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Abstract. Logic locking is a prominent solution to protect against design intellectual
property theft. However, there has been a decade-long cat-and-mouse game between
defenses and attacks. A turning point in logic locking was the development of miter-
based Boolean satisfiability (SAT) attack that steered the research in the direction of
developing SAT-resilient schemes. These schemes, however achieved SAT resilience at
the cost of low output corruption. Recently, cascaded locking (CAS-Lock) [SXTF20a]
was proposed that provides non-trivial output corruption all-the-while maintaining
resilience to the SAT attack. Regardless of the theoretical properties, we revisit some
of the assumptions made about its implementation, especially about security-unaware
synthesis tools, and subsequently expose a set of structural vulnerabilities that can
be exploited to break these schemes. We propose our attacks on baseline CAS-Lock
as well as mirrored CAS (M-CAS), an improved version of CAS-Lock. We furnish
extensive simulation results of our attacks on ISCAS’85 and ITC’99 benchmarks,
where we show that CAS-Lock/M-CAS can be broken with ∼94% success rate.
Further, we open-source all implementation scripts, locked circuits, and attack scripts
for the community. Finally, we discuss the pitfalls of point function-based locking
techniques including Anti-SAT [XS18] and Stripped Functionality Logic Locking
(SFLL-HD) [YSN+17], which suffer from similar implementation issues.
Keywords: Anti-SAT · CAS-Lock/M-CAS · IP piracy · logic locking · removal
attack · SAT attack · structural analysis

1 Introduction
With deep sub-micron technology, the capital cost considerations dictate outsourcing of

integrated circuit (IC) manufacturing. Today, most of the semiconductor industry operates
in a fabless manner, where foundries are organizationally and geographically separate
from the design houses. However, such outsourcing to potentially untrusted entities
has introduced threats such as intellectual property (IP) piracy [re112, re212, Tec17],
IC counterfeiting/overbuilding [pen13], and hardware Trojans [big18]; such threats have
become a pressing concern for commercial and government organizations alike. Besides,
counterfeiting also poses significant security risks; according to a 2013 report by the
Semiconductor Industry Association, 15% of all the “spare and replacement semiconductors”
bought by the Pentagon are counterfeit [pen13].

1.1 Logic locking: Protecting the IC supply chain
Thus, protecting against such hardware threats has become paramount, and several

design-for-trust solutions such as logic locking, split manufacturing, IC camouflaging,
and physically unclonable functions (PUF) have been proposed over the years [RKK14].
Among them, logic locking is perceived as a one-stop solution that can protect against
different entities in the IC supply chain, viz., foundry, test facility, and end user. It embeds
a lock, in the form of logic gates, into the design which can only be unlocked by loading a
secret key onto the chip’s memory. An example for logic locking is shown in Fig. 1. Note
that the original circuit (see Fig. 1a) is locked by inserting additional XOR/XNOR gates,
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Figure 1: Illustration of logic locking. (a) Original circuit, (b) Circuit locked with
secret key {K1, K2, K3} = 110, and (c) Tamper-proof memory driving the key-inputs.
Source: [YSS+17].

Figure 2: IC supply chain in the presence of logic locking that protects against the
untrusted foundry, test facility, and end user. Note that after chip fabrication and testing,
the chip is unlocked by loading the correct key onto the memory of the chip.
called key-gates, into the design. One input of the key-gate is driven by a key-input that is
driven from a tamper-proof on-chip memory, while the other input is the functional net.
The design will work correctly only upon supplying the correct key, i.e., 110; otherwise, it
produces incorrect outputs. A logic locking enabled IC design flow is shown in Fig. 2. The
design is locked at the end of the design phase, and since only the IP owner possesses the
secret key, the design is protected from any unauthorized access. After fabrication and
testing, the chip is unlocked by loading the correct key onto the chip’s memory.

1.2 Logic locking: Recent attacks
The concept was introduced in EPIC [RKM10], followed by a set of works such as

FLL [RZZ+13] and SLL [YRSK15]. However, all these techniques were broken by a miter-
based Boolean satisfiability (SAT) attack [SRM15], thereby exposing a serious vulnerability.
It iteratively identifies distinguishing input patterns (DIPs) that eliminate incorrect keys
from the search space. The computation of a DIP involves construction of a miter circuit
with two copies of the locked circuit, where the two circuits share the primary inputs
but have different key-inputs. When a SAT solver finds an assignment that satisfies the
“miter” formula, this assignment is called a DIP. This DIP is applied to an oracle, i.e., a
functional IC with the secret key loaded onto its memory, to prune out the incorrect keys
in an iterative way. The SAT attack can break logic locking with a relatively small number
of DIPs, and thus, the complexity of the attack, is low in terms of the number of DIPs
required.

Naturally, several SAT-resilient techniques were developed by leveraging point func-
tions that necessitated an exponential number of DIPs in the key-size such as SAR-
Lock [YMRS16], Anti-SAT[XS18], SFLL [YSN+17]. Nevertheless, the use of point functions
introduced structural-analysis-based attacks [XSTF17, YMSR17, YTS19, SS20] as summa-
rized in Table 1. Further, new schemes such as SFLL-fault [SNL+20] suffer from low output
corruption, thereby facilitating approximate circuit recovery for an incorrectly unlocked
design [SLM+17]. Other solutions include SAT-hard structures [KAHS19, SLPJ18] to
thwart SAT attack by increasing the time taken by each iteration rather than increasing the
number of iterations. These schemes, however, were recently broken by reduced-encoding
approach and neural-network-based attacks [KAHS20, SHP20, AKHS20].

1.3 Contribution
Recently, cascaded locking (CAS-Lock) [SXTF20a] was proposed as a resilient de-

fense against state-of-the-art attacks, including SAT and structural attacks, all-the-while
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Table 1: Summary of attack efficacy against different post-SAT logic locking techniques.
3 denotes attack success, whereas 7 denotes attack failure.

Bypass
[XSTF17]

Removal
[YMSR17]

FALL
[SS20]

SFLL-HD-Unlock
[YTS19]

GNN-Unlock
[APK+21] This work

SARLock [YMRS16] 3 3 7 7 7 7

Anti-SAT [XS18] 3 3 7 7 3 3

SFLL-HD [YSN+17] 7 7 3 3 3 7

CAS/M-CAS [SXTF20a] 7 7 7 7 7 3

Table 2: An overview of proposed attacks under different adversarial threat models.
Oracle-less Oracle-guided

CAS IFS
KBM-SAT

M-CAS IFS-SAT

maintaining non-trivial output corruption. CAS-Lock has two variants: (1) CAS and
(2) Mirrored CAS (M-CAS).1 The authors establish the security of the schemes with
rigorous proofs. However, in this work, we challenge such claims by exposing a set of
structural vulnerabilities that can successfully break both CAS and M-CAS defenses. We
define two adversarial threat models, viz., oracle-guided and oracle-less on which we carry
out our attacks. The main contributions of this work are shown in Table 2, and are
summarized below.

• Attacking CAS. We propose two attacks against CAS in the oracle-guided model:

– Identify flip signal (IFS). This attack exploits the structural traces to recover
the original IP.

– Key-bit mapping & SAT (KBM-SAT). This attack exploits the connec-
tivity of key-inputs, thereby enabling the SAT attack to decipher the secret
key with only a polynomial number of queries as opposed to the theoretical
expectation of an exponential number of queries in the key-size.

• Attacking M-CAS. We demonstrate an attack on M-CAS in the oracle-less model:

– Identify flip signal & SAT (IFS-SAT). We exploit structural flaws in M-
CAS, and upon identification, successfully launch SAT attack to recover the
secret key. Note that our SAT attack can be launched in an oracle-less setting,
whereas the original SAT attack requires an oracle, i.e., a functional IC with
the secret key loaded onto its memory. To this end, we substitute the oracle
with a generic CAS-block that will be described later.

