
Fagerholm et al. Journal of Mathematical Neuroscience           (2021) 11:10 
https://doi.org/10.1186/s13408-021-00108-0

R E S E A R C H Open Access

Rendering neuronal state equations
compatible with the principle of stationary
action
Erik D. Fagerholm1*, W.M.C. Foulkes2, Karl J. Friston3, Rosalyn J. Moran1 and Robert Leech1

*Correspondence:
erik.fagerholm@kcl.ac.uk
1Department of Neuroimaging,
King’s College London, London, UK
Full list of author information is
available at the end of the article

Abstract
The principle of stationary action is a cornerstone of modern physics, providing a
powerful framework for investigating dynamical systems found in classical mechanics
through to quantum field theory. However, computational neuroscience, despite its
heavy reliance on concepts in physics, is anomalous in this regard as its main
equations of motion are not compatible with a Lagrangian formulation and hence
with the principle of stationary action. Taking the Dynamic Causal Modelling (DCM)
neuronal state equation as an instructive archetype of the first-order linear differential
equations commonly found in computational neuroscience, we show that it is
possible to make certain modifications to this equation to render it compatible with
the principle of stationary action. Specifically, we show that a Lagrangian formulation
of the DCM neuronal state equation is facilitated using a complex dependent
variable, an oscillatory solution, and a Hermitian intrinsic connectivity matrix. We first
demonstrate proof of principle by using Bayesian model inversion to show that both
the original and modified models can be correctly identified via in silico data
generated directly from their respective equations of motion. We then provide
motivation for adopting the modified models in neuroscience by using three
different types of publicly available in vivo neuroimaging datasets, together with open
source MATLAB code, to show that the modified (oscillatory) model provides a more
parsimonious explanation for some of these empirical timeseries. It is our hope that
this work will, in combination with existing techniques, allow people to explore the
symmetries and associated conservation laws within neural systems – and to exploit
the computational expediency facilitated by direct variational techniques.

Keywords: Stationary action; Lagrangian; Computational neuroscience; Neural state
equations

1 Introduction
Virtually all of modern physics has been formulated in terms of the principle of station-
ary action, from Maxwell’s equations in electromagnetism [1], to the Einstein field equa-
tions in the general theory of relativity [2], through to the Dirac equation in quantum
mechanics [3]. This approach has many advantages. Firstly, coupled sets of equations of
motion can be described in terms of a single Lagrangian function, allowing for a parsi-

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13408-021-00108-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13408-021-00108-0&domain=pdf
mailto:erik.fagerholm@kcl.ac.uk


Fagerholm et al. Journal of Mathematical Neuroscience           (2021) 11:10 Page 2 of 15

monious unified mathematical framework – as was famously demonstrated via the single
Lagrangian formulation of the entire standard model of particle physics [4]. Lagrangian
formulations also allow for otherwise inaccessible insights into dynamical systems, given
that they uncover otherwise hidden symmetries and associated conservation laws [5]. Fur-
thermore, direct variational techniques present potentially important applications in the
analysis of dynamical systems, given that they allow for equations of motion to be by-
passed entirely [6, 7] – therefore greatly expediting the execution times of forward mod-
els.

In classical physics, dynamical systems are framed in terms of equations of motion de-
scribing quantities such as position, velocity, and acceleration. On the other hand, the
equations of motion used in computational neuroscience refer to more abstract quan-
tities, such as membrane potentials, firing rates, and macroscopic neuronal activity [8].
Variational techniques have been used in conjunction with neural networks, regarding the
construction of path integral representations of stochastic dynamics. These techniques
elucidate the systematic corrections to mean-field results due to stochasticity, and allow
the calculation of moments of activity, as well as the application of renormalization group
methods in critical states [9–12]. These formulations have also been shown to be applica-
ble to disordered systems, for example neuronal networks with randomly drawn connec-
tivity [13].

This paper comprises three sections.
In the first section, using the Dynamic Causal Modelling (DCM) neuronal state equation

[14] as an archetype of the first-order linear state equations used in computational neuro-
science, we show that it is possible to make certain modifications to its mathematical form
that allow for a Lagrangian formulation. Specifically, three such modifications are found
to be necessary: (a) the dependent variable must be complex; (b) the left-hand side of the
state equation must be multiplied by the imaginary unit i – a modification that fundamen-
tally alters the model by changing the solutions from non-oscillatory to oscillatory; and (c)
the intrinsic coupling matrix must be Hermitian. We stress that the original (unmodified)
state equation cannot be recovered from the Lagrangian formulation – only the modified
complex, oscillatory form allows for compatibility with the principle of stationary action.

