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1 Introduction

Nonlinear models have been widely applied in recent years to capture asymmetries, limit
cycles and jump phenomena in the behavior of economic and financial time series. Among
these models, the threshold autoregression (TAR) introduced by Tong and Lim (1980)
has received particular attention. This is perhaps the simplest generalization of an AR
model which allows for different regimes for the series depending on its past values.
TAR models have been succesfully applied to model nonlinearities in financial variables
by permitting an inner regime of sluggish adjustment for small disequilibria— or small
deviations from some long run equilibrium path or attractor — and mean reversion in
an outer regime comprising large deviations. This nonlinear behavior has been rational-
ized on the basis of transaction costs or a low signal-to-noise ratio hindering profitable
arbitrage opportunities for small disequilibria.

TAR models have also been used successfully to explore asymmetries in macroeco-
nomic variables over the course of the business cycle.! There is the question of whether
the apparent persistence in a economic time series such as GNP or unemployment pro-
vides evidence of asymmetries that standard Gaussian linear (fixed) parameter models
cannot accomodate. Thus one aspect of this literature relates to proposals for new unit
root tests in a TAR framework — which can be thought of as extensions of existing
linear tests — where the alternative hypothesis is stationarity with possible asymmetric
adjustment (Enders and Granger, 1998; Berben and van Dijk, 1999; Coakley and Fuertes,
2001a, 2001b).

A practical problem in using TARs is that standard maximum likelihood (ML) esti-
mation algorithms cannot be applied since the log-likelihood function is not continuously
differentiable with respect to the threshold parameter. This problem has been commonly
tackled by implementing a grid search (GS) over a feasible region of the threshold space.
For a given threshold value, the TAR model is piecewise linear in the remaining pa-
rameters and thus linear estimation techniques can be applied. The threshold value that
maximizes the log-likelihood function over the grid is the ML estimate. Since in principle
any point in the continuous threshold space could maximize the log-likelihood, a full or
detailed GS with a small step size is preferable to a GS restricted to the order statistics
of the threshold variable.

While the latter may deliver inaccurate model parameter estimates for small sample
sizes, a practical problem with the detailed GS is that it may prove computationally ex-
pensive and especially so for widely dispersed data. Though computation costs may not
be an issue in ad hoc fitting of TAR models to single time series, these become relevant
in inference applications of TARs using simulation techniques. For instance, exploring
the small sample properties of TAR-based tests by Monte Carlo or bootstrap simulation
methods and/or estimating response surfaces with a sensible number of replications can
become intractable if no attention is paid to estimation time. These problems are aggra-
vated if the model is nonlinear in more than one parameter which effectively implies a
high-dimensional grid search.

! For instance, TARs have been applied to explore the term structure of interest rates by Enders
and Granger (1998), the Nelson-Plosser data set by Rothman (1999), unemployment behavior
by Caner and Hansen (1998) and Coakley, Fuertes and Zoega (2000), and to model US output
by Pesaran and Potter (1997) and Kapetanios (1999a).
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The purpose of this paper is twofold. First, it explores systematically the value-
added of QR factorizations and Givens transformations in TAR fitting. In this sense it
seeks to fill an existing gap in investigating numerical aspects of TAR modeling and to
provide practical recommendations. Second, by showing that the residual sum of squares
of a certain class of TARs is a continuous rational function over threshold intervals, it
proposes a novel fitting approach. Its main advantage is allowing for a continuous feasible
range for the threshold parameter. Our approach can be considered as equivalent to a
grid search in the limit as the step size becomes increasingly small, while still remaining
computationally tractable in contrast to the latter.

The remainder of the paper is organized as follows. In §2 we outline the TAR frame-
work and estimation issues. In §3 we discuss some numerical tools and combine them
in a novel fitting approach which is summarised step-by-step. The proofs of Proposition
1 and Theorems 2 and 3 are deferred to an Appendix. In §4 we evaluate via Monte
Carlo simulation the efficiency gains of these tools. The proposed approach is applied
in §5 to examine the dynamics of nominal exchange rate changes. The conclusions are
summarised in §6.

2 The Model
2.1 Band-TAR Dynamics

An m-regime TAR model can be written as:
zt = Z(d){) + d)Jl-Zt_l + ...+ gbf,jzt_pj)[t(ﬁj_l S Vt—d < GJ) + Et (1)

j=1

where ; ~ nid(0,0?), I;(-) is the indicator function, —co = 8" < §* < ... < ™ = oo are
threshold parameters, p; and d are positive integer-valued autoregressive (AR) lag order
and threshold delay, respectively. This is a nonlinear model in time but piecewise linear
in the threshold space ©. More specifically, (1) is a discontinuous (in conditional-mean)
TAR which partitions the one-dimensional Euclidean space into m linear AR regimes.
The specific linear mechanism at any given point in time depends on the values taken by
the threshold or switching variable v;_ 4. The resulting model for v;_4 = 2z;_4 is sometimes
called a self-exciting TAR (SETAR) to distinguish it from those models where v;_4 is
exogenous.’
Consider the following first-difference reparameterization of (1) for m = 3:

Azg = A(t,0) It (vi—qg < —0) + B(t) [;(—0 < vi—q < 0)+ @)
A(t,0) T L (vi—q > 0) + &
with
A(t,0)” = ar(zi—1 +0) + ao(z—2 +0) + ... + ap(2i—p +0),
At )T = ai(zi-1 — 0) + as(zi—2 — 0) + ... + ap(zi—p — ),
B(t) = By + B12t-1 + Bazt—2 + ... + By2t—q,

? (SE)TAR models are special cases of Priestley’s (1988) general nonlinear state-dependent
models. In the related smooth transition AR (STAR) class of models I;(-) is replaced by a
(continuous) smooth function. See Tong (1983) and Granger and Terésvirta (1993).

,0
0
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where 6 > 0 is an identifying restriction. This is a generalization of the Band-SETAR
model introduced by Balke and Fomby (1997) where p = ¢ = 1 and 8, = 8, = 0. The
latter implies random walk behavior in the inner band. An important feature of Band-
TAR processes is that their stability properties depend on the outer band dynamics only.
More specifically, even when the inner band has unit root/explosive behavior, if the roots
of the outer band characteristic equation L? — (ay + 1)LP™! — ap LP™2? — ... — o, = 0 lie
within the complex unit circle then, whenever |v;_q| > 0, z; converges to the edges of the
band [—0, 0] which act as attractors, and is stationary overall. This Band-TAR scheme
has been extensively applied in the recent nonlinear literature to analyse the behavior
of (demeaned) financial and economic variables which are expected to exhibit symmetric
change-point dynamics around a long run equilibrium path.

A straightforward extension of (2) is an asymmetric Band-TAR with adjustment
parameters «j,j = 1,...,p, and aé—,j = 1,...,p for the upper (v;_g > 6") and lower
(vp—a < fﬁl) outer regimes, respectively. Another important related specification is the
following continuous (C-)TAR:

Az = af(z-1 = O+ (-1 = 0)(1 = I) + 38y Az j + &4

I lifv,_1 >0 (3)
¢ 0 otherwise

where v;_1 = 2z;_1 — 0. This model characterizes a process with possibly asymmetric
adjustment (% # o!) towards the attractor 6. Note that a common feature of (2) and
(3) is that 0 appears explicitly in the conditional mean of Az;. This C-TAR class of
models — which has generated an extensive literature’ — was formally introduced by
Chan and Tsay (1998) and proposed by Enders and Granger (1998) as a generalization
of the linear augmented Dickey-Fuller regression to test for unit root dynamics.

