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Background and Purpose: Translational efforts in the evaluation of novel anti-

tubercular drugs demand better integration of pharmacokinetic–pharmacodynamic

data arising from preclinical protocols. However, parametric approaches that discrimi-

nate drug effect from the underlying bacterial growth dynamics have not been fully

explored, making it difficult to translate and/or extrapolate preclinical findings to

humans. This analysis aims to develop a drug-disease model that allows distinction

between drug- and system-specific properties.

Experimental Approach: Given their clinical relevance, rifampicin and bedaquiline

were used as test compounds. A two-state model was used to describe bacterial

growth dynamics. The approach assumes the existence of fast- and slow-growing

bacterial populations. Drug effect on the growth dynamics of each subpopulation

was characterised in terms of potency (EC50-F and EC50-S) and maximum killing rate.

Key Results: The doubling time of the fast- and slow-growing population was esti-

mated to be 25 h and 42 days, respectively. Rifampicin was more potent against the

fast-growing (EC50-F = 4.8 mg�L�1), as compared with the slow-growing population

(EC50-S = 60.2 mg�L�1). Bedaquiline showed higher potency than rifampicin (EC50-F

= 0.19 mg�L�1; EC50-S = 3.04 mg�L�1). External validation procedures revealed an

effect of infection route on the apparent potency of rifampicin.

Conclusion and Implications: Model parameter estimates suggest that nearly maxi-

mum killing rate is achieved against fast-growing, but not against slow-growing

populations at the tested doses. Evidence of differences in drug potency for each

subpopulation may facilitate the translation of preclinical findings and improve the

dose rationale for anti-tubercular drugs in humans.
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1 | INTRODUCTION

A range of experimental models are available for the evaluation of the

anti-bacterial activity of anti-tubercular drugs (Nuermberger, 2017).

Irrespective of the differences between disease conditions in humans

and an experimental model, effective integration of pharmacokinetic

(PK) and pharmacodynamic (PD) data from well-designed preclinical

studies can provide valuable information for the selection of the opti-

mal dose and companion drugs for combination therapy in patients

(Franzblau et al., 2012; Gumbo et al., 2015). However, as drug expo-

sure is often not assessed in most models, dose–response curves are

derived without understanding of the underlying pharmacokinetic–

pharmacodynamic (PKPD) relationships. Moreover, little attention is

paid to the implications of phenotypical differences, bacterial burden,

and growth dynamics, as compared with the disease in humans. For

instance, Mycobacterium tuberculosis lipid-rich phenotype can be up to

40 times more resistant to key antibiotics (Baron et al., 2018;

Hammond et al., 2018). These differences could play a key role in the

dose selection of novel regimens for the treatment of tuberculosis

(TB) but are likely to be overlooked if one does not carefully consider

the requirements for the collection and analysis of data from preclini-

cal experimental protocols (Warner & Mizrahi, 2014).

Pharmacokinetic–pharmacodynamic (PKPD) modelling and simu-

lation have evolved as an important tool for antibiotic development,

providing quantitative estimates of antibiotic activity on bacterial

killing rate (Nielsen et al., 2011). Recently, it has become evident

that parameterisation of the factors that determine bacterial growth

is also required to allow one to disentangle system-specific

properties from drug-specific characteristics, thereby enabling the

prediction of anti-bacterial activity across different experimental

conditions. Most importantly, the use of such a parametric approach

allows knowledge to be reutilised and updated subsequently, as

new data arise (Sheiner, 1997). To date, however, very little has been

published regarding the use of modelling approaches that allow

discrimination of drug effects from the growth dynamics of

M. tuberculosis (Bartelink et al., 2017). This situation contrasts with

ongoing efforts in the development of other antibiotics and antivirals,

where PKPD modelling and simulation has been increasingly improv-

ing the quality and efficiency of preclinical research (Muliaditan

et al., 2017).

Based on emerging evidence of the relevance of phenotypical

differences for M. tuberculosis, it becomes evident that previous

PKPD models, as the one proposed by Bartelink et al. (2017),

may have limitations given that they do not provide a sufficiently

physiological representation of the bacterial growth dynamics in

humans and animals (Driver et al., 2012; Hoff et al., 2011; Sloan

et al., 2015); that is, parameter estimates do not reflect the co-

existence of fast- and slow-growing subpopulations or potential

differences in sensitivity (Baron et al., 2018; de Steenwinkel et al.,

2010; Mitchison, 1985). In fact, fitting of experimental data with

such a model may be inadequate to differentiate the bactericidal and

sterilising or time-dependent activity of a drug. More recently, a

three-state model for PKPD analyses of preclinical experiment in TB

has been proposed (Chen, Ortega, et al., 2017; Chen, Wicha, et al.,

2017; Clewe et al., 2016). In this case, the approach accounts for

three M. tuberculosis populations: fast, slow, and non-replicating.