• We provide extensive simulation results for ISCAS’85 and ITC’99 benchmarks. The
success rates for IFS and KBM-SAT attacks against CAS are ∼93% (14/15) and
100% (15/15), respectively. Further, the success rate of the IFS-SAT attack against
M-CAS is also ∼93% (14/15).

• Finally, we establish the effectiveness of our attack under different technology libraries
and synthesis tools, and as a caution urge the designers to refrain from merely relying
on state-of-the-art synthesis tools for a secure implementation.

2 Background
Before delving into our attacks, we provide the details that would be necessary for the

rest of the paper.

2.1 Adversarial threat model
Prior to analyzing the security of any scheme, it is critical to accurately identify,

communicate, and assess the potential threats within the context of adversarial capabilities.
Depending on these capabilities, we define two adversarial models:

1Hereafter, we abbreviate CAS-Lock as CAS, and mirrored CAS as M-CAS.
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(a)
(b)

Figure 3: (a) Overview of Anti-SAT [XS18]. (b) Circuit to generate flip signal Y .
• Oracle-less. The adversary is assumed to reside at an untrusted foundry which is

usually well-equipped with high-end tools, and thus can perform reverse-engineering.
Note that she has access to the GDSII representation of the logic-locked design IP,
thus enabling her to reverse engineer the GDSII file to obtain the locked netlist.
However, access to an oracle, i.e., a working chip with the correct key, is not considered
as it only becomes available during later stages of the supply chain. The adversary’s
goal is to identify, isolate, and infer the secret key-bit values from the structure
and examples include De-synthesis [MZGT17], SPS [YMSR17], FALL [SS20, YTS19]
attacks. We demonstrate our IFS-SAT attack against M-CAS in this setting.

• Oracle-guided. The adversary has access to (1) an oracle, i.e., a working chip with
the correct key loaded onto its memory, as well as (2) a reverse-engineered locked
netlist. A likely scenario would be a colluding adversary at an untrusted foundry
and during field-use. Besides, we assume full knowledge of the technology mapping,
synthesis tools, etc. used during locking. Note that this is a valid assumption as
off-the-shelf synthesis tools are available from major EDA vendors, such as Synopsys
Design Compiler (DC) and Cadence RTL Compiler (RC). Now, the adversary can
simulate the netlist to produce meaningful input patterns rather than brute-forcing
and can apply these input patterns to the working chip to decipher the secret key
which is unknown in simulations. Indeed, many attacks assume this threat model;
well-known examples include sensitization attack [YRSK15] and SAT attack [SRM15].
We demonstrate our IFS and KBM-SAT attacks against CAS in this setting.

2.2 Anti-SAT
2.2.1 Design

The design of CAS directly follows Anti-SAT [XS18], which is shown in Fig. 3a. Note
that Anti-SAT is a point function-based defense, where the outputs of two complementary
Boolean functions g and g are ANDed together to generate the point function Y . This Y
then flips a high observability net such as a primary output (PO). The two blocks g and g
takes two different n-bit keys Kl1 and Kl2; it produces Y = 1 for incorrect keys, thereby,
corrupting the PO. The internal architecture of the Anti-SAT block is shown in Fig. 3b.
Note that setting Kl1 equal to Kl2 produces Y = 0 for all input patterns, thus, unlocking
the chip and ensuring correct (corruption-free) functionality.

2.2.2 Security analysis
The security of Anti-SAT stems from the difficulty of setting the two n-bit keys as

same, since the bit-wise mapping between them is unknown to the adversary. Note that if
an adversary is able to figure out this bit-wise mapping, then setting Kl1 = Kl2 becomes
trivial, and thus, leads to a successful attack. This is given by the following equation:

Y = g(I ⊕Kl1) ∧ g(I ⊕Kl2)
= g(I ⊕K) ∧ g(I ⊕K), Kl1 = Kl2 = K

= g(J) ∧ g(J), J = I ⊕K

= 0, ∀I (1)
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Figure 4: Circuit to generate the flip signal Y in CAS [SXTF20a].
2.3 CAS-Lock

Figure 4 shows the architecture of CAS, where the outputs of two complementary
Boolean functions gcas and gcas are ANDed together to produce the flip signal Y . However,
instead of the AND-tree structure in Anti-SAT, CAS incorporates a daisy-chained structure
of alternating AND-OR gates. The flip signal Y of CAS, when XORed with the primary
output of the circuit, manifests error similar to Fig. 3a. As in Anti-SAT, a user must
set the key Kl1 same as Kl2 to unlock the design. CAS improves over Anti-SAT on
multiple fronts: 1) it is resilient against bypass attack [XSTF17], 2) it prevents AppSAT
by ensuring high output corruption [SLM+17], and 3) it prevents signal probability skew
(SPS) attack [YMSR17].

Existing attack. Recently, a trivial yet highly effective attack has been demonstrated
against CAS [SS19]. As powerful this attack may be, it can be thwarted by a relatively
simple countermeasure by including a random combination of XOR/XNOR of key-inputs
with the primary inputs (PI) before feeding it to the CAS block [SXTF20b]. This improved
implementation ensures that the key for gCAS is never equal to that of gCAS , i.e., Kl1 6= Kl2.
The random combination of XOR/XNORs can be expressed as follows:

Y = g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕Kl2 ⊕Rl2)

, where

I ⊕Kl1 ⊕Rl1 =
{

I[i]⊕Kl1[i], if Rl1[i] = 0
I[i]�Kl1[i], if Rl1[i] = 1 I ⊕Kl2 ⊕Rl2 =

{
I[i]⊕Kl2[i], if Rl2[i] = 0
I[i]�Kl2[i], if Rl2[i] = 1

Rlj
$←− {0, 1}n, j = 1, 2

, Rlj [i] denotes the i-th bit of Rlj , I[i] denotes the i-th bit of I, and Klj [i] denotes the
i-th bit of Klj . Note that Rlj is an n-bit binary string selected uniformly randomly from
the set of all n-bit binary strings that is unknown to the adversary. Kl1,Kl2 is a correct
key for CAS iff

Kl1 ⊕Kl2 = Rl1 ⊕Rl2 = R (2)
This is clear from the following equation,

Y = g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕Kl2 ⊕Rl2)
= g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕ (Kl1 ⊕R)⊕Rl2) , Kl2 = Kl1 ⊕R from Eqn. (2)
= g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕Kl1 ⊕Rl1 ⊕��Rl2 ⊕��Rl2)
= g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕Kl1 ⊕Rl1)
= 0, ∀I
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For the remainder of this paper, we consider this improved version of CAS [SXTF20b]
and take a deeper look into it. We also assume this improved version for Anti-SAT while
carrying out attacks on it.

3 Attacking CAS
As described earlier, the security of CAS stems from the unintelligible mapping between

the key-inputs following a series of compilation steps using a state-of-the-art synthesis
tool. However, contrary to this assumption, all synthesis tools have been developed for co-
optimizing area, power, and timing, and thus, security was never considered. Consequently,
we expose a set of vulnerabilities in CAS, left behind by synthesis tools, to develop two
new attacks: (1) identify flip signal (IFS) attack, and (2) key-bit mapping & SAT (KBM-
SAT) attack. In the first attack, we show that the reliance on state-of-the-art synthesis
tools leaves structural traces, enabling an adversary to recover the original IP through
re-synthesis. In the second attack, we go one-step further by recovering the secret key.
While both attacks can successfully recover the original design IP, the second attack is
more potent than the first one since it can decipher the secret key; knowledge of the secret
key enables an adversary to unlock overproduced chips.