2.2 The Estimation Problem

Let {2}, and {v;}}Y, be the time series available for estimation of (2). Ordinary LS
or, equivalently, conditional ML under Gaussian innovations, lead to the minimization of
the following residual sum of squares (RSS) function:

n

RSS(d)) = Z(Azt — A(t, 9)_)2[t('Ut—d < *9) + i(AZt — B(t))QIt(|’Ut_d| S 9) +

> (Az = At 07 L (vi—a > 0)

t

3 Note that (2) assumes outer regimes with the same dynamics a(L) and symmetric thresholds
with respect to zero. For instance, Coakley and Fuertes (2001c) employ this symmetric model
to explore the issue of market segmentation in Europe while Obstfeld and Taylor (1997) fit a
more restrictive version with 8, = 8, = ... = 8, = 0 to analyse the PPP hypothesis.

* For example, Berben and Van Dijk (1999) develop a unit root test based on (3) and Coak-
ley and Fuertes (2000) extend (3) to develop tests for AR mean-reversion against sign and
amplitude asymmetric adjustment.
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with respect to ¢ = (0, o/, 3',d,p, q)’, where a = (o, ..., )" and 8 = (8, By, ..., 3,)" are
the outer and inner AR parameters, respectively, and n = N — max(d, p, q) the effective
sample size.

Let us assume that the lags (d,p, q) are known a priori. Our goal is to estimate the
remaining parameters 0, a and 3. Since the above objective function is discontinuous in 6,
standard gradient-based algorithms cannot be applied. If the threshold space © is small,
a simple grid search (GS) can be effectively used to find the value € © that minimizes
the RSS (or some LS-based criterion) or maximizes the log-likelihood function over a
countable set of threshold candidates. The remaining (linear) parameters can be easily
estimated by LS conditional on ) Generalizing the latter to unknown d,p and ¢, Chan
(1993) shows that under certain regularity conditions for z;, including stationarity and
geometric ergodicity, and iid but not necessarily Gaussian innovations, this sequential LS
approach yields estimators &, 8, d, p and ¢ which are strongly consistent at the usual VN
rate and asymptotically normal, and an estimator 6 which is (super) N-consistent and
has a non-standard distribution. Chan and Tsay (1998) extend this asymptotic result

to show that (@, &', 3/, d, p, §) are strongly v/N-consistent and asymptotically normal for
C-TAR models such as (3).

The threshold space is the continuous region @ C IR™. However, in practice the
GS is restricted to a feasible (discrete) range in © by fixing a number of threshold
candidates which are usually the sample percentiles (or order statistics) of v;_4, that
is, §iy = {va) S ve) < ... < v} C O. However, since in principle any point in
© could maximize the log-likelihood, a full or detailed GS using &, = Ui{Gg N
9{ < 0it1, 9{“ = 9{ +X7=12.1} U &y where 0; = vy, i = 1,...,n, is preferable
to a GS restricted to ;). While a potential pitfall of using §(;) is that it may yield
imprecise estimates for small N and widely dispersed data, which imply a large range
U(n) — (1), @ practical problem with &, is that it may prove computationally expensive
for small step size A. In general the choice of A depends critically on a trade-off between
computation time and threshold bias. This calls for an estimation method capable of
handling a continuous threshold range while keeping costs within tractable limits.

For some TARs, threshold values between consecutive order statistics, v < 0 <
V(i+1), change neither the partition of the observed data into regimes nor the associated
(piecewise linear) LS problem. For these TARs, a sensible range for § in estimation is
§(1)- However, the latter does not apply to models such as (2) or (3) where the threshold
appears explicitly in the conditional mean. This effectively means that varying 6 in the
range between consecutive order statistics changes the regressors of the upper and lower
equations, {z_; — 0} and {z,_; + 0}, j = 1, .., p, respectively, and hence the LS problem
even though the same data partition holds. For these TAR types, using a grid search
either with £, or {,) may yield a suboptimal threshold estimate whose lack of precision
will contaminate the distribution of the remaining parameters. These practical issues
call for a fitting approach which allows for a continuous feasible range while keeping
computation costs within tractable limits. The proposed tools are in this spirit.
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3 An Efficient Estimation Approach

3.1 Arranged Autoregression and Threshold Intervals

This section first discusses the ordered-autoregression concept introduced by Tsay (1989)
which facilitates efficient estimation of TARs. It then explores how allowing for different
threshold values in a given (continuous) threshold interval alters the initial ordered-form
setup in the context of model (2).

Without loss of generality, set v4—q = 2z—4 in (2) and assume d is known a priori.
Let L be a plausible maximum lag order, 1 < (p,q) < L. For p = ¢ = L the ob-
served data {2}~ ; can be represented in a regression framework as y = f(X) + ¢, with
X = (x1,29,... ,x1) where ¢ is a disturbance n-vector and y and z; are data n-vectors
of observed data for Az, and z,_;, respectively, and n = N —max(d, L). Each row in this
matrix-form setup represents an available case for the Band-TAR estimation problem.
Let us transform the latter into a change-point problem by rearranging its cases accord-
ing to the threshold variable v;_4. To facilitate this we augment X with the available
observations for the latter as follows

11 12 ... 1L V1
21 T22 ... T2 VU2

(X|v) = (2t—1,2t—25 -+, 2t—L|Vt—aq) = C S (4)
Tnl Tnp2 -+ TnL Un

Next the rows of y, € and (X|v) are rearranged following the ordering of v;_4, the last
column of (X|v). This yields 4 = f(X?) + & with:

v U v

i Yy ... X{p v

B O R A
21 422 2L Y(2)

v _ v v v _
(X ) = (2-1, 2{—2, - - - 7Zt—L|”(i)) =1 . . . ) (5)

v U v

Tp1 Tpo -+ Tpp V(n)

where v(;) denotes the 7th smallest observation of v;_g4. A crucial property of this refor-
mulation (denoted by the superscript v) is that by permuting (rows) cases of the initial
matrix-form setup, it preserves the dynamics of z;.

Let 0 = 0 (0, > 0) be a plausible threshold value such that two indexes, k; and
ko (k1 < ko), are associated with it satisfying vy < —0x for i = 1,2... ki, vy > Ok
for i = ko,...,n, and 0 < vy < O for i = ky +1,... k2 — 1. Using the above
ordered-form notation the s = ko — k1 — 1 cases classified into the inner regime of the
Band-TAR model can be written as Az, = Z23 + ¢, where:

v v v
Lag 11 % 410 T4
v v v
Ly, 101 Tk yo0 - Thi4oL

v v v
Lag, 112, 19 Thyo1L
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J— v v U / J— v v v / 3 3 —
Azs = (YR, 41, Yk aos -+ Upp_1)'and €5 = (€ 4 1,€}, 105+ sEp,_1) - Likewise the r =
n — (ke — k1 — 1) outer regime cases can be written as Az, = Z%(0;)a + ¢, where:

x + 0, x99+ 0, ...y 40

p o+ Ok 20 + 0k . g p + 0k

7z (0k) = : , , , 7
r (0k) ;v,‘;ﬂfﬁk;v,‘;ﬂfﬁk...z};ﬁ—ﬂk (7)
xh, — 0k xpo—0k ... xp; — 0Ok
Az = (Y15 Uk Ukys -+ > Un) and e, = (7, ... €}, €8,5- -+ »Ep) - Note that the upper

k1 x L and lower (n—ko+1) x L partition matrices of Z%(0y) correspond to the A(t,0;)~
and A(t,0;)" outer AR schemes of (2), respectively.