While it attempts to incorporate growth dynamics during the course

of infection, its implementation may be challenging, as evidence of

the three different subpopulations cannot be obtained from total

bacterial count, which is usually available experimentally. Hence,

identifiability issues may arise during (re-)estimation of the disease

and PKPD model parameters. We argue, therefore, that a

mechanism-based parameterisation is still lacking, which allows dis-

crimination of bacterial growth dynamics and other system-specific

properties from drug-specific properties. In addition, such a model

should be easily applied as a screening tool across different types of

experimental protocols, enabling effective integration of preclinical

PKPD data.

Here, we have used a meta-analytical approach to develop a two-

state model in which bacterial growth dynamics and pharmacological

activity are parameterised in a generic manner, as to allow its use to

assess the anti-bacterial effects of different compounds. Rifampicin

and bedaquiline were used as test compounds to illustrate the appli-

cation of the model as a tool for the characterisation, in a strictly

quantitative manner, of differences in drug potency and efficacy. We

anticipate that the availability of such a model will enhance the quality

of candidate molecules selected during the screening for progression

into development.

What is already known

• Pharmacokinetic–pharmacodynamic data integration is

critical for the identification and ranking of anti-tubercu-

lar drug candidates.

• Assessment of the antibacterial activity of drug combina-

tions in infection models relies on empirical approaches.

What does this study add

• The growth dynamics model reveals the presence of fast-

and slow-growing subpopulations of Mycobacterium

tuberculosis.

• The two subpopulations show different degrees of

susceptibility to the antibacterial drug effects.

What is the clinical significance

• Evidence of differences in drug potency for bacterial sub-

populations may improve dose selection in humans.

• This approach enables identification of suitable anti-

tubercular drug combinations prior to clinical testing in

patients.
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2 | METHODS

2.1 | Data source for the development of a
bacterial growth dynamics model

Colony forming unit (CFU) counts per lung in untreated BALB/c

mice infected with wild-type H37Rv M. tuberculosis were extracted

from publications by Zhang et al. (2012) and Swanson et al. (2016).

More specifically, mean CFU count data from the control mouse

group (marked as “WtRv” in the original publication; N = 3 per time

point) infected with low-dose M. tuberculosis (102 CFU per lung)

were extracted from Zhang et al., whereas regrowth data

(as measured by change in CFU count) at the end of the 8-week

treatment with first-line combination regimen were extracted from

Swanson et al. (N = 4–5 mice per time point; individual CFU count

from each mouse). Despite the availability of numerous publications,

no additional literature data sets were deemed suitable for the pur-

poses of the current investigation due to sparse sampling during the

log phase of the infection (i.e., the period in which bacteria growth

is exponential) and/or at stationary phase. These features were con-

sidered essential for a reliable estimation of the growth rate

constants.

2.2 | Data source for the parameterisation of drug
effects

Pharmacokinetic data for rifampicin in BALB/c mice were extracted

from a publication by Rosenthal et al. (2012). Time–kill curve data from

infected mice with the H37Rv strain, as measured in lung CFU count

drop following a 12-week treatment with various doses of rifampicin

(10–50 mg�kg�1), were extracted from Hu et al. (2015). PK data of

bedaquiline were extracted from a publication by Tasneen et al. (2011).

In their experiment, PKwas characterised in BALB/cmice following sin-

gle dose administration of 25 mg�kg�1 bedaquiline. In addition, time–

kill curve data from infected mice with the H37Rv strain following a 6-

week treatment with 12.5 and 25 mg�kg�1 bedaquiline were extracted

from Gupta et al. (2015). Intravenous (IV) inoculation and aerosol route

were used in the rifampicin and bedaquiline experiments, respectively.

2.3 | Bacterial growth dynamics model
development

Here, we propose a model describing two bacterial populations that

co-exist at different ratios during the course of infection, namely, a

F IGURE 1 A schematic overview of the workflow used for the development of a bacterial growth dynamics model. The net growth rate
constant of fast- and slow-growing population (respectively knetF and knetS) was estimated from two publications (Zhang et al. and Swanson
et al.) in a step-wise calibration approach as outlined above. Colony forming unit (CFU) counts per lung over time in untreated infected BALB/c
mice lung was measured for 8 weeks in the Zhang et al. experiment following aerosol infection with Mycobacterium tuberculosis (102 CFU counts
per lung). In the Swanson et al. experiment, CFU count per lung over time was measured in BALB/c mice for a period of 8 weeks post-treatment
with rifampicin, isoniazid, pyrazinamide, and ethambutol (given orally for 5 days per week for 2 months)
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fast-growing (F) and a slow-growing (S) M. tuberculosis subpopulation.

We assumed that each bacterium can transition from fast to slow

growing and vice versa. However, as CFU count data do not allow for

simultaneous estimation of the growth rate constant of F and S sub-

populations, a stepwise calibration approach was used for model

building, in which one of the two growth rate constants was always

fixed during the estimation step. A schematic overview of the

workflow used for the calibration of the bacterial growth dynamics

model is provided in Figure 1. In the experiment by Zhang et al., we

assumed that all bacteria were fast-growing at the start of infection.

