Construction of a polynomial invariant
annihilation attack of degree 7 for T-310

Nicolas T. Courtois, Aidan Patrick, Matteo Abbondati
University College London, Gower Street, London, UK

Abstract. Cryptographic attacks are typically constructed by black-
box methods and combinations of simpler properties, for example in
[Generalised] Linear Cryptanalysis. In this article we work with a more
recent white-box algebraic-constructive methodology. Polynomial invari-
ant attacks on a block cipher are constructed explicitly through the study
of the space of Boolean polynomials which does not have a unique fac-
torization and solving the so-called Fundamental Equation (FE). Some
recent invariant attacks are quite symmetric and exhibit some sort of
clear structure, or work only when the Boolean function is degenerate.
As a proof of concept we construct an attack where a highly irregular
product of 7 polynomials is an invariant for any number of rounds for
T-310 under certain conditions on the long term key and for any key
and any IV. A key feature of our attack is that it works for any Boolean
function which satisfies a specific annihilation property. We evaluate very
precisely the probability that our attack works when the Boolean func-
tion is chosen uniformly at random.
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1 Block Ciphers and Round Invariant Attacks

Block ciphers are in widespread use since the 1970s. Their iterated structure is
prone to numerous round invariant attacks, for example in Linear Cryptanal-
ysis (LC). The next step is to look at non-linear polynomial invariants with
Generalised Linear Cryptanalysis (GLC) first proposed by Harpes, Kramer, and
Massey cf. [22] (Eurocrypt’95). A major open problem in cryptanalysis is the
discovery of new invariant properties of non-trivial and complex type. Until
recently, researchers have found extremely few such attacks, with some impos-
sibility results [23,2,27,4]. Eventually recent works [26,8] show how to construct
polynomial invariant attacks for block ciphers. For T-310 such an attack was
first suggested in Section 7 of [14]. One specific example of such attack which
was discussed was the key 771 in Section 8.3. in [8]. However the 771 solution of
[8] and countless other solutions in [8] are not yet quite satisfactory. They only
works when the Boolean function Z is modified and when it is very special. In
almost all such results so far the Boolean function is extremely weak, the space
of Boolean functions which work is small, and invariants are simple and of low
degree. Can we do better? Do some complex attacks occur by accident or do



they follow clear rules and how can we construct a sophisticated irregular attack
step by step? In this article we demonstrate just one specific attack which has
an interesting feature: it works for a large variety of Boolean functions including
sometimes, or with a certain probability, when it is chosen at random.

1.1 Our Block Cipher

Our attack is constructed for T-310, an old Cold War Feistel cipher with 4
branches. This cipher offers enormous flexibility in the choice of the internal
wiring. Most ciphers such as DES or AES also have this sort of flexibility in
the choice of P-boxes, arbitrary invertible matrices inside the S-box, inside the
mixing layers, however later these components are fixed. In T-310 this flexibility
is “officially” supported: a large variety of possible choices of cipher wiring can
be specified and used. Here if we find a weak setup, it will be entirely compatible
with the original historical hardware. The exact cipher wiring specification in T-
310 is called LZS or Langzeitschlissel cf. and various keys studied by researchers
and various known complete specifications are denoted by 2 digit or 3 digit
numbers such as LZS 31 or LZS 903, cf. [20,25]. Our cipher uses Boolean functions
on 6 variables which in our work will become a variable Z which has 64 bits, later
called Z00—Z63. Initially we studied degenerated cases, and after many attempts
we end with a scenario where this Boolean function is no longer chosen by the
attacker, and a single attack works sometimes, for example, with probability
2716 for any Boolean function chosen at random. The specific type of weakness
which we will exploit here is that a Boolean function in 6 variables almost always
has numerous annihilators of degree 3, c¢f. Thm. 6.0.1. in [7], and furthermore
sometimes it has further annihilators of a specific form. This abundant existence
of annihilators can be attributed to the lack of unique factorization in the ring
of Boolean polynomials By .

