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ABSTRACT

In dense urban areas, conventional GNSS does not perform satisfactorily, sometimes resulting in errors of tens of metres.
This is due to the blocking, reflection and diffraction of GNSS satellite signals by obstructions such as buildings and moving
vehicles. The 3D mapping data of buildings can be used to predict which GNSS signals are line-of-sight (LOS) and which
are non-line-of-sight (NLOS). These data have been shown to greatly improve GNSS performance in urban environments.
Location-based services typically use single-epoch positioning, while all pedestrian and vehicle navigation applications use
filtered solutions. Filtering can reduce the impact of noise-like errors on the position solution. Kalman filtering-based solutions
have been adopted as one of the standard algorithms for GNSS navigation in many different products, and particle filtering has
been demonstrated by several research groups. This paper mainly investigates the performance of different filtering algorithms
combined with 3D-mapping-aided (3DMA) techniques. In addition to the Kalman filter and particle filter, the grid filter is also
considered. In contrast to a particle filter, the hypotheses of a grid filter are uniformly distributed (forming a grid), but with
different likelihoods, which better fits the physics of the problem. At the same time, this allows the current UCL’s single-epoch
3DMA GNSS positioning algorithm to be easily extended to multi-epoch situations. This paper then compares the performance
of these continuous positioning algorithms in urban environments.

The datasets used for testing include pedestrian and vehicle navigation data, covering two main application scenarios that
often appear in cities. Pedestrian navigation data is static, and was collected in the City of London using a u-blox EVK MS8T
GNSS receiver. The vehicle navigation data consists of GPS and Galileo measurements, collected in Canary Wharf by a
trials van with a Racelogic Labsat 3 GNSS front end. Subsequently, these data are fed into several single- and multi-epoch
filtering algorithms, including single-epoch conventional GNSS, single-epoch 3DMA GNSS, conventional extended Kalman
Filter (EKF), conventional particle filter (PF), 3DMA GNSS particle filter (PF), and 3DMA GNSS grid filter (GF).

The results show that filtering has a greater impact on the results of mobile positioning with significant movement compared
to static positioning. In vehicle tests, the conventional multi-epoch GNSS algorithms improve positioning accuracy by more
than 40% compared to single-epoch GNSS, whereas in static positioning they deliver a limited improvement. 3DMA GNSS
significantly improves positioning accuracy in the denser environments, but provides little benefit in more open areas. The
3DMA GNSS techniques and the filtering algorithms benefit each other. The former provides the latter with a better position
solution at the measurement update step, while the latter in turn repays the former with a better initial position and a smaller
search area. In vehicle tests at Canary Wharf, the 3DMA GNSS filtering reduces the overall solution error by approximately
50% and 40% compared to the single-epoch 3DMA GNSS and filtered conventional GNSS, respectively. Thus, multi-epoch
3DMA GNSS filtering should bring maximum benefit to mobile positioning in dense environments. The results from both
datasets also confirm that the performance of 3DMA GNSS particle filtering and grid filtering are similar in terms of positional
accuracy. In terms of efficiency, 3DMA GNSS grid filtering uses fewer particles to achieve the same coverage of the search area
as particle filtering.



I. INTRODUCTION

Navigation and positioning are indispensable in modern life, and GNSS is one of the most widely used technologies. The
demand for and potential of navigation and positioning services in urban canyons are enormous. Location-based services and
applications have penetrated into many aspects of people’s lives, such as travel, entertainment, and health [1]. In recent years,
positioning modules have built into a wide range of consumer products such as smart watches and smartphones, making it easy
for people to access their location. The involvement of location information has made many existing applications smarter and
easier to use, while also giving rise to many new applications. Some sports apps on mobile phones, for example, record the
trajectory of the runner and allow photos taken along the way to be attached. These services and applications, in turn, promote the
demand of positioning methods for consumer-level equipment that achieves metres-level horizontal accuracy without additional
computing resources and power consumption [2]. However, the performance of GNSS in cities is not satisfactory. According to
a survey of Android customers in 2018, the low performance of positioning in cities has become a primary concern for users [3].

There are several reasons for the poor performance of GNSS in cities. In an environment known as an urban canyon, traffic
circulates in the streets, and many buildings stand on each side of the street. The complex environment makes the full capabilities
of GNSS almost impossible to realise. Tall buildings, large vehicles, and leafy trees all affect satellite signals to varying degrees.
These conspicuous obstacles may attenuate, block, reflect, and diffract satellite signals, which may cause weak signals, poor
satellite geometry, multipath effects, and non-line-of-sight (NLOS) reception [4-6]. Therefore, the performance of conventional
GNSS is greatly impaired in urban canyons [4,7]. In such cases, the error of its position solution may reach tens of metres, which
will largely degrade the quality of some location-based services. Among these negative factors, multipath interference and
NLOS reception occur frequently in cities [8], and have been considered to be the two key reasons that restrict the performance
of conventional GNSS positioning [9-13].

The emergence of 3D mapping data provides additional information for navigation and positioning, and also enriches methods
for dealing with issues such as multipath and NLOS reception that often occur in urban environments. Those 3D models are
often used to predict, at any given location, which satellite signals are directly visible and which are blocked by obstacles, and
even in some implementations, to estimate path delays. It certainly provides additional useful information for positioning. The
methods for implementing 3DMA GNSS are flexible and varied. According to the different principles of solution determination,
the positioning and navigation algorithms using 3D mapping data can be divided into shadow matching and 3DMA ranging.
The former uses the signal strength measurements, while the latter uses pseudo-range measurements as with conventional GNSS
positioning. In the past few years, many different 3D-mapping-aided (3DMA) GNSS techniques [10, 11, 14-19] have been
demonstrated to significantly improve the performance of GNSS in cities.

Location-based services typically use single-epoch positioning, while all pedestrian and vehicle navigation applications use
filtered solutions. Compared to single-epoch solutions, filtered solutions are less affected by noise-like errors that occur during
the measurement process. Currently, filtering algorithms commonly used in positioning and navigation include the extended
Kalman filter (EKF) and the particle filter (PF), both of which can handle the case of non-linear distribution of state estimates.
The involvement of 3D mapping data may be able to further improve positioning performance. Based on the characteristics of
UCL’s 3DMA GNSS core algorithm [14], this paper demonstrates two GNSS filters embedded with the 3DMA algorithms for
multi-epoch case, namely the 3DMA particle filter (PF) and the 3DMA grid filter (GF). The main difference between them is
the method used to represent the state estimates. The former uses an unevenly distributed set of particles with equal likelihood
(after the resampling step), while the latter uses a uniformly distributed set of particles with different likelihoods.

Two GNSS datasets are used to test the algorithms mentioned in this paper. The signals in the first dataset were collected with
an EVK M8T GNSS receiver in the City of London, which represents a traditional European city with predominantly masonry
buildings. The other dataset was recorded with a Racelogic Labsat 3 GNSS front end in the Canary Wharf area of London,
which has many glass-covered tall buildings similar to those found in North American and Asian cities.

This paper starts with the problem of GNSS in urban positioning and briefly reviews the various 3DMA GNSS positioning
techniques. Then, detailed descriptions of multi-epoch 3DMA GNSS algorithms based on particle filtering and grid filtering are
given in Section III. Section IV shows the positioning results from, respectively, single-epoch conventional GNSS, single-epoch
3DMA GNSS, multi-epoch conventional filtering, and multi-epoch 3DMA filtering in the two test environments, followed by a
comparison and analysis of the results of these algorithms. Finally, Section V presents conclusions and Section VI recommends
topics for future work.

II. BACKGROUND
II.1. Urban Positioning Problems

The accuracy of the positioning solution is subject to the ranging error and the geometry of the visible satellites [8]. Under
good reception conditions, such as an open environment without obstructions, the error of the conventional GNSS positioning
solution is generally within 10 metres [8,20]. However, the maze of streets and buildings in the dense city would have a



significant impact on the satellite geometry and the propagation of GNSS signals, which may cause the positioning error to
soar to tens of metres. Blocking and reflection by the buildings are considered to be the main reasons for the deterioration in
positioning accuracy [9,21].

One of the direct impacts of blocking on GNSS positioning is the reduction in the number of LOS satellites available. Conven-
tional single-epoch GNSS algorithms require at least four satellites to calculate a position solution, and more measurements to
perform outlier detection algorithms [8, 12]. In multi-epoch positioning, the insufficient number of observed satellites leads to
increased uncertainty in the solution, which may affect performance. Most modern receivers are able to simultaneously track
satellites from multiple constellations to capture more LOS signals, which alleviates the shortage of available signals to some
extent [21].

The unhealthy geometric distribution of observed satellites is also one of the problems posed by blocking that may affect GNSS
performance. If the satellite geometry is not satisfactory, even if the receiver can capture many LOS satellites, the accuracy of
the solution in some directions will still suffer a great decline [8]. In a typical urban canyon, many obstructions, such as dense
and tall buildings on both sides of the road and large vehicles on the road, block signals from perpendicular to the street direction
and leave only a small portion of the sky overhead unobstructed, resulting in the majority of LOS satellites being distributed
along the street. This unhealthy distribution often leads to a sharp increase in errors perpendicular to the street [22].