In the second section, we provide proof of principle by demonstrating that both the orig-
inal (non-complex, non-oscillatory) and modified (complex, oscillatory) neuronal state
equations can be correctly identified. To do this, we generate two sets of synthetic data
– one using the original model and one using the modified equation of motion. For each
of these two datasets, we then use Bayesian model inversion to evaluate the respective
variational free energy (model evidence); using both the original, as well as the modified
equations of motion. We find that the variational free energy correctly assigns the original
data to the equation of motion that generated those data – thus demonstrating that this
technique can disambiguate between the genesis of these data: i.e., that the implicit mod-
els are identifiable – and that the (complex, oscillatory) modification has a material effect
on observed dynamics.

In the third section, we show that the modified equation of motion provides higher
model evidence in publicly available datasets obtained using three different neuroimag-
ing techniques – electroencephalography (EEG), functional near-infrared spectroscopy
(fNIRS), and electrocorticography (ECoG). These numerical analyses underwrite the gen-
eralisability of – and provide empirical motivation for – adopting the modified state equa-
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tion in certain cases. We provide open-source MATLAB code that reproduces the re-
sults presented in this paper – both for the synthetic and experimental datasets in ques-
tion.

2 Main text
2.1 The DCM neuronal state equation
A generic nonlinear dynamical system can be expressed in terms of a Taylor series expan-
sion [15], which in its simplest form, for the ith region, is expressed as the linear DCM
neuronal state equation:

żi(t) =
∑

j

Aijzj(t) +
∑

j

Cijvj(t) + ω
(z)
i (t), (1)

where z represents the state of the system in question; A is the intrinsic coupling ma-
trix; C is the extrinsic input matrix; v = u + ω(v), where ω(v) is a noise term describ-
ing random, non-Markovian fluctuations on external perturbations u; and ω(z) is a noise
term describing random, non-Markovian fluctuations on z [16]. Using Eq. (1), we can ob-
tain estimates of latent model parameters in the presence of noise on states via Bayesian
model inversion. These model parameters include the ways in which the system in ques-
tion is connected, both intrinsically and extrinsically, with the surrounding environ-
ment.

2.2 A failed attempt using real variables
We will now show why complex variables are necessary when casting Eq. (1) – and by
extension any first-order linear differential equation – in the form of a Lagrangian. We
will prove this first by contradiction – i.e., we begin by attempting to use real variables and
demonstrate that this leads to a non-unique solution. If we insist on using real variables
then (as shown below) we must assume that v and ω are constant in time, in which case
we can re-write Eq. (1) as follows:

żi(t) =
∑

j

Aijzj(t) + di, (2)

where di =
∑

j Cijvj + ω
(z)
i is a constant.

Differentiating Eq. (2) with respect to time we obtain z̈i(t) =
∑

j Aijżj(t) which, together
with Eq. (2), gives

z̈i(t) =
∑

j

Eijzj(t) + fi, (3)

where E = A2 and fi =
∑

j Aijdj.
We then note that, if the E matrix is symmetric, Eq. (3) can be viewed as the Euler–

Lagrange equation:

d
dt

[
∂L
∂ żi

]
=

∂L
∂zi

, (4)
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for the Lagrangian given by

L =
∑

j

(
1
2

ż2
j + fjzj

)
+

1
2

∑

j,k

Ejkzjzk , (5)

thereby giving a Lagrangian description of Eq. (3).
However, although any solution of the first-order Eq. (2) is also a solution of the second-

order Euler–Lagrange equation Eq. (4), the reverse is not true: the second-order Euler–
Lagrange equation Eq. (4) also has other solutions that are not valid solutions of the orig-
inal DCM recovery model Eq. (2). To illustrate the problem, consider a simple example
with only one region. The DCM equation simplifies to ż = Az + d, the general solution of
which is z = k1eAt – d

A , where k1 is an arbitrary constant of integration. The general solu-
tion of the corresponding Euler–Lagrange equation, z̈ = A2z + Ad, is z = k1eAt + k2e–At – d

A ,
where k1 and k2 are both arbitrary constants. This is just one example of a general problem:
if one differentiates a first-order differential equation, the general solution of the result-
ing second-order ordinary differential equation depends on two arbitrary constants – not
one. Every solution of the first-order equation must also be a solution of the second-order
equation, but most of the solutions of the second-order equation do not satisfy the first-
order equation. Therefore, it is not possible to cast the neuronal state equation Eq. (1) in
the form of a Lagrangian in a way that allows either for the modelling of time-dependent
external inputs and noise, or for unique recovery via the principle of stationary action.