1.2 Boolean Polynomials, Annihilators and Absorbers

Let By be the ring of Boolean polynomials in N variables (polynomials in their
ANF without powers or with 22 = 2 cancellations done when multiplying the
polynomials). For the T-310 cipher we have N = 6. In this article we do not use
the annihilator method of [9] but we rather work on absorption properties. A
polynomial f absorbs g if fg = f. In theory both sorts of events are equivalent,
absorption of g is the same as annihilation with f(g + 1) = 0. Annihilation,
absorption and lack of unique factorization are key mathematical events which
occur many times and are instrumental in making our attack work.

1.3 Round Invariants for Block Ciphers

Current research in application of polynomial invariants in symmetric cryptog-
raphy has concentrated a lot on negative results, cf. [4,2,27] and has lacked sub-
stance or material to work with, in the form of real-life positive examples which
work. Numerous results are about cipher components rather than full ciphers.
For example for the AES-like S-box, it is possible to use the so called cross-
ratio. However this type of invariant is still quite simple or operates on only one
variable. In our research we study a substantially wider variety of multivariate
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Fig. 1. T-310: a peculiar sort of Compressing Unbalanced Feistel scheme.

invariants with increasing size and complexity. In cryptographic invariants the
main object of interest are round invariants for one round. Examples which
work for more than one round also exist and a large variety of examples can be
found in (8].

We would like to have P(Inputs) = P(Output ANF) where P will be a
Boolean function. We are looking for polynomials P the value of which does not
change after we apply a transformation called “a round” we call ¢. This round
function ¢ is typically a bijection and is like one round of encryption. In addition,
typically it is NOT one fixed permutation but it has a parameter, a secret key and
potentially additional parameters. The more parameters, the harder it becomes
to find invariants. For example the T-310 cipher can be viewed as each round
is applying one of the 8 possible permutations ¢g : {0,1}3¢ — {0,1}3% up to

7 0 {0,1}36 — {0,1}3¢ and the choice of which ¢ is actually used depends
on 2 bits of the secret key and 1 bit of the IV (which is public and known to
the attacker), all using the original notations of [24]. Technically speaking, just
finding such invariants is easy and they exist in vast numbers, yet many are in
some sense trivial or degenerated, cf. [8]. A key problem is to find simultaneous
invariants that hold in all the eight cases, i.e. for all of ¢ ... ¢7 simultaneously.
This was a big problem in early research on this topic cf. [8] but it is not a
problem in this article (we construct a solution which works nevertheless and
there are many more variables which happily are also eliminated).



1.4 The Role of [Unique] Polynomial Factorisation

One of the crucial insights in our attack is that the space of Boolean functions
does not have a unique factorisation. This topic has an interesting history and
was pioneered by a Russian mathematician Zhegalkin as early as 1927, cf. [28]. In
1936 an American mathematician Marshall Stone has reflected on the fact that
this is a very useful and simple method to “arithmetize” the Boolean algebra,
which is of great interest and led Stone to substantially rewrite his paper, cf. [28].
Today researchers prefer to use the terms such as ring Boolean polynomials B,,
for n variables, or Algebraic Normal Form (ANF), or work in certain quotient
polynomial rings, which are all essentially the same.

The main question which makes the impossible possible in this article, is
the lack of unique factorisation in B,,. This has very important consequences
in cryptanalysis which is further emphasised if we look at the exact result and
construction in this article. We have our main invariant polynomial P, which
is product of 7 simpler polynomials. With unique factorisation it would be ex-
tremely difficult to have a polynomial like the one we use to be invariant for
a block cipher. There will be only some “trivial” ways to do it, for example
that each polynomial is itself a linear invariant for 1 round, or a solution with
a cyclic permutation. A cyclic solution would imply that each polynomial is a
linear invariant after 7 rounds (not 1). We only get trivial attacks, or a cipher
pathologically weak w.r.t. classical Linear Cryptanalysis.