3.1 Identify flip signal (IFS)
The security of CAS is critically linked to the synthesis of the locked circuit and the

dissolution of the traces of the CAS block structure. In our attack, a simple re-synthesis of
the reverse-engineered locked circuit reveals the structure of CAS, and thus, the flip signal
Y .2 Afterward, simply fixing Y to a constant logic zero eliminates the protection offered
by CAS. This is shown in the equation below:

Ylock = Yorig ⊕ Y = Yorig ⊕ 0 = Yorig

The question that remains to be answered is how to identify the flip signal Y in the netlist.
To this end, we utilize the following property of signal Y :

– Merge condition: All the key-inputs always merge at Y (see Fig. 4).

Thus, any net containing all the key-inputs in its fanin cone, would constitute a likely
candidate for Y .3 Now, consider the path from Y to the locked PO, Ylock (see Fig. 3a).
It is clear that all the nets in this path also satisfy the merge condition, and therefore,
constitute multiple likely candidates. To uniquely identify the flip signal Y , we select
the net that is topologically farthest from Ylock and also satisfies the merge condition.
Accordingly, we develop the methodology shown in Algorithm 1, and describe it below.

Methodology. First, all the key-inputs K are identified from the locked netlist Ylock.
Next, we obtain Yre from the reverse-engineered locked netlist Ylock by re-synthesizing
with certain constraints. We define two variables, viz., cur and prev, initialized to the
primary output (PO) and φ, respectively. Next, we check if the fanin cone of cur contains
all key-inputs, i.e., if it satisfies the merge condition. If yes, then we iteratively trace
backward, otherwise, we output prev as the flip signal. We recover the correct value of the
flip signal prev using an automatic test pattern generation (ATPG) tool. We construct a
miter-like circuit Ymiter with two instances of the locked netlist, where the two circuits
share the primary inputs as shown in Fig. 5b. In one instance, denoted by Ylock0, we
assign logic 0 to the prev signal, whereas in the other instance, denoted by Ylock1, it is
assigned logic 1. Next, an ATPG tool is leveraged to provide a test pattern INtp that
detects a stuck-at-0 fault (s-a-0) at the output of this miter-like circuit (i.e., return an
input pattern for which the output becomes logic 1). Note that such INtp guarantees that
the outputs of Ylock0 and Ylock1 are different. Next, we query the oracle with INtp, and
obtain the corresponding output OUTtp. Further, we obtain output values for INtp for
each of the locked instances, viz., Ylock0 and Ylock1. Finally, the correct value of the flip
signal is identified by comparing the outputs of the oracle to that of these locked instances.

2Note that as commercial synthesis tools are readily available, an adversary can always re-synthesize a
locked design with parameters of her choice.

3Throughout the paper, we use signal/net interchangeably.
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Algorithm 1: Identify Flip Signal (IFS) attack
Input: Locked netlist Ylock, Functional IC C
Output: Unlocked netlist Yunlock

1 K ←list_keyinputs(Ylock);
2 Yre ←re_synth(Ylock);
3 cur ←identify_PO(Yre);
4 prev ← φ;

// Check fanin cone of cur
5 while K ⊆ fanin(cur) do
6 prev ← cur;
7 cur ← find_prev_net(cur);
8 end

// Verify if prev = 0 or prev = 1
9 Ylock0 ← create_ckt(Ylock, prev = 0);

10 Ylock1 ← create_ckt(Ylock, prev = 1);
11 Ymiter ← create_miter(Ylock0, Ylock1);
12 INtp ← ATPG(Ymiter, s-a-0);
13 OUTtp ← C(INtp);
14 if Ylock1(INtp) == OUTtp then
15 prev = 1;
16 else
17 prev = 0;
18 end
19 Yunlock ← re_synth(Ylock, prev);

(a)

Y X 0

Yorig

Y

s-a-0

INtp

OracleINtp OUTtp

X 1

X

Yorig Ylock0

Ylock1

Ymiter

(b)

Figure 5: (a) Execution of IFS attack on c432 locked with 20-bit key. The flip signal Y
is clearly visible, marked in yellow. The red lines mark the paths from the key-inputs.
(b) Automatic test pattern generation (ATPG)-aided identification of flip signal value.
Conforming to Fig. 3a, Yorig corresponds to the original netlist and Y is the flip signal.
(top) Generation of test pattern INtp to detect stuck-at-0 fault at the output. (bottom)
Correct response OUTtp for input pattern INtp using oracle.
This accounts for any possible inversions and we successfully return the unlocked netlist
Yunlock by fixing the flip signal to the identified constant value.

Example. Consider the example in Fig. 5a, where the attack is launched on c432
circuit locked with a 20-bit key. Note that the CAS structure is easily discernible, as all
the key-inputs (shown in red) merge into the flip signal Y (as shown in the zoomed figure).
Fig. 5b showcases the approach using ATPG to decipher the flip value of Y by querying
the oracle. The naming convention is consistent with Fig. 3a.

Limitation. The above IFS attack suffers from two drawbacks. First, such exploitable
flip signal may not always exist in the circuit. Second, it fails to decipher the secret key
from the netlist. The following attack successfully overcomes these issues, described next.
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Figure 6: Execution of KBM attack on c432 locked with a 20-bit key. Orange boxes in
the zoomed figure show that the PI G118GAT is connected to both k0 and k10, thereby
establishing (k0, k10) as a bit-symmetric pair.
3.2 Key-bit mapping & SAT (KBM-SAT)

We now propose a key-recovery attack using a two-step approach involving key-bit
mapping, followed by the SAT attack [SRM15].

3.2.1 Key-bit mapping (KBM)
It is evident from Fig. 4 that the i-th key-input from both secret keys Kl1 and Kl2 are

always XORed with the same primary input (PI). We say that the key-input pair (ka, kb)
is bit-symmetric if the following properties hold:

– ka and kb merge with a fanout from the same PI.

– ka is the i-th bit of Kl1, and kb is the i-th bit of Kl2.

In Fig. 4, k0 and kn, first key-inputs of the two secret keys Kl1 and Kl2, respectively, are
XOR-ed with I0. This establishes (k0, kn) as a bit-symmetric pair. Intuitively, checking
against the PI connection reveals the bit-symmetry for each pair of key-inputs. Note that
due to different optimizations applied by the synthesis tool, at times the key-inputs may
get connected to an internal net instead of a PI. However, we empirically verified that
bit-symmetry still holds, i.e., i-th key-input from Kl1 merges onto the same internal net
as i-th key-input from Kl2. We exploit this bit-symmetry to successfully decipher the
complete bit-wise mapping between the two secret keys.

Methodology. The methodology is shown in Algorithm 2. We initialize the search
set S with all the key-inputs, and the map set M to NULL. A key-input ki is picked at
random from the search set S, and checked for bit-symmetry. To this end, we list all the N
that connect to ki, and all nets V that connect to the nets in N . If there exists a key-input
kj in V and kj 6= ki, then (ki, kj) is a bit-symmetric pair. Thus, we add this pair to map
set M , and remove ki and kj from search set S. Otherwise, it fails to find bit-symmetric
pair for ki, and is removed from S. We repeat these steps for all the key-inputs in S. In
the end, the mapping M between the secret keys Kl1 and Kl2 is returned.

Example. Consider the example in Fig. 6, where the attack is launched on c432
circuit locked with a 20-bit key. Note that key-input k0 (shown in red) is connected to the
PI G118GAT (shown in yellow). If we trace PI G118GAT , we can see the connection to
another key-input k10. This immediately establishes (k0, k10) as a bit-symmetric pair.