2.3 The complex oscillatory equation of motion
We will now demonstrate that it is possible to cast the neuronal state equation Eq. (1) in the
form of a Lagrangian as long as the following three conditions are met: (a) the dependent
variable z is complex; (b) the left-hand side is multiplied by the imaginary unit i – thus
rendering the solutions oscillatory; and (c) the A and C matrices in Eq. (1) are Hermitian.
This modified neuronal state equation is written as follows:

iżi =
∑

j

Aijzj +
∑

j

Cijvj + ω
(z)
i . (6)

2.4 The neuronal state Lagrangian
We are now able to put forward the central proposition of this paper, which is that that
Eq. (6) can be derived from the following Lagrangian:

L =
i
2

∑

j

(
z∗

j żj – zjż∗
j
)

–
∑

j,k

(
z∗

j Ajkzk + z∗
j Cjkvk + vjCjkzk

)
–

∑

j

ω
(z)
j

(
zj + z∗

j
)
, (7)

where we use star notation to indicate complex conjugation and have assumed that the ex-
ternal perturbations vj and noises ω

(z)
j are real and, as the A and C matrices are Hermitian,

the Lagrangian is also real.
We will show that this proposed Lagrangian is correct by verifying that the original equa-

tion of motion Eq. (6) can be recovered from Eq. (7) via the principle of stationary action.
To do this, we temporarily proceed under the assumption that the variables z, z∗, ż, and ż∗

are independent of one another – it will become clear below why this is a valid assumption.
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We can then write the general variation of L(z, ż,z∗, ż∗) as follows:

δL =
∂L
∂z

δz +
∂L
∂ ż

δż +
∂L
∂z∗ δz∗ +

∂L
∂ ż∗ δż∗. (8)

Since the values of z, ż, z∗, ż∗ and their variations δz, δż, δz∗, δż∗ are all arbitrary, this
equation must also hold when we add restrictions by insisting that: (a) z∗ must be equal
to the complex conjugate of z (and hence δz∗ must be equal to the complex conjugate
of δz); and (b) that ż is the derivative of z (and hence δż is the time derivative of δz). In
other words, although we begin by treating z, ż, z∗ and ż∗ as independent variables, Eq.
(8) must also hold when z∗ is the complex conjugate of z and ż is the time derivative of z.
Assuming this to be the case from now on, the Lagrange equations of motion are derived
in the standard way by looking for functions (“paths”) z(t) that render the action S[z(t)] =∫ tf

ti L(z(t), ż(t), z∗(t), ż∗(t)) dt stationary. We consider two related variations of z(t) given
by

δz1(t) = δη(t) → δz∗
1(t) = δη∗(t),

δz2(t) = iδη(t) → δz∗
2(t) = –iδη∗(t),

(9)

where δη(t) is any differentiable complex function of time vanishing at the initial time ti

and the final time tf . Using Eq. (8), together with the two variations in Eq. (9) (both of
which are general because δη(t) is a general variation), the principle of stationary action
tells us that:

δS1 =
∫ tf

ti

δL1 dt =
∫ tf

ti

(
∂L
∂z

δη +
∂L
∂ ż

δη̇ +
∂L
∂z∗ δη∗ +

∂L
∂ ż∗ δη̇∗

)
dt = 0,

δS2 =
∫ tf

ti

δL2 dt = i
∫ tf

ti

(
∂L
∂z

δη +
∂L
∂ ż

δη̇ –
∂L
∂z∗ δη∗ –

∂L
∂ ż∗ δη̇∗

)
dt = 0,

(10)

where we divide the second equation by i and add/subtract it to/from the first to
give

∫ tf

ti

(
∂L
∂z

δη +
∂L
∂ ż

δη̇

)
dt = 0,

∫ tf

ti

(
∂L
∂z∗ δη∗ +

∂L
∂ ż∗ δη̇∗

)
dt = 0.