With a lack of unique factorisation we can do a lot better. There will also
be new non-trivial solutions which do NOT decompose into simpler attacks and
can only be shown to hold as a whole by polynomial algebra. Moreover inside
our proof that our attack actually works there will be also numerous additional
events where the lack of unique factorisation is needed or plays an important
role. For example, when we factor some polynomial or when we discover that
annihilators of a specific form exist with a relatively large probability or when
we show that different types of annihilators are related, cf. later Lemma 4.3.
More interestingly, it happens also when we establish later that Yu = p and
W = p with the same p, while the sets of variables used in polynomials Y and
W are entirely disjoint. Finally, it is also visible when in order to prove these two
absorptions we will factor p in two radically different ways with disjoint variables,
cf. page 4. Some of such “lack of unique factorisation events” are surprising and
counter-intuitive and they are the heart of what makes that T-310 can be broken.

2 Non-Linear Cryptanalysis through Formal Coding

The concept of cryptanalysis with non-linear polynomials a.k.a. Generalized Lin-
ear Cryptanalysis (GLC) was introduced at Eurocrypt’95, cf. [22]. A key question
is the existence of round-invariant I/O sums: when a value of a certain polyno-
mial is preserved after 1 round. Many researchers have in the past failed to find
any such properties, Bi-Linear and Multi-Linear attacks were introduced [11,12]
for Feistel ciphers branches specifically. In this article and unlike in [26] we fo-
cus on invariants which work for 100 % of the keys and we focus on stronger
invariants which hold with probability 1.



We call P a polynomial invariant if the value of P is preserved after one
round of encryption, i.e. if P(Inputs) = P(Output ANF). In this article we work
with one specific block cipher with 36-bit blocks. The main point is that any
block cipher round translates into relatively simple Boolean polynomials, if we
look at just one round. We follow the methodology of [8] in order to specify the
exact mathematical constraint, known as the Fundamental Equation or FE, cf.
Section 3, so that we could have a polynomial invariant attack on our cipher.
Such an attack will propagate for any number of rounds (if independent of key
and other bits). In addition it makes sense following [8] to consider that the
Boolean function is an unknown. We denote this function by a special variable
Z. We then see that our attack works if and only if Z is a solution to a certain
algebraic equation [with additional variables]. The main interest of making Z a
variable is to see that even if Z is extremely strong, some advanced “product”
attacks might sometimes work nevertheless, as will be shown below.

2.1 Notation and Methodology

In this article the sign + denotes addition modulo 2, and frequently we omit
the sign * in products. For the sake of compact notation we frequently use short
or single letter variable names. For example let x1,...,z3¢ be inputs of a block
cipher each being € {0,1}. We will avoid this notation and name them with
small letters a — z and letters M — V when we run out of lowercase letters.
We follow the backwards numbering convention of [8] with a = z3¢ till z = x4
and then we use specific capital letters M = x19 till V = x1, see Fig. 4 page
9. This avoids some “special” capital letters following notations used since the
1970s [16,25,24]. We consider that each round of encryption is identical except
that they can differ only in some “public” bits called F' (which are known to the
attacker) and some “secret” bits called S1 or K and S2 = L. Even though these
bits ARE different in different rounds we will omit to specify in which round
we take them because our work is about constructing one round invariants
(extending to any number of rounds). This framework covers most block ciphers
ever made except that some ciphers would have more “secret” or “public” bits in
one round. The capital letter Z is a placeholder for substitution of the following
kind

Z(e1,e2,€3,€4,€5,€6)

where €7 ...eg will be some 6 of the other variables. In practice, the e; will
represent a specific subset of variables of type a-z, or others, such as L. At the
end Z must be replaced by a formula like:

Z+ Z00+Z01x L+ Z02%c+ Z03* Lc+ ...+ Z62x cklfh + Z63 x Lcklfh
where Zij are coefficients of the Algebraic Normal Form (ANF).

2.2 Constructive Approach Given the Cipher Wiring
Our attack methodology starts from a given block cipher specified by its ANFs
for one round. In practice we will work with T-310. The block size is 36 bits and



the key has 240 bits. The hardware encryption cost with T-310 is hundreds of
times bigger than AES or 3DES, cf. [16]. Does it make this cipher very secure?
Not quite, if we can construct algebraic invariants which work for any number
of rounds.

