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Abstract 

Background: Cannabis and its main psychoactive component, ∆9-

tetrahydrocannabinol (THC), can elicit transient psychotic symptoms. A key candidate 

biological mechanism of how THC induces psychotic symptoms is the modulation of 

glutamate in the brain. We sought to investigate the effects of acute THC 

administration on striatal glutamate levels and its relationship to the induction of 

psychotic symptoms.  

Methods: We used proton magnetic resonance spectroscopy to measure glutamate 

levels in the striatum in 20 healthy participants after THC (15mg, oral) and matched 

placebo administration in a randomised double-blind placebo-controlled design. 

Psychotic symptoms were measured using the psychotomimetic states inventory.  

Results: We found that THC administration did not significantly change glutamate 

(Glx/Cre) concentration in the striatum (p = .58; scaled JZS Bayes Factor = 4.29). THC 

increased psychotic symptoms but the severity of these symptoms was not correlated 

with striatal glutamate levels.   

Conclusions: These findings suggest that 15mg oral THC does not result in altered 

striatal glutamate levels. Further work is needed to clarify the effects of THC on striatal 

glutamate. 
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Introduction 

Cannabis is one of the most widely-used recreational drugs in the world and 

use may increase further as cannabis policies become more permissive internationally 

(1). In the USA, the past year prevalence of cannabis use disorders among users is 

estimated at 30.6% (2). The primary psychoactive constituent of cannabis is ∆9-

tetrahydrocannabinol (THC) (3, 4). The THC content of cannabis has increased 

significantly over the past decade in Europe and the United states (5, 6). THC causes 

the rewarding aspects of cannabis use as well as inducing psychotic symptoms (7, 8). 

Long-term exposure to high THC cannabis is associated with increased risk of 

addiction and psychosis, and increased risk of relapse to psychosis (9-12). Therefore, 

there is concern that increases in THC exposure could have adverse effects on public 

health and rates of treatment for cannabis-related problems (13). Psychosis is 

associated with a range of alterations in the brain (14). THC and cannabis produce 

several effects on the brain which may account for the increased risk of 

psychopathology and psychotic symptoms (15-17). These include effects on the 

striatum which integrates sensorimotor, cognitive, motivational and emotional 

information to mediate reward and decision-making processes (7, 18-20).  However, 

the precise mechanisms through which THC exposure causes psychotic symptoms 

have yet to be fully elucidated. 

 

  THC has been shown to affect striatal glutamate neurotransmission due to the 

abundance of type 1 endocannabinoid receptors (CB1Rs) in the striatum (21).  

Research in Sprague-Dawley rats indicates that CB1R activation is associated with 

reduced glutamatergic synaptic transmission in the striatum (22) and that THC dose-

dependently inhibits potassium-evoked glutamate release and uptake (23). However, 
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it is possible that the observed inhibition in glutamate release could be caused by an 

increase in synaptic cleft glutamate (22). As the dopamine system is modulated by 

endocannabinoid-glutamate interactions (7, 24, 25), it is likely that THC disrupts the 

homeostatic role of the endocannabinoid system. However, evidence for the effects of 

THC on brain glutamate levels has not been conclusive (21). The majority of CB1Rs 

in the brain are expressed on cholecystokinin interneurons whereby agonism results 

in reduced GABA release (26).  THC likewise inhibits the release of GABA in several 

brain regions which is likely to result in suppression of inhibition of glutamatergic 

neurons (27).  

 

 

Recent research using magnetic resonance spectroscopy (1H-MRS) has 

reported that intravenous THC caused an increase in glutamate in the caudate head 

(n=16, one-tailed test) (28) and vaporized THC-dominant cannabis increased striatal 

glutamate when administered in a single dose (n=10, two tailed test) but not when 

delivered in three divided doses in the same study (n=10, two-tailed test) (29).  

Therefore, further research is needed to elucidate effects of THC on the glutamate 

system.  Oral THC products have risen considerably in popularity in new legal markets 

in the USA (30), but no studies have investigated the effects of oral THC on striatal 

glutamate. Oral THC results in a slower onset and longer duration of effect compared 

to intravenous or vaporized administration, and greater concentrations of 11-OH-THC 

and THC-COOH compared to THC (31). In this study we aimed to investigate the 

acute effects of oral THC administration on the associative striatum, informed by 

previous research showing that glutamate levels in this striatal subdivision are 

elevated in first-episode psychosis and decrease after clinically effective antipsychotic 
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treatment (32, 33). This is in keeping with findings from dopamine imaging research 

whereby the associative striatum is implicated over other functional striatal 

subdivisions in the pathophysiology of psychosis (34). We further aimed to investigate 

if changes in glutamate following THC exposure were associated with the severity of 

psychotic symptoms induced by THC. 
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Methods 

This study was approved by the UCL Research Ethics Committee (Reference 

3325/002) and the study was conducted in accordance with the Declaration of 

Helsinki. All participants provided informed, written consent to take part in the study. 