As such, this data set was used primarily to estimate the growth rate

constant of the fast-growing population. By contrast, in the Swanson

experiment, we assumed that most fast-growing bacteria were eradi-

cated by the end of the 8-week treatment with first-line combination

therapy. Consequently, all bacteria were considered to be slow grow-

ing at the start of the regrowth phase. This data set was used to esti-

mate the growth rate constant of the slow-growing population.

Initially, only the data set from Zhang et al. was used. Two

dynamic growth models, the Verhulst model (Equation 1) and

Gompertz model (Equation 2), were evaluated and formed the basis

for the description of growth of the bacterial populations (Peleg &

Corradini, 2011). The Gompertz survival function corresponds to an

exponential mortality rate that increases with time. This contrasts

with the Verhulst model, in which the initial stage of growth is approx-

imately exponential, but then, as saturation begins, the growth slows

down to a linear process, and at maturity growth stops completely:

Growth¼ 1� FþSð Þ
BMAX

� �
, ð1Þ

Growth¼ log
BMAX
FþS

� �
, ð2Þ

where F or S is the total CFU count of each population and BMAX the

carrying capacity of the system. Given that the growth and death rate of

each population cannot be identified separately with the available

experimental data, the net growth rate constant (knet) was estimated

instead. This parameter corresponds to the difference between the

growth rate constant r and death rate constant d (Equation 3). The mean

generation time (MGT) in hours of each population can be subsequently

calculated from knet according to Equation 4 (Garrett, 1978).

knet¼ r�d, ð3Þ

MGT¼ ln 2ð Þ
knet

: ð4Þ

The growth function was subsequently incorporated into the differen-

tial equations below (Equations 5 and 6) to describe the growth

dynamics of each population over time:

dF
dt

¼ knetF �Growth �F�kFS �FþkSF �S, ð5Þ

dS
dt

¼ knetS �Growth �SþkFS �F�kSF �S, ð6Þ

where knetF or knetS are the net growth rate constants of the F and S

population, respectively, Growth the dynamic growth function as

described in Equation 1 or 2, and kFS and kSF the rate constants

describing the transfer from one growth state to another. Given that

kFS and kSF cannot be identified from the available experimental data,

both rates were fixed to the respective net growth rates constants

(knetF and knetS), which in turn changed proportionally to the ratio

between the total M. tuberculosis (equal to the sum of F and S popula-

tion) and the system carrying capacity, BMAX (Equations 7 and 8).

kFS¼ knetF � FþS
BMAX

� �
, ð7Þ

kSF¼ knetS � FþS
BMAX

� �
: ð8Þ

The growth dynamics model that yielded the lowest minimum value

of objective function (MVOF) was selected for the subsequent steps,

during which the growth rate constants of fast- and slow-growing

M. tuberculosis population was estimated separately, as these parame-

ters could not be identified simultaneously from the available experi-

mental data sets. Further details of the analysis can be found in the

Supporting Information.

2.4 | Parameterisation of the effects of rifampicin
and bedaquiline

Given the known mechanism of action of rifampicin and bedaquiline,

serum steady-state concentrations were used as metrics of drug expo-

sure at the target tissue (Alffenaar et al., 2019). As such, we have

assumed that eventual interindividual differences in the concentration

versus time profile would not have implications for the overall bacteri-

cidal activity and could therefore be considered as the most suitable

parameter for the evaluation of drug effects on bacterial growth

dynamics. Given the experimental limitations, we have also assumed

that interindividual variability in PK in rodents was minor, and expo-

sure was not significantly different between experimental protocols.

Details of the pharmacokinetic analysis in mice can be found in the

Supporting Information. Drug effect was parameterised as described

below in Equations 9 and 10:

dF
dt

¼ knetF �Growth� Emax �Css,av
EC50 Fð ÞþCss,av

� �
�F�kFS �FþkSF �S, ð9Þ

dS
dt

¼ knetF �Growth� Emax �Css,av
EC50 Sð ÞþCss,av

� �
�SþkFS �F�kSF �S, ð10Þ

where Emax is the maximum killing rate of rifampicin or bedaquiline

(assumed to be comparable or similar for both populations) and EC50-F

and EC50-S the potency against the fast- and slow-growing

M. tuberculosis, respectively. Css, av is the average steady-state

concentration derived from the predicted (simulated) area under the
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concentration versus time curve (AUC0-24) divided by the dosing inter-

val (24 h). A schematic overview of the final drug-disease model struc-

ture is shown in Figure 2. Visual predictive checks (VPCs) were used as

a diagnostic tool to assess the performance of the model. VPCs (1000

iterations) were generated using the estimated parameters, with varia-

tion in the predicted CFU profiles coming from the estimated residual

error. Interindividual variability could not be estimated, as only mean

data were available for the purposes of this analysis.