(11)

Finally, we integrate the second terms in Eq. (11) by parts, noting that the boundary terms
vanish because δη = 0 at ti and tf , to obtain

∫ tf

ti

(
∂L
∂z

–
d
dt

(
∂L
∂ ż

))
δη dt = 0,

∫ tf

ti

(
∂L
∂z∗ –

d
dt

(
∂L
∂ ż∗

))
δη∗ dt = 0.

(12)
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Since δη is arbitrary, the Euler–Lagrange equations

∂L
∂z

–
d
dt

(
∂L
∂ ż

)
= 0,

∂L
∂z∗ –

d
dt

(
∂L
∂ ż∗

)
= 0,

(13)

follow directly from Eq. (12).
Evaluating the necessary derivatives of our proposed Lagrangian in Eq. (7):

∂L
∂z∗

i
=

i
2

żi – ω
(z)
i –

∑

j

Aijzj –
∑

j

Cijvj,

∂L
∂zi

= –
i
2

ż∗
i – ω

(z)
i –

∑

j

z∗
j Aji –

∑

j

vjCji,

d
dt

[
∂L
∂ ż∗

i

]
= –

i
2

żi,

d
dt

[
∂L
∂ żi

]
=

i
2

ż∗
i ,

(14)

shows that the corresponding Euler–Lagrange equations are

iżi =
∑

j

Aijzj +
∑

j

Cijvj + ω
(z)
i ,

– iż∗
i =

∑

j

z∗
j Aji +

∑

j

vjCji + ω
(z)
i ,

(15)

i.e., we recover the complex oscillatory DCM neuronal state equation Eq. (6) and its ad-
joint. Because the A and C matrices are Hermitian, these two equations are complex con-
jugates of each other – i.e., whenever one is true, so is the other and we do not need to
solve them separately. It is for this reason that we must include an imaginary unit i in the
Lagrangian formulation – the addition flips the signs of the ∂

∂t terms in the complex con-
jugate of the Lagrangian in Eq. (7) and hence renders the derivatives with respect to z and
z∗ complex conjugates of one another. Note that, unlike the example case using real vari-
ables in Eq. (2) through Eq. (5), the use of complex variables allows for the modified state
equation Eq. (6) to be uniquely recovered in a way that allows for both time-dependent
external inputs and noise terms.

2.5 The neuronal state Hamiltonian
The Hamiltonian H is related to the Lagrangian via the Legendre transform: H =
∑

k
∂L
∂ żk

zk – L, where, in the case of Eq. (7), the summation is taken over the two variables
z and z∗, such that

H =
∑

k

(
∂L
∂ żk

żk +
∂L
∂ ż∗

k
ż∗

k

)
– L

=
∑

j,k

(
z∗

j Ajkzk + z∗
j Cjkvk + vjCjkzk

)
+

∑

j

ω
(z)
j

(
zj + z∗

j
)
. (16)
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Note that the neuronal system is influenced by time-dependent external perturbations v
and noise ω. The time-translation invariance of the Lagrangian that leads, via Noether’s
theorem [5], to the principle of energy conservation therefore does not hold and the value
of the Hamiltonian function (energy) is not conserved. However, we can consider a non-
dissipative version of the neuronal state equation and its adjoint:

iżi =
∑

j

Aijzj, (17)

–iż∗
i =

∑

j

z∗
j Aji, (18)

for which, by comparison with Eqs. (7) and (16), the associated Lagrangian and Hamilto-
nian are given by

L =
i
2

∑

j

(
z∗

j żj – zjż∗
j
)

–
∑

j,k

z∗
j Ajkzk ,

H =
∑

j,k

z∗
j Ajkzk .

(19)

To show that the Hamiltonian is indeed conserved, we differentiate it in time as follows:

Ḣ =
d
dt

(∑

j,k

z∗
j Ajkzk

)
=

∑

j,k

ż∗
j Ajkzk +

∑

j,k

z∗
j Ajk żk (20)

which, using Eqs. (13), (17), and (18), reads

Ḣ = i
∑

j

ż∗
j żj – i

∑

k

ż∗
k żk = 0. (21)

i.e., energy does not change in time, meaning that it is conserved by virtue of time trans-
lational invariance in the underlying equations of motion Eqs. (17) and (18).