In addition to blocking, reflection effects interfere with GNSS positioning. In cities, especially emerging ones, glass and
metal are used more widely on the outer surface of buildings. Large sheets of glass are metallised to strengthen them and
are powerful radio reflectors that can easily reflect GNSS satellite signals [21]. Users may receive a mixture of LOS satellite
signals and corresponding reflected replicas from smooth buildings and the ground at the same time, which is called multipath
interference [8, 12,21,23]. The difference in the distance travelled by the reflected and LOS signals results in unsynchronized
peaks of the code correlation function. Therefore, after the direct and reflected signals are mixed, the resultant signal received
by the receiver is distorted, and it may be difficult to distinguish the reflected part from it. As a result, the distorted signal causes
a certain range error, which leads to impaired GNSS performance. In addition, the measurements of the carrier phase, Doppler
shift, and signal strength may be impacted by multipath effects [9].

The phenomenon of non-line-of-sight (NLOS) reception is the simultaneous occurrence of reflection and blocking. In other
words, the LOS signal is blocked, and the user can only receive the reflected replicas. Since reflection may significantly increase
the signal propagation path, NLOS reception would introduce considerable positive errors of tens of metres, or even thousands
of metres in some extreme cases [8,21,22]. The NLOS signal strength varies drastically. Some are weak, while others are as
strong as ordinary LOS signals [9,24].

Multipath interference and NLOS reception, which occur frequently in urban canyons [8], are two key reasons that restrict the
performance of conventional GNSS positioning [9-13].

I1.2. 3D Mapping

The additional information that 3D mapping data can provide for positioning and navigation, including but not limited to terrain
height, building location, building orientation and roof height, enriches and enables new methods for dealing with issues such
as multipath and NLOS reception that often occur in urban environments.

Some studies [24,25] show that the terrain height is a helpful supplement to the geometric distribution of satellites to improve
the accuracy of positioning. It can be integrated into the conventional least-squares method as a virtual measurement. In
dense cities with poor satellite geometry, terrain height aiding significantly improves the horizontal and vertical accuracy of
the position solution, while in a relatively open environment, it only contributes to the accuracy in the vertical direction. The
prerequisite for the terrain height aiding to be effective is that the accuracy of the terrain height obtained from the digital terrain
model (DTM) is higher than that of the pseudo-range measurement. The application scenarios of this scheme are somewhat
limited. It is suitable for situations where the height of the receiver above the ground is known, such as land navigation.

In addition to terrain height data, 3D building models are often used to assist in positioning. These models can be used to
not only predict the visibility of satellites at a given position, but also estimate the distance travelled by the signal. There
are many algorithms for predicting satellite visibility. For example, some algorithms look for the intersection between the ray
from the candidate location to the satellite and the surface of nearby buildings [26], and some generate virtual fisheye skyline
images using satellite and aerial imagery at candidate locations [27]. However, when a large number of candidates need to
be considered, these methods require a large amount of computing resources and are not suitable for real-time positioning. A
method of pre-calculating the building boundary (i.e. the lowest elevation angle above which the satellite signal is direct LOS)
on a series of candidate points is proposed in [22,28]. When needed, satellite visibility can be quickly obtained by comparing
the satellite elevation with the pre-computed building boundary. The candidate points are determined in advance and cannot
be changed during positioning, which loses some flexibility. The estimation of the signal propagation path usually uses the
theory of geometric optics, which is more computationally intensive than visibility prediction. Examples include [11,29-32].



Since implementation requires a lot of computing power, they may be subject to hardware performance (e.g. high-performance
processing unit) and/or make some compromises (e.g., only single or double reflections are considered). In the restricted
situation where the buildings on each side of the road are distributed in a strictly symmetrical manner, a more efficient method
using symmetry to calculate the path delay of the NLOS signal is proposed [33].

According to the different principles of solution determination, the positioning and navigation algorithms using 3D mapping
data can be divided into shadow matching and 3DMA ranging. The former uses the signal strength measurements, while the
latter uses the pseudo-ranges similar to the conventional GNSS method.

Shadow matching adopts the idea of pattern matching and determines the solution by comparing the received signal strength with
the satellite visibility prediction at a series of candidate positions. The concept was independently proposed by four different
research groups [4,34-36], and the authors of [17,37] then initially demonstrated the potential of shadow matching technique
in cross-street positioning with an accuracy of several metres. All of the different research groups that have worked on shadow
matching have converged on the approach of hypothesis testing. The main difference lies in the methods of scoring candidate
positions and obtaining the overall position solution from the candidate position scores. In the early research [38, 39], the
measured satellite visibility is a binary value obtained by a hard threshold on the SNR value. The degree of matching between
the visibility prediction and measurement uses the exclusive not or (XNOR) logical operation that returns true if its inputs are
the same, otherwise false. The position solution is determined by a weighted average of the coordinates of several candidate
points with high scores. Some subsequent studies [17,22,40,41] have shown better performance using probability-based
satellite visibility and Bayesian theory-based matching determination. Some different research groups have also demonstrated
continuous positioning based on particle filtering [40,42,43].

There are many different approaches to 3DMA ranging. Among them, one of the most intuitive approaches is to exclude
the NLOS signals detected by using 3D models from the calculation [44-46]. These methods require a fairly accurate initial
position to enable subsequent NLOS detection algorithms to confidently predict satellite visibility without much time. In urban
environments, most positioning applications cannot provide a sufficiently accurate solution within a few seconds after launching.
Therefore, these methods are mostly used in continuous positioning.

Many research groups tend to use NLOS measurements instead of simply deleting them. Hypothesis testing is one of the
commonly used methods. At a series of candidate positions generated around a rough position solution, the path delay of the
NLOS signal can be estimated by the 3D building model. These candidate positions are then scored based on the path prediction
and the actual measurement [15,29,31,32,47]. However, the primary limitation of these approaches is that the propagation path
calculation requires a large amount of computing resources. The pseudo-range error distribution of the LOS signal conforms
to a symmetric distribution, while the counterpart of the NLOS signal is asymmetric. A version of likelihood-based ranging is
proposed [48] to use a different combination of error distributions at each candidate position based on the visibility predictions
from 3D mapping data, which enables those NLOS pseudo-ranges to participate in the position calculation without explicitly
computing the additional distance travelled by the them.

I1.3. UCL’s 3DMA GNSS Core Algorithms

UCL’s 3DMA GNSS algorithms consist mainly of shadow matching, likelihood-based ranging and an integration algorithm, as
shown in Figure 1. Both shadow matching and likelihood-based ranging are performed in the way of hypothesis testing on the
candidate positions. The candidate positions are a set of three-dimensional coordinates. For land positioning and navigation
applications, in order to reduce the complexity of the problem, the height dimension is set to the sum of the terrain height at
that horizontal position and the height of the user device above the ground.

3D mapping data is used to predict the visibility of each satellite signal (i.e., LOS or NLOS) at each candidate position. This
step is relatively computationally intensive and time consuming. Therefore, an intermediate product called building boundaries
has been introduced to achieve the goal of being able to operate in real time over a large number of candidate positions. The
building boundary refers to the maximum elevation of all buildings within a certain distance at a given azimuth. In other words,
it is the minimum elevation of a satellite that allows users to receive its signals directly in that direction. The building boundary
is pre-computed and stored for each candidate position. When required, the signal can be classified as LOS or NLOS by simply
comparing the satellite elevation with the building boundary at the corresponding azimuth.

The shadow matching algorithm [17] compares the satellite visibility predictions with the counterpart determined by the received
signal strength to calculate the degree of matching at different candidate positions, thereby giving the optimal solution. The
algorithm comprises the following steps [14, 17]:

» The predicted visibility of each satellite signal at each candidate position is obtained.

* For each received signal, the probability that it is direct LOS is determined from the measurement of the carrier-to-noise
density power ratio, C'/ Ny, using an appropriate statistical model.
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Figure 1: Components of the 3DMA GNSS Core Algorithms

* A matching score is obtained by evaluating each satellite at each candidate position based on the match between its
predicted visibility and measured C'/Ny.

* The final score for each candidate position is a combination of the matching scores for each satellite at that position.

The likelihood-based ranging algorithm [14] applies different statistical distributions to pseudo-range errors according to satellite
visibility predictions, and then evaluates the correspondence between the measured and predicted pseudo-ranges to give the

positioning solution. The algorithm comprises the following steps [14]:

» The predicted visibility of each satellite signal at each candidate position is obtained.

* At each candidate position, one of the satellites predicted to be direct LOS is selected as the reference.

* At each candidate position, the measurement innovation for each satellite is obtained by subtracting the direct LOS
range and some known errors, such as satellite clock errors, atmospheric delays and inter-constellation offsets, from the
measured pseudo-range, and then differencing with respect to the reference satellite to remove receiver clock offset.

* At each candidate position, the cumulative probability of the measurement innovation on a skew-normal distribution is
determined for each satellite predicted to be NLOS. These NLOS innovations are then replaced by corresponding direct

LOS innovations with the same cumulative probability.

» The final score for each candidate position is calculated using the modified measurement innovations and their error

covariance matrix.

The intention of shadow matching is to improve the accuracy in the direction perpendicular to the street, whereas likelihood-
based ranging is considered to be more accurate in the direction along the street. Therefore, a hypothesis-domain integration
algorithm is executed to give a comprehensive single score for each candidate position based on the scoring surfaces from
shadow matching and likelihood-based ranging. Finally, the position solution is obtained by using the combined scores to

weight the candidate positions. Full details are given in Appendix A.1.