2.5 | Estimation of the maximum killing rate

In contrast to retrospective data analysis, where model

parameterisation is often descriptive, here, we attempted to develop

a model that could be used prospectively as a tool for ranking and

comparison of drug potency and bactericidal activity. Such a model is

envisaged to improve the selection of suitable candidate molecules

for progression into development. Taking into account the known cor-

relation between the two drug-specific parameters in the model, that

is, EC50-F, EC50-S, and Emax, we have decided to establish a reference

value for the maximum effect and focus on the estimation of apparent

potencies for each compound. By fixing the maximum killing rate,

potency estimates from different compounds should not be con-

founded by apparent, dose-dependent Emax estimates.

In addition, based on evidence from additional experimental data

(de Steenwinkel et al., 2013), it was assumed that the rifampicin doses

administered in the experimental protocols which were used for

model building would not allow for estimation of the true maximum

bactericidal effect (Emax). In their publication, the authors have dem-

onstrated that 160 mg�kg�1 was associated with zero CFU count

within 3 weeks, while a much longer time to eradication was reported

after administration of the 50 mg�kg�1 dose (Hu et al., 2015). This var-

iation has prompted us to consider the use of a hypothetical time–kill

curve as reference for the purposes of our analysis, ensuring a plausi-

ble, and yet accurate estimate of maximum killing, according to which

zero CFU count can be obtained within 3 weeks of treatment

(Figure S1). The maximum killing rate derived for rifampicin from this

hypothetical data was fixed throughout the analysis.

It should be noted that the use of reference values does not pre-

vent the estimation of Emax during the evaluation of the anti-tubercu-

lar activity of another molecule.

2.6 | External validation: Prediction of drug effect

To characterise the predictive performance of the model, additional

experimental data in BALB/c mice were collected for rifampicin

(Almeida et al., 2009; Hu et al., 2016; Rosenthal et al., 2012; Tasneen

et al., 2008) and bedaquiline (Tasneen et al., 2015). Since the route of

infection and onset of treatment are associated with significant differ-

ences between common murine experimental models in TB

(Nuermberger, 2017), validation data sets included a variety of experi-

mental protocols with different infection routes: high-dose aerosol

(HDA), low-dose aerosol (LDA), and IV. These factors would have been

included into an initial covariate model if a larger number of publications

were available for the two compounds. The inclusion of different proto-

cols represented therefore an attempt to assess the magnitude of such

factors on the bacterial growth dynamics. Disease-specific parameters

(e.g., inoculum and BMAX) were fixed to the estimated values in each

experiment. The remaining model parameters (e.g., EC50 and knet) were

fixed to estimates from the initial analysis. Model performance was sub-

sequently evaluated using VPCs, with variation in the predicted CFU

profiles coming from estimated residual error from the training dataset.

2.7 | Software

WebPlotDigitizer [RRID:SCR_013996] was used to extract concentration

versus time profiles and CFU counts (in treated and untreated mice)

from the publications (Rohatgi, 2017). Data analysis was performed using

F IGURE 2 Schematic overview of the PKPD
model of rifampicin and bedaquiline. Bacterial
growth dynamics in the BALB/c mice, as measured
by colony forming unit (CFU) counts, was described
using a two-state model which assumed the
existence of fast-growing (F) and slow-growing
(S) Mycobacterium tuberculosis populations with
growth rate constants knetF and knetS,
respectively. Each population can transfer from one
growth state to another, as defined by transfer rate
constants kFS and kSF. Both rate constants were
fixed to knetF and knetS which changed
proportionally to the ratio between F + S and the
system carrying capacity (BMAX). Drugs were
assumed to be active against both populations. PK
represents the average steady-state concentrations
of rifampicin or bedaquiline per dosing interval
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a non-linear mixed effects approach as implemented in NONMEM 7.3

[RRID:SCR_016986] (ICON Development Solutions, Ellicott City, MD,

USA) (Beal et al., 2009). Data manipulation, graphical, and statistical

summaries were performed in R version 3.2.5 (R Core Team, 2016).

2.8 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the common portal for data from the IUPHAR/

BPS Guide to PHARMACOLOGY (http://www.guidetopharmacology.

org) (Harding et al., 2018), and are permanently archived in the Concise

Guide to PHARMACOLOGY 2021/22 (Alexander et al., 2019).

3 | RESULTS

3.1 | Bacterial growth dynamics model

As shown in Table S1 and Figure S2, the use of a Gompertz growth

function performed significantly worse in terms of describing the

available experimental data, as compared with the Verhulst model.

Therefore, based on statistical criteria and on biological plausibility,

the Verhulst model was selected as the most suitable

parameterisation to describe the growth dynamics of the fast- and

slow-growing populations in the subsequent analyses. Details of the

development steps for the model describing bacterial growth

dynamics are summarised in the Supporting Information

(Figures S3–S6, Table S2). Although the stationary phase of the

experimental data by Zhang et al. was not fully described, the model

was deemed adequate for the following reasons: (1) The log phase

of the growth curve was adequately captured, and (2) the shape of

the stationary phase in the data set from the experimental data by

Zhang et al. seems to deviate from the patterns observed in other

murine experiments (Figure S7).