2.6 Simulations
Here, we consider a network consisting of three connected nodes, with the first node
receiving an external driving input (Fig. 1(A)). This external input provides a Gaussian
‘bump’ function of peristimulus time (Fig. 1(A) – inset). The network is intrinsically con-
nected with symmetric off-diagonal elements and negative leading diagonal components.
This initializes the system with stable dynamics because the eigenvalues of the Jacobian
all have negative real components (Fig. 1(B)). We then specify the priors of the implicit
coupling matrix by setting all off-diagonal coupling parameters to zero and by setting the
leading diagonal elements to –1/4 (Fig. 1(C)) – see the accompanying code for all priors
and settings. We then use the original state equation Eq. (1) to run the model forward
and generate synthetic data (Fig. 1(D)). Next, we change the dependent variable so that
it comprises two components – one real Re(t) and one imaginary Im(t) – and multiply
the left-hand side by the imaginary unit i, such that we now deal with the modified state
equation Eq. (6) written as

i
(

d
dt

(Rei) + i
d
dt

(Imi)
)

=
∑

j

Aij(Rej +i Imj) +
∑

j

Cijvj + ω
(z)
i . (22)
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Figure 1 Simulations. (A) Three bi-directed nodes shown by the red, green, and blue circles. The first (red)
node receives an exogenous input in the form of a Gaussian bump function (inset bottom left), shown as
normalized intensity (i.) vs. time steps (t.). (B) The intrinsic coupling matrix with values corresponding to the
colour bar shown on the right. Rows and columns correspond to the nodes shown in (A) via the colours
shown on the outside of the matrix. (C) The priors set for the intrinsic coupling matrix had values
corresponding to the colour bar shown on the right. Rows and columns correspond to the nodes shown in
(A) via the colours shown on the outside of the matrix. (D) The synthetic data generated by the original state
equation, shown as normalized intensity (i.) vs. time steps (t.), with colours corresponding to those of the
nodes shown in (A). (E) The synthetic data generated by the modified state equation, shown as normalized
intensity (i.) vs. time steps (t.), with colours corresponding to those of the nodes shown in (A). (F) The
posterior estimates for the intrinsic coupling matrix following Bayesian model inversion with the original
model for the data generated by the original state equation in (D), with values corresponding to the colour
bar shown on the right. Rows and columns correspond to the nodes shown in (A) via the colours shown on
the outside of the matrix. (G) The posterior estimates for the intrinsic coupling matrix following Bayesian
model inversion with the modified model for the data generated by the original state equation in (D), with
values corresponding to the colour bar shown on the right. Rows and columns correspond to the nodes
shown in (A) via the colours shown on the outside of the matrix. (H) The posterior estimates for the intrinsic
coupling matrix following Bayesian model inversion with the original model for the data generated by the
modified state equation in (E), with values corresponding to the colour bar shown on the right. Rows and
columns correspond to the nodes shown in (A) via the colours shown on the outside of the matrix. (I) The
posterior estimates for the intrinsic coupling matrix following Bayesian model inversion with the modified
model for the data generated by the modified state equation in (E), with values corresponding to the colour
bar shown on the right. Rows and columns correspond to the nodes shown in (A) via the colours shown on
the outside of the matrix. (J) Approximate lower bound log model evidence given by the free energy (F)
following Bayesian model inversion for the original (o.) and modified (m.) models using the data generated by
the original model in (D). Probabilities (p) derived from the log evidence are shown in the inset top right.
(K) Approximate lower bound log model evidence given by the free energy (F) following Bayesian model
inversion for the original (o.) and modified (m.) models using the data generated by the modified model in (E).
Probabilities (p) derived from the log evidence are shown in the inset left. (L) The intensity (inten.) at every
point in time for the non-dissipative form of the modified state equation, i.e., excluding external driving inputs
and noise, using the posteriors from (I), using the Hamiltonian (Hamil.) as the observer equation.
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Here, we equate the real and imaginary components gives the following two equations:

d
dt

(Imi) = –
(∑

j

Aij Rej +
∑

j

Cijvj + ω
(Im)
i

)
,

d
dt

(Rei) =
∑

j

Aij Imi,
(23)

where we use an observation equation that retains the real component (see accompanying
code) to generate synthetic data via the modified model (Fig. 1(E)).