2.3 ANF Coding of One Full Round

We number the cipher state bits from 1 to 36 where bits 1,5,9...33 are those
freshly created in one round, cf. Fig 1. Let x1,...,2z36 be the inputs and let
Y1, ---,Y3e be the outputs. One round of our cipher can be described as 36
Boolean polynomials out of which only 9 are non-trivial:

yss = F' + xp(9)
def
Z1 :Z(SQ,l‘p(l),...,l‘p(5))
Y20 = F + Z1 + zp(s)
Y25 — F+ 71 +l‘p(6) +$D(7)

de
Z2 = Z($P(7), e 733P(12))
yan = F+Z1+ape)+ 22+  zpee)
y17:F+Zl+xp(6)+Z2+ Tp13) + TD(5)

de
Z3 = Z($P(14)7~-~,33P(19))
ZUISZF—I-Zl—l—.Z’p(G)—i-ZQ—I— xp(13)+52+Z3+xD(4)
y9:F+Zl+xp(6)+Z2+ IIJP(13)+S2+Z3+$p(20)+xD(3)

def
Z4 = Z(IP(21)7~-~a17P(26))
ys = F+ 21+ Zp) + 72+ Tp(13) + S2+ 73+ xp(20)+Z4+xD(2)
Yy = F+ 71+ Zp(6) + Z2+ Tp(13) + 52+ Z3+ 1’p(20)+Z4+1’p(27)+{L‘D(1)

i) d;f S1

Yir1 = x; for all other i # 4k (with 1 <4 < 36)

Fig. 2. The specification of one round of T-310

Two things remain unspecified: the P and D boxes or the internal wiring.
In T-310 this specification is called an LZS or Langzeitschliissel which means a
long-term key setup. We simply need to specify two functions D : {1...9} —
{0...36}, P:{1...27} — {1...36}. For example D(5) = 36 means that input
bit 36 is connected to the wire which becomes Ub = y;7 after XOR of Fig. 1.
Then P(1) = 25 means that input 25 is connected as v1 or the 2nd input of Z1.
We also apply a special convention where the bit S1 is used instead of one of the
D(i) by specifying that D(i) = 0.
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2.4 The Substitutions

Overall one round can be described as 36 Boolean polynomials of degree 6; out
of which only 9 are non-trivial. One round of encryption is viewed as a sequence
of substitutions where an output variable is replaced by a polynomial algebraic
expression in the input variables. Here is a (shortened) example following the
cipher specification step-by-step for the long-term key 551 used in [8]:

a<+b
b+ c
c+d
d«— F+1i

L]
V«F+Z14+0+224q+L+2Z23+i+Z44+k+ K

In order to have shorter expressions to manipulate we frequently replace
Z1 — Z4 by shorter abbreviations Z,Y, X, W respectively. We also replace S2
by a single letter L (used at 2 places). The other key bits S1 = K will only be
used if some D(i) = 0 due to the special convention defined above: S1 is then
used and XORed at the output instead of one of the z ;) bits from the previous
round.

>W

1



3 The Fundamental Equation

In order to break our cipher we need to find a polynomial expression P say
Pla,b,c,d,e, f,g,h,...) =abedijkl + efg+efh + egh + fgh
using any number between 1 and 36 variables such that if we substitute
in P all the variables by the substitutions defined we would get exactly the

same polynomial expression P, i.e. P(Inputs) = P(Output ANF) are equal as
multivariate polynomials. We obtain:

Definition 3.1 (Compact Uni/Quadri-variate FE). Our “Fundamental Equa-
tion (FE)” to solve is simply a substitution like:

P(Inputs) = P(Output ANF)

or more precisely
Pla,b,c,d,e, f,g,h,...)=Pb,c,d, F+1i,f,9,h,F+Z1+e,...)

where again Z1 — Z4 are replaced by Z,Y, X, W. In the next step, Z will be
replaced by an Algebraic Normal Form (ANF) with 64 binary variables which
are the coefficients of the ANF of Z, and there will be several equations, and
four instances Z,Y, X, W of the same Boolean function:

Definition 3.2 (A Multivariate FE). At this step we will rewrite FE as
follows. We will replace Z1 by:

Z <+ Z00+ 201« L+ 2025+ Z03*Lj+ ...+ Z62x jhfpd+ Z63 * Ljhfpd
Likewise we will also replace Z2:
Y+ Z00+ 201 xk+Z02%x1+ Z03xkl+ ...+ Z62 x loent + Z63 * kloent

and likewise for X = Z3 and W = Z4 and the coefficients Z00...Z63 will be
the same inside Z1 — Z4, however the subsets of 6 variables chosen out of 36 will
be different in Z1 — Z4. Moreover, some coeflicients of P may also be variable.