The predicted growth dynamics of each population over time is

shown in Figure 3. These profiles correspond to an MGT of 25 h for

the fast-growing and 42 days for the slow-growing population. In

addition, these data indicate that the fast-growing M. tuberculosis is

the initial dominant population (e.g., 98% at 14 days post infection) in

F IGURE 3 Visual predictive
check of the final disease model
(upper panel) and the model-
predicted theoretical dynamics of
fast- and slow-growing
Mycobacterium tuberculosis over
time (lower panel). Solid lines and
shaded area represent the median
and 90% prediction interval of the
predicted log10 colony forming
unit (CFU) per lung over time.
Open circles represent the
observed log10 CFU per lung in
the publications by Zhang
et al. (2012) and Swanson
et al. (2016). The numbers above
the lines correspond to the
fraction of each population (i.e.,

fast- and slow-growing) relative
to the total bacterial load at 7, 14,
21, 28, 35, 42, 49, and 56 days
after the onset of infection.
HRZE, first-line treatment
consisting of rifampicin, isoniazid,
pyrazinamide, and ethambutol
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mice. Upon entering the stationary phase (i.e., after approximately

20 days post infection), most of the viable bacteria (97%) has trans-

itioned into the slow-growing state.

3.2 | Effects of rifampicin and bedaquiline on
growth dynamics

The VPCs describing the concentration versus time profiles for

rifampicin and bedaquiline are shown in Figure S8. The maximum

killing rate for rifampicin that corresponded to complete bacterial

clearance within 3 weeks was estimated to be 0.0671 per hour

(Figure S9). Estimated system-specific parameters (e.g., inoculum

and BMAX) in each experiment are shown in Table S3. In addition,

our analysis showed that rifampicin is more potent against the F pop-

ulation (EC50-F = 4.87 mg�L�1) as compared with the S population

(EC50-S = 60.2 mg�L�1). The VPCs showing model predictions for the

rifampicin treatment groups are depicted in Figure 4.

For bedaquiline, EC50-F and EC50-S were estimated to be 0.202

and 2.74 mg�L�1 based on the experiment by Gupta et al. However,

external validation of the integrated model describing the drug effect

on bacterial growth dynamics showed slight overprediction of the

anti-bacterial activity of bedaquiline in the Tasneen experiment (data

not shown). It was clear that the external validation data set for the

bedaquiline model had limitations, and as such, we decided to

re-estimate the parameters with both data sets and use the integrated

results as final estimates of EC50-F and EC50-S, which were 0.192

and 3.04 mg�L�1, respectively. Good predictive performance was

observed for both bedaquiline treatment groups as shown in Figure 5.

These findings furthermore reveal that bedaquiline is more potent

against M. tuberculosis than rifampicin.

From a methodological point of view, we were also confronted

with the effect of different experimental procedures on growth

dynamics. For instance, the initial results with the rifampicin param-

eters derived from the Hu experiment did not predict anti-microbial

activity in other experiments that used HDA infection route

(Figure 6). Given the evidence of differences in microbial clearance

after different routes and mode of infection (De Groote

et al., 2011), infection route was included as a covariate factor on

EC50-F and EC50-S (Figure 6). Apparent potency estimates in mice

infected via the HDA route were higher than after IV infection. Esti-

mated EC50 values were approximately 66% lower (i.e., EC50-F and

EC50-S were 3.25 and 40.2 mg�L�1, respectively) as compared with

experiments that used IV infection route. On the other hand, appar-

ent potency estimates were comparable following LDA and IV infec-

tion route (i.e., EC50-F and EC50-S were 4.9 and 60.8 mg�L�1,

respectively). An overview of the final model parameters for both

drugs is presented in Table 1.

F IGURE 4 Visual predictive check of the PKPD model describing the effects of rifampicin (R) in BALB/c mice using experimental data from
Hu et al. BALB/c mice were infected with H37Rv strain intravenously and were left untreated for 2 weeks to allow the infection to progress.
Following this incubation period, treatment with doses of 0 (R0), 10 (R10), 15 (R15), 20 (R20), 30 (R30), or 50 (R50) mg�kg�1 rifampicin for
12 weeks (5 days per week) was initiated. Solid lines and shaded area represent the median and 90% prediction interval of the predicted log10
colony forming unit (CFU) per lung over time. Open circles represent the observed log10 CFU per lung
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F IGURE 5 Visual predictive check of the PKPD model describing the effects of bedaquiline (B) in BALB/c mice using experimental data from
Gupta et al. and Tasneen et al. BALB/c mice were infected with H37Rv strain via an aerosol route and were left untreated for 2 weeks. Following
this incubation period, treatment with doses of 0 (B0), 12.5 (B12.5) and 25 (B25) mg.kg�1 bedaquiline was initiated and maintained for 4 (Tasneen

et al.) or 6 (Gupta et al.) weeks (given 5 days per week). Solid lines and shaded area represent the median and 90% prediction interval of the
predicted log10 colony forming unit (CFU) per lung over time. Open circles represent the observed log10 CFU per lung