We then performed four separate model inversions – using dynamic expectation max-
imization (DEM) [17] – to retrieve posterior estimates of the intrinsic connectivities for:
(a) the original data with the original model (Fig. 1(F)); (b) the original data with the mod-
ified model (Fig. 1(G)); (c) the modified data with the original model (Fig. 1(H)); and (d)
the modified data with the modified model (Fig. 1(I)). Note that Fig. 1(I) shows that the
priors in Fig. 1(C) are closely recovered – however, not perfectly, as seen by running the
accompanying code. We can now compare the variational free energies (and associated
probabilities) for (a) and (b) – showing that the original data is better fitted using the
original model (Fig. 1(J)). Similarly, we can compare the variational free energies (and as-
sociated probabilities) for (c) and (d) – showing that the modified data is better explained
by the modified model (Fig. 1(K)). As such, we demonstrate proof of principle by showing
that the model inversion can correctly identify which model was used to generate the data.
Finally, we show that when we change Eq. (23) such that external driving inputs and noise
are excluded:

d
dt

(Imi) = –
∑

j

Aj Rej,

d
dt

(Rei) =
∑

j

Aj Imi

(24)

the Hamiltonian in Eq. (19) is indeed constant in time when we run the model forward
with a symmetric intrinsic coupling matrix furnished with the posteriors obtained from
Fig. 1(I) (Fig. 1(L)).

2.7 Experimental data
Here, we use the same model inversion techniques presented in Fig. 1, except – that in-
stead of synthetic data we use publicly available empirical timeseries collected using EEG
[18] (Fig. 2(A)), fNIRS [19] (Fig. 2(B)), and ECoG [20] (Fig. 2(C)) neuroimaging modali-
ties. Instead of the Gaussian function used in Fig. 1, we here use a random external input
connected to all three channels, to model ongoing neuronal fluctuations. We also show
the estimated timeseries for these datasets using both the original (Fig. 2(D), (E), (F)) and
the modified (Fig. 2(G), (H), (I)) models.

Using the same priors as for the synthetic data in Fig. 1, Bayesian model inversion based
on the original state equation Eq. (1) furnished posterior estimates of the intrinsic con-
nectivity between the first three channels for the EEG (Fig. 2(J)), fNIRS (Fig. 2(K)), and
ECoG (Fig. 2(L)) data. We repeated this procedure by using the modified state equation
Eq. (6) to obtain different posterior estimates for the EEG (Fig. 2(M)) fNIRS (Fig. 2(N)),
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Figure 2 Experimental data. A Normalized intensity (i) for the first 128 time points for the first three channels
of the EEG data. (B) Normalized intensity (i) for the first 128 time points for the first three channels of the fNIRS
data. (C) Normalized intensity (i) for the first 128 time points for the first three channels of the ECoG data.
(D) Estimated timeseries for the EEG data using the original model. (E) Estimated timeseries for the fNIRS data
using the original model. (F) Estimated timeseries for the ECoG data using the original model. (G) Estimated
timeseries for the EEG data using the modified model. (H) Estimated timeseries for the fNIRS data using the
modified model. (I) Estimated timeseries for the ECoG data using the modified model. (J) Posterior estimates
of the intrinsic connectivity in the EEG data using the original model. (K) Posterior estimates of the intrinsic
connectivity in the fNIRS data using the original model. (L) Posterior estimates of the intrinsic connectivity in
the ECoG data using the original model. (M) Posterior estimates of the intrinsic connectivity in the EEG data
using the modified model. (N) Posterior estimates of the intrinsic connectivity in the fNIRS data using the
modified model. (O) Posterior estimates of the intrinsic connectivity in the ECoG data using the modified
model. (P) Approximate lower bound log model evidence given by the free energy (F) following Bayesian
model inversion for the original (o.) and modified (m.) models using the EEG data Probabilities (p) derived
from the log evidence are shown in the inset left. (Q) Approximate lower bound log model evidence given by
the free energy (F) following Bayesian model inversion for the original (o.) and modified (m.) models using the
fNIRS data Probabilities (p) derived from the log evidence are shown in the inset left. (R) Approximate lower
bound log model evidence given by the free energy (F) following Bayesian model inversion for the original
(o.) and modified (m.) models using the ECoG data Probabilities (p) derived from the log evidence are shown
in the inset left. (S) The intensity (int.) at every point in time for the non-dissipative form of the modified state
equation, i.e., excluding external driving inputs and noise, using the posteriors from the modified EEG model
in (G) and the Hamiltonian as the observer equation. (T) The intensity (inten.) at every point in time for the
non-dissipative form of the modified state equation, i.e., excluding external driving inputs and noise, using
the posteriors from the modified fNIRS model in (H) and the Hamiltonian (Hamil.) as the observer equation.
(U) The intensity (inten.) at every point in time for the non-dissipative form of the modified state equation, i.e.,
excluding external driving inputs and noise, using the posteriors from the modified ECoG model in (I) and the
Hamiltonian (Hamil.) as the observer equation.
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and ECoG (Fig. 2(O)) data. We can then compare the variational free energy – i.e., the
model evidence that balances the trade-off between accuracy and complexity – for the
original vs. the modified state equation for the EEG (Fig. 2(P)), fNIRS (Fig. 2(Q)), and
ECoG (Fig. 2(R)) data, together with the associated probabilities (Figs. 2(P), (Q), (R), in-
sets). In these multimodal examples, the modified (complex, oscillatory) state equation
provides a better account (higher variational free energy) for the EEG and fNIRS datasets,
but not for the ECoG dataset. Note that the extent of the difference in variational free en-
ergies between the original and modified models is determined by the noise parameters
in the accompanying DCM code – e.g., the precision and prior variance. Finally, we show
that the Hamiltonians are conserved for the non-dissipative cases using the posteriors of
the EEG (Fig. 2(S)), FNIRS (Fig. 2(T)), and ECoG (Fig. 2(U)) models.