Single-epoch positioning using the 3DMA GNSS core algorithms described above has been demonstrated in the high-density

central area of Canary Wharf [14].




I1.4. Conventional Multi-epoch GNSS

All road and pedestrian navigation applications use filtered solutions. Filtering algorithms use the new measurements to correct
the navigation solution predicted from previous information. Specifically, the previous clock drift and drift rate are used to
predict the current counterparts, and the previous position and velocity solutions are used to give predictions of current position
and velocity. Finally, the current measurements are used to correct the predictions to obtain the final solution.

The filtered solution mainly has the following three advantages. First, the code tracking noise can be smoothed, which also
reduces the negative effects of multipath errors when moving. Second, since more information is available to compare each
measurement with, the sensitivity of outlier detection can be improved. Finally, when the number of satellite signals is
insufficient to determine the solution, or even all are shielded, the solution from the previous epoch can also maintain navigation
with lower accuracy.

The extended Kalman filter and particle filter are the two most popular multi-epoch GNSS positioning techniques. The extended
Kalman filter is a non-linear version of the Kalman filter, which linearizes the state transition and observation models using
Taylor’s theorem [8]. A particle filter is a sequential Monte Carlo estimation algorithm [8]. It uses a set of particles with
equal likelihood to represent the estimated probability distribution of a set of states, regardless of the form of the distribution.
Therefore, we expect filtering to also benefit 3D-mapping-aided GNSS over multiple epochs.

II1. 3D-MAPPING-AIDED MULTI-EPOCH GNSS

As with conventional multi-epoch GNSS filters, the 3DMA GNSS filter needs to be able to handle non-linear state estimation.
In addition, the 3DMA GNSS algorithm from UCL is built on a hypothesis testing approach that requires the filter to provide
a range of position candidates. We therefore propose two different schemes, namely the 3DMA GNSS particle filter and the
3DMA GNSS grid filter. Compared to the extended Kalman filter, which assumes a Gaussian position distribution, the particle
and grid filters offer better flexibility. In addition, they are more convenient for generating position candidates.

To represent the state estimates, the particle filter and the grid filter use different strategies, which is one of their most significant
differences. Particles with equal likelihood are used by the particle filter, and the sparsity of their distribution determines the
likelihood of a region. Conversely, the particles in the grid filter are distributed uniformly in a grid form, which directly describes
the probability of their corresponding position being the solution. Figure 2 visualises the difference in the representation of
position estimates between the particle filter and the grid filter, in which the colours of the particles represent their likelihood
values and the blank areas represent buildings and locations outside the search area.
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Figure 2: Different Representations of Position Estimates by Particle Filtering and Grid Filtering



II1.1. 3DMA GNSS Particle Filter

As the name suggests, the 3DMA GNSS particle filter is an application of the conventional particle filter described in [8]. The
conventional particle filtering scheme is naturally able to incorporate the 3DMA GNSS algorithms as its particles can play
the role of position candidates. Figure 3 illustrates the six stages of the multi-epoch 3DMA particle filter implemented in this
paper. Three of the components, i.e., system propagation, position measurement update and resampling, remain consistent with
conventional GNSS particle filtering, while the initialisation, particle probability update and velocity filtering are modified to
use 3D mapping data.
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Figure 3: Components of a 3DMA GNSS Particle Filter

a. Initialisation

The initialisation is divided into two steps to initialise velocity and position respectively. For position initialisation, a standard
single-epoch 3DMA GNSS algorithm set (as detailed in [14]) is used. The particle filter is capable of representing any shape
of the probability distribution. Therefore, the position solution takes the form of a likelihood distribution rather than a position
coordinate and its corresponding uncertainty. The position likelihood distribution is then sampled to generate a set of particles
with equal probability. The number of particles, N, should be determined as appropriate, and the initial probability of each
particle is assigned as 1/N.

The velocity initialisation takes place after the initialisation of the position. The least squares algorithm is used to estimate
the velocity and clock drift from the pseudo-range rate measurements. It weights the pseudo-range rate measurements based
on the corresponding overall probability of being predicted to be direct LOS over all candidate positions. Pseudo-range rate
measurements with LOS probabilities below a certain threshold are treated as outliers and removed. A relatively low threshold
is applied to avoid situations where only a few or even no measurements with acceptable LOS probabilities are available to
update the velocity in very dense cities. The velocity initialisation proceeds as follows:

» At each candidate position, satellite visibility is predicted.

» The direct LOS probability for each satellite is estimated based on the satellite visibility predictions for each particle and
the corresponding 3DMA likelihoods.

* The satellite signals are selected and weighted according to their direct LOS probabilities.
» The velocity and clock offset solution is estimated by a least squares method.
Full details are given in Appendix A.2 a.

b. System Propagation

In the system propagation stage, the state estimate of each particle changes while its probability remains unchanged. The
process is similar to conventional GNSS particle filtering. The particle state used here only contains the position (in easting and



northing form), while the velocity is considered separately in section III.1 e. First, the sampling of the system noise is performed
independently for each particle. Each particle, x,, i, is then propagated separately through the system propagation model given
by

Xpk = Pk—1(Xp k-1, Wp k—1) (D

where p denotes the p*” particle, k denotes the k*" epoch, ¢,_ is the transition function, and Wy, k—1 is the randomly generated
system noise vector based on the known probability density function (pdf) of wy_1. A simple system transition model that
uses the velocity solution from the previous epoch to calculate the displacement is adopted in this paper. The displacement
prediction is given by Equation (32) and its corresponding error covariance is given by Equation (33).

th

c. 3DMA GNSS Scoring

The next step is to apply the 3DMA GNSS core algorithms. The east-north coordinates of the particles are rounded to the
nearest integer multiple of 1-metre grid spacing to reduce the computational load and then fed into the 3DMA GNSS algorithm
as candidate positions. At each candidate position, the visibility of the observed satellites is determined from the 3D mapping
data. Next, shadow matching and likelihood-based ranging algorithms are executed. The scores from these two algorithms are
then combined by hypothesis-domain integration to give the 3DMA likelihood for each particle, A, ;. Note that the particle
here is equivalent to the candidate position in the 3DMA GNSS algorithm description. Full details are given in Appendix A.1.

d. Position Measurement Update

In contrast to system propagation, the measurement update phase changes the probabilities but not the state estimates. This step
is processed in the same way as its counterpart in conventional GNSS particle filtering. However, the observation likelihoods,

A, 1, are different from those in a conventional measurement update. Thus, the likelihood calculated from 3DMA GNSS
algorithms for each particle, A, x, is multiplied with its prior probability, A, , to obtain a joint probability, given by

ke = A Ak )

The updated probabilities of each particle are then obtained by renormalizing the likelihoods, giving

Ay,
Ay = = €)

/
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The filtered position solution is then obtained by
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where I, , and N,, ; are the east and north coordinates of the n*" particle, respectively.

e. 3DMA GNSS Velocity Filter

Similar to the initialisation step, the position solution and the velocity solution are obtained separately. The velocity and clock
drift are maintained by an extended Kalman filter. It is a two-step process. In the prediction step, the velocity state estimates
between epochs remain unchanged as there is no information to propagate them, while their error covariance is increased to
model the unknown acceleration between epochs and the unknown change in receiver clock drift. In the update step, the
measurement errors are weighted based on the corresponding satellite LOS probabilities, with smaller standard deviation being
given to measurement errors with higher LOS probabilities. In static positioning, the velocity filter can be omitted. Full details
are given in Appendix A.2e.

|- Resampling

The final phase of 3DMA particle filtering is resampling. As with conventional GNSS particle filters, the probability of many
particles may shrink to zero after several consecutive recursions, leaving only a few particles with relatively large weights.
Those low-probability particles crowd computational resources while reducing the number of particles used to represent the
core features of the state estimate distribution, resulting in a decrease in estimate performance and efficiency. A particle filter is
most efficient when its particles have a similar probability. Therefore, a resampling step is introduced to remove particles with



small weights and duplicate particles with significant weights to mitigate the particle degeneracy problem. Resampling can be
performed every fixed number of epochs, or based on the degree of degeneracy, N, s, given by

> (1)

n=1

-1

Nepr = 5

falling below a threshold. This paper adopts the latter option with a threshold of 4/N/5, below which resampling is performed.
Finally, resampled particles are reallocated with equal probability, 1/N.

II1.2. 3DMA GNSS Grid Filter

Grid filtering uses a set of particles (also called samples) with different likelihoods, uniformly distributed over a certain search
space, to represent the posterior distribution of some stochastic process given noisy and/or partial measurements. Focusing on
the 3DMA grid filter used in this paper, the search space is a horizontal plane represented by the east-north position coordinates,
and the likelihoods of the particles are determined by the 3DMA GNSS core algorithm. A multi-epoch 3DMA grid filter has
six phases, shown in Figure 4. The Initialisation, 3DMA GNSS scoring and 3DMA velocity filter phases are equivalent to their
3DMA particle filter counterparts.
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Figure 4: Components of a 3DMA GNSS Grid Filter

a. Initialisation

The Initialisation of the 3DMA grid filter is almost identical to the corresponding part in the 3DMA particle filter. A single-
epoch 3DMA GNSS algorithm is executed to obtain a series of candidate positions and their likelihoods. The pseudo-range rate
measurements are then weighted by the satellite LOS probabilities derived from the likelihoods and satellite visibilities at these
candidate positions to initialise the overall velocity using the least squares method. Full details are given in Appendix A.2 a.

b. System Propagation

Position propagation is a process of predicting the state estimate of the next epoch based on currently known information, which
moves position candidates and reassigns their likelihoods, which is conducted in three steps as follows:

e Search area extension.
¢ Motion-based likelihood redistribution.
¢ Confidence-based likelihood redistribution.

