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Abstract:

Bi-level programming has been used widely to model interactions between hierarchi-

cal decision-making problems, and their solution is challenging, especially when the

lower-level problem contains discrete decisions. The solution of such mixed-integer

linear bi-level problems typically need decomposition, approximation or heuristic-

based strategies which either require high computational effort or cannot guarantee

a global optimal solution. To overcome these issues, this paper proposes a two-step

reformulation strategy in which the first part consists of reformulating the inner

mixed-integer problem into a nonlinear one, while in the second step the well-known

Karush-Kuhn-Tucker conditions for the nonlinear problem are formulated. This re-

sults in a mixed-integer nonlinear problem that can be solved with a global optimiser.

The computational and numerical benefits of the proposed reformulation strategy are

demonstrated by solving five examples from the literature.

Keywords:

Mixed Integer bi-level programming, Lower-level discrete variables, nonlinear refor-

mulation.
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1 Introduction

Optimisation problems involving two decision-makers in a hierarchical scheme are

typically formulated as bi-level programming problems. A common notation defines

the upper-level decision-maker as the ”leader” who has to solve its associated optimi-

sation problem sharing some constraints with the lower-level optimisation problem

solved by a second decision-maker (also known as ”follower”). Fig. 1 illustrates the

leader-follower interaction. This type of problem formulation is particularly useful

to address a wide variety of multi-level decision-making problems such as chemical

process design (Clark and Westerberg, 1990), energy network systems (Motto et al.,

2005), parameter estimation (Mitsos et al., 2009), and supply chain management

(Ryu et al., 2004; Kuo and Han, 2011; Calvete et al., 2010; Gupta and Maranas,

2000; Roghanian et al., 2007; Gao et al., 2011; Garcia-Herreros et al., 2016), among

others.

𝑥
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𝐦𝐢𝐧
𝒙

𝒇𝟏(𝒙, 𝒚)

𝐦𝐢𝐧
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𝒇𝟐(𝒙, 𝒚)

𝑦

Follower

Leader’s decisions affecting 
follower’s problem

Follower’s decisions 
affecting leader’s problem

Figure 1: Leader-follower interaction scheme

A strategy used to solve bi-level problems consists of using the well-known Karush-

Kuhn-Tucker (KKT) optimality conditions (Fortuny-Amat and McCarl, 1981; Bard

and Falk, 1982; Bialas and Karwan, 1982; Motto et al., 2005; Garces et al., 2009)

to reformulate the problem into a single-level problem. Essentially, KKT condi-
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tions depend on extracting the gradient information of the lower-level problem,

thus, the inner problem should be strictly continuous (Marcotte and Savard, 2009;

Sinha et al., 2018). In order to by-pass this limitation several approaches have

been proposed. Particularly, branch-and-bound inspired iterative methods (Gumus

and Floudas, 2005; Mitsos, 2010; Moore and Bard, 1990; Caramia and Mari, 2016;

Xu and Wang, 2014; Kleniati and Adjiman, 2015), decomposition approaches (Sa-

haridis and Ierapetritou, 2009) and genetic-inspired heuristics were proposed to guide

the branching process and solve the problem faster (Nishizaki and Sakawa, 2005;

Hecheng and Yuping, 2008; Arroyo and Fernandez, 2009). Alternatively, data-driven

approaches have been studied in the past. Recently (Beykal et al., 2020) proposed the

DOMINO-framework (that states from Data-driven Optimization of bi-level Mixed-

Integer NOnlinear Problems) was proposed in which the bi-level optimization prob-

lems are approximated as single-level optimization problems by collecting samples

of the upper-level objective and solving the lower-level problem to global optimality

at those sampling points. Similarly, multi-parametric (mp) methods (Avraamidou

and Pistikopoulos, 2017, 2018, 2019; Shokry et al., 2017) and multi-step reformula-

tion/decomposition strategies Zeng and An (2014) have been used to solve bi-level

mixed-integer programming (MIP) problems. Particularly, the inner problem is re-

formulated and decomposed into a subset of feasible LP problems. Yue and You

(2016) have proposed a framework that combines a reformulation and a KKT-based

cut strategy to generate feasible bounds.

Despite of the large number of alternatives, all of these either approximate the op-

timal solution or require a high pre/post-processing calculation effort. Therefore,

solving a bi-level problem still represents a challenging task (Hansen et al., 1992;

Deng, 1992; Colson et al., 2005). Almost two decades ago, Gumus and Floudas

(2005) extended the polyhedral reformulation/linealization scheme originally pro-

posed by Sherali and Adams (1990) to propose a generalized global optimization

framework. Essentially the technique is based on the formulation of the mixed-

integer inner problem as continuous and solving the resulting bi-level optimization

problem using a tailor-made global optimization framework (Gumus and Floudas,
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2005). Nevertheless, the complex reformulation strategy (that use of a large number

of polynomial terms), the use of small examples and a lack of computational infor-

mation hinders the evaluation of the time effectiveness of this strategy to be applied

in large scale problems. Another more recent alternative was proposed by Fischetti

et al. (2017) in which a branch-and-cut exact solution method considering several

new classes of inequalities was proposed. Nevertheless, this approach is limited to ad-

dress problems in which the continuous leader variables (if any) do not appear in the

follower problem and the feasible set is a bounded polyhedron. More recently, Yue

et al. (2019) combined a projection-based reformulation and a decomposition strat-

egy in a single global optimisation framework. However, due to the iterative nature

of the proposed strategy along with the inherent complexity in solving MIP-MIP

bilevel problems, the computational performance hinders its application for large

scale problems and particularly those with a relatively large number of low-level

variables. Finally, Poirion et al. (2020) proposed a polyhedron-based approach to

reformulate a binary mixed integer problem into a binary lineal problem. Despite its

proven effectiveness, this approach is limited to consider the Type II (mixed-)integer

bilevel problems (i.e. purely integer) with an additional assumptions that the inner

binary variable is present in exactly one upper level constraint hindering its use for

a variety of applications.