3.2.2 Launching SAT
Note that despite identifying the complete bit-wise mapping, setting Kl1 ⊕Kl2 = R

is non-trivial as R is unknown to the adversary. This prompts us to derive the following
mathematical condition that can successfully decipher the secret key by launching the SAT
attack against CAS. From Eqn. (2) we get,

Kl2 = Kl1 ⊕R , R is a uniformly random n-bit binary string unknown to the adversary.
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Algorithm 2: KBM-SAT attack
Input: Locked netlist Ylock, Functional IC C
Output: Secret key Kl1,Kl2
// Launch KBM

1 S = {k0, k1 · · · k2n−1};
2 M = φ;
3 Y ←re_synth(Ylock);
4 while S 6= φ do
5 ki

$←− S;
6 N ←all_connect(ki, Y );
7 V ←all_connect(N, Y );

// Check if ∃ key-input in set V
8 if ∃kj ∈ V & kj 6= ki then
9 M = M ∪ {{ki, kj}};

10 S = S − {ki, kj};
11 else
12 S = S − {ki};
13 end
14 end

// Launch SAT to decipher key [SRM15]
15 while M 6= φ do
16 {ki, kj} ← pick_pair(M);
17 ki = 0;
18 M = M − {{ki, kj}};
19 end
20 Kl1,Kl2 ← SAT(Ylock, C);

Without loss of generality (WLOG), let us assume that we can set Kl1 = 0 as the bit-wise
mapping is already known. It is immediately clear that Kl1 = 0,Kl2 = R constitutes a
correct key for CAS according to Eqn. (2),

Y = g(I ⊕Kl1 ⊕Rl1) ∧ g(I ⊕Kl2 ⊕Rl2)
= g(I ⊕ 0⊕Rl1) ∧ g(I ⊕R⊕Rl2)
= g(I ⊕Rl1) ∧ g(I ⊕Rl1 ⊕��Rl2 ⊕��Rl2)
= g(I ⊕Rl1) ∧ g(I ⊕Rl1)
= 0, ∀I

Note that the security of CAS/Anti-SAT relies on the fact that the total key space is
22n, and a SAT solver can only eliminate 2n incorrect keys at each iteration, thus forcing
it to iterate an exponential number of times in the key-size n. However, fixing Kl1 = 0
immediately refutes this property, as with Kl2 = R, R being an unknown n-bit binary
string, the total key space reduces to 2n from 22n. This directly violates the SAT-resiliency
of CAS/Anti-SAT, thereby deciphering the secret key within only a polynomial number of
iterations as opposed to the exponential number of iterations in the key-size mandated
by Anti-SAT/CAS. We showcase the success of KBM-SAT in Section 5.2.2, where it can
successfully decipher the secret key for all the locked circuits. Note that setting Kl1 = 0
may not always be possible for an adversary, however, as long as one of the i-th bits from
Kl1 or Kl2 is fixed to a constant value, i.e., 0/1, the above property holds; i.e., the total
key space reduces to 2n, and is thus vulnerable to the SAT attack [SRM15].

Methodology. The methodology is shown in Algorithm 2. We first trace the netlist to
identify bit-wise symmetric key-bit pairs. Next, we pick a random pair of key-bits {ki, kj}
from the map set M . Afterward, we fix one of the key-inputs to a constant value, i.e., to
0/1, and leave the other key-input unknown. We repeat this step for all the mapped pairs
in M , and finally launch the SAT attack with this partial key information. Finally, SAT
attack returns the complete key Kl1,Kl2.

3.3 Improving on CAS
In all fairness, the authors did anticipate such structural attacks against CAS, and

thus forwarded the following three strategies to thwart such attacks. Below, we discuss
the strengths and weaknesses of each strategy.
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• RLL-integrated CAS. The structure of CAS is obfuscated by incorporating random
logic locking (RLL) in an asymmetric fashion [RKM10]. This prevents an adversary
from performing structural analysis, as she has no knowledge of the RLL key. However,
this poses little/no challenge, as RLL can be easily peeled off from any RLL-integrated
compound locking technique using AppSAT [SLM+17]. This is acknowledged in the
paper itself, where CAS+RLL gets broken ∼50% of the time, and is thus, disregarded
from further consideration.

• AND/OR-camouflaged CAS. The structure of CAS is obfuscated with AND/OR
gate camouflaging [Syp17]. This thwarts any structural analysis as well, restricting
the adversary to an oracle-less model. However, for a secure implementation of
camouflaging, the foundry needs to be trusted, which directly breaks one of the
fundamental promises of logic locking. Further, a camouflaged netlist can easily
be transformed into an equivalent logic locked netlist [YS15], which can then be
broken using AppSAT [SLM+17] as in RLL-integrated CAS. Therefore, we discard
AND/OR-camouflaged CAS from our attack, as it fails to provide any additional
benefit to the overall security of CAS.

• Mirrored CAS (M-CAS). Finally, the authors also present an improved version
of CAS, called Mirrored CAS (M-CAS), shown in Fig. 7. It is claimed to be secure
against any structural attacks such as our proposed IFS and KBM-SAT attacks. In
this light, we consider M-CAS as the strongest defense amongst the three strategies,
and accordingly, devise an attack that we describe in detail in the next section.

4 Attacking M-CAS
An overview of Mirrored CAS (M-CAS) is shown in Fig. 7. M-CAS is implemented

by locking the original circuit with two back-to-back CAS blocks with two keys Ksecret
and KCAS . The key Ksecret for the first CAS block (shown in red), is hardcoded into the
netlist; it is not an input that is driven from the tamper-proof memory. After integrating
the first CAS block into the design, a second CAS block (shown in blue) is invoked with
identical structure as the first one. However, here the key KCAS is applied from the
tamper-proof memory through the key-input ports. Only upon applying KCAS = Ksecret,
the correct functionality can be recovered as follows:

YOUT = Yorig ⊕ Ysecret ⊕ YCAS

= Yorig ⊕�Y secret ⊕�Y secret, KCAS = Ksecret

= Yorig (3)

The authors claim that this implementation is secure against structural attacks, as removing
the key-controlled second CAS block YCAS does not pose any threat. This is due to the
fact that removing YCAS leaves the adversary with a non-functional design Ymod (shown
with the dashed box in Fig. 7), which is immediate from the following equation:

YOUT = Yorig ⊕ Ysecret ⊕ YCAS

= Yorig ⊕ Ysecret ⊕ 0
= Ymod (4)

Figure 7: Architecture of M-CAS which uses two CAS blocks with keys Ksecret and KCAS .
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Challenge. The authors assume that as the key Ksecret is hardcoded into the design,
proper synthesis steps such as constant propagation, bubble push, and technology mapping
would dissolve any structural traces. Thus, any attempt to inspect the netlist for identifying
the flip signal Ysecret, and consequently recovering the key Ksecret is deemed futile. In this
section, we re-examine this assumption, and subsequently disprove it. As the SAT resilience
of M-CAS relies on this assumption, the defense can be compromised by developing an
attack that targets this assumption. As such, we demonstrate an attack that can launch
SAT on M-CAS to decipher the secret key Ksecret.

Our attack, called IFS-SAT, aims to inspect the locked netlist for any structural traces
to decipher the secret key Ksecret. It consists of three steps: (1) peel off YCAS , (2) identify
flip signal Ysecret, and (3) launch SAT attack to decipher Ksecret.

4.1 Peel off YCAS

This can be achieved in a couple of ways as discussed in Section 3, viz., IFS or KBM-
SAT attack. Note that the security of M-CAS is solely reliant on Ysecret, and not on
YCAS as acknowledged by the authors. Indeed this assumption is followed in other prior
works such as SFLL [YSN+17, SNL+20]. It is assumed that the restore unit can easily
be identified by tracing the key-inputs (analogous to IFS), and thus be removed from the
design as shown in [SS20, YTS19]. However, removing YCAS does not defeat the security
of M-CAS, as the adversary only recovers Ymod shown in Eqn. (4). Thus, in this paper,
we concentrate on the later part, i.e., breaking Ymod.