The order statistics of the moduli of v;_4, which are denoted by 6; < 0 < ... <46,,
are used to define the continuous threshold space ©. To guarantee that each regime
contains enough observations (cases) for the submodels to be estimable an asymptotic-

theory based rule defines © such that for some x > 0, and any 6, lim,, m;_,ez > K,
s(n,0)

and lim,,_, > k where r and s are the outer and inner regime cases, respectively.
A usual choice is k = 0.15. After filtering out possible repeated 0; values, the threshold
space is eventually defined as © = {U;[0;,0;+1)} € RT where [0;,0:41), i = 70,70 +
1,...,71 — 1, is a countable number of continuous nonoverlapping intervals (threshold
intervals hereafter) and kn < 79, (1 — k)n > 71. Note that 79 = kn and 71 = (1 — K)n
only if there are no repeated order statistics below and above the k- and (1 — k)-quantiles
of v;_q4, respectively.

Without loss of generality, let us start the iterations from the extreme right-hand
interval [0;,-1,0,,) in © and allow § = 0., as the first threshold candidate. The
latter defines the inner and outer regressor matrices, Z? and Z%(6), respectively, where
s=ko—ki—1,r=k1+(n—ka+1), and k; and n— ks + 1 are the number of cases from
the top and bottom of XV, respectively, classified as outer cases. The outer regressor
matrix can be rewritten as Z¢(0) = Z0, + U? where:

v v v
¥y aly ...zl
v v v
70, — | Thia Thi2 oo T 3
T v v v ( )
kol Thy2 koL
v v v
xly xly LTl
and U? = w,ufy = (1,...,1,-1,..,—-1)"(0,..,0,0,... ,0) is a rank-one matrix with u, an

r-vector whose first k; components are 1s and the remaining (n— k2 + 1) components are
—1s, and ugp is a p-vector. Thus Z%(6) can be seen as a rank-one correction of Z0,.. We
call Z0, and U?, basis and correction components, respectively. For threshold values in
a given interval, say 0., 1 < 6 < 6,,, the same data partition holds and thus the basis
is invariant, whereas the correction changes due to the explicit dependence on 6. The
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net result is that for within-interval threshold variations Z2(6) changes, whereas Z2 is
invariant since it does not explicitly depend on 6.
3.2 QR Approach to LS Solving

Given a general LS problem

min || X7~y [ ©)

where X € R"*™ (n>m), y € R", v € R™ and || . ||2 represents the Euclidean length
or 2-norm in IR", its solution can be written in terms of the so-called pseudoinverse or
Moore-Penrose inverse X+ (Bjorck, 1996) as

§=X"y. (10)

However, rather than calculating X1 explicitly, decompositions of X or methods to solve
the normal equations (X’'X~ = X'y) associated with (9) are commonly used.

When X is a full-column rank matrix the vector 4 € R™ that solves (9), called the
LS estimator, is unique and given by®

F=(X'"X)"'X"y (11)

where (X’X)~! X" is the Moore-Penrose inverse of a full-column rank matrix. The latter
can be efficiently calculated via the QR approach which has the merit of being rela-
tively cheap in terms of number of operations and computationally stable. The following
Theorem defines the QR factorization.

Theorem 1. (QR factorization) Let X € R™*™ with n > m. Then there is an orthog-
onal matriz Q € R™*™, such that:
x=q(g). (12)

where R € IR"™*™is upper triangular with nonnegative diagonal elements. This is called
the QR factorization of X.

Since orthogonal transformations preserve Euclidean length (9) is equivalent to:
min | Q(X7 ) | (13)
where
Qo= 181 () 1= () =1 -l + el (14)

% A full-column rank regressor matrix implies no exact collinearity between the regressors. This
condition is guaranteed in an AR(p) model since X, (p11) = (1, Zt—1,2t—2,... ,Tt—p).
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for any v € IR™. Since rank(X) = rank(R) = m, the LS estimator 4 can be obtained by
solving the upper triangular linear system Ry = d;.° The residuals, é = y — X#, can be
calculated efficiently by é = Q(0,d2)" and the RSS by || é ||3=|| d2 ||3.

Another important advantage of the QR approach is that when X is altered in partic-
ular ways, the factorization of the resulting matrix X needs not be calculated anew but
can be easily updated from previous factors using, for instance, Givens rotations. The
latter is a computationally stable approach which requires considerably fewer operations
than a new factorization.” Two scenarios are of particular interest for TAR modeling:
when X is obtained by adding rows to X or as a rank-one correction of X. Section 3.4
discusses in detail how Givens rotations are integrated in the proposed fitting approach.

3.3 Locally Continuous RSS(6) Functions

Let us consider the linear regression model y = X (0)v + ¢ and associated LS problem:

min | X(6)7 ~ y | (15)

where the n xm (n > m) regressor matrix depends explicitly on a parameter 6. Following
our discussion in §3.2, the LS solution of (15) can be written as:

7' =X(0) "y (16)
and the RSS, defined by || &% ||3= (y — X(0)5°) (y — X (#)3"), turns out to be:
Ie” 3=y Prixyy =y (I - X(0)X(0) 1)y (17)

where Pﬁ( x) is the orthogonal proyector of R" onto the range of X(0) and I is the
identity matrix.

If X(0) is full-column rank, then the second-moment matrix X (6)’ X () is nonsingular
and (17) can be computed by:

1" [13= o' (1 — X (0)(X(8) X(0)) "' X(0) )y (18)

Let X (6) denote a first degree polynomial matrix, that is, a matrix whose entries are
first degree polynomials. Then there exist constant matrices Xy and X; such that

X(0) = Xo + X160, (19)

which implies a second degree polynomial moment matrix:
X(0)'X(0) = XpXo + (X, X1 + X, X0)0 + X, X167 (20)

Our estimation approach builds upon the next theorem.

% This factorization can be modified using pivoting techniques, such as the rank-revealing QR
approach, to solve LS problems where the regressor matrix is rank deficient.

" See Stoer and Bulirsch (1992) and Golub and Van Loan (1996). Schlittgen (1997) proposes
a fast estimation algorithm for a different type of TAR models — where 8 does not appear
explicitly in the conditional mean — which also uses Givens updates of the QR decomposition.
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Theorem 2. If the n x m (n > m) regressor matriz X (0) in (15) is a first degree poly-
nomial matriz, X(0) = Xo + X160, with X1 of rank one and whose ith row is (c;,... ,¢;)
with ¢; constant, then the sum of squared residuals || €° ||3 is a rational function of degree
type (4,2) provided X (0) is a full-column rank matriz.

The result in Theorem 2 is based on the following Proposition.

Proposition 1. If an n X n second degree polynomial matriz is obtained as A(f) =
(B+ CO) (B + C0), where C is a rank-one matriz whose ith row is a vector of the form
(Ciy- .. ,¢;) with ¢; constant, then det A(0) is a second degree polynomial.