In this paper, we implement a reformulation strategy similar to Gumus and Floudas

(2005) to solve MIP-MIP bilevel problems in a more straightforward fashion. The

bilevel problem addressed in this paper involves mixed-integer linear programs at

outer as well as inner levels. The work of Gumus and Floudas (2005) used convex-hull

representation for the inner problem whereas we use a reformulation that converts

integer variables to continuous variables, followed by formulating the KKT condi-

tions. In section 2 a detailed description of the mathematical model reformulation

is presented while the rest of the paper is organized as follows: Section 3 presents

the results obtained for a set of examples while in section 4 the main conclusions are

summarized along with the future research directions.

4



2 Mathematical reformulation

In this section the proposed mathematical reformulation is described in detail. Con-

sider the mixed-integer linear bi-level programming problem with discrete variables

in both levels (model B-MILP):

min
x
F (x, y) = cT1 x+ dT1 y (B-MILP)

s.t.

gup(x, y) = Aineq
1 x+Bineq

1 y − bineq1 ≤ 0 (1)

hup(x, y) = Aeq
1 x+Beq

1 y − b
eq
1 = 0 (2)

min
y
f(x, y) = cT2 x+ dT2 y (3)

s.t.

glo(x, y) = Aineq
2 x+Bineq

2 y − bineq2 ≤ 0 (4)

hlo(x, y) = Aeq
2 x+Beq

2 y − b
eq
2 = 0 (5)

x1, ..., xi ∈ R, y1, ..., yj ∈ R, (6)

xi+1, ..., xn1 ∈ {0, 1}l, yj+1, ..., yn2 ∈ {0, 1}m (7)

where x and y are the mixed-integer variables for the upper and lower-level problem,

respectively. g(x, y) and h(x, y) represent inequality and equality constraints respec-

tively. cT1 , dT1 , cT2 , dT2 are constant coefficient vectors and Aineq,eq
1 , Aineq,eq

2 , Bineq,eq
1 ,

Bineq,eq
2 , bineq,eq1 and bineq,eq2 are constant coefficient matrices and vectors. Finally,

Eq.6 corresponds to the continuous variable decisions, while eq. 7 the discrete ones.

A widely used strategy to address a bi-level problem consists of transforming it into

a single-level problem employing the KKT conditions. However, these conditions

require in lower-level problem involving only continuous variables which hinders its

direct application for models such as B-MILP. In this paper a reformulation of the
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lower-level MILP problem into an NLP is proposed. Such a reformulation consists

of substituting the set of integer variables Y with a set of continuous ones Yc and

include the following additional equality constraint into the model B-MILP:

yc(yc − 1) = 0 (8)

Note, Yc should substitute the integer variables in both levels only if the lower-level

binary variables appear also in the upper-level part of the problem. It is worth to

mention that if the integer variables are not binaries, the reformulation may be still

employed by increasing the number of terms. For example for Y = {0, 1, 2} the

reformulation term is yc(yc − 1)(yc − 2) = 0. By applying such a reformulation the

new model (B-MILP2 ) is set as follows:

min
x
F (x, y) = cT1 x+ dT1 y (B-MILP2 )

s.t.

gup(x, y) = Aineq
1 x+Bineq

1 y − bineq1 ≤ 0 (9)

hup(x, y) = Aeq
1 x+Beq

1 y − b
eq
1 = 0 (10)

min
y,yc

f(x, y, yc) = cT2 x+ dT2 (y, yc) (11)

s.t.

glo(x, y, yc) = Aineq
2 x+Bineq

2 (y, yc)− bineq2 ≤ 0 (12)

hlo1 (x, y, yc) = Aeq
2 x+Beq

2 (y, yc)− beq2 = 0 (13)

hlo2 (yc) = yc(yc− 1) = 0 (14)

x1, ..., xi ∈ R, y1, ..., yj ∈ R, ycj+1, ..., ycn2 ∈ R (15)

xi+1, ..., xn1 ∈ {0, 1}m, (16)

By introducing the new vector yc, the original MILP-MILP problem is transformed

into an MILP-NLP one, where lower level problem in B-MILP has been replaced
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by an NLP in B-MILP2. At this point the KKT conditions can be derived for the

lower part of the model (eqs. (11)-(14)). The necessary conditions, as well as the

single level problem formulation are introduced as follows. The Lagrangian for the

lower-level NLP problem in B-MILP2 is given by:

L(x, y, yc) = cT2 x+ dT2 (y, yc) + λT1 g
lo(x, y, yc) + µT

1 h
lo
1 (x, y, yc) + µT

2 h
lo
2 (yc) (17)

Stationary conditions

∇L(x∗, yc∗, λ∗, µ∗) = ∇y,ycf(x, y, yc) + λT∇y,ycg
lo(x, y, yc) + µT

1∇y,ych
lo
1 (x, y, yc)

+ µT
2∇ych

lo
2 (yc) = 0

(18)

Primal feasibility

glo(x, y, yc) ≤ 0 (19)

hlo1 (x, y, yc) = 0 (20)

hlo2 (yc) = 0 (21)

Complementary slackness

λpg
lo
p (x∗, yc∗) = 0 ∀ p (22)

Dual feasibility

λp ≥ 0 ∀ p (23)

where λ and µ represents the Lagrangian multipliers for equality and inequality

constraints respectively. By substituting constrains (12)-(14) by (18)-(23) in the

lower-level problem the single-level MINLP is obtained as shown in model B-MINLP.
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(B −MINLP ) min
x
F (x, y) = cT1 x+ dT1 y

s.t.