Both Figs. 1 and 2 can be reproduced in full via the accompanying code.

3 Conclusions
The aim of our work was to show how one of the first-order linear equations that dominate
computational neuroscience can be rendered compatible with the principle of stationary
action with a minimum number of simple modifications. Furthermore, we wanted to show
how to embed the Lagrangian model within a data fitting framework in a way that allows
it to be readily applied to timeseries of arbitrary dimensionality from any neuroimaging
modality.

By making the modifications outlined in this paper, we obtain a state equation that is
fundamentally different from the original state equation, with the main difference lying in
the solutions to the equations.

To see why this is the case, we can take the simplest case of a single unconnected region
in the absence of external driving inputs or noise as modelled by the original (unmodified)
state equation:

dz
dt

= z ⇒
∫ dz

z
=

∫
dt ⇒ ln z = t + c ⇒ z = c′et , (25)

where c is a constant of integration and c′ = ec. We therefore see that the solution increases
exponentially in time (or decreases if the original differential equation has a minus sign).
Let us now consider the modified state equation for this simple case, as obtained by chang-
ing the dependent variable to a complex number and multiplying the left-hand side by the
imaginary unit:

i
dz
dt

= z ⇒
∫ dz

z
= i

∫
dt ⇒ ln z = it + c′ ⇒ z = ceit . (26)

The solution now oscillates in time and Eq. (26), unlike Eq. (25), is compatible with the
principle of stationary action. We then note that the modified state equation can be refor-
mulated by writing the complex dependent variable z in terms of its real x and imaginary
y components such that: z = x + iy and hence:

i
dz
dt

= z ⇒ i
d
dt

(x + iy) = x + iy, (27)
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where we can equate the real and imaginary components to give the following two equa-
tions:

dy
dt

= –x,
dx
dt

= y ⇒ d2x
dt2 = –x. (28)

We see that the modified state equation is just another way of representing a simple har-
monic oscillator. It should therefore come as no surprise that the modification facilitates
compatibility with the principle of stationary action, as harmonic oscillators are readily
described by Lagrangian formulations. Furthermore, the fact that the modified form pro-
vides a more parsimonious description in some neuroimaging datasets may be indicative
of the underlying oscillatory equation capturing the intrinsic oscillations present in neural
systems across scales [21].