The proofs of these results can be found in the Appendix. Theorem 2 allows us to
consider a continuous range of values in the identification of the nonlinear parameter
0 while keeping computation costs within tractable limits. As shown in §3.1, for 6 €
[0;,0:+1) the outer regime LS problem can be written as (15) with X(0) = Z%(6). Since
the latter is a first degree polynomial matrix, from Theorem 2 it follows that the RSS of
the Band-TAR model is a rational function of 6 of degree type (4,2) over each threshold
interval, that is RSS(0) = w42(0) for 0 € [0;,0;41). Since Z2(0) Z() is nonsingular,
the denominator of ¥*2(6) never vanishes in the interval and thus RSS(6) is continuous
over [0;,0,11). It follows that a global minimum exists:

0* = argmin ¥*?(0) (21)
[0:,0i+1)

which can be found by applying the necessary optimality condition. Since ¥*2(0) is a
relatively low degree rational function, its coefficients can be cheaply identified in each
interval via rational interpolation using just seven (arbitrary) support points.®

3.4 QR Updating: Givens Transformations

This section discusses, first, how Givens rotations can be used to iterate efficiently within
and across theshold intervals and, second, how the lags p,q and d can be identified.

For the outer regime, the algorithm starts by considering the submodel for p = L.
The outer-regime LS problem for any 0 € [0;,0;11) can be written as:

min || Z2(0)a — Az, ||2 (22)

where, as shown in §3.1, its r X L regressor matrix has two components, the basis Z0,
and the correction U?, Z&(0) = Z0, + UY. Since within-interval variations of 6 affect
only U?, it follows that the LS problems associated with different candidates in [0:,0i+1)
can be solved readily by simply updating the QR factors of Z%(#) for the different U?.
Moreover, since Z&(#) is just a rank-one correction of Z0,., these within-interval updates
can be cheaply obtained via Givens rotations.

8 We implement a simple Neville-Aitken type approach which generates a tableau of values
of intermediate rational functions ¥**¥ () following the zigzag (0,0) — (1,0) — (2,0) —
(3,0) — (3,1) — (4,1) — (4,2) in the (y,v)-diagram.
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Now let us consider across-interval variations of 6, that is, the algorithm moves to
the next (say, contiguous to the left) threshold interval, [f;—1,6;) C ©. In contrast to the
within-interval variations, not only does the correction U? change but also ¢ (¢ > 1) new
cases are classified into the outer regime which defines a new basis Z0, with » = r + ¢.
Since the new Z0, is just the previous interval’s basis with ¢ additional rows, its QR
factorization can be cheaply obtained via Givens rotations.

Consider now the augmented matrix (Z¢(0)|Az,), and its QR factorization:

R, d,
(Z2(0)|Az) = Qr | 0 5, (23)
00

where @, and R, are r x r and L x L matrices, respectively, d, is a L-dimensional vector
and s, is an scalar and, for simplicity, we have dropped 6 in the right-hand side of the
equation. It follows that:

R, dy
Z¢0)=Q,. [0 and Az, = Q. | sr (24)
0 0

and || Q/.(Z&(0)a — Az,) ||3=|| Rra—d, ||3 + || s+ ||3- It follows that the LS estimator &
can be efficiently calculated by solving (back substitution) the upper triangular system
R,& = d,, that is

11712 ... "1L-1 L dr

0 7rog...Top—1 Tor dyo

Do a= (25)
0 0 ...7p—1p—17L-1L drr—1

0O 0 ...0 TLL er

and the RSS estimator is given by RSS(0, L) =|| s, ||3 = s2.
If for the same given 6 in [0;,0;,1) we consider the model for p = L — 1, the associ-
ated outer matrix (Z%(0)|Az,)r—1 is just (Z¥(0)|Az.)r with the last column of Z%(6)

deleted.? This has minimal impact on the earlier QR factors in (23), that is

R, d,
(Z2(0) Az )1 =Qr | 0 s, (26)
00

where R, is just R, with its last column deleted, giving RSS(0,L — 1) = d?; + s2
d?, + RSS2 (6, L). This can be generalized to any order p < L as RSSX(0,p) =dZ ., +

% Using for order p < L the same Zf(G) matrix as for order L with its last L — p columns
deleted is computationally efficient but implies that L — p available cases (rows) for ZZ(6)
are not used. Though in this sense the LS solution for the p < L models is suboptimal, this
is tolerated since in general (parsimony principle) L is not too large and this simplification
delivers a much faster algorithm. Nevertheless, once (0,d,p,q) are identified the algorithm
estimates a and 3 using all available data.
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RSSO, p+1) =d?,, +d2, . 5...+d2 +s7. Once the iterations for p=L,L—1,...,1
are completed the best order (conditional on d and ) can be obtained by minimizing an
Akaike information criterion (AIC) following Tong (1983):

pr(0,d) = argmin AIC,(0,d,p) (27)

1<p<L

where AIC,(0,d,p) = rln(w) + 2p and AIC,(0,d,p,) represents the minimal
criterion associated with d and a specific 0 in [0;,60;,1).1° For each interval, our fitting
procedure finds first the optimal ), associated with each p = L, L—1,...,1, by minimizing
a continuous rational function as discussed in §3.2, and then minimizes the resulting
AIC,(0,,,d,p) sequence to find p,.(05 , d).

For the inner regime, the algorithm proceeds analogously to calculate RSS? and
AICp sequentially for ¢ = L, L — 1,...,1. However, since the inner-regime LS problem
is within-interval invariant, a unique best-fit §s and minimal AICg(d, ;) are associated
with all 8 € [0;,0;41). For the Band-TAR, a minimal AIC for each interval is calculated
as AICTar(05 . d, pr,qs) = AIC, (05 ,d, p.)+AICs(d, ), which gives an AIC sequence.
The values (6, p, ¢) that minimize this sequence conditional on a given d, that is

(é7ﬁ7 q) = a‘rgmin AICTAR(9%T7 d7ﬁ7‘7 qs) (28)
[0:,0i+1)CO

are the LS estimates and AICT AR(@, d,p,q) is the minimal AIC of the Band-TAR model
for a given d.!!

If d is not known a priori — as is common in practice — the above procedure is
repeated for different d € {1,...,D} where D is some maximum plausible threshold
delay. This gives a sequence of AICTar(0,d,p,q) values. The LS estimates of (6,d,p, q)
are obtained by minimizing this sequence, that is

(97 CZ7ZA)7 (j) = argmin AICTAR(é7 d7 ﬁ7 q) (29)
1<d<D

or alternatively, following Tong and Lim (1980), the normalized AIC (NAIC) sequence:

(é7 C27137 (j) = argmin AICTAR(é7 d7 ﬁ7 (j)/(N - max(d, L)) (30)
1<d<D

where N — max(d, L) is the effective sample size. Once @, cf,f) and ¢, are identified the
model becomes (piecewise) linear in the remaining parameters, o and [, which can be
easily estimated by LS.

10" Alternatively one could adopt the more parsimonious Schwarz Bayesian criterion (SBC) or the
Hannan-Quinn criterion (HQC) which lies somewhere between the AIC and HQC. Discussing
the relative adequacy of these and other criteria goes beyond the scope of this paper. See
Kapetanios (1999b).