Aineq
1 x+Bineq

1 y ≤ bineq1

Aeq
1 x+Beq

1 y = beq1

∇y,yc(c
T
2 x+ dT2 (y, yc)) + λT∇y,yc(A

ineq
2 x+Bineq

2 (y, yc)− bineq2 )...

...+ µT
1∇y,yc(A

eq
2 x+Beq

2 (y, yc)− beq2 ) + µT
2∇yc(yc(yc− 1)) = 0

Aineq
2 x+Bineq

2 (y, yc) ≤ bineq2

Aeq
2 x+Beq

2 (y, yc) = beq2

ycq(ycq − 1) = 0 ∀ q

λp(A
ineq
2 x+Bineq

2 (y, yc)− bineq2 )p = 0 ∀ p

λp ≥ 0 ∀ p

x1, ..., xi ∈ R, y1, ..., yj ∈ R, ycj+1, ..., ycn2 ∈ R

xi+1, ..., xn1 ∈{0, 1}

Note that the KKT conditions for the lower-level problem are local optimality con-

ditions and hence global optimality can not be guaranteed. In this work, we compute

the global optima, for five examples, by iteratively introducing cuts in the B-MINLP

problem such that the optimal solution in the current iteration is better than the

optimal solution in the previous iteration. This is achieved by including the cut:

fk < fk−1, where f is lower-level objective function and k is the iteration counter.

The iterations are carried out until B-MINLP is infeasible or a maximum number of

pre-specified iterations is reached.

After solving the B-MINLP model the regularity conditions should be checked. In

the next section the capabilities of the proposed reformulation strategy was tested

by applying it to five different examples taken from the literature.

The summary of the reformulation algorithm is presented in table 1
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Table 1: MILP-MILP reformulation algorithm

Step 1. Reformulate the lower-level problem from the original BMILP as an NLP

using eq.8

Step 2. Write the KKT conditions for the resulting lower-level NLP.

Step 3. Solve the resulting B-MINLP problem iteratively by introducing cuts of

the form fk < fk−1 and using a global optimisation solver

3 Examples

Five different examples were used in order to illustrate the capabilities of the pre-

sented reformulation. The first three examples consists of numerical problems in-

cluding either integer and/or binary variables. The Fourth one consist of a two-level

production-distribution problem and the last example describes a two-step sequential

production system in which each step is controlled by a different decision-maker. The

particular details for the used examples are presented in their respective subsection,

however all the MINLP problems were implemented in GAMS 24.7 and solved using

BARON18.11.12 to a global optimality. All the computations were done on a Dell

workstation with Intel®Xeon®CPU E5-1650 v3@3.50 GHz and 32.00 GB RAM.

For comparison purposes, Table 7 in appendix A displays the reformulated model

statistics for all the examples used.

3.1 1st Example

Consider the following mixed-integer nonlinear bilevel optimisation problem (B-

MILP-E1 ) which was previously solved by Gumus and Floudas (2005) using a vertex

polyheral convex hull representation and solving the resulting nonlinear bilevel op-

timization problem by a novel deterministic global optimization framework
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min
x

(x− 2)2 + (y − 2)2 (B-MILP-E1 )

s.t.

min
y
y2 (24)

s.t.

− 2x− 2y ≤ −5 (25)

x− y ≤ 1 (26)

3x+ 2y ≤ 8 (27)

x ∈ R; y ∈ {0, 1, 2}

Eqs. (24-3.1) represent the lower level constraints. The binary reformulation was

applied here substituting y by the vector zc, and adding eq.(28).

yc(yc − 1) = 0 (28)

At this point the KKT conditions were derived for the lower-level problem (eqs.(24)-

28) as presented next:

L(yc) = (yc2 + λ1(−2x− 2yc+ 5) + λ2(x− yc− 1)

+ λ3(3x+ 2yc− 8) + µ1(yc(yc− 1)(yc− 2))
(29)

Stationary conditions

∇ycL(yc, λ) = 2yc− 2λ1 − λ2 + 2λ3 + µ1(3yc
2 − 2yc) = 0 (30)

Complementary slackness

λ1(−2x− 2yc+ 5) = 0 (31)
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λ2(x− yc− 1) = 0 (32)

λ3(3x+ 2yc− 8) = 0 (33)

Dual feasibility

λ1 ≥ 0 (34)

λ2 ≥ 0 (35)

λ3 ≥ 0 (36)

The single-level model (B-MINLP-E1 ) including the associated inner problem refor-

mulation is presented as follows:

(B −MINLP − E1) min
x

(x− 2)2 + (yc− 2)2

s.t.

x ≥ 0

Primal feasibility,


−2x− 2yc+ 5 ≤ 0

x− yc− 1 ≤ 0

3x+ 2yc− 8 ≤ 0

Stationary conditions,
{

2yc− 2λ1 − λ2 + 2λ3 + µ1(3yc
2
1 − 2yc) = 0

Complementary slackness,


λ1(−2x− 2yc+ 5) = 0

λ2(x− yc− 1) = 0

λ3(3x+ 2yc− 8) = 0

Dual feasibility,
{
λj ≥ 0 ∀ j = 1, 2, 3

Binary reformulation,
{
yc(yc− 1)(yc− 2) = 0

x ∈ R+; yc ∈ R+
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The model B-MINLP-E1 consists of 10 equations, 8 single variables and 0 discrete

variables and its solution takes around 0.840 seconds to achieve the global optimality

accounting for all the cuts, including the last infeasible one. The optimal solution is

obtained at (x∗, y∗)=(1.333, 2) with F ∗ = 0.444 which achieves the same objective

function as obtained in previous studies (Gumus and Floudas, 2005).