4.2 Identify flip signal Ysecret

Next, we concentrate on identifying the flip signal Ysecret (IFS part of IFS-SAT) from
the Ymod block. Note that if this is possible, then the adversary can recover the original
IP by simply setting Ysecret = 0 as given below:

Ymod = Yorig ⊕ Ysecret

= Yorig ⊕ 0
= Yorig (5)

The question is how to identify the flip signal Ysecret. With careful observation, we identify
the following three properties of the flip signal Ysecret that could help us shortlist the
possible candidates.

1. Fan-in cone of Ysecret must contain exactly n PIs, where n is the number of PIs in
CAS.

2. From Fig. 4, it is clear that the structure of Ysecret contains at most 2n two-input
gates, excluding buffers/inverters. Note that due to internal optimizations applied
by the synthesis tools, few gates may get merged. However, the upper bound for the
number of gates remains unaffected.

3. From Fig. 4, we see that Ysecret block exhibits a linear structure. Note that due to
alternate sequence of AND/OR gates, the scope of common optimization techniques
such as path balancing is limited, and we can reasonably expect Ysecret to retain this
property after synthesis with a constrained library, i.e., with two-input gates.

Example. Consider the example in Fig. 8, where the c432 circuit locked with a
64-bit key using M-CAS is shown. Here we ignore YCAS , and only concentrate on Ysecret

embedded with the original c432 circuit. The flip signal Ysecret and its fanin cone are
marked in red. We see that all the three preceding properties hold in this case; 1) the fan-in
cone contains exactly 32 PIs, 2) the number of gates is 31, excluding buffers/inverters,
and 3) it retains the linear structure.

Thus, the preceding three criteria help in shortlisting possible candidates for the flip
signal Ysecret. Note that in a few scenarios, a single one of the three criteria could be
sufficient to uniquely identify the flip signal. If applying a criterion uniquely identifies the
flip signal, we immediately stop and return the current candidate as the solution. However,
if there exists ambiguity, i.e., there are multiple possible candidates, we move to the next
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Algorithm 3: IFS-SAT attack
Input: Peeled netlist Ymod, Functional IC C, # PIs in CAS n
Output: Secret key KSAT

1 T ← fanin(Ymod);
2 N ← list_nets(T );
3 S1 = φ, S2 = φ, S3 = φ;

// Check # primary inputs in fanin of net
4 for x ∈ N do
5 m← num_inputs_fanin(x);
6 if m == n then
7 S1 = S1 ∪ x;
8 end
9 end

// Check for unique solution
10 if |S1| == 1 then
11 cur = S1 ;
12 goto 29;
13 end

// Check # gates in fanin of net
14 for x ∈ S1 do
15 m← num_gates_fanin(x);
16 if m ≤ 2n then
17 S2 = S2 ∪ x;
18 end
19 end

// Check for unique solution
20 if |S2| == 1 then
21 cur = S2 ;
22 goto 29;
23 end

// Check linear structure
24 for x ∈ S2 do
25 if is_fanin_linear(x) then
26 S3 = S3 ∪ x;
27 end
28 end
29 cur = S3;

// Verify if cur = 0 or cur = 1
30 Ylock0 ← create_ckt(Ymod, cur = 0);
31 Ylock1 ← create_ckt(Ymod, cur = 1);
32 Ymiter ← create_miter(Ylock0, Ylock1);
33 INtp ← ATPG(Ymiter, s-a-0);
34 OUTtp ← C(INtp);
35 if Ylock1(INtp) == OUTtp then
36 cur = 1;
37 else
38 cur = 0;
39 end
40 Ysecret ← fanin(cur);

// Launch SAT to decipher key [SRM15]
41 KSAT ← SAT(Ysecret, YCAS);

criterion to further prune the candidate set. Therefore, we advocate applying the above
criteria in sequence to minimize run-time.

We iteratively search all the nets in the circuit to uniquely identify the flip signal Ysecret.
Afterward, the correct value of the flip signal is identified by comparing the outputs of the
oracle to that of the fixed flip-signal netlist similar to Algorithm 1. Finally, simply fixing
the flip signal to the constant logic recovers the original IP.

Limitation. Although the previous steps do recover the original IP, it suffers from
a couple of drawbacks. First, it succeeds in the oracle-guided model, i.e., deciphering the
correct value of the flip signal requires a working oracle. Second, it fails to decipher the
secret key Ksecret from the netlist. Thus, in the next section, we present a different attack
that successfully overcomes these issues.
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Figure 8: Identifying the hardcoded CAS block in the c432 M-CAS-locked design. The
flip signal Ysecret is highlighted in purple, and its structure is marked in red.
4.3 Decipher the key Ksecret

If Ksecret is recovered, then setting KCAS = Ksecret is trivial, and thus, the original
IP can be recovered according to Eq. (3). To this end, we leverage the well-known SAT
attack [SRM15], where we treat Ysecret of the locked netlist which we can simulate, as the
working oracle, and YCAS as the logic-locked circuit. Thus, once the flip signal Ysecret is
identified, the SAT attack is launched on YCAS [SRM15] to recover KSAT . Next, setting
KCAS equal to KSAT unlocks the design. Note that the SAT attack could return a key
KSAT 6= Ksecret, however, as long as it satisfies the condition YCAS = Ysecret, any KSAT

suffices to unlock an M-CAS-locked IC. This is clear from Eqn (3). Contrary to all the
illustrations of SAT attack in the literature that only succeed in oracle-guided model, our
IFS-SAT attack is launched in an oracle-less setting. We accomplish this by considering
the key-controlled CAS block as the locked circuit, and the extracted cone from flip signal
Y (containing the hardcoded key) as the original circuit for the SAT attack, eliminating
the need for an oracle. The complete methodology for IFS-SAT is shown in Algorithm 3.

Note that this is a direct counter-example to the theoretical SAT-resilience of M-CAS.
At large, SAT is considered ineffective against M-CAS. However, state-of-the-art synthesis
tools leave unintentional vulnerabilities in the circuit that allows us to apply various
structural attacks such as IFS, followed by SAT attack to decipher the secret key Ksecret.

5 Experimental results
5.1 Experimental setup

In this section, the results are presented for our attacks on ISCAS-85 and ITC-99
benchmarks; we conduct our experiments on the largest logic cone of each circuit.4 All the
experiments are carried out on a 24 core Intel Xeon processor running at 2.5GHz having
264 GB RAM. The circuits are synthesized using Synopsys Design Compiler (DC) with
65nm GlobalFoundries LPe technology. Moreover, the ISCAS-85 benchmarks are locked
with 64-bit key as proposed in CAS-Lock [SXTF20a], whereas ITC-99 benchmarks are
locked with 160-bit key. Further, in our experiments, we use Cadence Conformal LEC
to formally verify the logical equivalence between the recovered design and the original
design, and thus the success of our attacks.

5.2 Attacks on CAS
5.2.1 IFS attack

We present the results for this attack in the following scenarios:

• Full library. Table 3 summarizes the results for IFS attack on CAS-locked circuits
without constraining the technology library. It is clear that the attack breaks 14/15
circuits, i.e., has a success rate of ∼93%. The second column shows the correct value
for the flip signal, which can be easily deciphered by verifying against a working

4Note that the CAS/M-CAS locked circuits are not open-sourced by the authors, thus, we implement
CAS/M-CAS by ourselves, and upload CAS/M-CAS scripts, all locked benchmarks, and all attacks for
the community in [cas21].
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Table 3: IFS attack on CAS-locked circuits synthesized with 1) full technology library,
and 2) constrained technology library, i.e., with two input gates. “-” indicates the attack
failed to find the flip signal.