1 Note that only RSSS and RSS?, but not & and B, are required for the identification of
(0,d,p,q). A number of operations can be avoided by updating only the @ and R matrices
involved in the former’s estimation. In particular, the interval-by-interval iterations for the
outer regime require updates of both the @ and R factors of Z0% to obtain Z’s factorization
(due to the rank-one correction UyY), whereas the inner-regime iterations only require updating
the R factor of Z72.
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3.5 The Proposed Fitting Approach

The following steps can be followed to identify and estimate the Band-TAR parameters:

i) Fix D and L, some maximum feasible values for the threshold delay and AR lag
orders, respectively. Set the minimum number of observations required in each regime
to m = kN where N is the sample size. A usual choice is k =0.15.

ii) For each d € {1,2,... , D} repeat the following:

— Arrange the data in ordered autoregressive form (y”, X") as described in §3.1.

— Define the threshold space @ = {U;[0;,0;41),i = 70,70 + 1,...,71 — 1} € RT by
means of continuous non-overlapping theshold intervals as described in §3.1.

— Repeat the following operations for the outer regime:

1. Use as initial threshold interval [#;,6;11), the extreme right-hand interval in ©.
Filter out the outer-regime cases in (y”, X¥) to form the (augmented) basis matrix
(Z0%|Az,)p for order p = L. Compute the QR factorization of the latter.

2. Choose 7 arbitrary (e.g. equally spaced) thresholds 6/ € [0;,0;11),7 =1,...,7.

3. Factorize the augmented regressor matrix (Z?(93)|Azr)p,j = 1,...,7, by means
of (rank-one-correction) Givens updates of the QR factorization of (Z0%|Az,),.

4. Use the updated R factor to compute RSS%(67,p), j=1,...,T.

5. Identify 473’2(9) via rational interpolation with support points (93 , RSS?(G{ D)), J =
1,...7.

6. Find 05, the value that minimizes ¥,;-2(6) in [0;, 0;41) using the necessary optimal-
ity condition. Compute the associated minimal RSS; (6}, p) and AIC,(0,,d,p).

7. Set p = p — 1. Apply Givens rotations to the QR factorization of (Z0%| Az )p+1
to re-factor the new basis matrix, (Z0%|Az,),, which is just the previous basis
with the last column of Z0¢ deleted.

8. Repeat steps 2-7 until p = 1 is completed.

9. Find p, (and associated optimal 6% ), the best-fit order for the active threshold

Pr
interval as the value that minimizes the AIC, (0, d, p) sequence:

pr = argmin AIC, (0}, d, p)

1<p<L

and compute the minimal AIC, (05 ,d,p,).

10. Move to the next (contiguous to the left) threshold interval in ©. Re-factor the
new basis (Z0%|Az,), for p = L by applying Givens rotations to the QR decom-
position of the previous interval analogous basis (these two matrices differ only
in that the former has ¢ additional row(s) or r = r +¢,c > 1).

11. Repeat steps 2-10 until the last threshold interval in @ (extreme left-hand inter-
val) has been considered.

— Repeat the following operations for the inner regime:

1. Use as starting interval [0;,0;4+1) the last interval used in the outer iterations.
Filter out the inner-regime cases in (y¥, X?) to form the augmented regressor
matrix, (Z2|Az,), for order ¢ = L. Calculate its QR decomposition.

2. Usethe R factor of (2P| Azs), to compute RSS? (q) and the associated AIC3(d, q) =

B
BSSay 4 2(q+1).

sIn(=
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3. Set ¢ = ¢—1 and apply Givens rotations to the R factor of (Z%|Az)4+1 to obtain
the R factor of the new (Z2|Az,), which is just the former matrix with the last
column of Z? deleted.

4. Repeat steps 2 and 3 until ¢ = 1.

5. Determine §s, the best-fit order for the active threshold interval as the value that
minimizes the AIC3(d, ¢) sequence:

gs = argmin AIC3(d, q)

1<q<L

and compute the minimal AIC3(d, §s).

6. Move to the next (contiguous to the right) interval in ©. Obtain the R factor of
the new (ZP|Az,), for ¢ = L by applying Givens rotations to the R factor of the
analogous matrix for the previous interval (these two matrices differ only in that
the new matrix has additional row(s) or s = s + ¢, ¢ > 1).

7. Repeat steps 2-6 until the last interval in © (right-hand extreme interval) has
been considered.

— For each threshold interval compute an overall AIC from the (outer and inner)
AIC obtained in steps 9 and 5, i.e. AICTAR(0; ,d,pr,qs) = AIC. (05 ,d,pr) +
AICj3(d, §s). Minimize the latter sequence, conditional on d, across intervals to find:

(é7ﬁ7 q) = a‘rgmin AICTAR(9;T7d7ﬁT765)
[0:,0:+1)CO

and calculate the associated minimal NAIC as
NAICTAR(97 d7ﬁ7 q) = AICTAR(97 d7ﬁ7 6)/(N - max(d, L))
iii) The LS estimates @, ci,ﬁ and § are obtained by minimizing the NAIC sequence:

(97 d7p7 q) = 1§1ng NAICTAR(97 d7p7 q)

iv) Finally, estimate the adjustment parameters of the Band-TAR model, a and £,
conditional on (6,d,p,q) by ordinary LS using all available data.

4 Simulation Analysis

This section investigates via Monte Carlo simulation the merits of the proposed numerical
tools in the context of Band-TAR fitting.

4.1 Monte Carlo Design

Three particular cases of Band-SETAR model (2) are considered in the experiments:!?
)g=2,p=2,d=1,0=0.3503" ={0.5,-0.55,—0.75},a/ = {-0.8,—0.75}
M g=1,p=3,d=2,0=0.92,8 ={04,-1.0},¢/ ={-0.5,-0.73,-0.35}

'2 The simulations were programmed in GAUSS 3.2.26 and run on a 500MHz Pentium III.
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) ¢g=3,p=>5,d=1,0 =0.18, 3’ = {—0.95, —1.65,0.8,0.45},

o ={-1.8,0.35,0.4,—0.6,—0.75}
The error term ¢ is generated as nid(0,02) with o2 = {0.2,0.4,0.9}. Thus effectively
nine different data generating processes (DGPs) are used. The sample sizes are N =
{100,200} after discarding the initial 200 observations. In all experiments we replicate
the simulations 500 times. Four fitting approaches are compared:

— The (continuous) approach summarised step-by-step in §3.5 which uses rational in-
terpolation together with QR factorization and Givens updating [F1 hereafter]|.

— A grid search (GS) which uses QR factorization and Givens updating [F2].

— A GS using QR factorization (no Givens updating) [F3].

— A simple GS (no QR factorization or Givens updating) [F4].

The maximum lags considered are D = 4 and L = {4, 7}.'® The minimum number of
observations per regime is m = 7N with 7 = 0.15 and the step size of the GSis A = 107!,
Since once the change-point 0 is identified the Band-TAR model becomes piecewise linear
in the remaining parameters, our comparative analysis focuses on bias and efficiency of
the former and on computation costs. The following descriptive measures are employed
to summarise the results: mean bias (B,,), Root Mean Squared Error (RMSE), median of
bias (B,), Mean Absolute Deviation (MAD), sample variance (O'z), mean computation
time (t,,) and median computation time (¢;).