3.2 2nd Example

The following mixed-integer bilevel optimisation problem (B-MILP-E2 ) was taken

from Yue et al. (2019) using a projection-based reformulation and decomposition

strategy.

(B −MILP − E2) min
x

(−x)− 10y

s.t.

min
y
y

s.t.

− 25x− 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

2x− 10y ≤ −15

x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}; y ∈ {0, 1, 2, 4}

The KKT conditions are derived for the lower-level problem leading to the single-level

model (B-MINLP-E2 ) while the full-details of the KKT conditions are presented in

the appendix B.1.
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(B −MINLP − E2) min
x

(−x)− 10yc

s.t.

Primal feasibility,


−25x− 20yc− 30 ≤ 0

x+ 2yc− 10 ≤ 0

2x− yc− 15 ≤ 0

−2x− 10yc+ 15 ≤ 0

Stationary conditions,

{
1 + 20λ1 + 2λ2 − 1λ3 − 10λ4 + ..

..+ µ1(5yc
4 − 40yc3 + 105yc2 − 100yc+ 24) = 0

Complementary slackness,


λ1(−25x+ 20yc− 30) = 0

λ2(x+ 2yc− 10) = 0

λ3(2x− yc− 15) = 0

λ4(−2x− 10yc+ 15) = 0

Dual feasibility,
{
λj ≥ 0 ∀ j = 1, 2, 3, 4

Binary reformulation,
{
yc(yc− 1)(yc− 2)(yc− 3)(yc− 4) = 0

x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}; yc ∈ R+

Model B-MINLP-E2 consist of 12 equations, 9 continuous variables and 1 discrete

variable. Remarkably, three different optimal solutions were identified ((x∗, y∗)=(2, 4)

with F ∗ = −42; (x∗, y∗)=(2, 3) with F ∗ = −32;(x∗, y∗)=(2, 2) with F ∗ = −22) which

matches with those obtained in previous studies (Yue et al., 2019; Moore and Bard,

1990). The solution of B-MINLP-E2 takes less than 0.83 seconds at each iteration

(2.838 second in total).

3.2.1 Computational comparison

In order to perform a further comparison in the computational time required to solve

the problems using the proposed reformulation and the projection-based reformula-

tion another example from (Yue et al., 2019) was solved for different inner problems
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sizes/instances ranging from 36/36-144/144 in continuous/binary variables. This

problem consist of a hierarchical planning problem formulated as an MIBLP prob-

lem which involves continuous and binary variables in both the upper- and lower-level

programs. Note that due to the large number of binary variables the details of the

KKT conditions were not included in this paper. The associated mathematical model

formulation is presented as follows while more details can be found in (Yue et al.,

2019).

min z1 =
∑
i

fiYi +
∑
i,j

gi,jZi,j +
∑
i

pi(Capi −
∑
j

djai,jXi,j)

s.t.∑
i,j

dj + ei,jXi,j ≤ q

Capi ≤ cUi ∀i

Yi ∈ {1, 0}, Capi ∈ R+

min z2 =
∑
i

wi(
∑
j

djai,jXi,j) +
∑
i,j

(si,jZi,j + djri,jXi,j)

s.t. ∑
i

Xi,j = 1 ∀j∑
j

djai,jXi,j ≤ Capi ∀i∑
j

Xi,j ≤ nYi ∀i

Xi,j ≤ Zi,j ∀i, j

Xi,j ∈ R+; Zi,j ∈ {1, 0}

Where Yi and Zi,j are the binary variables used to select the use or not of the plant

i and production line for product j in plant i respectively. Similarly Capi and Xi,j

represent the continuous variables for the production capacity and the fraction of

demand satisfied by production line i, j respectively. The rest of the elements are
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process parameters which are randomly generated as proposed in (Yue et al., 2019)

and are defined in table 2.

Table 2: Parameter definition

Parameters

aij Capacity consumption ratio for processing product j in plant i

cui Upper bound of production capacity in plant i

dj Customer demand of product j

eij Resource factor for processing product j in plant i

fi Opening cost for plant i

gij Fixed cost for opening production line j in plant i

pi oportunity cost for unused production capacity of plant i after it is opened

q Resource availability

rij Transportation cost for transferring product j from plant i to the principal firm

sij Fixed operation cost for processing product j in plant i

wi Cost to use production capacity in plant i

We test the proposed algorithm on a total of 5 instances varying the number of

plants (i) and products (j) as follows: (6,6), (6,8), (8,8), (8,10), (10,10), (10,12), and

(12,12). The proposed approach takes 3.2-10.3 seconds in average to reach global

optima whereas the projection-based reformulation proposed by Yue et al. (2019)

reported average solution times of 3-981 seconds. As the problem parameters were

randomly generated the problems solved using our approach and those reported by

Yue et al. (2019) may not be exactly the same.

3.3 3rd Example

This example consists of a mixed-integer linear programming problem at both levels

(B-MILP-E3 ) which was previously solved by Avraamidou and Pistikopoulos (2019)
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using an mp-MILP approach.

(B −MILP − E3) min
x1,2,y3

4x1 − x2 + x3 + 5y1 − 6y3

s.t.

x1 ≤ 10

x2 ≤ 10

x1 ≥ −10

x2 ≥ −10

min
x3,y1,2

−x1 + x2 − 2x3 − y1 + 5y2 + y3

s.t.