Full technology library Constrained technology library
Benchmark Flip signal

value Level Execution
time (sec)

Flip signal
value Level Execution

time (sec)
c432 0 2 13 1 2 13
c499 1 2 13 1 3 13
c1355 1 2 12 0 4 13
c1908 1 2 13 1 3 13
c2670 0 2 13 0 2 13
c3540 1 5 13 0 4 13
c5315 0 2 12 0 2 12
c7552 0 2 13 0 2 12
b14_C 1 2 13 1 2 12
b15_C 0 2 13 1 2 13
b17_C 1 2 13 0 2 13
b18_C - - - - - -
b20_C 1 3 13 1 2 13
b21_C 1 2 13 1 2 13
b22_C 1 2 13 0 2 13

oracle as described in Algorithm 1. Note that due to the technology mapping and
the optimizations applied by the synthesis tool, the flip value varies randomly among
circuits. However, the signal trace still remains which is identified by the IFS attack.
Further, the third column shows the circuit depth from the PO at which such flip
signals exist. It is evident that such signals are present close to the locked PO, except
for c3540. The execution time for our attack is reported in the fourth column, where
we see even for large circuits such as b17_C with 30K+ gates, the attack terminates
within only a few seconds.

• Constrained library. In this particular case, we re-synthesize the circuits by using
only two-input gates from the technology library. The results are reported in Table 3.
The attack is able to break 14/15 circuits, i.e., at a success rate of ∼93%. Further,
the attack terminates within only a few seconds for all circuits.

Note that the attack success is independent of the type of library cells used. This is
expected as IFS exploits connectivity of key-inputs to identify the flip signal instead of
structural analysis such as SPS attack [YMSR17].

5.2.2 KBM-SAT attack
KBM attack. The results from launching KBM on the CAS-locked circuits are

presented in Table 4. Column 2 highlights the number of key-bits successfully mapped.
For ISCAS-85 benchmarks, there are a total of 64 key-bits, and all key-bits are successfully
mapped for all circuits, whereas for ITC-99 benchmarks, there are a total of 160 key-bits,
and all key-bits are successfully mapped for all circuits as well, except b18_C and b22_C.

SAT attack. Building on the key-bit mapping information from KBM attack, we
launch the traditional SAT attack [SRM15] as described in Section 5.2.2. To this end, we
fix one key-input from each identified pair to a constant value, and the resulting circuit is
fed to the SAT solver to decipher the key. Columns 3, 4, and 5 report the corresponding
results, where it can be seen that it breaks 15/15 circuits, i.e., a success rate of 100%. Note
that the number of iterations required have reduced to 208 from the theoretically expected
232 for ISCAS-85 locked benchmarks, and to 1379 from the theoretically expected 280

for ITC-99 locked benchmarks. Finally, column 5 shows the execution time for the SAT
attack, which is less than 4 minutes even for large circuits such as b18_C having 100K+
gates. Note that for certain instances such as b18_C and b22_C, KBM failed to identify all
key-bit mappings; in such cases the unidentified key-inputs are left untouched, i.e., we did
not fix them to any value, instead let the SAT solver handle them. However, it can be
seen from the results that only a few unidentified key-inputs do not hinder the SAT solver
in any significant way.

Effectiveness of KBM-SAT. To further validate the effectiveness of the KBM-SAT
attack, we lock the c432 circuit with four different key sizes, viz., 14, 16, 18, and 20 with
CAS, and perform SAT without and with the KBM information. The results are plotted
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Table 4: KBM-SAT attack results on ISCAS-85 benchmarks locked with a 64-bit key and
ITC-99 benchmarks locked with a 160-bit key.

Benchmarks Key-bit
mappings

Key
recovered?

# SAT
iterations

Execution
time (sec)

c432 64 Yes 156 0.95
c499 64 Yes 208 1.64

c1355 64 Yes 152 0.92
c1908 64 Yes 98 0.66
c2670 64 Yes 162 1.18
c3540 64 Yes 85 3.36
c5315 64 Yes 84 0.78
c7552 64 Yes 147 1.11

b14_C 160 Yes 420 15.5
b15_C 160 Yes 325 16.94
b17_C 160 Yes 249 11.51
b18_C 156 Yes 457 210.39
b20_C 160 Yes 511 27.89
b21_C 160 Yes 915 136.43
b22_C 154 Yes 1379 188.4
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Figure 9: Performance of the SAT attack [SRM15] on CAS with and without KBM
information on the c432 circuit locked with key sizes 14, 16, 18, and 20.
in Fig 9, where it can be seen that the number of SAT iterations and the execution time
conform to the theoretically expected exponential growth in the key size without the KBM
information, whereas with the KBM information, they grow only linearly in the key size,
thereby breaking CAS.

5.3 Attacks on M-CAS
In this section, we highlight the results of IFS-SAT carried out on M-CAS in oracle-less

model. As IFS-SAT consists of two major steps, namely, IFS and SAT, we present the
results separately.

5.3.1 IFS attack

Similar to IFS against CAS, we conduct our experiments on M-CAS-locked circuits in
two different settings: full technology library and constrained technology library.

• Full library. Table 5 summarizes the results of launching IFS attack on M-CAS-
locked circuits synthesized with a full technology library. It successfully identifies the
flip signal in 14/15 circuits, i.e., has a success rate of ∼93%. In the second column,
we report the flip signal value which can be deciphered by verifying the circuit output
against a working oracle. Further, such signal always exists at a close proximity
from the PO. The execution time of the attack remains within few seconds even
for large circuits such as b17_C. Note that the attack fails to identify the flip signal
for b18_C. As we are using full technology library, the flip signal might have truly
merged within the circuit, though the chances of such an event remains low.

• Constrained library. We resort to constraining the technology library to only
two-input gates, and launch IFS after re-synthesizing with this constrained library.
The results are summarized in Table 5, where it can be seen that the success rate is
14/15, i.e., ∼93%.
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Table 5: IFS-SAT attack on M-CAS-locked circuits synthesized with 1) full technology
library, and 2) constrained technology library, i.e., with two-input gates. “-” indicates the
attack failed to find the flip signal.

Benchmark
IFS SAT Total

execution
time (sec)

Full technology library Constrained technology library Key
recovered?

# SAT
iterations

Execution
time (sec)Flip signal

value Level Execution
time (sec)

Flip signal
value Level Execution

time (sec)
c432 1 2 13 1 2 13 Yes 358 4 17
c499 1 2 13 1 3 13 Yes 84 1 14
c1355 0 2 14 0 2 13 Yes 6646 1398 1411
c1908 1 2 13 0 2 13 Yes 89 1 14
c2670 0 2 12 0 2 13 Yes 70 1 14
c3540 0 4 13 1 4 13 Yes 68 1 14
c5315 0 2 13 0 2 12 Yes 160 2 14
c7552 1 2 13 1 2 13 Yes 4335 672 685
b14_C 0 2 14 1 2 13 Yes 327 8 21
b15_C 1 2 13 0 2 13 Yes 441 15 28
b17_C 0 2 15 0 2 14 Yes 1161 104 118
b18_C - - - - - - - - - -
b20_C 0 2 14 1 2 15 Yes 169 4 19
b21_C 0 2 14 0 2 14 Yes 1196 137 151
b22_C 1 2 14 1 2 14 Yes 937 99 113

5.3.2 SAT attack
Post-IFS, we move to the SAT step to recover the secret key from the netlist. Table 5

also summarizes the results for IFS-SAT attack on M-CAS-locked circuits. The attack
successfully deciphers the secret key for circuits whose flip signal has been identified during
IFS. In the ninth column, we report the number of SAT iterations required by the SAT
attack to break the circuits. The number of SAT iterations can be as small as 84 (c499)
and as large as 6646 (c1355); we don’t necessarily observe a trend in the number of SAT
iterations against the circuit size.