4.2 Monte Carlo Results

The estimation results, summarised in Tables 1-4, indicate that the threshold parameter
estimates (@) do not appear to suffer from systematic upward or downward bias. The
different bias measures for  from procedure F1 are generally smaller than those from
any of the GS methods (F2-F4) despite the relatively small step size employed. For
instance, for DGP II (with N = 100, 02 = .2) the RMSE and MAD from F1 are only
28% and 44% that from F2, respectively. We checked whether reducing the step size
from A = 10~! to A = 103 overturns this outcome. Focusing on the GS procedure F2
the results suggest that, though the biases fall the estimator 6 from F1 still remains less
biased. For instance, the RMSE for DGP I and DGP II with N = 100 and 02 = .2 falls
from .06960 to .02210 and from .24739 to .23592, respectively. The downside of such step
size reduction is that computation costs appear multiplied by a factor of some 3 to 13
times depending on the specifications (Coakley, Fuertes and Pérez, 2001).

With the exception of DGP III, the threshold dispersion (03) suggests that the es-
timates from F1 are generally more efficient. Hence, these results provide prima facie
evidence that permitting a continuous range of variation for the threshold in Band-TAR
fitting can help reduce small-sample biases and increase the efficiency of the threshold

estimator.!* This is important given that the remaining (linear) parameters in the TAR

13 To keep the analysis simple we use L = 4 for DGP I and DGP II and L = 7 for DGP III.
4 This conclusion can be extended to other TAR schemes where the threshold also appears
explicitly in the conditional mean, such as C-TAR model (3).
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model are estimated conditional on 6. Finally, the GS procedures produce virtually iden-
tical results in terms of bias and efficiency, as expected, since they define the same feasible
set of threshold candidates.'®

In terms of computation costs, a ceteris paribus comparison of F3 and F4 across
specifications indicates that by using the QR approach to LS solving, TAR estimation
time — as measured by ¢, and ¢, — falls by a factor of 1.5 on average for the different
DGPs. These time savings are likely to increase sharply in TAR-based inference analysis
using simulations. For instance, in a Monte Carlo analysis of the small sample properties
(such as size and power) of a Band-TAR unit root test — the null is unit root behavior
and the alternative Band-TAR stationarity — with N = 100, L =7 and D = 4 and a
sensible number of replications, say 10, 000, the difference between employing F3 or F4 is
some 1, 500mins. (~ 25h.). A comparison of F2 and F'3 reveals that using Givens rotations
to update the QR factors (rather than calculating them anew) reduces computation time
by a ratio of 1.5 when L = D =4 (DGP I and DGP II) and a ratio of some 5.5 times
when L =7 and D =4 (DGP III). These ratios are magnified for the larger sample size
N = 200. Therefore, Givens rotations can reduce the costs of TAR fitting, and more so
the larger is L(D) which increases the number of potential models.

A comparison of F2 and F4 suggests that both the QR factorization and Givens
rotations jointly reduce estimation costs by some 2.2 to 8.2 times depending on the
specifications. The latter translate into a time difference of some 4,320mins. (~ 72h.) in
a Monte Carlo analysis of the small sample properties of a Band-TAR test with N = 100,
L =7,D = 4 and 10,000 replications. Finally, as expected from the way the feasible
threshold range is defined, computation costs increase with innovation volatility for the
GS methods F2-F4 whereas they are invariant to data dispersion for F1 and depend
only on sample size. This difference may be relevant when fitting Band-TARs to highly
volatile time series such as those involving financial variables.

5 Empirical Illustration

As an illustration of Band-TAR modelling we apply the algorithm outlined in §3.5 to
US dollar exchange rate data of six core members of the ERM (Belgium, Denmark,
France, Germany, Italy and the Netherlands) plus the UK. We employ logarithms of
end-of-month spot bilateral exchange rates 1973M7-1996M6. The chosen specifications
are L = D = 7 and a minimum number of observations per regime of .15N where N is
the sample size. Our illustration follows the consensus view that the exchange rate is I(1)
and accordingly explores the dynamics of exchange rate changes or spot returns (As;).
We take the sample mean of the latter as a proxy for a long-run equilibrium change and
fit the Band-TAR model to the demeaned variable z; = As; — As;.

Table 5 reports the Band-TAR estimates which reveal several common patterns for
the seven currencies.!® First, the delay estimate is d = 1 in all cases which is quite

15 We also compared the detailed GS approaches F2-F4 with a GS restricted to the order statis-
tics of the simulated z;. The results reveal that the threshold estimates from the latter suffer
more often from ‘suboptimality’ in the sense that they are more biased and less efficient on
average. See Coakley, Fuertes and Pérez (2000).

16 The estimation time per model was about 4 minutes.
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plausible given the highly liquid foreign exchange markets since d represents the time lag
of the ‘market’ in responding to deviations from equilibrium. Also this estimate may be
suggesting that for the sample analyzed the most recent change is important for changing
the intervention behavior of the central bank. Secondly, as suggested by the (absolutely)
largest characteristic root, the outer regime exhibits faster adjustment than the inner
regime, in particular for the French franc, Italian lira and pound sterling where the
inner regime exhibits non-stationary behavior. Since the outer regime represents large
depreciations (upper) and apreciations (lower) this may be explained by interventions
of the central banks. Thirdly, the number of observations in the inner regime is smaller
than that of the outer regime s < r. The results point to two groups with very similar,
nonlinear dynamics, the French franc, Italian lira and pound sterling on one hand, and
the DM zone comprising the Belgian franc, German mark, Dutch guilder and Danish
krone on the other. Lastly, the specifications in Table 5 were corroborated by the same
fitting algorithm based on the SBC criterion with the exception of the pound sterling.
For the latter a more parsimonious inner AR submodel (p = 2) is suggested while all the
previously discussed patterns still hold.

6 Conclusions

This paper investigates numerical aspects of TAR fitting. In this context it evaluates the
computational advantages of the QR approach and Givens transformations. In addition
it shows that, for a particular class of TARs, the model residual sum of squares is a
continuous rational function over particular threshold intervals. Building on this result
we propose a novel algorithm which, in contrast to a grid search, allows for a continuum
of values for the threshold parameter while keeping computational costs within tractable
limits. While the latter is discussed in the context of Band-TARs it can be easily gen-
eralized to other TAR models. Monte Carlo experiments are conducted to compare the
efficiency of different fitting procedures.

Our simulation results suggest that QR factorizations and Givens updates signifi-
cantly reduce (up to eight times for the specifications used) the computation costs of
the sequential conditional LS involved in TAR fitting, and especially so the larger the
maximum plausible lag order and delay parameter. If threshold parameter accuracy is im-
portant, the continuous-threshold-range method is the preferred approach while, if speed
is more relevant, a fast GS using QR factorizations and Givens updates is recommended.
Finally, when the objective is a trade-off between threshold accuracy and computation
costs, we suggest a mixed approach. The latter consists of a GS which uses the rational
function component in long threshold intervals.

Issues for future research include improving the rational interpolation algorithm in
terms of computation time and stability and investigating further the properties of the
residual sum of squares rational functions.
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Appendix

This appendix includes the proof of the main results in §3.3. It starts by proving the
following more general result.

Theorem 3. Given ann X n polynomial matriz of degree r, A(0) = Ag+0A;...+0"A,,
where A; fori=1,... 1 are rank-one matrices, then det A(0) is a polynomial of degree
rir+1)/24in>rornr—nn—1)/2 ifn<r.

