP to future work and discuss it in Section 6.

5.2 Pruned Versus Unpruned Quantized
Networks
To compare against the efficacy of applying QAP, we explore
QAT with no pruning. In an alternate training strategy, we
attempt to optimize the NN architecture of the unpruned
QAT models. This is done using the BO technique presented
in Section 3.3. The widths of the hidden layers are varied to find
optimal classifier performance. We compare the performance of
this class of possible models using BO against our QAP

procedure, including BN and L1 regularization, presented in
the previous section. It is important to note, as we will see,
that QAP and BO are conceptually different procedures and
interesting to compare. The QAP procedure starts with a
particular accuracy-optimized model and attempts to
“streamline” or compress it to its most optimal bit-level
implementation. This is the reason that the accuracy drops
precipitously when that particular model can no longer be
streamlined. Alternatively, the family of BO models explores
the Pareto optimal space between BOPs and accuracy. In
future work, we would like to further explore the interplay
between QAP and BO.

Figure 6 presents both the accuracy versus BOPs curves for
the QAPmodels and the unpruned QATmodels found using BO.
For ease of comparison, we display only the 32-bit and 6-bit
models. The solid curves correspond to the QAPmodels while the
individual points represent the various trained unpruned models
explored during the BO procedure. The unpruned model with the
highest classification performance found using the BO procedure
is denoted by the star. While the starred models are the most
performant, there is a class of BO models that tracks along the
QAP curves fairly well. There is a stark difference in how QAP
and BO models behave as the accuracy degrades below the so-
called “plateau” region where the accuracy is fairly constant and
optimal. When the sub-network of the QAP model can no longer
approximate the optimally performing model, its performance
falls off dramatically and the accuracy drops quickly. Because BO
explores the full space including Pareto optimal models in BOPs
versus accuracy, they exhibit a more gentle decline in
performance at small values of BOPs. It is interesting to note

FIGURE 6 | Comparison of FT pruned model’s and BO model’s accuracy (A) and background efficiency (B) at 50% signal efficiency. Each hyperparameter
configuration that was explored during the BO procedure is marked as a transparent dot, with the resulting “best”model, which the lowest BCE Loss as calculated on the
“test” set, is marked by the outlined star.
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that the classification performance of the BO models begins to
degrade where the QAP procedure also falls off in performance;
for example, just above 105/BOPs in Figure 6A for the 6-bit
models. We anticipate future work to explore combining BO and
QAP procedures to see if any accuracy optimal model can be
found at smaller BOPs values.

5.3 Entropy and Generalization
QAP models exhibit large gains in computational efficiency over
(pruned and unpruned) 32-bit floating-point models, as well as
significant gains over unpruned QAT models for our jet
substructure classification task. In certain training
configurations, we have found similar performance but would

FIGURE 7 | Comparison of accuracy, ϵϵs�0.5b , and neural efficiency at 50% signal efficiency for a 6-bit QAP model as BN layers and/or L1 regularization is present in
the model. L1 + BN (upper), no BN (middle), and no L1 (lower).
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like to explore if the information in the NN is represented
similarly. As a metric for the information content of the NN,
we use the neural efficiencymetric defined in Eq. 10, the Shannon
entropy normalized to the number of neurons in a layer then
averaged over all the layers of the NN.

By itself, the neural efficiency is an interesting quantity to
measure. However, we specifically explore the hypothesis,
described in Section 4, that the neural efficiency is related to
a measure of generalizability. In this study, we use the
classification performance under different rates of class
randomization during training as a probe of the
generalizability of a model. We randomize the class labels
among the five possible classes for 0, 50, 75, and 90% of the
training dataset. To randomize the training data, we iterate over
a given percent of the normal dataset, setting the real class of
each input to 0, choosing a new class at random out of the 5
possible, then setting that new class to 1. The data is then
shuffled and split as normal.

To compare with the results in Section 5.1, we study models
that are trained using QAP with 6-bit precision and are pruned
using the fine-tuning pruning procedure. The results are
presented in Figure 7 where the left column shows the
classifier accuracy versus BOPs. The center column shows the
ϵϵs�0.5b metric. The right column displays the neural efficiency
versus BOPs. The three rows explore three different scenarios:
with both BN and L1 regularization (upper), no BN (middle), and
no L1 (lower). The various curves presented in each graph
correspond to different class label randomization fractions of
the training sample.

Among these training procedures, the L1+ BN model
accuracy (upper left) is the highest and most consistent
across the entire pruning procedure. Even with 90% class
randomization, the accuracy is still greater than 72.5% and
ϵϵs�0.5b < 10−2. Alternatively, the no BN model accuracy is
consistently worse than the L1 + BN models for all values of
randomization. Interestingly, the no BN model accuracy with
90% randomization drops precipitously out of the range of the
graphs indicating that BN is even more important to
performance when class randomization is introduced.
Meanwhile, the no L1 model exhibits an interesting
behavior with lower accuracy at larger values of BOPs. As the
no L1 model is pruned, the accuracy improves until we
arrive at extreme sparsity and the model performance
degrades as usual. Our interpretation is that the
generalization power of the unregularized model is worse
than the L1 regularized models. However, as we implement
the QAP procedure, the pruning effectively regularizes the
model building robustness to the class randomization and
recovering some of the lost accuracy.