The candidates with high scores can be located anywhere in the search area. Updated position solutions for the current epoch



are more likely to appear in and around these high scoring regions than others. Therefore, the search area needs to be expanded
large enough to allow high scoring candidates that fall far from the centre and their surrounding areas to be taken into account
in the subsequent processing.

In the motion-based likelihood redistribution, the movement of the candidate positions is carried out according to the system
transition model, reflecting the motion of the receiver. It is less likely that the position translation of the receivers exactly
conforms to the grid. The translation between epochs is therefore split into an integer grid space and a remainder in the east
and north directions respectively. For the integer part, the likelihood of each candidate position is inherited directly from its
likelihood before the translation. For the remainder part, at each candidate position, the likelihood is collectively determined by
the likelihoods within a certain range around it.

The confidence-based likelihood redistribution aims to add a small base likelihood for all candidates in the search area, as all
candidates have the potential to be the final solution. The base likelihood in fact models the error of the 3DMA GNSS core
algorithms, with larger values indicating less confidence in the solution given by the 3DMA GNSS algorithm. Full details are
given in Appendix A.2b.

c. Search Area Determination

After the system propagation step, the search area is expanded and the number of candidate positions grows to about four times
its original size. The redefinition of the search area not only reduces the number of candidate positions but also centres the
search area around the high scoring candidates. Full details are given in Appendix A.2c.

d. 3DMA GNSS Scoring

The 3DMA GNSS scoring process is the same as the corresponding process of the 3DMA GNSS particle filter. The standard
single-epoch likelihood-based 3DMA GNSS ranging, shadow matching and hypothesis-domain integration algorithms are used
over the search area determined in the last step. The output will be a set of likelihoods for each candidate position in the search
area, 1~va x> Where p denotes the candidate position p, and k denotes the k' epoch. Full details are given in Appendix A.1.

e. Position Measurement Update

The position measurement is updated in a similar way to the equivalent part of the 3DMA GNSS particle filter. The position
likelihood distribution is updated to incorporate the new measurements from the current epoch, k. At each candidate position,
the propagated likelihood, A;k, is multiplied by the likelihood, A, j, derived by the 3DMA GNSS algorithm based on the
measurements of the current epoch k to obtain a composite likelihood. Either of the two likelihood surfaces with a higher
confidence level will have a higher and narrower peak, making it more likely to dominate the composite distribution. In addition,
a constant weighting parameter is introduced to adjust the dominance of the likelihood from the measurement in the combined
distribution, regulating the receptivity of the filter to the new measurements. Finally, the position solution is obtained by using
the combined scores to weight the candidate positions. Full details are given in Appendix A.2d.

f. 3DMA GNSS Velocity Filter

The receiver velocities in the 3DMA grid filter are also maintained by a Kalman filter, which is implemented in the same way
as in the 3DMA particle filter. Full details are available in Appendix A.2e.

IV. EXPERIMENTAL TESTS

The first dataset consists of a number of 2-minute GNSS records from the three constellations of GPS, GLONASS and Galileo.
They were collected at various locations in the City of London in July 2017 using a u-blox EVK M8T GNSS receiver at a
recording frequency of 1 Hz. The antenna was maintained at a height of 1.1 metres above the ground. The experimental
locations are marked in Figure 5. Note that at each test site, there are two sets of data collected in the morning and afternoon,
which gives the satellites enough time to orbit to significantly different positions, allowing the morning and afternoon data to
be independent of each other. Therefore, the afternoon dataset is used for tuning the configurable parameters of the positioning
and filtering algorithms, while the morning one is used for testing. The City of London is a typical European city. The roads in
such cities are generally narrow, and the walls of the buildings are mainly made of masonry.

The other dataset was collected in Canary Wharf in July 2019 by a van equipped with a Racelogic Labsat 3 GNSS front end.
The measurement data was intermediate frequency samples and was subsequently processed by Focal Point Positioning. The
dataset consists of 1602 epochs of GPS and Galileo measurements from conventional code tracking. Figure 6 illustrates the true
trajectory of the trial vehicle provided by a Novatel iMAR INS/GNSS system. The vehicle departed from the lower right corner
of the map, moved clockwise on the path in the direction indicated by the orange arrows, and traversed the northern area twice
before finally returning to the vicinity of the starting point from the road on the right of the map. The central area of Canary
Wharf is marked by a red rectangle in Figure 6. There are many high-rise buildings with glass and steel surfaces in this area,
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Figure 5: True positions in City of London. Background map ©Google Maps

which are common in some large cities in North America and Asia. The environmental characteristics in other areas of Canary

Wharf are more open than those in the City of London.

In order to simulate navigation from different locations, the Canary Wharf dataset was divided equally into 8 segments of 200
1-second epochs each, marked with different coloured dots in Figure 6. Three of the eight segments occur throughout in the
non-central areas, while the remaining five segments span both central and non-central areas, with two segments starting in the

central area.
To evaluate the performance of multi-epoch 3DMA GNSS, the following six positioning algorithms were implemented, tested

and compared in the two test datasets mentioned above:
* Single-epoch conventional GNSS with outlier detection and terrain height aiding

* Single-epoch 3DMA GNSS
* Conventional extended Kalman filter (EKF) with terrain height aiding

» Conventional particle filter (PF) with terrain height aiding

* 3DMA GNSS particle filter (PF)

* 3DMA GNSS grid filter (GF)
The single-epoch conventional GNSS algorithm is described in [14]. The single-epoch 3DMA GNSS algorithm is described
in both [14] and Appendix A, and the parameters used can be found in Appendix A. The implementation of the conventional
extended Kalman and particle filters can be found in [8]. The algorithms for 3DMA GNSS filtering are summarised in Section
IIT and detailed in Appendix A.2. Note that the 3DMA GNSS core algorithm already includes an implicit terrain height aiding

algorithm.
In general, it is better to separate the tuning and testing data. For the dataset collected in the City of London, the data collected
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Figure 6: True trajectory of van trial in Canary Wharf, London. Background map ©Google Maps

in the afternoon was used to tune the parameters of the algorithms, while the morning data was used to test and generate the
results presented in this section. However, for the Canary Wharf dataset, the same data was used to tune and test the algorithms
due to the limited duration of the dataset.

Figures 7 and 9 show the root mean square (RMS) position errors obtained from tests on the City of London and Canary Wharf
datasets respectively. As all methods include a terrain height aiding technique, only errors in the horizontal radial direction
were assessed. Figures 8 and 10 illustrate the maximum positioning error at different confidence levels for the solutions of the
City of London and Canary Wharf datasets respectively. The blue bars represent the maximum position error within the 90%
confidence interval, i.e. the maximum error after excluding the 10% of solutions with the largest absolute errors. Similarly, the
orange bars show the maximum error within the 50% confidence interval. It is worth noting that a very small number of faulty
epochs were excluded from the single-epoch positioning in the vehicle test because the number of observed satellites did not
meet the minimum requirements for running the least squares ranging algorithm. Detailed results are presented in Appendix B.

The results show that the conventional GNSS filtering algorithms perform better than the conventional single-epoch GNSS
algorithm in most cases. In vehicle tests in particular, the overall root-mean-square (RMS) error in the position solution from
even the worst performing multi-epoch GNSS algorithm, i.e., the conventional extended Kalman filter, is approximately 40%
lower than that of the single-epoch conventional least squares. However, in the static positioning of the City of London dataset,



[ — [ —
(e] [\ ES (@)

Root mean square error (m)
[0}

25

—_ )
O S

Maximum error (m)
=

13.96

12.58

11.56 11.58 I 11.55 11.66

Single-epoch  Single-epoch ~ Conventional Conventional 3DMA PF 3DMA GF
conventional 3DMA EKF PF

Algorithms

Figure 7: Horizontal radial position root mean square error in City of London (stationary)

m90% confidence  m50% confidence

2142

20.79 19.94

1642
15.46
13.97
9.34 ST
7.61 i
4.94 4.57 430

Single-epoch  Single-epoch  Conventional = Conventional 3DMA PF 3DMA GF
conventional 3DMA EKF PF

Algorithms

Figure 8: Maximum horizontal radial position error at various confidence levels in City of London (stationary)



60

I W
S S

Root mean square error (m)
[\ (O8]
[e) (e

[
=)

Maximum error (m)
[\ (98] B 9,1
o o o o

—
=)

47.90

35.50

27.65 26.83

I I 16.81

Single-epoch  Single-epoch ~ Conventional Conventional 3DMA PF
conventional 3DMA EKF PF

Algorithms

Figure 9: Horizontal radial position root mean square error in Canary Wharf (vehicle)

m90% confidence  m50% confidence

57.31

48.88
18.17

43.12
27.47

Single-epoch  Single-epoch  Conventional = Conventional 3DMA PF
conventional 3DMA EKF PF

Algorithms

16.87

3DMA GF

16.29

5.04

3DMA GF

Figure 10: Maximum horizontal radial position error at various confidence levels in Canary Wharf (vehicle)



the RMS error of the filtered solution is just slightly reduced compared to the single-epoch GNSS, which is not as significant as
in the vehicle tests. It is clear that filtering has a greater impact on the vehicle results. One possible reason for this is that for
static positioning the NLOS and multipath errors are largely correlated over successive epochs, whereas for mobile positioning
they vary more significantly and can thus be more easily mitigated by the filtering process.