Proof. If A; = (at,...,a!) and we denote by p;(6) the polynomial vector a? + fa} +
..+ 0" a! then the polynomial matrix can be written as A(8) = (p1(6), p2(0) ... pn(0))'.
Using the properties of the determinant

(at) (at) (1)
det A(0) = det pf('a') + 6 det p?('a') F o407 det pf('a') . (31)
pn(0) pn(0) pn(0)

Analogously, it can be shown that
det(a}, p2(0),. .., p.(0)) = det Py +0det P,y +...+0"det P ),

where P; ;) denotes the matrix (af, a,ps3(0),...,pa(0)).
Substituting the above expression in (31) and factoring out 0% gives

det A(G) = det P(O,O) + G[det P(O,l) + det P(l,O)] + 92[det P(O’Q) + det P(l,l) + det P(Q,O)]
+... 4+ 0"[det Py ) +det Py 1) + ...+ det P, )]
+0"  [det Py + ... + det Pioy)) + ...+ 677 det P .

Note that in the above formula every power 0" multiplies a sum of determinants,
det P(; j), with the common property that the sum of their indices i and j (upper indices
of the first two — constant — rows) equals power k. Moreover, those determinants for
which ¢ = j, for 4, j # 0 vanish. This last property is due to the hypothesis of rank unity
for A;i=1,...,r

This process is continued recursively until all matrices appearing in the formula
for det A(f) are constant. It follows that the determinant of the matrix whose row
upper indices add up to a maximum possible value, s, (without nonzero repeated in-
dices) establishes the highest attainable power, 6%, in det A(#). Then, the latter matrix

must contain rows a , a ', ..., a] "ttifn < roraj, a ", ..., al ifn>r,

217 12

giving s =r+(r—-1)+...+(r—n+1) = nr —n(n — 1)/2 for the former and
s=r+r—-1)+...+1=r(r+1)/2 for the latter. O

The above proof provides a formula for det A(f). As an example, let us consider the

particular case r = 2. In this case, the degree of this polynomial is 7(r + 1)/2 = 3 and

det A(0) = det Ag + 6 ZdetAO(l) ) + 6%( ZdetAO(Q) ) + 6% Z det Ag/, ), (32)

i=1 i=1 i,j=11i#j
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where
( — (a9 0 1 ,0 0V
Ao(l)*(aly---7ai_1,ai,ai+1,...,an),
( — (a9 0 2 .0 0V
A0(2) =0, ,8;_1,8;,Q;44,... ,an) y
,J _ 0 0 1 0 0 2 0/
AO(LQ)—(al,... ,a)_y,afa) ..., a) ,a3,4f,,,...,a)).

Proceeding analogously, results can be established for polynomial matrices in which
the A; components have rank different from one. We do not include them here for space
considerations. We are particularly interested in the case where r = 2 and A; and A,
have rank two and one, respectively. For the latter, the analogous formula to (32) is

det A(f) = det Ao + 6 Zdet Abry) +60%( Zdet Ay + Z det Ag?, 1))

=1 =1 i,j=1

+0°( Y det Agl, ) + 6% Z det AGH" 5)), (33)

i,j=1 i,7,k=1

where indexes i, j, and k in the same sum are always different. This formula will be used
to prove Proposition 1.

Proof of Proposition 1

The matrix A(6) obtained as (B 4 C0)' (B + C90) is the following second degree poly-
nomial matrix

A(0) = Ag + 0A; + 07 Ay, (34)

where Ay = B'C + C’'B and Ay, = C’'C. Taking into account the special structure of C'
we have

di+didi+dy... di+d,

do+dy do+dy ... da+d,

dn+dldn+d2dn+dn K... Kk

where d; = > (¢;bj;) and k = > | ¢7. Ay is clearly a rank one matrix and we prove
next that A; has rank two. To see this, let us take any 3 x 3 submatrix from A; and
calculate its determinant:

det(d; + dj,dy +d;, d3 + dj)/ = det(dy, dz + d;, ds + dj)/ + det(dj, dy + dj, d3 + dj)/
= det(dy, da, d3 + d;)' + det(dy, d;, ds + d;) +

det(d;, dy, ds + d;)' + det(d;, d;, ds + d;)’, (36)

where d; = (d;,,d;,,dj,)", di = d;,,(1,1,1) with k = 1,2, 3. The first and fourth terms

(determinants) of the last equality are clearly zero. Writing the remaining two terms as
sums of determinants they are also seen to vanish.
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Hence formula (33) can be applied yielding that det A(0) is a fourth degree or lower
polynomial. However, notice that in the resulting formula every determinant appearing
in the sum multiplying 6* vanishes because

det AGHY o) = det(al ... ,k1,...,dj1+d,... . dy1+d,... af)

=det(...,x1,...,d;1,... ,dgl+d,...) +det(... ,k1,...,d,... ,dx1+4d,...

=det(...,x1,...,d,... ,di1,...) +det(... ,k1,...,d,... ., d,...)
=0.

where 1 and d denote the vectors (1,...,1)" and (dy,... ,d,), respectively. Besides, the
coefficient of 02 is also zero because

det AS’(JLQ) = —det Af)’("l’Q) (37)
This last equality follows from
det Aé’(jlg) =det(a’,... ,di1+d,... ,k1,...,a")
=det(a’,...,d,... ,k1,...,a’)". (38)
Then det A(f) has degree two since the coefficients of both #* and 6% are zero. O
Proof of Theorem 2
Taking into account that
1
X(0)X(0) ™' = ——————adj(X(0) X (0 39
(XO/X0)™ = e i O/ X 0) (39)

we conclude from Proposition 1 that the entries of the matrix (X (0)' X (0))~! are rational
functions of degree (2,2). The result of this theorem is a straightforward consequence of
the latter and formula (18). O

)/
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Table 1. Simulation results for fitting procedure F1

DGP N o2 02 B, t,(mins.) RMSE B, tr(mins.) MAD
I 100 .2 .00038 -.00028  .2425  .01949 .00013 .2335 .01023
I 100 .4 .00108 .00060 .2332 02940 -.00105  .2341 .01440
I 100 .9 26110 .24211 .2319 56500 .04996 .2325 07308
I 200 .2 .00045 .00015 1.043  .02084 -.00102  1.043 .00896
I 200 4 .00173  .00372 1.058  .04014 -.00026  1.051 .01501
I 200 .9 .02059 .04181 1.044 10943 .00715 1.047 02957
II 100 .2 .03862 -.12870  .2351 23480 -.04672  .2365 .06494
II 100 4 .03635 -.04014 .2357  .17770 -.00126  .2368 .04246
11 100 .9 .04400 .00578 .2359 20891 .00623 .2370  .050 06
II 200 .2 .00793 -.03527  1.041 09572 -.00924  1.046 .01970
II 200 4 .00299 -.00062 1.046  .05807 -.00111  1.047 .01642
11 200 .9 .00463 .00281 1.040 .06839 -.00026 1.040 .01881

IImr 100 .2 .03246 .09917 .2658 20280 .06753 .2666 06753
Imm 100 4 .21313 .30622 .2659  .54164 .13130 .2667 13130
IIm 100 .9 1.1013 .91536 .2664  1.3917  .28592 .2670 .28601
IImr 200 .2 .00207 .06007 1.287  .07535 .05349 1.288 .05349
I 200 4 .03413 .12804 1.301 .22463 10799 1.300 10799
I 200 .9 .69216 .54177 1.297 99211 .22343 1.297 .22343

Notes: Jg is the sample variance of 6; B, = E(é —0)/M; RMSE= \/E(é —0)2/M;

MAD=median(|6 — 0|); B, =median(0 — 6);

t, = Yt/M; t, =median(f); denotes computation time in mins.