F IGURE 6 External validation of the in vivo rifampicin (R) PKPD model. As shown in the left panel, only BALB/c mice who were infected via
the intravenous (IV) or low dose aerosol (LDA) route were predicted. Once a covariate effect of high-dose aerosol (HDA) infection route was
estimated, adequate predictions were achieved for all experimental data (right panel). Solid lines and shaded area represent the median and 90%
prediction interval of the predicted log10 colony forming unit (CFU) per lung over time. Open circles represent the observed log10 CFU per lung.
Numbers in the headers of each panel represent the rifampicin dose in mg�kg�1 (given 5 days per week)
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4 | DISCUSSION

4.1 | Parameterisation of bacterial growth
dynamics

The assessment of bacterial growth dynamics in vivo represents a criti-

cal step towards the translation of drug effects from preclinical set-

tings to humans. In contrast to previous PKPD modelling efforts,

where data analysis is often aimed at the description of the anti-

tubercular activity of the compound in a parametric manner, the cur-

rent model was parameterised bearing in mind its use as a screening

tool for the selection of novel candidate molecules in a prospective

manner. In fact, in the current investigation, we have shown how a

model-based meta-analytical approach can be used to characterise

M. tuberculosis growth dynamics across a range of experimental proto-

cols and assess drug effects in a systematic manner, enabling a clear

distinction between system (disease)- and drug-specific properties.

Moreover, differently from typical time-kill curves, where empirical

results are usually described by standard PKPD indices or by the

change in CFU counts at the end of treatment, our approach allows for

ranking and direct comparison of the potency of anti-tubercular drugs.

It is also worth mentioning that disease-specific model parame-

ters have been identified, which make evident that two subpopula-

tions of M. tuberculosis co-exist, with different growth capacity.

Although transition rates between subpopulations are not fully identi-

fiable from typical CFU count data, we anticipate that these subpopu-

lations may correspond to the lipid-rich and lipid-poor classification,

as suggested by Hammond et al. (2015). Insights from a recent review

of the concept of mycobacterial dormancy also support the presence

of two distinct phenotypes, one of which is characterised by low met-

abolic activity, alteration of gene regulation with the accumulation of

tri-acylglycerides in intracellular lipid bodies, loss of acid fastness, and

tolerance to antibiotics (Lipworth et al., 2016). This is further substan-

tiated by evidence from live cell imaging experiments, which clearly

show the presence of two subpopulations of M. tuberculosis (Vijay

et al., 2019). Previous PKPD models have either disregarded hetero-

geneity (Bartelink et al., 2017) or defined different bacterial states,

including non-replicating subpopulations, but model parameters have

not been correlated with an underlying microbiological substrate

(Chen, Ortega, et al., 2017; Chen, Wicha, et al., 2017; Clewe

et al., 2016). Interestingly, even though multistate model

parameterisation was based on total CFU count, the authors do not

discuss issues such as parameter identifiability, correlations, or sensi-

tivity to different experimental conditions.

A closer look at the characteristics of the two subpopulations

emerging from this analysis reveals that the predicted MGT of the

fast-growing population is approximately 25 h, which is in agreement

with values reported previously (Bartelink et al., 2017). On the other

hand, published MGT of the slow-growing population was very differ-

ent from the estimates obtained here (1019 h [42 days] compared

with 69–158 h) (Aljayyoussi et al., 2017; Beste et al., 2009;

Raffetseder et al., 2014). Apparently, this discrepancy may be

explained by the fact that published data were derived from in vitro

growth conditions where M. tuberculosis only exists as a single (slow-

growing) state, all bacteria grow in conditions that correspond to the

extracellular space and growth is not affected by the presence of

immune cells. By contrast, in mice, it has been shown that

M. tuberculosis is present in more than one state (Driver et al., 2012;

Hoff et al., 2011; Sloan et al., 2015). As such, in vitro parameter esti-

mates seem to provide limited physiological representation of the

in vivo growth dynamics.