With the use of the 3DMA GNSS techniques, the single epoch positioning algorithm improves significantly in vehicle tests.
The overall RMS error of the single-epoch 3DMA GNSS position solution is reduced by about a quarter compared to the
conventional one, while its maximum position error at 90% and 50% confidence levels is even lower than the conventional
filtered results. It can be found from Table 6 in Appendix B that the single-epoch 3DMA GNSS performs better in segments
with more epochs in the central region of Canary Wharf. This indicates that 3DMA GNSS is more advantageous in the denser
environments than in the more open areas, which is also corroborated by the City of London results. In the City of London,
the 3DMA GNSS techniques provide little improvement, with only an obvious reduction in error at the 50% confidence level
compared to the conventional.

3DMA GNSS techniques and filtering algorithms benefit from each other. With the filtered solution providing a better initial
position for the 3DMA GNSS algorithms in the Canary Wharf dataset, the position error of the filtered 3DMA GNSS solution is
further reduced by about 53% compared to that of the single-epoch 3DMA GNSS. Compared to the results of the conventional
filtering solutions, the filtered solutions with the 3DMA GNSS techniques show a reduction of approximately 40% and 60% in,
respectively, the overall RMS error and the maximum error at 90% confidence. Particularly in the denser environments, such
as epochs 1001-1200, 3DMA GNSS reduces the error in the filtered solution to approximately one third of the conventional
filtered solution. In the City of London dataset, where 3DMA GNSS performed unsatisfactorily, the introduction of 3DMA
GNSS provides little benefit to the filtering.

Comparing the results from the filtered 3DMA GNSS algorithms, it can be seen that the overall accuracy of the filtered solutions
from grid filtering and particle filtering are similar to each other for both static positioning in the City of London and vehicle
navigation in Canary Wharf. This is in line with expectations that grid filtering essentially uses the likelihood of a grid of
candidate points to represent the distribution density of particles at these candidate positions, which would not change the
performance in terms of positional accuracy. Figures 8 and 10 show that the maximum position error of the grid filter solution
at the 90% confidence level is slightly lower than that of the particle filter in both datasets, but not significantly different at
the 50% confidence level. Specifically, according to the solution error tables listed in the Appendix B, the difference in RMS
error between the filtered solutions from these two filters remains within 1 metre in approximately 50% of the segments in the
datasets. The largest differences are found in the C10_E and C2_E data segments for the City of London, and in Epochs 200 to
600 for Canary Wharf.

The difference between 3DMA GNSS grid filtering and particle filtering is more significant in terms of computational load.
The computational load of the 3DMA GNSS filters depends mainly on the number of candidates to be computed in each epoch.
The count of candidate positions can therefore be used to roughly evaluate the efficiency of these filters. For the 3DMA particle
filter, the number of candidate positions is the number of particles maintained. Whereas for the 3DMA grid filter, the number
of candidate points may vary, depending on the size and spacing of the grid and the proportion of buildings in the region. The
shape and size of the grid can be specified in advance or based on the uncertainty of the position solution from the previous
epoch. For example, a circular grid with a radius of 20 metres and a spacing of 1 metre has approximately 1256 candidate points.
If the area occupied by buildings is removed, then the actual number of candidates to be computed is even less. Therefore, the
average of the counts is suitable for comparison. The number of particles in the particle filter is determined by the minimum
number (in steps of 500) that completely covers all the candidate positions in a search area spaced at 1 m and of the same radius.

Returning to the results for the Canary Wharf dataset used in this paper, the particle filter processed 5000 candidate positions
per epoch, while the grid filter processed an average of 3604 candidate positions per epoch. For the City of London dataset,
the particle filter computed 1000 candidates per epoch, while the grid filter computed an average of only 523 candidates per
epoch. Therefore, extrapolating from the number of candidate positions in each epoch, 3DMA GNSS grid filtering should
be approximately 40% to 50% faster than 3DMA GNSS particle filtering. However, this is not always true in a practical
implementation. In the static positioning test, i.e. the City of London dataset, the grid filtering was indeed almost twice as
efficient as the particle filtering. However, in the vehicle navigation test at Canary Wharf, grid filtering consumed as much time
as particle filtering, as it traversed all candidate locations (i.e. Equation (38)) when performing the motion-based likelihood
redistribution in the system propagation step, which took a significant amount of time and resources.

The problem of getting lost can happen with any filter, and the 3DMA GNSS filters are no exception. The error in the position
solution given by a lost filter increases with time, while the uncertainty in the solution remains consistently smaller than the
position error. For the 3DMA GNSS filters, the true position lying outside the search area can be defined as getting lost. The
lost problem usually starts with an incorrect state estimate. In the specific case of the 3DMA GNSS filters shown in this paper,
getting lost can originate from a position and/or velocity solution with large errors. The true position may be too far away from
the position prediction given in the system propagation step to lie within the 3DMA GNSS search area in the current epoch. Due



to the limitations of the 3DMA GNSS core algorithm itself, the true position must lie within the search area. Otherwise, it is
impossible for the 3DMA GNSS algorithm to provide the correct position solution. Once the true position wanders outside the
search area, it is difficult for the lost filter to get the correct position and velocity solution again, and thus difficult to recover in
subsequent epochs. Therefore, improving the positioning accuracy of the 3DMA GNSS core algorithm can reduce the chances
of the filter getting lost. However, any algorithm can fail in some situations. Artificially expanding the search area to include the
true position retains the opportunity for a lost filter to recover in subsequent epochs. Other methods of detecting and recovering
lost 3DMA GNSS filters are worth investigating in future research.

V. CONCLUSIONS

The results show that filtering has a greater impact on the results of mobile positioning with significant movement compared to
static positioning. In vehicle tests, the conventional GNSS filtering algorithms improve positioning accuracy by more than 40%
compared to conventional single-epoch GNSS, while in static positioning they offer only a slight improvement. The advantages
of 3DMA GNSS are more apparent in denser environments than in more open areas. In the single epoch positioning of the
Canary Wharf dataset, 3DMA GNSS improves the overall RMS position error by about a quarter. But in more open areas, such
as the City of London and the non-central areas of Canary Wharf, it doesn’t bring much benefit.

3DMA GNSS techniques and filtering algorithms benefit from each other. The former provides the latter with a better position
solution in the measurement update step, while the latter in turn rewards the former with a better initial position and a smaller
search area. In the Canary Wharf dataset, the filtered 3DMA GNSS solution shows a further reduction in position error of
approximately 53% compared to the single-epoch 3DMA GNSS. The filtered results with the 3DMA GNSS techniques reduce
the overall RMS error and the maximum error at 90% confidence level by approximately 40% and 60%, respectively, compared
to the conventional filtering solution. It can be inferred that multi-epoch 3DMA GNSS filtering should maximise the benefits
for mobile positioning in dense environments.

3DMA GNSS grid filtering and particle filtering show similar performance in position accuracy. In terms of efficiency, 3DMA
GNSS grid filtering is able to achieve solutions with fewer particles with errors comparable to those of 3DMA GNSS particle
filtering. Theoretically grid filtering should consume less resources and run faster than particle filtering. However, the grid
filtering in the practical implementation may be slowed down by traversing all candidate positions in the system propagation.

VI. FUTURE WORK

There is much room for improvement in the 3DMA GNSS filtering algorithm, which can be explored in terms of both accuracy
and efficiency. Areas that could be investigated include

* Improvements to the 3DMA GNSS algorithms, e.g. optimising the satellite visibility prediction, and improving the
scoring models for LBR and SM.

* Detection and recovery of the getting lost problem.
* Adding outlier detection to the 3DMA GNSS core algorithm and the filtering algorithm.
» Improving the efficiency of the system propagation step in GNSS grid filtering.
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APPENDIX A DETAILED DESCRIPTION OF ALGORITHMS

This appendix provides more details of the 3DMA positioning algorithms used to generate the results presented in the paper.
As the equipment used differs in the two datasets mentioned in this paper, a set of tuning parameters is applied to each dataset
individually.