Table 2. Simulation results for fitting procedure F2

DGP N o? 02 B, t,(mins.) RMSE B, t;(mins.) MAD
I 100 .2 .00485 .00098 .0592 06960 -.00543  .0592  .02287
I 100 4 .01684 .01107 .0593 13012 -.00513  .0593  .03243
I 100 .9 .28533  .25132 .0598 58985 .04611 .0598  .07943
I 200 .2 .00051 -.00192 .3659  .02254 -.00280  .3659  .01037
I 200 4 .00168 -.00495 .3659  .04125 -.00423  .3660  .01772
I 200 .9 .02431 .04267 3659 16149  .00788 .3658 03132
II 100 .2 .03947 -.14770  .0586 = .24739 -.06622  .0584  .07105
II 100 4 .02909 -.04311 .0584  .20121 -.01117 .0584  .05067
11 100 .9 .05414 -.00738  .0591 23268 .00291 .0591  .06890
II 200 .2 .02559 -.03774 .3660  .18606 -.01618  .3660  .02109
II 200 4 .00311 -.00780 @ .3659  .06629 -.00441 .3658 01632
II 200 .9 .00625 -.00412 .3662  .07909 -.00486  .3660  .02003
IIm 100 .2 .03795 .09348 .0637  .21840 .06558 .0637  .06558
Immr 100 4 22717 .26022 .0639  .54261  .13932 .0638  .13932
I 100 .9 1.2808 .98141 .0650  1.4972 28545 .0648 28545
I 200 .2 .00215 .06485 4103  .07956  .05966 4103  .05966
I 200 4 .02246 .11452 4113 18849  .09823 4107 09823
I 200 .9 .73273 .54422 4111 1.0136  .21697 4108 21697




Table 3. Simulation results for fitting procedure F3

DGP N o? 02 B, t,(mins.) RMSE B, t;(mins.) MAD
I 100 .2 .00449 .00122 .0841 06699 -.00453  .0838  .02121
I 100 .4 .03547  .03357 .0848 19111 -.00599  .0845  .03633
I 100 .9 18521 .21141 0872 47909 .07603 .0868  .08679
I 200 .2 .00050 -.00345  .3162  .02251 -.00334  .3162  .00965
I 200 4 .00361 .00015 .3313  .06045 -.00374  .3310  .01800
I 200 .9 .05206 .04977 3178 23330  .00628 3172 03186
II 100 .2 .04131 -.39739  .0674 44626 -.42112 .0706 = .42112
II 100 .4 .07537 -.18965  .0790  .33344 07572  .0833  .11401
11 100 .9 .04350 -.02784  .0878  .21020 -.01035 .0878  .05149
II 200 .2 .03163 -.22267  .2683 = .28486 -.20523  .2731  .20523
II 200 4 .00498 -.01379  .3128  .07183 -.00801 .3158  .01979
11 200 .9 .00668 -.00733 .3313  .08171 -.00787  .3313  .02115
Imm 100 .2 .03239 .10851 .3110  .21001  .07437 3105 07437
I 100 4 .24141 .30478 .3163 57776 .13939 3155 13939
I 100 .9 1.1949 94876 .3539  1.4466 .29352 .3508 29352
IIm 200 .2 .00188 .06268 1.2815 .07621 .05491  1.2810 .05491
Im 200 4 .05126 .14308 1.2816 .26763 .11208  1.2808 .11208
IIm 200 .9 .78740 .62651 1.4050 1.0855 .23885  1.4047 .23885




Table 4. Simulation results for fitting procedure F4

DGP N o? 02 B, t,(mins.) RMSE B, tr(mins.) MAD
I 100 .2 .00319 -.00218  .1261 .05646  -.00442  .1260  .02009
I 100 4 .02356 .03199 .1268 15666  -.00149  .1267  .03178
I 100 .9 .24187  .24309 1276 .58816  .05634 1271 07822
I 200 .2 .00047 -.00102  .4558 02168 -.00215  .4558  .00960
I 200 4 .00216 -.00119  .4561 .04641  -.00408  .4559  .01820
I 200 .9 .07688 .06923 4577 28552 .01025 4572 .03192
II 100 .2 .04214 -.38885  .1096 43961 -.42031  .1124 42031
II 100 4 .03849 -.08029  .1373 21182 -.01053  .1437 45778
11 100 .9 .04498 -.03942  .1449 215561  -.00836  .1446  .05100
II 200 .2 .03119 -21916 @ .3947 28135 -.21112  .4096  .21112
II 200 4 .00399 -.00697 @ .4562 06605 -.00638  .4568  .01829
11 200 .9 .00559 -.00455  .4599 07485 -.00414  .4588  .01970
IIm 100 .2 .05707 .12185 4376 26796 .07536 4361 07536
I 100 .4 .28301 .28402 .4443 63731 14287 4423 14287
I 100 .9 1.2430 1.0356 .5328 1.56209  .3099 .5348 .3099
IIm 200 .2 .00174 .06087 1.8149  .07375 .05744 1.8150 .05744
IIm 200 4 .07061 .15025 1.9549  .30504 .11622  1.9548 .11622
I 200 .9 .86391 .62951 1.8256  1.12181 .23258  1.8252  .23258




Table 5. Band-TAR models of spot returns (US$ numeraire)

o s Al
d 0 ifi;ié max |L,] ; Algi NAIC
BG 1 .0164 .0021, -.4695, .2159 .8003 114 -802.5 -6.82
(.0027) (.2855) (.0772)°
-1.4839 4839 159 -1053.2
(.0948)
DK 1 .0190 0017, -.6868, .2431, .1794 8487 128  -884.8  -6.88
(.0028) (.2697) (.0854) (.0871)
-1.6191 .6191 144 -983.6
(.0986)
FR 1 .0058 0085, -.2667, .1287, .3559, .2347, .1674 1.2514 43 -3189  -6.91
(.0037) (1.0670) (.1142) (.1365) (.1155) (.1248)
-1.1513 1513 227  -1545.2
(.0709)
GE 1 .0140 .0004, -.6681, .1707 6112 95  -665.1  -6.81
(.0031) (.3674) (.0850)
-1.4069 .4069 178 -1194.7
(.0877)
IT 1 .0098 .0063, -.7507, .2498, .2249, .1899, .1786, .1236 1.0661 81  -592.9  -6.87
(.0028) (.5250) (.0983) (.1054) (.0817) (.0897) (.0900)
-1.1615 .1615 188 -1245.1
(.0822)
NH 1 .0163 .0025, -.3506, .1791 8581 113 -7187.7  -6.85
(.0028) (.2894) (.0799)
-1.4960 4960 160 -1070.9
(.0947)
UK 1 .0058 .0070, 3.3622, .2937, -.0487, .0628, .0093, .1001, -.3240 4.4268 51  -367.6  -6.85
(.0038) (1.2101) (.0996) (.1243) (.1334) (.1302) (.1051) (.1202)
-1.0461 .0461 217  -1468.9
(.0714)

Notes: ®Largest characteristic root in absolute value; ’Standard errors in parentheses.
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