TABLE 1 Final parameter estimates of the growth dynamics
model including drug-specific parameter estimates for rifampicin and
bedaquiline

Model parameters

Final estimate

Rifampicin Bedaquiline

Pharmacokineticsa

Absorption rate constant, Ka (h�1) 0.537 5.39b

Apparent central volume of

distribution, Vc/F (ml)

8.22 312

Apparent peripheral volume of

distribution, Vp/F (ml)

- 298

Apparent clearance, CL/F (ml�h�1) 1.44 24.4

Apparent inter-compartmental

clearance, Q/F (ml�h�1)

- 9.95

Bacterial growth dynamicsa

Growth rate constant - fast-

growing population, knetF (h�1)

0.0272 0.0272

Growth rate constant - slow-

growing population, knetS (h�1)

0.00068 0.00068

Carrying capacity in experiment,

BMAX (log10 CFU per lung)

7.26 1.36

Inoculum in experiment (log10 CFU

per lung)

4.41 6.41

Drug effects

Maximum killing rate, Emax (h�1) 0.0671 (FIX) 0.0671 (FIX)

Potency against fast-growing

population (mg�L�1)

IV infection route, EC50-FIV 4.87 -

HDA infection route, EC50-FHDA
c 3.25 0.192

LDA infection route, EC50-FLDA
d 4.97 -

Potency against slow-growing

population (mg�L�1)

IV infection route, EC50-SIV 60.2 -

HDA infection route, EC50-SHDA
c 40.2 3.04

LDA infection route, EC50-SLDA
d 61.4 -

Additive residual error on CFU

counts, σ (log10 CFU per lung)

0.36 0.31

Abbreviations: HDA, high-dose aerosol; IV, intravenous; LDA, low-dose

aerosol.
aFixed during estimation of PKPD parameters.
bFixed to value as reported in Irwin et al. (2016).
cCalculated from EC50HDA = EC50IV � ΘHDA-effect, where ΘHDA-effect

= 0.667.
dCalculated from EC50LDA = EC50IV � ΘLDA-effect, where ΘLDA-effect = 1.02.
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Because of the choice of parameterisation, a generic model has

been identified, which allows the description of drug effects across

different protocols, including different drugs and dose levels. Of note

is the fact that our model can account for the effect of inoculum

route, initial bacterial load, and duration of infection on drug effect. In

addition, despite the availability of limited data from experimental

protocols currently used for drug screening, we have been able to

identify drug-specific parameters that affect the growth dynamics of

both subpopulations (i.e., EC50 and Emax).

4.2 | Drug effect across different experimental
protocols

With regard to drug-specific parameters, we have assumed fast equili-

bration between plasma and lung tissue and negligible interindividual

variability in pharmacokinetics. Furthermore, it was assumed that, for

standard of care drugs, fluctuation in peak and trough concentrations

does not lead to significant differences in the overall bactericidal

activity. Consequently, steady-state concentrations varied over time

only if metabolic inhibition or induction was known to occur and had

been identified during the PK model development. However, it should

be clear that, when available, individual pharmacokinetic data can be

easily incorporated into the analysis and used instead of simulated

population estimates.

In addition, it is important to consider the role of the immune sys-

tem and innate response to infection when comparing potency esti-

mates from different experimental protocols. As the proposed model

parameterisation does not include immune system-related factors as

covariates, estimates of drug potency should be considered apparent

and as such reflect the contribution of unmeasured factors. This is the

most likely explanation why in our analysis, rifampicin was found to

be more potent in the HDA model than in LDA and IV infected mice.

Higher inoculum size has been associated with more immune cells in

the lung (Myers et al., 2013) and consequently may have made the

bacterial populations more susceptible to clearance in the HDA model

(as compared to LDA infected mice). Similarly, rifampicin potency was

different between IV and HDA models, despite similar inoculum size

and bacterial load at the onset of treatment. We postulate that the

lower potency in IV infected mice could be potentially attributed to

presence of a considerable proportion of extra-pulmonary

M. tuberculosis (De Groote et al., 2011) and more severe lung tissue

damage after onset of the infection (de Steenwinkel et al., 2011).

These differences suggest varying contribution of immune cells in IV

versus HDA infected mice.

Another key finding in this investigation refers to rifampicin

potency estimates for each subpopulation, which appear to provide

an answer to the ongoing debate regarding the need for higher doses

in the clinic to achieve maximum bacterial clearance (van Ingen

et al., 2011). Even though direct comparisons may not be possible, the

potency estimates for bedaquiline reflect previous findings in vitro

(Dhillon et al., 2010) and correlate with expected drug levels required

for efficacy at clinical doses (van Heeswijk et al., 2014).

While only two compounds have been evaluated, the results

obtained so far may open a new perspective for the characterisation

of treatment effect and ranking of compounds during drug screening,

in that selection criteria can be based on potency and maximum killing

rates, as opposed to empirical comparisons using traditional PKPD

indices or other metrics of anti-bacterial activity. In addition, we

envisage the possibility of applying this model for study protocol opti-

misation purposes. Given the model's ability to describe CFU count

over time, it may be possible to shorten the duration of some experi-

mental protocols, as parameter estimates may be sufficiently precise

to allow extrapolation of the drug effects beyond the treatment dura-

tion. Furthermore, our parameterisation may allow further characteri-

sation of PD interactions when evaluating drug combinations

(Muliaditan & Della Pasqua, 2020).

The points highlighted above represent an important requirement

for the selection of compounds progressing into clinical development.