A.1 3DMA Core Algorithms

The input to the core 3DMA algorithm is a 3D city model of a region and a series of candidate positions within the region,
and the output is a scoring surface (also known as likelihood distribution) over these candidates. The score for each candidate
position is obtained by the following four algorithms.

a Visibility Prediction

Once a grid of candidate positions has been set up, the visibility of the satellites at these candidates can be predicted. The same set
of predictions is used in all subsequent algorithms including shadow matching and likelihood-based ranging. For each candidate
position, the probability that the satellite is predicted to be direct line-of-sight (LOS), p(LOS|BB), is determined using the
building boundaries precomputed from the 3D mapping data. For the City of London dataset, p(LOS|BB) is set to 0.85 where
the satellite elevation is above the building boundary and 0.15 otherwise. For the Canary Wharf dataset, p(LOS|BB) is set to
0.8 and 0.2 for satellites predicted to be LOS and NLOS, respectively. These values account for the possibility that predictions
may be wrong due to errors and resolution limitations in the 3D city model and unpredictable factors such as passing vehicles.

b Shadow Matching

Once a set of candidate positions and the satellite visibility predictions at them have been determined, shadow matching
comprises the following steps:

1. The probability, p(LOS|C/Ny), that each received signal is direct LOS is determined from the GNSS receiver’s C'//Ny
measurements using the following statistical model:

Po—min (C/NO) S Smin
p(LOS|C/No) =4 ao+ a1(C/No) + a2[(C/No)]*  Smin < (C/No) < Smax (6)
Po—max (C/NO) Z Smax

where the coefficients are given in Tables 1 and 2.

2. Each candidate position and satellite is then scored according to the match between the predicted and measured satellite
visibility.
pm =1 p(LOS|C/No) — p(LOS|BB) + 2p(LOS|C/No)p(LOS|BB) )

3. An overall likelihood score, A g, for each position, p, is obtained by multiplying the scores for each satellite.

Table 1: Tuning parameters for determining LOS probability from measured C'/ Ny in City of London

Elevation, 6 Satellites Smmins Smaxs Po—min ag ai, as, Po—max
dB-Hz dB-Hz dB-Hz~! | dB-Hz 2
0° <9 <90° All 27 44 0.15 0.4549 -0.0444 0.0012 0.85

Table 2: Tuning parameters for determining LOS probability from measured C/ Ny in Canary Wharf

Elevation, 6 Satellites Smins Smax Do—min ag ai, as, Do—max
dB-Hz dB-Hz dB-Hz™! | dB-Hz2
6 < 20° All 16 32 0.2 -0.4170 0.0374 0 0.8
20° < 0 <60° GPS 26 40 0.2 -0.8369 0.0406 0 0.8
20° < 0 <60° Galileo 21 34 0.2 0.6333 -0.0632 0.0020 0.8
6 > 60° All 33 40 0.2 -2.7850 0.0897 0 0.8




¢ Likelihood-based Ranging

Once a set of candidate positions and the satellite visibility predictions at them have been determined, the likelihood-based
ranging algorithm comprises the following steps:

1. For each candidate position, the satellites are ranked based on the elevation angle, measured C'/Ny and surrounding
buildings, and the one with the highest score is selected as the reference. The score is calculated by

Np

r; = L Z (; — BB,,) x round ((C/No)j /5) x5 (&)

n
P p=1

np

oo1 (0 — BBy) is the average value of the difference between the satellite

1
where j denotes the ;" satellite, — >
n

P
elevation, ¢;, and the corresponding building boundary, B 5, at the candidate point, p = 1, and its immediate neighbours,
p = 2,3,---,n,. The neighbours whose distance to the candidate point is less than 1.5 times the grid spacing are
considered.

2. At each candidate position, measurement innovations are obtained by subtracting the computed direct LOS ranges (refer
to [8] for calculations) from the measured pseudo-ranges and then differencing with respect to the reference satellite to
eliminate the receiver clock offset. Note that some known errors, such as atmospheric delays and satellite clock offsets,
have been modelled in the calculation of the range to each satellite at the candidate positions.

3. The error standard deviation of all errors except for the NLOS path delay is computed as a function of C'/Ny using,

qF:Jaxm—WW%ﬂ°+b 9)

where a and b are empirically determined constants.

4. At each candidate position, the measurement innovations for satellites predicted to be LOS are modelled by a normal
distribution with a mean of u1,, while those for satellites predicted to be NLOS are modelled by a skew-normal distribution
with the location, £, scale, wy and shape, o, as follows,

20%; (02» +02+ JJQ\,)
= + — J 10
N = pr + pN \/77 (02 +0%) 1 (7~ 2)0% (10)

(o} + ot +od): (an
w =
N 0F + o2+ (1-2/m) oy

2

ON
= 12
an O'JQ» +o? (12)

where 1 and oy are the mean and standard deviation of the NLOS path delay, respectively, and o,. is the error standard
deviation of the reference satellite, given in Table 3. The cumulative probability, F', of the NLOS measurement innovation,

0zpj, is then computed using

1 02p; — 02pj —

Pl {1 tat <w>} o7 (M,QN> (13)
2 wNV2 WN

where erf(z) is the integral of the normal distribution and T'(z, o) is Owen’s T function.

The modified measurement innovation, 6z’

»;» 18 then obtained by solving

52!
F:%1+af4—iﬂ—f (14)

2 (0]2 + J?)

For measurements predicted to be direct LOS, the measurement innovation remains unchanged, i.e., & z]’gj =0 Zpj-



5. To prevent excessively large innovations producing very low likelihood scores, limiting is applied to each innovation

62;7] = Imax (_5Zmaxa min (6Zmax’ 6Z1/7J B 'LLL)) (15)

where §z,ax is given in the Table 3.

6. A likelihood score for each candidate position, p, is finally computed using

App = exp (—6Z;;TC§_Z1’Z)6Z;;> (16)
where (5z;7 is the vector of re-mapped measurement innovations and Cs ,, is the measurement error covariance matrix,
given by,

U% + UE af 03
of  o3tol - o}
Céz,p = . . ) . (17)
o} of s o to}
Table 3: Parameters used in the likelihood-based ranging (LBR) algorithm
Dataset a, m? b, m? UN, M oN, ™ WL, m or, M 0 Zmaxs M
City of London | 9.03 x 10* 40.73 18.50 19.00 0 3.00 29.00
Canary Wharf 1.41 x 10* 28.10 26.06 31.76 -5.25 2.36 22.00

d Hypothesis Domain Integration

Hypothesis domain integration combines the shadow matching and likelihood-based ranging scores to give a single score for
each candidate position:

x w,
Ap = AppAg) (18)
where W, is the weighting factor, which is a value related to the number of LOS signals in the current epoch.

o X nLOS’p

W, = (19)

nNLos,p + NNLOS,p

where nros,p, and nyros,p are the number of satellites predicted to be LOS and NLOS at candidate position p, respectively,
and « is an empirically determined constant. For the City of London dataset, « takes a value of 4.6, while for the Canary Wharf
dataset, o is 3.6.

A.2 3DMA Filtering Algorithms

This appendix shows several important components of the 3DMA filtering algorithm excluding the 3DMA core algorithm
(described separately in Appendix A.1). Some of these components, i.e., initialisation and velocity filtering, are required for
both particle filtering and grid filtering, while others are only used in grid filtering as the equivalent components are available
in conventional particle filtering. For example, 3DMA particle filtering can use the conventional system propagation scheme
directly. Note that the velocity initialisation and velocity filtering can be omitted in static positioning.

a Initialisation

The initialisation is divided into position and velocity components, where the position is initialised by a standard single-epoch
3DMA GNSS algorithm set and the velocity is initialised by a weighted least squares method with 3DMA outlier detection. For
static positioning applications, the velocity is considered known and does not need to be initialised.

The single-epoch 3DMA GNSS for position initialisation consists of three steps: the weighted least squares ranging is used to
determine a rough position solution, from which a grid of candidate positions are generated, and finally the core 3DMA GNSS
algorithm scores these candidates to derive a position solution. The detailed algorithm is described in [14], and the 3DMA
GNSS core algorithm and parameters can also be found in the Appendix A.1.



The velocity initialisation comprises the following steps:

1. For each candidate position, predict the satellite visibility using the building boundaries. Note that the predictions are
already made in the 3DMA GNSS positioning algorithm and can therefore be used directly here without recalculation.

2. The overall LOS probability of a satellite over the search area is calculated by

j o Zp AP:O(S%/OS,;),O
Pros = — —= 7 (20)
Zp Ap70

where j denotes the satellite, ]\p,o is the likelihood of candidate position p, and 510 s,p,0 18 @ Boolean value representing
the predicted visibility of satellite 7 at candidate position p.

3. Pseudo-range rate measurements are then selected from satellites that meet the criteria p% os = Tros, where the threshold
T70s is determined empirically and is given in Table 4.

4. The standard deviation (STD) of the measurement error for each of the conforming satellites is determined using

org =00 [1+8 (1= plos)] @1

where the coefficients 0,9 and 3 are determined empirically and are given in Table 4.

5. The measurement innovation, 4z , is

pL =T
P2 — T

Sz = (22)
5 — Ty

where /331 is the measured pseudo-range rate from satellite j, and f;. is the predicted range rate for satellite j after
eliminating known errors such as the effect of Earth rotation, calculated using the method in [8].