6.4x1 + 7.2x2 + 2.5x3 ≤ 11.5

− 8x1 − 4.9x2 − 3.2x3 ≤ 5

3.3x1 + 4.1x2 + 0.02x3 + 4y1 + 4.5y2 + 0.5y3 ≤ 1

x1, x2, x3 ∈ R; y1, y2, y3 ∈ {1, 0}

At this point the KKT conditions for the lower-level problem must be derived as

presented in section 2. The complete derivation of the KKT conditions are pre-

sented in the appendix B.2 while the single-level model (B-MINLP-E3 ) including

the associated inner problem reformulation is presented as follows:
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(B −MINLP − E3) min
x1,2,y3

4x1 − x2 + x3 + 5y1 − 6y3

s.t.

10 ≤ x1,2 ≤ 10

Primal feasibility,


6.4x1 + 7.2x2 + 2.5x3 − 11.5 ≤ 0

−8x1 − 4.9x2 − 3.2x3 − 5 ≤ 0

3.3x1 + 4.1x2 + 0.02x3 + 4yc1 + 4.5yc2 + 0.05y3 − 1 ≤ 0

Stationary conditions,


−2 + 2.5λ1 − 3.2λ2 + 0.02λ3 = 0

−1 + 4λ3 + µ1(2yc1 − 1) = 0

5 + 4.5λ3 + µ2(2yc2 − 1) = 0

Complementary slackness,


λ1(6.4x1 + 7.2x2 + 2.5x3 − 11.5) = 0

λ2(−8x1 − 4.9x2 − 3.2x3 − 5) = 0

λ3(3.3x1 + 4.1x2 + 0.02x3 + 4yc1 + 4.5yc2 + 0.05y3 − 1) = 0

Dual feasibility,
{
λj ≥ 0 ∀ j = 1, 2, 3

Binary reformulation,

{
yc1(yc1 − 1) = 0

yc2(yc2 − 1) = 0

x1, x2, x3 ∈ R+; yc1, yc2 ∈ R+; y3 ∈ {1, 0}

3.3.1 Implementation and results

The B-MINLP-E3 model consists of 21 equations, 16 single variables and 1 discrete

variables. The model already includes the main parameters, and its solution takes

2.660 seconds to achieve the global optimality after 3 iterations. The optimal solution

and its comparison with values reported in the literature are presented in Table 3.
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Table 3: Single level optimal solution for different methodologies

x1 x2 x3 y1 y2 y3 Objective Function

mp-MILP -10 8.243 10.128 0 0 0 -38.115

Bi-level MINLP -10 8.243 10.128 0 0 0 -38.115

Note that the proposed reformulation achieves the same objective function as ob-

tained in the mp-MILP approach.

3.4 4th Example

Consider the problem addressed by Avraamidou and Pistikopoulos (2017) consisting

of a supply chain system operated by two different companies (Figure 2). One

company produces one product through two production plants (p), while the other

company distributes the product between two distribution centres (d) and three

different costumers (c).
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Leader 
(Distribution level) 

Follower 
(Production level) 

Plants 
Distribution 
centers 

Customers 

Figure 2: Schematic of the production-distribution planning problem case study

The distribution company aims to minimise the distributing and acquiring costs by

deciding the existing routes connecting the centres to the customers, as well as the

required inventory levels at each centre. The amount of product acquired by the

distribution centres is used to calculate the production levels. Thus, the production

company, after receiving the orders from each distribution centre, decides which

processing plant will take that work load so as to minimize its production costs.

Thus, the distribution problem can be considered as the leader which ignores the

production plan that is defined by the follower seeking to minimise its own production

cost.
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The above problem can be formulated as an MILP-MILP bi-level problem as pre-

sented in model B-MILP-E4. The variables and parameters used are defined in Table

4:

Table 4: Variables and parameters definition

Sets and indexes

P,p Set of plants, plant index

D,d Set of distribution centres, centres index

C,c Set of customers, customers index

Parameters

Ap Maximum capacity of plant p

c1dc Cost of route connecting centre d to customer c

c2pd Cost of getting products from plant p to centre d

c3pd Cost of manufacturing products from plant p for centre d

c4pd Cost of route connecting plant p for centre d

bc Customer c demand

Variables

sdc Amount of product sent from centre d to customer c

xpd Amount of product manufactured in plant p for centre d

Binary variables

ydc Existence (or not) of route connecting centre d to customer c

zpd Existence of route connecting plant p for centre d

min
ydc,sdc

∑
d,c

c1dcydc +
∑
p,d

c2pdxpd (B-MILP-E4 )

s.t. ∑
d

sdc ≥ bc ∀ c (37)
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sdc ≤ 35ydc ∀ c, d (38)

sdc ≥ 0 ∀ c, d (39)

min
xpd,zpd

∑
p,d

c3pdxpd + c4pdzpd (40)

s.t. ∑
d

xpd ≤ Ap ∀ p (41)

∑
p

xpd ≥
∑
c

sdc ∀ d (42)

xpd ≤ 100zpd ∀ d, p (43)

xpd ≥ 0, ∀ d, p (44)

sdc, xpd ∈ R; ydc, zpd ∈ {0, 1}

Eqs. (37)-(39) represent the constrains for the distribution level problem while the

rest of them are associated to the production part. The binary reformulation was

applied here substituting zpd by the vector zcpd, and adding eq. (45).

zcpd(zcpd − 1) = 0 (45)

At this point the KKT conditions were derived for the lower-level problem (eqs.