5.4 Effectiveness of our attack
In this section, we discuss different aspects of our attack, and demonstrate its effective-

ness across these settings.

5.4.1 Effect of key-size
Here, we investigate the effect of key size on the effectiveness of IFS-SAT on M-CAS-

locked circuits. The results are presented in Table 6, where the attack succeeds across
key-sizes, viz., 64, 128, 160, and 256. Note that in all cases, the flip signal is present
immediately before the PO. Further, the number of SAT iterations increases only linearly
in key size, thereby, refuting the theoretical SAT-resilience that dictates an exponential
increase.

5.4.2 Scalability
The execution time for IFS-SAT on M-CAS-locked circuits is reported in the last

column of Table 5. It is clear that the SAT step is the heaviest and slowest component of
the entire attack that takes up to few minutes to complete, whereas the IFS step takes
only a few seconds. Yet, the overall attack time remains within few minutes even for large
benchmarks such as b17_C having 30K+ gates, establishing the scalability of our attack.

5.4.3 Effectiveness of selection criteria
Recall that we discussed three properties of the flip signal that can be exploited to

shortlist possible candidates, viz., 1) input size, 2) gate count, and 3) linearity. Here, we
investigate the effectiveness of these criteria in identifying the flip signal in M-CAS. The
results are presented in Table 7, where we report the number of candidates after applying
each criterion. It is seen that the first criterion alone uniquely identifies the flip signal
∼53% of the time. For the remainder, we apply the second criterion, which successfully

Table 6: Effect of key-size on IFS-SAT against M-CAS-locked b14_C circuit.

Key-size Flip signal
value Level Key

recovered?
# SAT

iteration
Execution
time (sec)

64 0 2 Yes 124 14
128 1 2 Yes 1488 101
160 1 2 Yes 327 21
256 0 2 Yes 5013 2552
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Table 7: Effectiveness of the selection criteria in identifying the flip signal in M-CAS. Each
column shows the # candidates after applying the corresponding criterion. “-” indicates
the criterion need not be applied as the flip signal has been uniquely identified in the
previous step.

Benchmark Criterion Success?#1 #2 #3
c432 2 1 - Yes
c499 2 2 1 Yes
c1355 1 - - Yes
c1908 1 - - Yes
c2670 1 - - Yes
c3540 10 1 - Yes
c5315 2 1 - Yes
c7552 1 - - Yes
b14_C 1 - - Yes
b15_C 1 - - Yes
b17_C 1 - - Yes
b18_C 1 - - No
b20_C 5 1 - Yes
b21_C 5 1 - Yes
b22_C 2 1 - Yes

Table 8: Effect of technology nodes on the effectiveness of IFS on M-CAS-locked circuits.
“-” indicates the attack failed to find the flip signal.

Benchmark 32nm 65nm
Flip signal

value Level Execution
time (sec)

Flip signal
value Level Execution

time (sec)
c432 1 2 2 1 2 13
c499 1 3 2 0 3 13

c1355 1 3 2 0 2 13
c1908 1 2 2 0 2 12
c2670 1 2 2 0 2 13
c3540 0 5 2 0 6 13
c5315 1 2 2 1 2 13
c7552 1 2 2 0 2 12

b14_C 1 2 3 0 2 13
b15_C 1 2 2 1 2 13
b17_C 0 2 4 1 2 14
b18_C - - - - - -
b20_C 1 2 3 1 2 14
b21_C 1 2 3 0 2 13
b22_C 1 19 4 1 2 14

identifies the flip signal in all but one case, i.e., c499. The third criterion, i.e., the linear
structure is used only once for c499 to uniquely identify the flip signal. However, even if
criterion #1 uniquely identifies a candidate for the flip signal for b18_C, the attack fails as
the identified signal is not the actual flip signal. This could be attributed to the fact that
the flip signal might indeed have merged with the original circuit, though the probability
of such an event remains low as seen from our experiments.

5.4.4 Effect of technology nodes
Here, we investigate the effect of different technology nodes, viz., 32nm and 65nm on

the effectiveness of our attack. Note that different technology nodes have different sets
of cell types that can lead to varying optimizations by the synthesis tools. To this end,
we launch the IFS attack on M-CAS-locked circuits synthesized with 32nm and 65nm
technology libraries, and the corresponding results are reported in Table 8. It is clear
that the attack is successful across technology nodes, except one, i.e., b18_C. However, the
degree of difficulty of the attack varies among benchmarks. For example, the existence
of the flip signal is unclear for b22_C in 32nm, as it lies deep inside the circuit structure.
Nonetheless, the attack succeeds in 14/15 cases for both technologies, as well as the
execution time remains within few seconds. Note that once IFS is successful, launching
SAT attack becomes trivial, and is omitted for the sake of brevity.

5.4.5 Effect of synthesis tools
It is clear from the above results that state-of-the-art synthesis tools leave behind

traces that enable different attacks. Thus, it is interesting to study the effects of different
synthesis tools on IFS-SAT as they can lead to different optimizations, resulting in differing
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Table 9: Effect of Synopsys Design Compiler and Cadence RTL Compiler synthesis tools on
the effectiveness of IFS on M-CAS-locked circuits for 65nm technology node. “-” indicates
the attack failed to find the flip signal.

Synopsys Design Compiler Cadence RTL Compiler
Benchmark Flip signal

value Level Execution
time (sec)

Flip signal
value Level Execution

time (sec)
c432 1 2 12 0 2 13
c499 0 3 12 1 3 13
c1355 0 3 12 1 3 13
c1908 1 2 12 0 2 12
c2670 1 2 12 0 4 12
c3540 0 8 13 - - -
c5315 0 2 13 1 3 13
c7552 1 2 13 0 2 13
b14_C 0 2 13 0 2 14
b15_C 0 2 13 0 2 14
b17_C 1 2 14 1 2 15
b18_C - - - 0 2 28
b20_C 0 2 14 1 3 14
b21_C 1 2 14 1 2 15
b22_C 1 2 14 0 3 14

Table 10: Extending IFS attack to Anti-SAT. The circuits are synthesized with 1) full
technology library, and 2) constrained technology library, i.e., with two input gates. “-”
indicates the attack failed to find the flip signal.

Full technology library Constrained technology library
Benchmark Flip signal

value Level Execution
time (sec)

Flip signal
value Level Execution

time (sec)
c432 1 2 13 1 2 13
c499 1 2 13 0 3 13
c1355 1 2 12 0 3 13
c1908 1 2 12 0 2 12
c2670 1 2 13 0 2 13
c3540 1 5 13 0 5 13
c5315 0 2 13 0 2 13
c7552 1 2 13 0 2 13
b14_C 1 2 13 1 2 13
b15_C 0 2 13 0 2 13
b17_C 1 2 12 1 2 13
b18_C - - - - - -
b20_C 1 2 13 1 2 13
b21_C 0 2 13 1 2 13
b22_C 0 2 13 1 2 13

locked netlists. To this end, we investigate the effect of two industry-leading synthesis tools
on our attack, viz., Synopsys Design Compiler (DC) and Cadence RTL Compiler (RC),
and the results are presented in Table 9. It can be observed that the effect of synthesis
tools is minimal on the attack; the success rate for DC and RC is ∼93% and 100%. This
is a further empirical evidence that synthesis tools fail to merge the structure of M-CAS,
independent of tool/library/technology node used.