The measurement matrix, H, , is computed using

e ~e ~e
_ual,m _ual,y _ual,z 1
Ne ~e ~e
—Ug2,x 7ua2,y 7u(z2,z 1
e
G0 = (23)
Ne e e
“Uaja  ~Uajy —Ugj. 1
fe  [re e e . . . . . . .
where ug; = [ua]—,z Ugj oy Uaj,z] is the line-of-sight unit vector of satellite 7, calculated using the method in [8].
The measurement error covariance matrix, C,., is given by
U%l 0 0
2
0 o2, =+ 0
C, = (24)
2
0 0 oy

The velocity state vector consists of the velocity, \72;0, and the clock drift, 6 ;?)ng, and is obtained by

~et

Vea,O e — e -1 e — —

XJ = Lf,ﬂr} :( G,oTCr 1HG,O) G,OTCr15Zo (25)
pc,O



and the state estimation error covariance is initialised using

—1
Py = ( eG,OTCT_ng,O) (26)

6. The east and north velocities are then given by

An+

Vgyq 01 0

ViNo = AZJ;E,O = Civido (27)
Upa N.O 1 0 0

and their error covariance is

(28)
100

o O =

0
CZP&1:3,1:3C'Z 1
0

N 0 1
PvE,vN,O =

where P .4, 5 is the first three columns and rows of P{.

The north-east-down (NED) to Earth-centered Earth-fixed (ECEF) coordinate transformation matrix, C7, in Equations

(27) and (28) is given by
—sinLg,cos\, —sinl,sin)\, cosL,
C, = —sin A, cosS Ay 0 (29)
—cosL,cos), —cosLgsin), —sinlL,

where the latitude, L,, and longitude, ), are obtained from the position solution, while C{, = CZT is the ECEF to NED
coordinate transformation matrix.

Table 4: Parameters used in the initialisation of 3DMA filtering

Tros 00 B
0.2 0.2 5

Note that since the users in the City of London dataset are stationary, these velocity parameters are not required.

b System Propagation

System propagation predicts the state estimate of the next epoch based on currently known information, which moves position
candidates and redistributes their likelihoods. The process is divided into the following three steps:

1. The search area is expanded to ensure that candidates with high scores from the previous epoch (or initialisation) fall in
the centre of the search area in subsequent calculations. In the case of a circular search area, for example, the radius r, is
increased to ry = 2r,, with the same centre.

Thus, likelihoods for the candidate positions within the expanded area, indexed by g, are initialised using

A+k_ —ok G € P
Ad, =4 PRI (30)
0 Qe & Pr—1

where A;; k—1=q. is the likelihood at the preceding epoch, k — 1, following the position measurement update, of the

point pi_1 that has the same coordinates as point gk, and Pj_; is the set of candidate positions used for the position
measurement update at epoch k — 1.

The coordinate notation of the candidate position is also updated after the search area extension to avoid confusion.
0 _
Eq,k - Ep7k
0 _
Ngr = Npk

q;

€1V



2. The position estimate between epochs can be propagated by a velocity solution and its associated error covariance. The
predicted displacement between epochs & — 1 and k is

AE- A
k _ l b,E.k 1] - (32)

An+
Ueb,N,k—1

AN_

where @Z)JFE 4w and @;LI:,FM x_1 are, respectively, the estimated east and north velocities at epoch k — 1, and 7 is the time
interval between epochs.

The error covariance of the predicted displacement is

2
oAr  Parpan 1| SaEk  SaENK
] = P’:_E,’L)N,kflTSQ + 3 T (33)

PAE,AN,k = s

Papan 0N SeENE  SaNk
where PjE »N k1 is the error covariance of the east and north velocities at the preceding epoch k — 1, S, g, and Sy
are the power spectral densities (PSDs) of the east and north accelerations respectively, and S, g  is the cross spectral
density of the east and north accelerations. The same values as in the velocity filter, given by (55), are used.

To facilitate alignment with the grid in the search area, the displacement is partitioned into integer grid space ¢, , 7, and
remainder 6 £, , 0N, components:

AE, =é, Apy+0E,

kT ko (34)
AN, =0, Apy + 6N,
where Ap, is the grid spacing, and the integer part is given by
¢ = round (AE[ /Ap, )
(35)

n, = round (AN,:/Apg>

The position likelihood is redistributed to account for the integer displacement simply by changing the position associated
with each likelihood. Thus,
1 0 -
Eq,k = Eq,k: + ek Apg

o (36)
qu,k = N((I]7k + nk Apg
Mgk (Bg s Now) = A (Eq i Ny) @37
For the remainder part, the likelihoods are then redistributed using
meg mN
A=Y > wirhl (Eyy +ilpg, Ny + jApg) (38)
i=—mpg j=—mpn
where the weighting for each epoch is computed by
w’ .
ijk
T X e Wik
where .
) 1 |#Apg — 0B, B —1 [iApy — 6E,;
Wi = €XP 9. o (PAE,AN,k) . o (40)
Apy — 6N, Apy — 6N,
and
mp = ceiling (30ar/Ap,) @1

my = ceiling (3can/Apy)



In static positioning, since the velocity of the receiver is known to be zero, the motion-based likelihood redistribution
does not need to be performed. Thus, the coordinates and likelihoods of the candidate positions are inherited directly
from the expanded search area:

By = Eqx
; : (42)

Nq,k = Nqu
Mgk =Ngk =Nk (43)

3. The confidence-based likelihood redistribution adds a minimum likelihood to all candidates in the search area. Let Cp
be the level of confidence in the position solution from the preceding epoch (or initialisation), where 0 < C'p < 1. The
likelihoods are redistributed using

Ap21—Cp
A7, = A2 g 44
a.k ok T A, Cp (44)
where A, is the area of the search area calculated by
A, =mr) (45)
for a circular area with radius, r, or by
Ap = Tapby (46)

for an elliptical area with semi-major axis, a,, and semi-minor axis, b,. Cp takes a value of 0.99 in both the City of
London and Canary Wharf datasets.

¢ Search Area Determination

The centre of the search area for the 3DMA GNSS position measurement corresponds to the weighted average position solution
obtained from the propagated likelihood grid, giving by

-
- = Z:q AchEq,k

k —
A
Z‘[ o (47)
N~ = z:q Aq,qu,k
g > Mok

The likelihood of the candidate positions remains unchanged within the newly defined search area. Thus, the notation is updated

by

A = Ao k=pi (48)
The size of the search area can be fixed, or vary with the error covariance. In the City of London and Canary Wharf tests, the
search area was fixed to a circular area of 20m and 40m radius, respectively.

d Position Measurement Update

At each candidate position, the likelihood is updated with the propagated likelihood, A; &» and the 3DMA scoring, A, 1., by
/ - A W
b =M (Ao (49)

where W,, is the empirically determined measurement weighting factor. A value greater than 1 gives more weighting to new
measurement data while a value less than 1 gives less. WW,,, takes a value of 1 for both the City of London and Canary Wharf
datasets. The overall likelihood is then normalised by

AL
N — L (50)
. Zp A;,k



Finally, the updated position solution is obtained using

EA‘[: = Z A;ar,kEp,k

A, (51)
N =D ANy
P
where F,, . and N, ;, are the easting and northing coordinates of the pt" candidate position.

e Velocity Filter

The velocity filter includes prediction and update steps. In the propagation step, with no additional information, the velocity
state estimates remain unchanged, while the error covariance increases. Thus,

o |fé;,l;| - [Ozikll 62)
Xg T | o | T Fk=17= |
LY 0Ptk

P, =P/  + (53)

SZJCTS O3x1
013 ngTs

where 5S¢, is the receiver clock frequency drift PSD, 7 is the time interval between epochs, and S ;. is the acceleration PSD
matrix that is given by

Sank  SaENE 0
ak =Cy [SaENKk  SaBk 0o (Cy (54)
0 0 SaD.k

where C? and C¢, are transformation matrices between NED and ECEF coordinates as shown in Equation (29), S, g 1 is the east
acceleration PSD, S, n i, is the north acceleration PSD, S, g,k is the cross spectral density of the east and north accelerations,
and S, p i is the vertical acceleration PSD.

For a typical vehicle, the acceleration is similar in the Easting and Northing directions, while the vertical acceleration is relatively
small. The horizontal acceleration tends to be greater at lower speeds. Therefore, the acceleration PSD model is proposed as
follows

2
(55— [vean])
N7 [Teak]) e | <
SaE,k = SaN,k = 100 Ka Veu’k‘ < 50 Hl/S
0.25K, ‘A’:;k‘ > 50 m/s 55)
SaENk =0
Sapk = 0.25K,

where the constant, K, = 1.5m?/s?, is determined empirically.

In the measurement update step, the weighting model applied to the measurement errors is similar to the one used in the velocity
initialisation shown in Equations (20) and (21), which is given by

5 . Zp Ap,k(s]Los,p,k (56)
Pros = A
Zp Ap,k
org = 0v0 [1+8 (1= pos) ] (57)

Note that measurements with a predicted LOS probability, pros, lower than the threshold, 17,0, are discarded.



The measurement noise covariance, Ry, is then obtained using

0%1 0 0
2
O 0',,"2 0
R, = (58)
2
0 0 oy
The measurement matrix, HE, ., is given by
~e e ~e
“Ugt1ke " Ualky " Yalk,z 1

~e ~e ~e
—Ug2 ko _ua2,k,y —Ugo k2 1
e
Gk = . . . ) (59)

—_ (1€ . —_ (1€ . —_ 1€ .
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where G ;.1 is the line-of-sight unit vector of satellite j.

The Kalman gain is then computed using
T T -1
Ky = P H;, " (HE P HG " + Ry ) (60)

The measurement innovation, dz,_, is computed using

-~ ca—T

71 T
Pak ~Tark — 5Pc,k

5Z,k - ra2,k - 55?,7{:
Sz = . 61)

T A— cfa—
pa,k Taj,k 6pc,k’_

where p~fl .. is the measured pseudo-range rate from satellite 7, F;Q & 18 the modelled range rate from satellite j, and 9 [)Z; is the
predicted receiver clock drift.