(40)-(45) as presented next:

L(x, zc) =
∑
pd

c3pdxpd +
∑
pd

c4pdzcpd +
∑
p

λ1p(
∑
d

xpd − Ap) +
∑
d

λ2d(
∑
c

sdc −
∑
p

xpd)

+
∑
pd

λ3pd(xpd − 100zcpd)−
∑
pd

λ4pdxpd +
∑
pd

µpd(zcpd(zcpd − 1))

(46)

Stationary conditions

∇xL(x, λ) =
∑
pd

c3pd +
∑
p

λ1p −
∑
d

λ2d +
∑
pd

λ3pd −
∑
pd

λ4pd = 0 (47)
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∇zcL(zc, λ) =
∑
pd

c4pd −
∑
pd

λ3pd100 +
∑
pd

µpd(2zcpd − 1) = 0 (48)

Complementary slackness

λ1p(
∑
d

xpd − Ap) = 0 ∀ p (49)

λ2d(
∑
c

sdc −
∑
p

xpd) = 0 ∀ d (50)

λ3p,d(xpd − 100zcpd) = 0 ∀ d, p (51)

λ4p,d(−xpd) = 0 ∀ d, p (52)

Dual feasibility

λ1p ≥ 0 ∀ p (53)

λ2d ≥ 0 ∀ d (54)

λ3p,d ≥ 0 ∀ d, p (55)

λ4p,d ≥ 0 ∀ d, p (56)

The single-level model B-MINLP-E4 including the lower-level reformulation and the

equivalent KKT optimality conditions is presented as follows:
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(B −MINLP − E4) min
ydc,sdc

∑
d,c

c1dcydc +
∑
p,d

c2pdxpd

s.t.∑
d

sdc ≥ bc ∀ c

sdc ≤ 35ydc ∀ c, d

sdc ≥ 0 ∀ c, d

Primal feasibility,



∑
d xpd ≤ Ap ∀ p∑

c sdc ≤
∑

p xpd ∀ d
xpd ≤ 100zcpd ∀ p, d
−xpd ≤ 0 ∀ p, d

Stationary conditions,

{ ∑
pd c

3
pd +

∑
p λ1p −

∑
d λ2d +

∑
pd λ3pd −

∑
pd λ4pd = 0∑

pd c
4
pd −

∑
pd λ3pd100 +

∑
pd µpd(2zcpd − 1) = 0

Complementary slackness,


λ1p(

∑
d xpd − Ap) = 0 ∀ p

λ2d(
∑

c sdc −
∑

p xpd) = 0 ∀ d
λ3p,d(xpd − 100zcpd) = 0 ∀ p, d

λ4p,d(−xpd) = 0 ∀ p, d

Dual feasibility,


λ1p ≥ 0 ∀ p
λ2d ≥ 0 ∀ d

λ3p,d ≥ 0 ∀ p, d
λ4p,d ≥ 0 ∀ p, d

Binary reformulation,
{
zcpd(zcpd − 1) = 0 ∀ p, d

3.4.1 Implementation and results

As commented before the model B-MINLP-E1 was implemented in GAMS24.7.1.

The model consists of 65 equations, 50 single variables and 6 discrete variables. The

23



main parameters are included in Table 5. Baron18.11.12 was used as solver achieving

a global optimal solution in 0.912 seconds after two iterations.

Table 5: Main parameters to be used in the model B-MINLP-E4

A p = 1 p = 2

135 100

c1dc c = 1 c = 2 c = 3

d = 1 75 60 50
d = 2 80 30 65

c2dp d = 1 d = 2

p = 1 21 30
p = 2 26 25

c3dp d = 1 d = 2

p = 1 20 25
p = 2 20 25

c4dp d = 1 d = 2

p = 1 100 80
p = 2 110 70

bc c = 1 c = 2 c = 3

55 65 15

The optimal solution obtained using the proposed reformulation approach is same

as that reported in literature (Avraamidou and Pistikopoulos, 2017). The cuts of

the form fk < fk−1, as explained in section 2, were iteratively included to identify

all the optimal solutions. The product flow between plants and distribution centres

are xp1,d1 = 85 and xp2,d2 = 50, while the flow between distribution centres and

customers are sd1,c1 = 35, sd1,c2 = 35, sd1,c3 = 15, sd2,c1 = 20 and sd2,c2 = 30.
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3.5 5th Example

The second example was presented as a motivating example in Yue and You (2017)

consisting of the profit maximisation of a chemical production supply chain system.

As shown in Fig. 3, the leader and follower were defined for the supply chain.

The leader is in charge of the process P, which has two production schemes namely

P1 and P2. Scheme P1 consumes chemical A as the raw material and produces

platform chemical B. Scheme P2 also consumes chemical A as the raw material but

produces platform chemical C. In contrast, the downstream follower is in charge of

the process Q, which has three production schemes, namely Q1, Q2, and Q3. Scheme

Q1 consumes platform chemical B as the raw material and produces final product

D. Scheme Q2 also consumes platform chemical B as the raw material but produces

final product E. Scheme Q3 consumes platform chemical C as the raw material and

produces final product E. Variable and fixed costs would occur during the production

processes. Besides the revenue from selling platform chemicals, the leader has agreed

with the follower to share some of the follower’s product sales revenue.
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Figure 3: Supply chain superstructure of the example

The MILP-MILP bi-level optimisation model (B-MILP-E5 ) for this illustrative ex-

ample is given below.
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(B −MILP − E5) maxPL = 30xLP1 + 20xLP2 − 50yLP1 − 100yLP2 + 10xFQ2 + 10xFQ3

s.t.

xLP1 + xLP2 ≤ 10

xLP1 ≤ 10yLP1

xLP2 ≤ 10yLP2

yLP1 + yLP2 ≤ 1

xLP1, x
L
P2 ∈ R+; yLP1, y

L
P2 ∈ {1, 0}; PL ∈ R

maxP F = 40xFQ1 + 40xFQ2 + 65xFQ3 − 100yFQ1 − 250yFQ2 − 100yFQ3

s.t.