Participants received a small honorarium to compensate for their time (£10 per hour). 

 

Design 

We used a within-subjects, randomised, double-blinded, crossover design. 

Participants attended the laboratory on two occasions, at least one week apart. On 

each visit they received either 15mg of oral THC or placebo. The order of 

administration was balanced and participants were randomly allocated to treatment 

order. The dose of oral THC was selected based on previous research (35) indicating 

it is well tolerated by participants with minimal cannabis use and can elicit state 

psychotic symptoms with the peak drug effect expected two hours post-administration.  

 

Participants  

We recruited twenty participants (10 males and 10 females) by public 

advertisement through flyers at university sites, electronic advertisement in websites 

and word of mouth. All participants had a screening interview to ascertain inclusion 

and exclusion criteria including past and current medical history, including psychiatric 

history, as well as drug use. In order to be eligible for the study participants were 

required to be healthy volunteers of a minimum age of 18 years old and a maximum 

of 35 years old.  They were required to have a good level of English and to be able to 

give written informed consent. BMI was required to be within healthy range (18.5-24.9 

kgm-2) in order to minimise variation in drug absorption and elimination. All participants 
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were required to have at least one previous exposure to cannabis due to ethical 

concerns related to exposure to this drug.  

 

The exclusion criteria for all participants were: current or past history of mood, 

psychotic, anxiety or substance use disorder assessed using the Structured Clinical 

Interview for DSM-IV (SCID) (36); family history of mental illness in first degree 

relatives; current use of psychotropic drugs; current use of cannabis more than once 

a week or cannabis dependency as assessed using the Cannabis Use Disorder 

Identification Test – Revised (CUDIT-R) (cut-off score of 15) (37); use of any other 

illicit drugs more than twice a month; alcohol dependency as assessed by the Alcohol 

Use Disorders Identification Test (AUDIT) (cut-off value of 12) (38); nicotine 

dependency as assessed by the Fagerström Test for Nicotine Dependence (cut-off 

value of 3) (39); liver dysfunction; pregnancy; any contraindications to MRI scans such 

as presence of non-removable ferromagnetic metals inside their body or 

claustrophobia. All participants were instructed to refrain from using cannabis for at 

least one week and alcohol for twenty-four hours prior to scanning.  In addition, a 

urinary drug screen test (Cup Multi Screen Drug Test, Alere Toxicology, Abingdon, 

United Kingdom) was used to assess and exclude any current use of recreational 

drugs (including cannabis), as well as a carbon monoxide breath measure to assess 

recent tobacco smoking (Micro Smokerlyzer, Bedfont Scientific, Kent, United 

Kingdom) on both scanning days. All female participants underwent urinary pregnancy 

tests prior to participation to exclude pregnancy. 
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Drug administration 

THC (Dronabinol) was obtained from THC Pharm (Frankfurt, Germany) and 

was formulated in 5mg capsules alongside matched placebo capsules. On each 

session, participants were given three capsules (either 15mg THC or placebo) for oral 

administration with water.  Ten participants received placebo first and ten participants 

received placebo first.  

 

Data acquisition  
 

All participants were required to attend to both sessions at Hammersmith 

Hospital, London, starting at 9 am after fasting overnight.  Scanning took place at the 

same time across all sessions to avoid diurnal variation in the Magnetic Resonance 

Spectroscopy measures. Participants underwent a series of questionnaires and 

behavioural tasks with the scanning session being performed at 11 am (Fig. 1). Testing 

sessions lasted an average of five and a half hours, ending at 14:30.  

 

 

 

Figure 1. Testing sessions procedure. VAS: visual analogue scale; PSI: psychotomimetic 
states inventory. 
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Baseline measures  

We obtained a detailed drug history from all participants using the Cannabis 

Experiences Questionnaire (CEQ) (40), lifetime drug history at the first session. The 

Beck Depression Inventory (41) was used to screen for depression (cut-off score of 

21), and the Beck Anxiety Inventory (42)was used to screen for anxiety (cut-off score 

of 18) on the day of testing. The Wechsler Test of Adult Reading (WTAR) was used to 

assess intellectual functioning (43).   