In all cases, all we need to do is to solve the equation above for Z, i.e. determine
64 binary variables Z00. .. Z63. This formal algebraic approach, if it has a solu-
tion, still called Z for simplicity, or (P, Z) will guarantee that our invariant P
holds for 1 round. This is, and in this article we are quite lucky, IF this equation
does not depend on three bits F, K, L. Solving this equation in general, is the
general discovery process of [8] which we do not use here. We rather work with
basic paper and pencil maths and build our attack from scratch in stages.



4 A New Invariant Attack of Degree 7

We would like to show that a strong invariant property of type P(Inputs) =
P(Output ANF) can be “engineered” and will happen under specific conditions
of our choice, for any number of rounds any key and any IV. We define the
following set of 8 (linear) polynomials with 36 variables (which are the same as
in [9]):

A% (i+m)  which is bits 24, 28
B (j+n) which is bits 23,27
o (k+0) which is bits 22,26
D™ (1+p) which is bits 21,25
E (y+0) which is bits 8,12
F (++P) which is bits 7,11
G (M +Q) which is bits 6,10
H™ (N+R) whichis bits 5,9

Fig. 4. Variable naming conventions

Theorem 4.1 (A Degree 7 Invariant Attack). Let
P=(1+A+H)(B+H)(1+C+H)DO+H)(E+H)(1+F+H)(G+H)

then P is a non-zero polynomial of degree 7. We also assume that

{D(2),D(3)} ={6-4,7-4}
{D(6),D(7)} ={2-4,3-4}

and that inputs of Y are in order bits 27,6, 10,23, 21,25 and inputs of W are in
order bits 26,9,5,22,7,11. If the Boolean function used inside the cipher has,
after adding 1, an annihilator as follows:

Z+1)x(a+d+b+c+1)(a+d+e+f+1)=0 (1)
Then P is a round invariant for any key, any IV, and any number of rounds.

Remark 1: We call this a “product attack” because P is a product of several
polynomials. Our attack was initially inspired by [9] and designed for LZS 265
of [9]. However this attack is substantially less trivial and does not have the
strong symmetries compared to the product attack in [9]. It uses very few actual
properties of LZS 265, and any key which has the 44646 properties listed above
will also be broken. This however will exclude any real-life keys [20].

Remark 2: It may seem that Boolean functions which satisfy these properties
are extremely rare. In reality annihilators of degree 3 are near-systematic cf.
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Thm. 6.0.1. in [7], and annihilators of degree 2 of the sort we are looking for
here do also happen sometimes, for example when the Boolean function is chosen
at random, see Section 5. One example of a Boolean function which works here
is

Z = b+ac+be+abe+bd+abd+bed+abed+e+ce+ace+bde+a f+bf+abf+bef+df +cdf +
abedf +ef +bef + cef + acef + beef + bedef + abedef + 1
Additionally, there exist numerous permutations of inputs of Y and W which
will also work if letters a — f are also permuted accordingly. For simplicity we
study only the basic attack without these extra variants.

Proof of Thm. 4.1. We work on round invariants, and we recall that we call
the variable x35 at the input and ys¢ at the output by the same letter a, cf.
Fig. 4 above. Then if A is some polynomial, say a + N or 9,36 we will call the
input-side version of it A* = zg + x36. The output side version will be called
A° = yg + y36. At a later moment we will eliminate all output variables and use
only input variables, at this moment it will no longer be necessary to distinguish
input and output sides: it will be inputs only. We recall our assumption:

(D), DE)} = (6-4,7-4}
{D(6),D(7)} ={2-4,3-4}
and following [9] or simply following step by step a walk from output 9 to
output 5 in Fig. 3 above we see that:

H® =yg+ys = xpe) + W()+apa =W()+ A’ (2a)
D° =ys5+y21 = xp + Y() +xpe =Y () + E (2b)

Here we see how the polynomials D and H on the output side can be rewritten
as expressions using only input-side variables (where all bits FKL are already
eliminated). polynomial P to itself on the output side Then we remark that some
transitions are trivial for example H® = G° and many other: H - G — F — E
and D — C' — B — A. The output-side polynomial,
(1+A°4+H°)(B°+H°)(1+C°+H°)(D°+H°)(E°+H°)(1+ F°+H°)(G°+ H°)
Is then equal to:

(BiAW()+A +1) (CHW()+ A +1) (Y()+ E +W() + A9
(D'+W()+AY (B 4+ W()+ A+ 1)(H +W(.)+ AY)
at this moment we have only inputs left and we can use shorter notations and the

remainder of the proof will be a formal game of equality of Boolean polynomials
with 36 input variables and 3 F), K, L variables.

(B+W+A4+1D)C+WH+A+1D) Y +E+W+A(D+W 4+ A) 3)
(E+W4+A+1)(H+W+ A)

Finally we add the last expression to the input polynomial (1+ A+ H)(B +

HY(1+C+H)D+H)E+H)(1+ F+ H)(G+ H)) and obtain that the our

invariant holds if and only if our sum of the two polynomials is zero. In other
terms our FE sum, which we would like to be zero, is exactly equal to:
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ABCDFGY+ABCDFG+ABCDFHY+ABCDFH+ABCDGHY+ABCDGH+ABCDGY+ABCDG+ABCFGHY+ABCFGH+
ABCFHY+ABCFH+ABDFGHY+ABDFGH+ABDFGY+ABDFG+ABDGHY+ABDGH+ABDGY+ABDG+ACDFGHY+
ACDFGH+ACDFHY+ACDFH+ACFGHY+ACFGH+ACFHY+ACFH+BCDEFGW+BCDEFG+BCDEFHW+BCDEFH+
BCDEGHW+BCDEGH+BCDEGW+BCDEG+BCDFGHW+BCDFGHY+BCDFGWY+BCDFGW+BCDFHWY+BCDFHY +
BCDGHWY+BCDGHW+BCDGWY+BCDGW+BCEFGHW+BCEFGH+BCEFHW+BCEFH+BCFGHWY+BCFGHY+
BCFHWY+BCFHY+BDEFGHW+BDEFGH+BDEFGW+BDEFG+BDEGHW+BDEGH+BDEGW+BDEG+BDFGHWY+
BDFGHW+BDFGWY+BDFGW+BDGHWY+BDGHW+BDGWY+BDGW+CDEFGHW+CDEFGH+CDEFHW+CDEFH+
CDFGHWY+CDFGHY+CDFHWY+CDFHY+CEFGHW+CEFGH+CEFHW+CEFH+CFGHWY+CFGHY+CFHWY+CFHY

which we have been able! to factor as:
(B+C)G+H)(B+H)B+F)(C+D)
(A+H)Y +(E+H+1)W+ (4)
(D+H)YW+ (D+ H)(A+ E)]

Let the product of first 5 multiplicative terms be denoted by a special letter:
w=(B+C)G+H)B+H)B+F)(C+ D) (5)

all the we need to show now is that p annihilates the product of all other
factors and our work is finished. An easy observation is that our equation reduces
to 0 when Y, W = 1. In Sage we type:

sage: R.<A,B,C,D,E,F,G,H> = BooleanPolynomialRing(8)

sage: lhs = (1+A+H)* (B+H)* (1+C+H) * (D+H) * (E+H) * (1+F+H) * (G+H)
sage: rhs = (B+A)*(C+1+A)*(D+A)* (E+A) * (F+1+A) *x (G+A) * (H+1+A)
sage: lhs == rhs

True

Our work would therefore be finished if Y = W = 1 which they are not, as they
are complex polynomials in 6 variables each. Now imagine that

Lemma 4.2. Under assumptions of Thm. 4.1 we have
Yp=p and Wp=p (6)

The proof of this lemma appears later below. If we admit this theorem, then
because p is a factor here and all the Y, W are elsewhere, we are actually allowed
to replace Y by 1 because it is multiplied by p anyway and Y - p by 1 - u. All
we need to do now is to show that Y = p and Wy = p which is somewhat
surprising, because the sets of variables used in these two polynomials Y and W
are expected to be entirely disjoint. We need a little Lemma.