xFQ1 + xFQ2 + xFQ3 ≤ 10

xFQ1 ≤ 10yFQ1

xFQ2 ≤ 10yFQ2

xFQ3 ≤ 10yFQ3

yFQ1 + yFQ2 + yFQ3 ≤ 1

xFQ1 + xFQ2 ≤ xLP1

xFQ3 ≤ xLP2

xFQ1, x
F
Q2, x

F
Q3 ∈ R+; yFQ1, y

F
Q2, y

F
Q3 ∈ {1, 0}; P F ∈ R

where x represent the production rates for each production scheme while y are binary

variables that indicate the schemes selection (i.e., 1 if selected; 0 otherwise). Super-

scripts L and F represents leader and follower, respectively. Similarly, the subscripts

represent the corresponding production scheme. At this point the KKT conditions

for the lower-level problem must be derived as presented in section 2. The complete

derivation of the KKT conditions are presented in the appendix B.3 while the single-

level model (B-MINLP-E5 ) including the associated inner problem reformulation is

presented as follows:
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(B −MINLP − E5) maxPL = 30xLP1 + 20xLP2 − 50yLP1 − 100yLP2 + 10xFQ2 + 10xFQ3

s.t.

xLP1 + xLP2 ≤ 10

xLP1 ≤ 10yLP1

xLP2 ≤ 10yLP2

yLP1 + yLP2 ≤ 1

xLP1, x
L
P2 ∈ R+; yLP1, y

L
P2 ∈ {1, 0}; PL ∈ R

Primal feasibility,



xFQ1 + xFQ2 + xFQ3 ≤ 10

xFQ1 ≤ 10ycFQ1

xFQ2 ≤ 10ycFQ2

xFQ3 ≤ 10ycFQ3

ycFQ1 + ycFQ2 + ycFQ3 ≤ 1

xFQ1 + xFQ2 ≤ xLP1

xFQ3 ≤ xLP2

Stationary conditions,



40− λ1 − λ2 − λ6 = 0

40− λ1 − λ3 − λ6 = 0

65− λ1 − λ4 − λ7 = 0

−100 + 10λ2 − λ5 − µ1(2yc
F
Q1 − 1) = 0

−250 + 10λ3 − λ5 − µ2(2yc
F
Q2 − 1) = 0

−100 + 10λ4 − λ5 − µ3(2yc
F
Q3 − 1) = 0

Complementary slackness,



λ1(x
F
Q1 + xFQ2 + xFQ3 − 10) = 0

λ2(x
F
Q1 − 10ycFQ1) = 0

λ3(x
F
Q2 − 10ycFQ2) = 0

λ4(x
F
Q3 − 10ycFQ3) = 0

λ5(yc
F
Q1 + ycFQ2 + ycFQ3 − 1) = 0

λ6(x
F
Q1 + xFQ2 − xLP1) = 0

λ7(x
F
Q3 − xLP2) = 0
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Dual feasibility,



λ1 ≥ 0

λ2 ≥ 0

λ3 ≥ 0

λ4 ≥ 0

λ5 ≥ 0

λ6 ≥ 0

λ7 ≥ 0

Binary reformulation,


ycFQ1(yc

F
Q1 − 1) = 0

ycFQ2(yc
F
Q2 − 1) = 0

ycFQ3(yc
F
Q3 − 1) = 0

xFQ1, x
F
Q2, x

F
Q3 ∈ R+; ycFq1, yc

F
Q2, yc

F
Q3 ∈ R+

P F ∈ R

3.5.1 Implementation and results

The model B-MINLP-E5 consists of 35 equations, 30 single variables and 7 discrete

variables. The main parameters were included in the model and the optimal solution

was found in 3.476 seconds after three iterations.

Note that this example was solved in Yue and You (2017) using a pseudo bi-level

(i.e. two-step approach) in which first, the upper-level problem is solved, then its

decisions are fixed to solve the lower-level part. These steps are repeated fixing the

lower level decisions until no further improvement is obtained. The results reported

by Yue and You (2017) were compared with the ones obtained using the proposed

reformulation (bi-level MINLP) (see Table 6).
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Table 6: Optimal solutions from different modelling and optimisation approaches

P1(t/d) P2(t/d) Q1(t/d) Q2(t/d) Q3(t/d) PL ($) PF ($) Global Profit ($)

pseudo bi-level 10 0 10 0 0 250 300 550
Bi-level MINLP
Iter-1 10 0 0 10 0 350 150 500
Iter-2 10 0 10 0 0 250 300 550
Iter-3 0 10 0 0 10 200 550 750

From Table 6 it can be seen that the proposed bi-level MINLP approach is capable

of identifying different optimal solution (including the global optimal). Note that,

the optimal solution was obtained in less than 4 seconds.

4 Concluding remarks

This paper introduces a reformulation strategy for the solution of mixed-integer bi-

level programming problems with integer variables in both optimisation levels. The

capabilities of the proposed strategy to give the global optimal solution of such prob-

lems was validated using three different MILP-MILP examples. Numerical results

prove that the proposed reformulation is a promising alternative to the current ap-

proximation algorithms. The main advantage of the proposed approach is that after

applying the proposed reformulation, any appropriate global optimiser can be used.