 

Subjective effects  

Subjective effect rating scale. This Visual Analogue Scale measured “feel 

drug effect” (35). The scale was scored by participants from zero to ten to provide a 

measure of the severity of the symptom. Zero was anchored with “not at all” and ten 

was anchored as “extremely”. 

 

Psychotomimetic effects.  We used the Psychotomimetic States Inventory 

(PSI) (44) to assess drug-induced psychotic experiences. This questionnaire consists 

of 48 items specifically designed to measure changes in psychotic symptoms induced 

by drugs such as cannabis or ketamine.  The PSI has previously been shown to be 

sensitive to cannabis-induced psychotic effects (44) and has better test-retest 

reliability than the Clinician Administered Dissociative States Scale (45).  

 

Pharmacokinetics. Blood samples were taken to determine cannabinoid 

concentrations (THC and metabolites OH-THC and THC-COOH) 150 minutes post 

drug administration alongside VAS2 and the PSI. Blood samples were centrifuged, and 
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plasma was frozen at -80 °C. Cannabinoid concentrations were determined using Gas 

chromatography coupled with mass spectroscopy (GC/MS). 

 

Magnetic Resonance Spectroscopy. All participants underwent MRI brain 

scans performed on a 3T Siemens MRI scanner at the Robert Steiner MRI Unit, 

Hammersmith Hospital, London, UK. An initial localizer scan was followed by 

acquisition of a whole-brain 3D Magnetization Prepared Rapid Acquisition GRE (3D-

MPRAGE) scan (TR: 2300 ms, TE: 2.28 ms, flip angle: 9°, slice thickness: 1.00 mm, 

0.9 mm x 0.9 mm in-plane resolution, axial orientation, 64 channels receive- only head 

coil).  The region of interest was carefully positioned using an axial and coronal slice 

for localisation as previously reported (33) (Figure 2). PRESS (Point RESolved 

Spectroscopy) data were then acquired for analysis from the left associative striatum. 

PRESS data were obtained (TE 30ms, TR 3000ms, 96 acquisitions), with chemically-

selective automatic water-suppression CHESS (Chemical Shift Selective 

Suppression), with a water suppression bandwidth of 50Hz and shimming. Siemen’s 

automatic ‘Brain’ was used which has been optimised for brain spectroscopy. This 

used automatic higher order shim for all subjects and if this did not produce adequate 

homogeneity (FWHM of <20Hz) then we performed a manual first-order linear shim. 

Additional spectra were acquired without water suppression (TE 30ms, TR 3000ms, 6 

acquisitions) for subsequent eddy current correction. Using the 3D MPRAGE as a 

reference, the associative striatum voxel (sized 20 mm x 20 mm x 20 mm) was 

positioned 3 mm dorsal to the anterior commissure to include the maximum amount 

of gray matter, based on a previous study in first-episode psychosis (33).   
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We analysed PRESS spectra (Fig. 3) using LC Model version 6.3-1L. The 

standard basis set of 16 metabolites (L-alanine, aspartate, creatine, phosphocreatine, 

GABA, glucose, glutamine, glutamate, glycerophosphocholine, glycine, myoinositol, 

L-lactate, N-acetyl aspartate, N-acetylaspartyglutamate, phosphocholine, taurine), 

included with LC Model was used. The basis set was experimentally acquired with the 

same field strength (3T), localisation sequence (PRESS) and echo time (30 ms) as 

the in vivo spectra. The spectra were required to have a signal-to-noise ratio (SNR) > 

10 and a Cramér–Rao lower bound (CRLB) values < 20% per metabolite (Provencher, 

2014). The CRLB is a reliability indicator as it is an estimated standard deviation of the 

estimated concentration (46). CRLB %SD values were taken from the LC model 

output. As the PRESS acquisition sequence is insensitive to GABA, we did not 

statistically analyse GABA levels (47). 

 
 
 
Figure 2. Voxel placement in the left associative striatum 
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There are inherent difficulties in obtaining absolute concentrations of 

metabolites, as signal intensity is affected by a number of additional variables [36] 

(48). In the present study, relative measurements of glutamate were achieved by 

measuring metabolite signal intensity ratios with respect to creatine.  