The state estimate consisting of the velocity, \723 &» and clock drift, § /3‘;*,;, is then updated using
ver
- ea,k . _
xg = . =x, + Kidz, (62)
spit
c,k
The state estimation error covariance is updated using
P = (I-KHG,) Py (63)

The east and north velocity and their error covariance can then be obtained using Equations (27-29).



APPENDIX B DETAILED EXPERIMENTAL RESULTS

Tables 5 and 6 show in detail the horizontal radial position root mean square (RMS) errors for various positioning algorithms in
the City of London and Canary Wharf, respectively. The numbers in brackets in the first column of Table 6 represent the counts
of epochs where vehicles were located in the central area of Canary Wharf.

Table 5: Horizontal radial position RMS errors (in metres) for different algorithms in City of London

Experiment ID Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS

conventional 3DMA GNSS EKF GNSS PF PF GF

Cl_W 8.13 7.60 4.42 7.30 6.37 7.82
Cl_E 5.37 2.70 3.62 5.26 2.05 1.72
C2_ W 13.47 14.38 7.21 10.71 10.50 7.86
C2_E 10.07 11.91 9.76 9.64 10.05 6.98
C3 13.69 2.74 2.97 7.37 4.54 4.15
C4 5.36 2.43 533 5.54 241 1.76
C5 6.13 4.28 5.04 591 4.33 3.09
Co6 291 341 2.19 2.46 243 1.52
Cc7 6.10 4.74 3.37 5.30 1.77 2.05
C8 16.25 21.67 14.40 18.39 14.56 7.97
Co_wW 14.07 4.87 12.14 14.53 5.86 8.45
C9_E 12.86 8.53 9.25 8.58 4.14 3.23
Cl10_W 11.23 5.79 12.63 10.37 3.87 2.64
CI10_E 17.56 12.88 14.02 16.66 15.98 9.53
Cl1 12.89 1.82 6.93 9.96 2.78 3.46
CI2_N 9.15 5.16 7.14 9.28 6.89 6.12
C12_S 9.32 3.92 5.76 10.01 3.83 4.35
CI3_N 12.37 28.15 8.24 10.13 38.84 42.83
C13_S 23.88 10.14 27.32 22.85 15.03 16.15
Cl4_ W 15.75 5.51 7.90 20.01 7.70 10.37
Cl4_E 13.33 6.72 6.26 12.40 6.68 6.69
Cl15_W 13.75 18.80 12.58 12.50 12.66 14.63
CI15_E 32.68 21.31 28.77 2391 11.99 11.12

Table 6: Horizontal radial position RMS errors (in metres) for different algorithms in Canary Wharf

Epoch range Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS
conventional 3DMA GNSS EKF GNSS PF PF GF
1-200 (0) 21.52 19.89 5.87 8.38 9.03 8.53
201-400 (0) 40.01 36.36 45.60 56.74 21.56 12.39
401-600 (139) 66.83 26.58 29.80 16.91 32.06 37.40
601-800 (27) 14.86 18.34 26.93 19.22 15.41 16.50
801-1000 (144) 66.27 49.62 13.51 17.50 9.21 8.76
1001-1200 (124) 84.52 68.28 39.95 33.60 12.39 9.52
1201-1400 (27) 12.48 15.14 24.20 18.08 13.57 13.86
1401-1602 (0) 4.79 5.71 5.77 7.68 5.36 4.89




Tables 7, 8, 9, and 10 list the maximum horizontal radial errors for the position solutions of the different algorithms at different
confidence intervals respectively. The numbers in brackets in the first column of Tables 8 and 10 represent the counts of epochs
where vehicles were located in the central area of Canary Wharf.

Table 7: Maximum horizontal radial position error (in metres) for different algorithms in City of London, 90% of confidence

Experiment ID Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS
conventional 3DMA GNSS EKF GNSS PF PF GF
Cl_W 13.29 14.08 5.66 11.82 10.61 9.88
Cl_E 8.91 3.88 4.81 7.76 3.00 2.31
C2_ W 19.95 16.48 9.22 15.82 16.96 12.21
C2_E 14.06 14.82 12.04 12.76 14.54 7.75
C3 21.73 4.12 4.13 11.31 6.42 5.63
C4 8.93 3.03 6.29 9.00 3.29 2.49
C5 8.41 6.60 6.47 7.53 6.00 4.78
Co6 4.07 4.15 3.64 3.94 3.02 1.71
C7 10.10 6.16 522 8.52 2.63 3.11
C8 2547 33.49 18.03 27.83 19.61 11.16
Co_W 18.99 5.78 13.75 19.48 4.78 17.49
C9_E 19.56 10.19 10.80 12.34 5.86 5.65
CI10_W 15.99 7.22 14.70 15.37 547 3.56
C10_E 24.04 25.71 14.47 23.50 40.26 16.11
Cl1 19.16 3.27 10.33 15.49 4.55 4.24
CI2_N 12.58 6.91 9.25 12.84 7.89 7.70
C12_S 13.64 5.32 8.25 14.65 5.57 6.51
CI3_N 21.05 32.40 10.77 17.52 47.96 47.95
C13_S 31.84 21.26 28.47 28.13 32.00 31.42
Cl4_W 25.26 7.23 8.87 32.12 10.09 12.84
Cl4_E 19.81 8.81 7.75 17.67 8.14 9.04
CI5_W 19.29 32.48 15.70 16.67 24.59 30.58
CI5_E 44.10 28.87 38.97 40.96 17.23 15.51

Table 8: Maximum horizontal radial position error (in metres) for different algorithms in Canary Wharf, 90% of confidence

Epoch range Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS
conventional 3DMA GNSS EKF GNSS PF PF GF
1-200 (0) 22.26 22.85 9.47 13.99 13.92 13.82
201-400 (0) 76.77 51.58 82.27 104.03 18.83 15.72
401-600 (139) 147.54 55.27 53.46 27.60 63.52 81.68
601-800 (27) 20.71 24.01 58.46 17.13 18.67 23.61
801-1000 (144) 74.82 29.49 24.23 31.44 13.56 12.70
1001-1200 (124) 151.18 79.45 82.97 64.04 16.94 15.45
1201-1400 (27) 21.17 12.46 55.76 22.57 12.12 11.01
1401-1602 (0) 5.90 8.51 10.23 12.82 8.15 7.35




Table 9: Maximum horizontal radial position error (in metres) for different algorithms in City of London, 50% of confidence

Experiment ID Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS

conventional 3DMA GNSS EKF GNSS PF PF GF

Cl_W 6.35 5.78 4.20 5.83 5.32 7.18
Cl_E 3.86 242 4.05 4.75 1.76 1.56
C2_ W 12.88 15.25 7.19 9.44 7.99 5.92
C2_E 9.52 11.87 8.50 9.86 9.84 6.90
C3 10.38 2.32 3.01 6.02 4.28 3.57
C4 4.68 2.33 5.69 4.45 2.28 1.15
C5 5.75 3.99 4.82 5.97 4.05 2.54
Co6 2.63 3.51 1.64 2.11 2.40 1.50
C7 4.12 3.16 3.03 3.42 1.34 2.07
C8 13.64 18.18 14.59 15.34 13.53 8.53
Co_W 13.28 1.53 13.16 13.98 2.25 5.62
C9_E 10.90 8.62 8.95 8.77 4.04 2.40
CI0_W 10.64 5.62 12.51 9.52 3.72 3.00
CI10_E 16.76 6.03 14.15 15.31 7.77 5.82
Cl11 9.73 0.84 5.54 7.81 1.67 3.73
CI2_N 8.53 5.16 7.26 8.29 6.46 6.87
C12_S 9.13 4.32 4.89 9.50 3.15 4.92
CI3_N 8.44 30.74 8.98 7.65 34.58 47.38
C13_S 23.52 293 27.70 2292 3.92 3.35
Cl4_ W 11.57 5.30 7.84 16.09 7.48 9.69
Cl4_E 10.48 6.32 5.84 8.68 6.46 5.87
C15_W 10.82 12.94 10.97 9.44 7.87 10.47
CIS5_E 34.92 21.33 29.88 16.05 10.56 10.58

Table 10: Maximum horizontal radial position error (in metres) for different algorithms in Canary Wharf, 50% of confidence

Epoch range Single-epoch | Single-epoch | Conventional | Conventional | 3DMA GNSS | 3DMA GNSS
conventional 3DMA GNSS EKF GNSS PF PF GF
1-200 (0) 5.26 4.14 4.76 5.68 4.02 4.00
201-400 (0) 5.86 6.17 26.63 29.17 6.12 6.13
401-600 (139) 12.45 9.85 6.99 10.99 9.92 9.17
601-800 (27) 3.85 3.38 10.80 5.12 3.33 3.60
801-1000 (144) 9.93 5.78 6.89 9.81 5.59 5.54
1001-1200 (124) 15.34 7.58 7.04 8.26 7.03 7.30
1201-1400 (27) 3.01 4.28 9.70 9.03 4.38 5.31
1401-1602 (0) 2.55 3.71 4.86 5.57 3.68 3.62
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