Additionally, the results demonstrate that the proposed reformulation is computa-

tionally efficient, hence applicable to a wide variety of problems such as hierarchi-

cal model predictive controllers, scheduling and control integration or planning and

scheduling integration. Future work will include testing the proposed approach on

large scale problems.
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A Model statistics for comparison

Table 7: Reformulated models statistics

Examples Continuous Variables Discrete Variables Equations CPU (s)
1st 8 0 10 0.840
2nd 9 1 12 2.838
3rd 16 1 21 2.660
4th 50 6 65 0.912
5th 30 7 35 3.476
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B Derivation of KKT conditions

B.1 Case study 2

From the original bi-level problem (model B-MILP-E2 ) the KKT conditions were

derived as follows:

L(yc) = (yc+ λ1(−25x+ 20yc− 30) + λ2(x+ 2yc− 10)

+ λ3(2x− yc− 15) + λ4(−2x− 10yc+ 15)

+ µ1(yc(yc− 1)(yc− 2)(yc− 3)(yc− 4))

(B.1)

Stationary conditions

∇ycL(yc, λ) = 1 + 20λ1 + 2λ2 − λ3 − 10λ4

+ µ1(5yc
4 − 40yc3 + 105yc2 − 100yc+ 24) = 0

(B.2)

Complementary slackness

λ1(−25x+ 20yc− 30) = 0 (B.3)

λ2(x+ 2yc− 10) = 0 (B.4)

λ3(2x− yc− 15) = 0 (B.5)

λ4(−2x− 10yc+ 15) = 0 (B.6)

Dual feasibility

λ1 ≥ 0 (B.7)

λ2 ≥ 0 (B.8)
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λ3 ≥ 0 (B.9)

λ4 ≥ 0 (B.10)

The single-level model B-MINLP-E2 is included in section 3.2.

B.2 Case study 3

From the original bi-level problem (model B-MILP-E3 ) the KKT conditions were

derived as follows:

L(x3, y1, y2) = (−x1 + x2 − 2x3 − yc1 + 5yc2 + y3)

+ λ1(6.4x1 + 7.2x2 + 2.5x3 − 11.5) + λ2(−8x1 − 4.9x2 − 3.2x3 − 5)

+ λ3(3.3x1 + 4.1x2 + 0.02x3 + 4yc1 + 4.5yc2 + 0.5y3 − 1)

+ µ1(yc1(yc1 − 1)) + µ2(yc2(yc2 − 1))

(B.11)

Stationary conditions

∇x3L(x3, λ) = −2 + 2.5λ1 − 3.2λ2 + 0.02λ3 = 0 (B.12)

∇yc1L(yc1, λ) = −1 + 4λ3 + µ1(2yc1 − 1) = 0 (B.13)

∇yc2L(yc2, λ) = 5 + 4.5λ3 + µ2(2yc2 − 1) = 0 (B.14)

Complementary slackness

λ1(6.4x1 + 7.2x2 + 2.5x3 − 11.5) = 0 (B.15)

λ2(−8x1 − 4.9x2 − 3.2x3 − 5) = 0 (B.16)

λ3(3.3x1 + 4.1x2 + 0.02x3 + 4yc1 + 4.5yc2 + 0.5y3 − 1) = 0 (B.17)
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Dual feasibility

λ1 ≥ 0 (B.18)

λ2 ≥ 0 (B.19)

λ3 ≥ 0 (B.20)

The single-level model B-MINLP-E3 is included in section 3.3.

B.3 Case study 5

From the original bi-level problem (model B-MILP-E5 ) the KKT conditions were

derived as follows:

L(xFQ1, x
F
Q2, x

F
Q3, yc

F
Q1, yc

F
Q2, yc

F
Q3) =

(40xFQ1 + 40xFQ2 + 65xFQ3 − 100ycFQ1 − 250ycFQ2 − 100ycFQ3)

− λ1(xFQ1 + xFQ2 + xFQ3 − 10)− λ2(xFQ1 − 10ycFQ1)

− λ3(xFQ2 − 10ycFQ2)− λ4(xFQ3 − 10ycFQ3)

− λ5(ycFQ1 + ycFQ2 + ycFQ3 − 1)− λ6(xFQ1 + xFQ2 − xLP1)

− λ7(xFQ3 − xLP2)− µ1(yc
F
Q1(yc

F
Q1 − 1))

− µ2(yc
F
Q2(yc

F
Q2 − 1))− µ3(yc

F
Q3(yc

F
Q3 − 1))

(B.21)

Stationary conditions

∇xF
Q1
L(xFQ1, λ) = 40− λ1 − λ2 − λ6 = 0 (B.22)

∇xF
Q2
L(xFQ2, λ) = 40− λ1 − λ3 − λ6 = 0 (B.23)

∇xF
Q3
L(xFQ3, λ) = 65− λ1 − λ4 − λ7 = 0 (B.24)
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∇ycFQ1
L(ycFQ1, λ) = −100 + 10λ2 − λ5 − µ1(2yc

F
Q1 − 1) = 0 (B.25)

∇ycFQ2
L(ycFQ2, λ) = −250 + 10λ3 − λ5 − µ2(2yc

F
Q2 − 1) = 0 (B.26)

∇ycFQ3
L(ycFQ3, λ) = −100 + 10λ4 − λ5 − µ3(2yc

F
Q3 − 1) = 0 (B.27)

Complementary slackness

λ1(x
F
Q1 + xFQ2 + xFQ3 − 10) = 0 (B.28)

λ2(x
F
Q1 − 10ycFQ1) = 0 (B.29)

λ3(x
F
Q2 − 10ycFQ2) = 0 (B.30)

λ4(x
F
Q3 − 10ycFQ3) = 0 (B.31)

λ5(yc
F
Q1 + ycFQ2 + ycFQ3 − 1) = 0 (B.32)

λ6(x
F
Q1 + xFQ2 − xLP1) = 0 (B.33)

λ7(x
F
Q3 − xLP2) = 0 (B.34)

Dual feasibility

λ1 ≥ 0 (B.35)

λ2 ≥ 0 (B.36)

λ3 ≥ 0 (B.37)

λ4 ≥ 0 (B.38)

λ5 ≥ 0 (B.39)

λ6 ≥ 0 (B.40)

λ7 ≥ 0 (B.41)

The single-level model B-MINLP-E5 is included in section 3.5.
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