Consequently, we have chosen to explore bacterial growth dynamics

in vivo, as in vitro systems do not reproduce the complex environment

of the infected host, where a variety of factors may modify the under-

lying PKPD relationships. These factors include various host defence

mechanisms, protein binding, irregular diffusion into healthy, inflamed

and infected tissues, and more diverse bacterial heterogeneity

(Nuermberger, 2017). In fact, our approach contrasts with the focus

of recent initiatives aimed at exploring in vitro systems for compound

screening, such as the hollow fibre (HFS-TB), which offers an invalu-

able opportunity to explore anti-tubercular activity without the con-

founding of physiological barriers, variable distribution due to lesion,

granuloma formation, and other physicochemical factors. However,

these differences cannot be overlooked when establishing the dose

rationale for patients. The relevance of this work is further illustrated

by the prediction of the dose range of a novel leucyl-tRNA synthetase

inhibitor (GSK3036656) that produces the highest possible early bac-

tericidal activity in a prospective phase II trial (Tenero et al., 2019).

4.3 | Potential limitations

We acknowledge that our analysis has various limitations, many of

which reflect gaps and deficiencies in current experimental models

of TB infection. More extensive prospective validation of the model

is clearly warranted. An overview of the limitations of each key

assumption in the model as well guidance for model improvements

by future work (as more robust experimental data emerges) is there-

fore presented in Table 2. First, CFU counts represent the total bac-

terial population, which complicates the identifiability of parameters

(e.g., growth and transfer rate constants) describing the growth

dynamics. Additional experiments, in which fast- and slow-growing

M. tuberculosis are measured separately are clearly needed to fully

understand the dynamics of both populations over time in mice and

confirm the estimated growth rate constant of each population. Sec-

ond, collection of drug exposure data in individual animals, either in

plasma or in lung tissue homogenate should become common prac-

tice. Our assumption that PK variability is minor may still hold true,
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but the availability of individual PK data can improve our under-

standing of the impact of different sources of variability on the

overall anti-bacterial activity and further increase parameter preci-

sion, in particular, potency estimates. Third, a sufficiently wide range

of doses is not always available, which results in uncertainty regard-

ing the maximum killing rate.

In conclusion, a two-state growth dynamics model allows the

characterisation of CFU counts across different experimental proto-

cols, yielding quantitative estimates of the drug effect on each sub-

population of M. tuberculosis. Most importantly, our analysis reveals

that bedaquiline is more than 10 times more potent against

M. tuberculosis than rifampicin. The differences in the potency of

bedaquiline and rifampicin on slow-growing bacteria provide further

insight into the requirements for higher rifampicin doses and relatively

long treatment periods with drug combinations. We anticipate that

such an integrated model will facilitate the ranking of compounds

during screening, including improved selection of the doses and

partner drugs for combination therapy in patients (Muliaditan & Della

Pasqua, 2020).
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TABLE 2 Overview of the limitations and recommendations for further model improvement

Key assumptions Limitations and implications Recommendations for future applications

CFU counts represent the sum of fast-

and slow-growing bacterial populations

• The growth dynamics model is limited to

a two-state growth condition. The

presence of a non-replicating metabolic

phenotype is considered negligible in

this infection model.

• The lack of markers that describe the

CFU profiles of each subpopulation

makes it difficult to demonstrate

experimentally how well the rate

parameters (e.g., growth and transfer

rate constants) reflect the different

growth rates.

• Consequently, growth rate constants

often need to be fixed when the model

is applied to new data.

Assess whether the growth dynamics model

adequately captures the log and

stationary phase in untreated animals:

1. If only total CFU count is available, fix

the growth rate constants and

recalibrate if needed.

2. If CFU count of each Mycobacterium

tuberculosis subpopulation is available:

re-estimate growth and transfer rate

constants.

Underlying bacterial growth dynamics is

best described by the Verhulst model

• Description of the stationary phase may

not be representative of the CFU

profiles for bacterial growth dynamics

other than in the investigated murine

infection models (i.e., IV, HDA, or LDA).

Effects of interindividual differences in

PK between experiments was assumed

to be negligible or minor

• Given the lack of individual exposure

data, variability in observed anti-

bacterial activity between experiments

was attributed to differences in potency.

This assumption was based on known

differences in bacterial susceptibility and

on the effects of changes in the

metabolic phenotype during the course

of an infection.

• Estimates of drug potency may be

biased due to the exclusion of

interindividual variability in PK

parameters. Moreover, the lack of

individual PK data, makes it difficult to

disentangle the drug effect from the

contribution of the immune system to

the overall antibacterial activity.

Assess whether the model adequately

describes the anti-bacterial activity in the

observed data:

1. If concentration versus time profiles are

available in individual animals, check

whether the PK model can be used to

characterise interindividual variability in

disposition parameters and refine PK

model if needed.

2. If PK data are not available, check

whether anti-bacterial activity can be

adequately predicted by the PKPD

model and re-estimate potency if

needed.

Abbreviations: HDA, high-dose aerosol; IV, intravenous; LDA, low-dose aerosol.
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