! One working method to do this is to use the function F.annihilator(1, dim=True) in
SAGE and divide by f each time we find a degree 1 annihilator f.
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Lemma 4.3. If we have (Z+1)*(a+d+b+c+1)(a+d+e+ f+1)=0as
in our assumptions then we also have

(Z+1D)(f+e)d+a)(b+c)=0 (7)

Proof of Lemma 4.3. We observe that for any 3 Boolean polynomials W fg =0
is equivalent to W(f + h)g = 0 for each polynomial h which annihilates g. In
particular when h = g+ 1 we get W fg=0< W(f+ g+ 1)g = 0. Accordingly:

(Z4+ D) (f+e)d+a)b+e)=(Z+ 1)+ (f+e)d+a)d+atbtetl)=

(Z+1)x(a+d+e+f+1)(d+a)d+a+b+c+1)

which means the latter polynomial must be zero for any input, because it is a
multiple of our assumption (Z +1)* (a+d+b+c+1)(a+d+e+ f+1)=0.
For convenience we recall all our definitions of A — F' below

U
®
s

U
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-
—~

i+m) which is bits 24,28
j+mn) which is bits 23,27
)

U
)
-

which is bits 22, 26
I+ p) which is bits 21,25
which is bits 8,12
z+ P) which is bits 7,11
M+ @) which is bits 6, 10
/(N +R) which is bits 5,9

and we recall that inputs of Y are in order 27,6, 10, 23,21, 25 which is the
same as n, M,Q, j,l,p and inputs of W are 26,9,5,22,7,11 or o, R, N, k, z, P.
From (7) due to Lemma 4.3 applied twice for both W and Y we obtain:

(Z+1)(f +e)(d+a)b+c)=0.
(Y(n, M,Q,5,1,p) + D)(p+ 1) (j +n)(M + Q) =0.

(W(o,R,N,k,z,P)+1)(P+ z)(k+0)(R+ N) =0.
Here the order of the 6 variables matters and we obtain that:
CHF - W =CHF and BDG-Y = BDG (8)
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We then rewrite in a similar manner our initial assumption (Z +1) * (d+a+
b+c+1)(a+d+e+ f+1) =0 twice and we obtain:

(Z+1)*x(d+a+b+c+1l)(a+d+e+f+1)=0
(W(o,R,N,k,z,P)+1)*x(k+0+ R+ N+1)(o+k+2+P+1)=0
Y(n,M,Q,j,l,p)+ )« (j+n+M+Q+1)(n+j+1l+p+1)=0

‘We have obtained two more absorption properties:
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(C+H+1)(C+F+1)-W=(C+F+1)(C+H~+1) (9)

and
(B+D+1)(B+G+1)-Y=(B+D+1)(B+G+1) (10)

Proof of Lemma 4.2. Now we are ready to prove also the earlier Lemma 4.2
which was omitted until this point (and was not used in the equations established
above, therefore there is no circular argument). We need to show that under
assumptions of our Thm. 4.1 we have:

Yp=p and Wyp=pu

This part is non deterministic, and we find it surprising. Because factorisation
is not unique, we have some freedom in how we factor? u. We recall

= (B+C)(G+ H)(B+ H)(B+ F)(C + D) (11)

We want to separate the B, D, G terms from the C, H, F' terms, in order to
absorb W and Y respectively. By the same randomized process using SAGE
function .annihilator as above we try to factor this polynomial several times and
in two different attempts we get that:

p=(C+H+1)(C+F+1)(BDG+HB+D+1)(B+G+1)) (12a)

p=([B+D+1)(B+G+1)(CFH+G(C+H+1)(C+F+1)) (12b)

these two facts imply that both Y and W can be absorbed by p. More
precisely in (12a) we see that W is absorbed by the first two terms of the fac-
torisation using (9) therefore Wy = p. Similarly in (12b) Y is absorbed by the
first factor using (10) therefore Yy = p. Interestingly there is another proof: Y
can also be absorbed by the last factor of (12a) using both second part of (8)
and (10) and W can also be absorbed by the last factor of (12b) using both the
first part of (8) and (9). This ends the proof of earlier Lemma 4.2, which was
the only thing which remained to prove.