 

 

Statistical Analysis  

We used IBM Statistical Package for Social Sciences (SPSS) version 24 to 

analyse all behavioural and imaging data. All tests were two-tailed. Two-way repeated 

measures ANOVA models were used for all data collected on the two experimental 

sessions, including within-subject factors of Drug (THC, Placebo) and Time (e.g. T0, 

T1, T2, T3) for the drug effect measures. We included additional factors where 

appropriate. We identified outliers by examination of studentized residuals for values 

greater than ±3. We winsorized these when appropriate. We assessed normality using 

Shapiro-Wilk’s test of normality on the studentized residuals. We used Mauchly's test 

of sphericity and the Greenhouse-Geisser correction was applied where assumptions 

of sphericity were violated, with degrees of freedom rounded to the nearest integer. 

Post-hoc pairwise tests were Bonferroni-corrected locally within each ANOVA model. 

Where appropriate, we used additional one-way repeated measures ANOVA models 

to allow further interpretation of the data. We used paired-sample t-tests for comparing 

group mean metabolite levels. For the primary outcome analysis comparing glutamate 

levels in the associative striatum following THC versus placebo, frequentist statistical 

analysis was supplemented by a Bayesian analysis to enable a test of evidence to 

support the null hypothesis. The scaled Jeffreys-Zellner-Siow (JZS) Bayes Factor was 
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calculated using a scaled information prior of r=1 (49). A Bayes Factor of 3 of greater 

provides evidence to support the null hypothesis (49). We excluded metabolites with 

CRLB values > 20% from the analysis. We used Pearson’s product-moment 

correlations to study the relationship between metabolite concentrations relative to 

creatine in the striatum and psychotomimetic scores. We assessed the presence of a 

linear relationship between the variables by visually inspecting a scatterplot. We used 

a Spearman’s correlation when the assumption of normality was violated.   
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Results 

Descriptive Data 

The age range was 19-35 years and there was an equal number of participants 

of each sex (10 female, 10 male). No participants had a history of mood, psychotic, 

anxiety nor psychotropic drug use. Sample descriptive data are reported in table 1.  

 

Twelve of the participants (60%) reported being current users of cannabis, of 

these the most frequent pattern of use was once weekly (n=4 participants), meaning 

that current cannabis users were occasional (once a week or less) users. No 

participants reporting using cannabis more than once a week. No users met DSM 

criteria for any drug use disorders.  
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Subjective effects  

For the VAS measure of “feel drug effects”, there was a trend interaction 

between drug and time (F2,36= 3.169, p=.055, ηp2=.157). This interaction was driven 

by higher mean value at time 2 (150 min after drug administration, t18= -2.83, p=.011), 

and time 3 (240 minutes after drug administration, t18= -2.968, p=.008) in the THC 

condition compared to placebo. Scores at time 1 (45 minutes after drug administration) 

did not differ between the THC and placebo conditions (t17=.740, p=.470). The drug 

by time interaction was driven by higher feel drug scores on time 2 (t17= -3.02, p=.008) 

versus time 1 on THC. There was also a main effect of time (F2,36=3.300, p=.048, ηp2= 

.155), and a main effect of drug (F1,18= 9.444, p=.007, ηp2=.344).  
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Psychotomimetic State Inventory (PSI).  

For PSI scores, there was an interaction between drug and time (F2,37= 3.81, 

p=.045, ηp2=.175). The interaction was driven by higher scores after drug 

administration in the THC condition compared to placebo. This was seen both for the 

PSI1 150 minutes after drug administration (t18= 2.537, p= .021) and PSI2 240 minutes 

after drug administration (t18= 3.027, p= .007); while the scores for PSI0 (before drug 

administration) did not differ between the THC and placebo conditions (t18= 1.163, p= 

.260). The interaction between drug and time reflected an increase in PSI values from 

PSI0 to PSI1 (t18= -2.793, p= .012) in the THC condition. Increased values were still 

maintained at PSI2 in comparison to PSI0 in the THC condition (t18= -2.396, p= .028). 

In contrast, PSI values did not increase from PSI0 to PSI1 during the placebo condition 

(t18= -1.003, p= .329). There was also a main effect of drug (F1,18=9.557 p=.006, ηp2= 

.347) and a main effect of time (F1,25= 6.666, p=.009, ηp2= .270). 

 

Pharmacokinetics measures 

The mean concentration of THC in plasma (ng/ml) 150 minutes after THC 

administration was 2.27 (SD = 2.06). The mean concentration of metabolites in plasma 

(ng/ml) 150 minutes after administration was 7.02 for THC-OH (SD = 6.20), and 64.09 

for THC-COOH (SD = 48.35). 