6 Discussion
6.1 Applicability to other locking techniques

The attacks developed in this paper are not limited to CAS/M-CAS, and they can
be easily extended to other variants of point function-based locking techniques such as
Anti-SAT [XS18] or SFLL [YSN+17]. The structural analysis carried out in IFS attack
(see Section 3) against CAS, can also be applied to break the closely-related Anti-SAT
technique. To this end, we launch our IFS attack on Anti-SAT, and the results are
presented in Table 10. It can be seen that IFS breaks 14/15 circuits, i.e., a success rate of
∼93%.

Building on this result, we posit that the structural analysis of the IFS-SAT attack
against M-CAS, can be leveraged against other techniques such as SFLL [YSN+17] and
SFLL-fault [SNL+20]. As these techniques also rely on point functions for SAT resilience,
the additional structure could be identified by tweaking the three criteria that are described
in IFS (see Section 4.2), however, we leave it as an open problem for future work.
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Nevertheless, the last step of the IFS-SAT attack, i.e., deciphering the secret key
using SAT, is generic that can be applied to any structurally vulnerable point function-
based locking technique. Note that this is an improvement over the traditional SAT
attack [SRM15] that only succeeds in the oracle-guided model, while, our IFS-SAT can be
launched in an oracle-less model, where the flip signal is simulated as the oracle.

6.2 Limitation of state-of-the-art synthesis tools
To thwart the SAT attack, researchers have proposed several point function-based

locking techniques such as Anti-SAT [XS18], SARLock [YMRS16], SFLL [YSN+17], SFLL-
fault [SNL+20], CAS-Lock [SXTF20a] etc. However, most/all of these techniques have
been broken by different structural attacks [YMSR17, YTS19, SS20, XSTF17]. This is
attributed to the fact that the implementation of point function requires insertion of
additional circuit into the netlist such as an AND-tree [SNL+20]. However, commercially
available state-of-the-art synthesis tools fail to blend this structure into the circuit, leaving
behind traces that subsequently leads to its identification as has been demonstrated in our
attack, as well as in a plethora of other works [YMSR17, XSTF17, YTS19, SS20].

This naturally raises the following question, “is it possible to securely implement a
point function-based locking technique that thwarts any structural attack?” In Meerkat,
the authors argue that it is indeed possible [MZGT17]. The crux of the technique is to
leverage canonical representations of boolean functionality via reduced ordered binary
decision diagrams (ROBDDs) to achieve indistinguishability obfuscation (iO). Note that
the application of an iO obfuscator allows a designer to prove that a locked netlist do not
reveal any information about the secret key. However, ROBDD is inefficient, does not scale,
and thus, can not be applied for practical purposes. Although efficient iO obfuscators do
exist such as [GGH+16], the power, performance, and area (PPA) overheads incurred are so
large that they are of little practical interest at this time. When specifically talking about
application specific integrated circuit (ASIC) design that can not tolerate the slightest of
PPA degradation, application of such iO obfuscators is deemed totally impractical.5 This
leaves the designers at the mercy of commercially available state-of-the-art synthesis tools
that unfortunately fail to provide adequate security against structural attacks.

6.3 Preventing structural attacks
Given the limitation of state-of-the-art synthesis tools, there are roughly three ways to

achieve SAT-resilience without relying on such tools.
The first approach is to insert structures that create hard SAT instances, thereby,

throttling the effectiveness of the SAT solver. Representative techniques following this
approach include Full-Lock [KAHS19], where SAT-hard logic and routing blocks are
inserted and InterLock [KAHS20], where inter-correlated logic and routing locking is used.

A second approach involves locking the scan chains in a circuit to thwart oracle access.
Note that scan chains are inserted to facilitate thorough testing of the circuit. However,
since SAT attack works only on combinational logic, it leverages these scan chains to access
the internal combinational logic. Hence, obfuscating the stimuli and response of scan
flip-flops can thwart the SAT attack [KCK18, KCK19, WZH+17, KKC19]. But, caution
must be taken as some schemes have been shown to be vulnerable to modeling-based
attacks due to linear obfuscation of scan chains [AYL+19, LS20].

Finally, a new direction to thwart SAT attack was proposed in DisORC, where the secret
key is withdrawn from the key-register whenever access to scan chains is detected [LKK+20].
Instead of obfuscating the scan stimuli and responses, DisORC detaches the secret key
coming from tamper-proof memory and instead feeds user-defined key to the key-registers.
SAT attack launched on this setup returns the key fed by the user, clearing any traces of
the secret key in the outcome.

7 Related work
Several attacks have been proposed against existing point function-based techniques

such as SARLock [YMRS16], Anti-SAT [XS18], and SFLL [YSN+17]. One such attack,
called Bypass attack, can break SARLock and Anti-SAT by stitching additional logic onto

5Note that logic locking was introduced to protect ASIC design.
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the SAT-resistant circuit. Further, compound locking schemes where traditional locking
schemes are compounded with point function based techniques to thwart aforementioned
attacks were also short-lived by variants of SAT-based attack [SLM+17, LPS21]. However,
the current CAS/M-CAS technique is secure against such an attack by construction that
has been theoretically established in [SXTF20a].

Examples of structural attacks include signal probability skew (SPS) and AppSAT-
guided removal attack (AGR) [YMSR17] that can identify and remove the SAT-resistant
logic from the circuit, thereby recovering the original design IP. Though these attacks
have successfully been mounted against Anti-SAT and SARLock, M-CAS remains secure
against such attacks by virtue of its construction.

Recently, a functional analysis-based logic locking attack (FALL) [SS20] has been
proposed against a similar locking technique SFLL [YSN+17]. The attack exploits math-
ematical properties of Hamming distance (HD)-based SFLL techniques, viz., unateness,
non-overlapping errors, and sliding window. These properties can successfully decipher a
hardcoded key from a SFLL-locked netlist. However, these functional properties do not
hold for CAS/M-CAS, and as such FALL cannot be applied. However, the unateness
property applies individually to gcas and gcas, and thus, we believe that it may be applied to
find possible candidates for the flip signal. Nevertheless, this would require further complex
mathematical formulations, and the attack fails to break CAS/M-CAS in its current form.

A new structural analysis to identify the flip signal is presented in [YTS19], where the
authors establish that the flip signal exhibits a tree-like structure. However, this attack
relies on manual inspection of the netlist, whereas our attack is completely automated.
Further, the tree-like structure characteristic is inapplicable to M-CAS, making M-CAS
secure against [YTS19].

Concurrent to this work, a graph neural network-based work is introduced in [APK+21].
This work leverages neural network to learn structural features of the SAT-resilient logic,
and subsequently predict its existence. However, the prediction accuracy depends on the
training data set, and unlike our attack, it fails to recover the secret key that can enable
overbuilding.

A comparative overview of our attack against the state-of-the-art attacks is presented
in Table 1, from which it is immediately clear that our attack complements the other
attacks, as it is the only one which successfully breaks CAS/M-CAS.

8 Conclusion
In this paper, we present a series of attacks that break the newly proposed locking

technique CAS/M-CAS. First, we present two new attacks against CAS, viz., IFS and
KBM-SAT in the oracle-guided model that successfully defeat advanced versions of CAS
by exploiting its implementation flaws. Next, we break the improved version of CAS,
viz., mirrored CAS (M-CAS) by developing IFS-SAT that exploits certain structural
characteristics of M-CAS; we launch this attack in an oracle-less setting.

Through extensive experiments, we establish the efficacy of our attacks against different
technology libraries, for different library cells, against different synthesis tools, for varying
key-sizes, and for multiple point function-based schemes. Further, these experiments
support our claim that state-of-the-art synthesis tools can introduce unknown/unintentional
pitfalls in a design and we urge researchers to consider these shortcomings while developing
logic locking techniques.
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