The corresponding neural efficiency plots are shown in the
right column of Figure 7. As a general observation, we find that
the neural efficiency follows the same trend versus BOPs as the
accuracy, i.e., that within a given training configuration, the
neural efficiency is stable up to a given sparsity. Thus, up to
this point, pruning does not affect the information content. This
is particularly true in the case of the no BN model, while with BN

there is more freedom, and thus modest variation in neural
efficiency during the pruning procedure.

If we first only consider the 0% randomized models for the
right column, we can see that the neural efficiency drops from
about 0.3 to about 0.2 with the no BN configuration. As the
neural efficiency is a measure of how balanced the neurons are
activated (i.e., how efficiently the full state space is used), we
hypothesize that BN more evenly distributes the activation
among neurons. For the models that include L1
regularization (upper and middle), the neural efficiency drops
along with the accuracy as the randomization is increased. This
effect is not nearly as strong in the no L1 case in the lower row.
We note that the performance of the 90% randomized no BN
model is catastrophically degraded and the neural efficiency
drops to zero, which we interpret to indicate that BN is an
important factor in the robustness and generalizability of
the model.

The no L1 models (lower) are particularly notable because the
neural efficiency does not decrease much as we the class
randomization fraction is increased, in contrast with the upper
and middle rows of Figure 7. This however, does not translate
into a more robust performance. In fact, at 90% class
randomization and 80% pruned, the L1 + BN and no L1
models are drastically different in neural efficiency while being
fairly similar in classifier accuracy.

Finally, the accuracy and neural efficiency of the highest
accuracy models from the BO procedure in Section 5.2 are
represented as stars in the top row of Figure 7. They have
slightly lower neural efficiencies because the width of each
hidden layer is bigger than in the QAP models while the
entropy remains relatively similar to those same models. The
BO models, as seen in the upper left graph of Figure 7, are no
better at generalizing under increasing class randomization
fractions than the QAP models.

6 SUMMARY AND OUTLOOK

In this study, we explored efficient NN implementations by
coupling pruning and quantization at training time. Our
benchmark task is ultra low latency, resource-constrained jet
classification in the real-time online filtering system,
implemented on field-programmable gate arrays (FPGAs), at
the CERN Large Hadron Collider (LHC). This classification
task takes as inputs high-level expert features in a fully-
connected NN architecture.

Our procedure, called QAP, is a combination of QAT followed
by iterative unstructured pruning. This sequence is motivated
by the fact that quantization has a larger impact on a model’s
computational complexity than pruning as measured by
BOPs. We studied two types of pruning: fine-tuning (FT)
and lottery ticket (LT) approaches. Furthermore, we study
the effect of batch normalization (BN) layers and L1
regularization on network performance. Under this
procedure, considering networks with uniformly quantized
weights, we found that with nearly no loss in classifier
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accuracy and 1.2−2× increase in ϵb, the number of BOPs can
be reduced by a factor of 25, 3.3, and 2.2 with respect to the
nominal 32-bit floating-point implementation, pruning with
post-training quantization (PTQ), and QAT, respectively.
This demonstrates that, for our task, pruning and QAT are
complementary and can be used in concert.

Beyond computational performance gains, we sought to
understand two related issues to the QAP procedure. First, we
compare QAP to QAT with a Bayesian optimization (BO)
procedure that optimizes the layer widths in the network. We
found that the BO procedure did not find a network configuration
that maintains performance accuracy with fewer BOPs and that
both procedures find similarly efficiently sized networks as
measured in BOPs and high accuracy.

Second, we studied the information content, robustness, and
generalizability of the trained QAP models in various
training configurations and in the presence of randomized
class labels. We compute both the networks’ accuracies and
their entropic information content, measured by the neural
efficiency metric (Schaub and Hotaling, 2020). We found that
both L1 regularization and BN are required to provide the
most robust NNs to class randomization. Interestingly, while
removing L1 regularization did not significantly degrade
performance under class randomization, the neural
efficiencies of the NNs were vastly different—varying by
up to a factor of 3. This illustrates, that while NNs may
arrive at a similar performance accuracy, the information
content in the networks can be very different.

6.1 Outlook
As one of the first explorations of pruning coupled with
quantization, our initial study of QAP lends itself to a number
of follow-up studies.

• Our benchmark task uses high-level features, but it is
interesting to explore other canonical datasets, especially
those with raw, low-level features. This may yield different
results, especially in the study of generalizability.

• Combining our approach with other optimization methods
such as Hessian-based quantization (Dong et al., 2019;
Dong et al., 2020) and pruning could produce networks
with very different NNs in information content or more
optimal solutions, particularly as the networks become very
sparse.

• An important next step is evaluating the actual hardware
resource usage and latency of the QAP NNs by using
FPGA co-design frameworks like hls4ml (Duarte et al.,
2018) and FINN (Umuroglu et al., 2017; Blott et al.,
2018).

• It would be interesting to explore the differences between
seemingly similar NNs beyond neural efficiency; for
example, using metrics like singular vector canonical
correlation analysis (SVCCA) (Raghu et al., 2017) which
directly compare two NNs

• We would like to explore further optimal solutions by
combining BO and QAP procedures. Beyond that, there

is potential for more efficient solutions using mixed-
precision QAT, which could be done through a more
general BO procedure that explores the full space of
layer-by-layer pruning fractions, quantization, and sizes.

QAP is a promising technique to build efficient NN
implementations and would benefit from further study on
additional benchmark tasks. Future investigation of QAP,
variations on the procedure, and combination with
complementary methods may lead to even greater NN
efficiency gains and may provide insights into what the NN is
learning.
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