 

Proton Magnetic Resonance Spectroscopy  

 Data quality. Example spectra are provided in figure 3. Striatal spectra from 

four participants were excluded due to CRLB values > 20% and/or SNR values < 10 

in relation to the concentration of glutamate. In addition, striatal spectra from two 

participants were excluded due to poor voxel location. 
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Figure 3 - Example PRESS 1H-MRS spectra from the left dorsal striatum (LC Model output). Raw 
data is shown in black and fitted data is shown in red. The metabolite signals assignments 
displayed are based on Prescot et al. 2011 (50). NAA= N-acetylaspartate; Glu= glutamate; Gln= 
glutamine; Cre= creatine, mI= myo-inositol 

 

Metabolite concentration differences in the associative striatum between THC 

and placebo conditions.  

There was no significant effect of drug order. Analysis of the primary 1H-MRS 

measure of Glx/Cre in the associative striatum did not provide evidence for a 

difference following THC administration compared to placebo (tdf= .56513, p=.582, 

Cohen’s d=0.39). This was corroborated by a Bayesian analysis producing a scaled 

JZS Bayes Factor of 4.29, providing evidence to support a lack of effect of THC versus 

placebo on this measure.  Data from further metabolites are available in the 

supplementary materials for which there was also no evidence for a difference 

between THC and placebo. There was no relationship between striatal Glx/Cre under 

either drug condition and previous cannabis exposure (p=.433). 

 

 

Figure 4: Mean concentrations of glutamate plus glutamine relative to creatine (Glx/Cre) in the 
left associative striatum after THC or placebo administration. Error bars indicate mean and 
standard errors.  
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Striatal glutamate levels and psychotomimetic effects after THC 

administration.  

There was no correlation between Glx/Cre measures in the striatum and PSI0 

values (rs = -.024, p = .93), PSI1 values (rs = .206, p = .48) or PSI2 values (rs = -.069, p 

= .81) (figure 5). 

 

 

  

Figure 5: The relationship between glutamate plus glutamine relative to creatine 
(Glx/Cre) in the left associative striatum and PSI scores 240 minutes after drug 
administration (PSI2). 
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Discussion 

To our knowledge, this is the first study investigating associative striatal 

glutamatergic function and its relationship to the psychotic effects of an acute oral THC 

challenge in human participants. We found that a single 15mg oral dose of THC 

increased psychotic symptoms. However, THC did not alter striatal glutamate levels, 

which was corroborated by a Bayesian analysis providing evidence to support a lack 

of THC effect compared to placebo. Additionally, there was no relationship between 

glutamate levels and the severity of THC-induced psychotic symptoms. These findings 

do not support our hypothesis that changes in striatal glutamate underlie THC-induced 

psychotic symptoms.  

 

 

 

  Our findings contrast with recent studies reporting that intravenous THC and 

vaporised THC-dominant cannabis caused increases in glutamate in the caudate head 

(28) and striatum (29), respectively. However, they are consistent with findings that 

vaporised THC-dominant cannabis did not increase glutamate in the striatum when 

delivered in three divided doses (29). In our study, Bayesian analysis provided 

evidence to support a lack of effect of oral THC on associative striatum glutamate 

levels. This analysis showed that the null hypothesis was over four times more likely 

than the experimental hypothesis given the data, indicating that the lack of effect was 

not attributable to low statistical power. Overall, the evidence suggests that the acute 

effects of THC on striatal glutamate are dependent on pharmacokinetic factors 

associated with the dose and route of administration.  For example, the results of our 

study using oral THC are similar to those in a previous study administering vaporized 
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THC in three divided doses (29) which may better resemble the slower onset and 

longer duration of oral THC effects than a single dose administered by intravenous or 

vaporized administration. Our findings are also consistent with the other study which 

showed that when Glx levels were corrected by creatine instead of water, the 

difference in left striatum was no longer significant (28). 

 

Importantly, we found evidence that THC can induce psychotic symptoms in 

the absence of detectable changes in associative striatum glutamate levels. This 

suggests that alternative mechanisms were responsible for the psychotogenic effects 

of THC in our study. People experiencing psychosis have dorsal striatal 

hyperglutamatergia (51) suggest that the mechanisms through which THC induces 

acute psychotic effects may differ from those seen in schizophrenia without cannabis 

use. Further work is therefore needed to understand the functional significance of 

these findings and investigate the complex relationships between THC-induced effects 

on glutamate, GABA and dopamine signalling. 