The imaginary unit i famously appears in the Schrödinger equation i�ψ̇ = Hψ , which we
see possesses the same mathematical structure as the computational neuroscience models
considered here: it is first order in time and linearly proportional to the dependent vari-
able. One of the reasons Schrödinger introduced the imaginary unit into his equation is
that it preserves unitarity, guaranteeing that the value of the integral

∫
ψ∗(r, t)ψ(r, t) d3r is

independent of time. The value of this integral is the probability that the particle is found
somewhere in space and must therefore be conserved on physical grounds (particles do
not appear or disappear in non-relativistic quantum theory); the i in the Schrödinger equa-
tion ensures this conservation mathematically. Every eigenvector component of ψ oscil-
lates in time like the function eiωt , while the corresponding component of ψ∗ oscillates like
e–iωt . The conservation of probability follows because eiωte–iωt = 1. On the other hand, we
can consider the consequences of calculating a probability in this way when the imaginary
unit i is not present: ψ(t)ψ∗(t) ∼ eωteωt = e2ωt , i.e. the probability is time dependent and is
therefore not conserved.

The preservation of unitarity has potentially interesting consequences regarding neural
systems if we are modelling probabilistic quantities such as the chance of observing neural
activation beyond a certain threshold. In this case, the presence of the imaginary unit i in
the modified equations of motion could imply a conservation of neuronal firing or depo-
larisation in the system, which could in turn be plausibly maintained by the balance be-
tween excitation and inhibition [22, 23]. Together with the need for oscillatory solutions,
we showed that compatibility between the neuronal state equation and the principle of
stationary action necessitated the use of complex variables. A further advantage of work-
ing with complex variables is that the adjacency or coupling matrix A can be transformed
into a Hermitian form, where the real parts describe dissipation and the complex parts
describe oscillatory or solenoidal dynamics [24, 25] that underwrite rhythms in the brain
[26] – we refer the reader to the section entitled “Dynamics and statistical physics” in [27]
for a comprehensive treatment. More generally, the ability to work with non-dissipative
solenoidal dynamics means that one can eschew detailed balance and characterise (neu-
ronal) systems in terms of their nonequilibrium steady states [28–30].

There is an established method for constructing an action for a classical system, often
referred to as the MSRDJ (Martin–Siggia–Rose–DeDominicis–Janssen) formalism [31].
This can be applied to arbitrary systems of differential equations of first order but differs
from our approach in important ways and addresses different questions. The MSRDJ for-
malism applies to stochastic differential equations such as the Langevin equation, which
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include random noise terms (as does the neuronal state equation). Given a set of initial
conditions, the solution of a stochastic differential equation depends on the realization
of the noise as a function of time, with different realizations producing different solu-
tions. Viewed as a whole, the stochastic differential equation therefore generates a time-
evolving probability distribution of solutions, the form of which depends on the nature of
the noise. The MSRDJ approach shows how this probability distribution evolves in time
and allows one to calculate moments, correlation functions, and other noise-averaged sta-
tistical properties as functions of time. The extremum of the MSRDJ action yields the
most likely path of the system in the presence of the random noise. It should therefore
be stressed that the formalism presented in this paper is not the only way in which a La-
grangian formulation of a first-order linear equation can be obtained – see, for example,
the review by Chow et al. [10].

Our approach, by contrast, formulates the complex neuronal state equation in La-
grangian terms, and the corresponding Euler–Lagrange equation reproduces the origi-
nal differential equation exactly, including the noise terms. When we solve the complex
neuronal-state Euler–Lagrange equation, we are therefore evolving a specific solution of
the stochastic differential equation, not a probability distribution of solutions. The MSDRJ
approach yields access to properties such as the most likely path of escape from a poten-
tial well in the sense of large deviations [32–34]. MSDRJ is also useful in terms of finding
solutions for particular realizations of the noise – e.g., for comparison with unaveraged
experimental timeseries.

The conservation laws uncovered by inspecting the symmetries of the Lagrangian – such
as the time-translation invariance that led to the conservation of the value of the Hamil-
tonian in Eqs. (19), (20), and (21) – are difficult to interpret at this stage, as they have
yet to be mapped onto biological mechanisms: this remains a subject for future research
to be explored in combination with previous techniques for analysing symmetries in dy-
namical systems [35]. The purpose of this work was to demonstrate simple techniques by
which researchers can create Lagrangian neuronal state models, in a way that allows for
symmetries and associated conservation laws to be identified in neural systems.
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