 

Strengths and limitations 

Major strengths of our study include the use of in vivo neurochemical imaging in 

humans alongside measures of psychotic symptoms and plasma THC levels using a 

within-subject design. The careful design of timed testing sessions reduces the 

potential for diurnal variations in 1H-MRS data confounding our data. However, this 

study has several limitations.  The plasma levels of THC in the present study are lower 

than those obtained in other studies using an inhalation route (52) and oral route (35).  

It is therefore possible that our findings are due to lower plasma levels secondary to 

first pass metabolism associated with oral THC.  Furthermore, 1H-MRS is not able to 
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measure compartmental shifts in glutamate, which poses challenges when translating 

findings from animal research. Due to data quality considerations, 1-H MRS data were 

excluded from six participants in this study. In addition, previous exposure to cannabis 

in the sample could have resulted in tolerance, affecting the changes of striatal 

glutamate measured. Finally, THC offers an experimental model of psychotic 

symptoms, but it may tap into different mechanisms from idiopathic schizophrenia.  

 

Conclusion 
 
 

In this study investigating the effects of oral THC on striatal glutamate levels in 

humans in vivo we have found that acute THC did not alter glutamate levels in the 

associative striatum compared to placebo.  We also found no relationship between 

associative striatal glutamate levels and THC-induced psychotomimetic symptoms. 

Further work is needed to clarify the mechanisms underpinning THC-induced 

increases in psychotic symptoms.  
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Table 1: Participant Details 
Variable (n=20) Statistic 

Mean SD 

Age 23.5 3.94 

WTAR 117 6.18 

BDI 2.89 5.63 

BAI 2.42 4.76 

CUDIT-R 1.75 1.74 

AUDIT 6.84 4.63 

FTND .10 .31 
AUDIT = Alcohol Use Disorders Identification Test; BAI = Beck Anxiety Inventory; BDI = 

Beck Depression Inventory; CUDIT-R = Cannabis Use Disorder Identification Test; FTND 

= Fagerström Test for Nicotine Dependence; WTAR = Wechsler Test of Adult Reading 
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Brain Region THC Placebo Statistics 
Parameter M (SD) M (SD) t p 
Associative striatum 
Cramér-Rao lower bound 
      Glu 5.93 (0.90) 6.39 (1.01) 1.49 0.16  
      Glu/Cre 1.02 (0.16)  1.01 (0.15) 1.60 0.13 
      GluCorr 6.59 (1.04)   7.12 (1.22)   1.36   0.20  
      Glx 7.50 (1.35) 7.88 (1.60)  0.63  0.53  
      Glx/Cre 1.30 (0.28) 1.35 (0.24) 0.57 0.58  
      GlxCorr 8.34 (1.60)  8.79 (1.87)  0.61 0.55  
Full width at half 
maximum 

0.07(0.04)  0.06 (0.01)  1.01  0.33  

Signal to noise ratio 19.79 (6.40) 21.14 (5.56) 0.72  0.48  
Grey Matter (%) 46.86 (15.17) 52.48 (13.88) 1.18  0.26 
White Matter (%) 52.41 (13.52) 47.34 (13.90) -1.00  0.34  
Cerebrospinal Fluid (%) 0.73 (1.70) 0.17 (0.13) -1.21  0.25  
Table 2. Voxel segmentation and spectral quality 

Glu glutamate, Glu/Cre glutamete/creatine, GluCorr glutamate corrected, Glx 

glutamate + glutamine, Glx/Cre glutamate + glutamine / creatine, GlxCorr 

glutamate + glutamine corrected.  
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 THC Placebo Statistics 
Brain metabolite  M (SD) M (SD) t P  

NAA+NAAG 6.89 (1.05) 6.93 (0.79) 0.14 0.89 
NAA+NAAG / Cre 1.18 (.018) 1.21 (0.17) 0.42 0.68 

Cre 5.87 (0.93) 5.79 (0.71) - 0.39 0.70 
mI 3.31 (0.84) 3.45 (0.80) 0.55 0.59 

mI / Cre 
  

0.57 (0.12) 0.60 (0.15) 1.00 0.33 

GPC+PCh 1.41 (0.20) 1.34 (0.26) - 1.07 0.30 
GPC+PCh / Cre 

  
0.24 (0.02) 0.23 (0.03) - 1.55 0.14 

Supplementary Table 1. Metabolites level in the associative striatum 
 
NAA+NAAG N-acetylaspartate + N-Acetylaspartylglutamic acid, Cre Creatine, mI 
 Myo-inositol, GPC+PCh Choline  
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