% In Section 6 of [18] we will find the same p with a different factorrisation.
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4.4 Related Research, Redundancy and Equivalent Attacks

In our Thm. 4.1 we have

P=(1+A+H)B+H)1+C+H)D+H)(E+H)(1+F+H)(G+ H)

and in [18] we find another attack of degree 7 with
P=(A+B)(C+D)(D+F)B+F)(E+F)G+F)G+H).

It is quite surprising and nevertheless true, that both polynomials are actually
identical, which is possible because we do not have unique factorisation. Actually,
both are attacks are completely identical. The attack in [18] has two annihilation
conditions which needs to hold simultaneously:

(Z+1)x(f+e)(d+a)b+c)=0 (13a)

(Z+1)x(f+e+1)(d+a+1)(b+c+1)=0 (13b)
It is possible to show that this is simply equivalent to our attack condition (1).

Theorem 4.5 (Equivalence of Two Attacks). Conjunction of conditions
(13a) AND (13b) is equivalent to condition (1). A Boolean function works in our
attack of Thm. 4.1 if and only if it works with the attack of Section 6 in [18].

Proof of Thm. 4.5. Following Lemma 4.3 the first condition is always true
for our attack. The second implication is true for the same reason, if we negate
exactly three variables f,d,b then the formula (1) which is (Z+ 1)(d+a+b+
c+1)(a+d+ e+ f+1) remains unchanged due to double negation. Finally the
opposite implication holds because (d +a+b+c+ 1)« (a+d+e+ f+1)is
simply equal to the sum:

(fte+)d+a+1)(b+c+ 1)+ (f+e)(d+a)b+c)

We have two different proofs and two different formal algebra derivations for
the exactly same attack. This observation has many interesting consequences.
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4.6 Polynomial Algebra vs. Space Partitioning Attacks

Boolean polynomial arithmetic is highly redundant and these attacks could also
be simply studied in terms of space partitioning attacks [21] and it will then
be easier to see that they are identical. However multivariate polynomials do
provide specific insights - they make attack more intelligible in the sense that
they explain WHY certain attacks work. Having two different factorisations is
quite instrumental and actually is used inside our proofs for both results. It is
quite common in cryptanalysis with invariants that different attacks would be
related to each other with intersections and with situations where one attack
implies® another but not vice-versa. Here we have an equivalence result.

We are now going to argue that we do not need to “fall back” and study
partitioning attacks and drop the redundant formal algebraic approach of this
paper. On the contrary, we claim that we need more of redundant formal alge-
braic approach. In Section 12 and Appendix B in [9] and Sections 4 and Section
7 in a new paper [19] we provide an even more redundant attack methodology.
We describe a new comprehensive framework for the construction of non-linear
attacks on block ciphers. It is based on the study of sets of imperfect cycles
on basic polynomials obeying simple rules. Here the redundancy potentially in-
creases and we expect to find even more ways to obtain the same attack. The new
methodology is deterministic and prescriptive. It allows us to show the existence
of a large number of attacks, in such a way that if an initial set of constraints
on polynomials is true, we don’t need a proof that the attack works. Thus we
gain more insights about why a given attack works. Moreover if a certain attack
could be constructed in several different inequivalent ways, and if these are not
identical, this could increase the probability of success of certain attacks.

Another interesting question is whether our attack of Thm. 4.1 we have
could also be obtained in a third way, as just a special case of this new general
cyclic framework? Potentially yes, however we do not know this yet. In fact this
construction involves multiplying many polynomials together and for this reason
it has a one-way property. Given a concrete polynomial P there could be many
ways (but also possibly zero ways) to obtain this P from the general framework
of [19].

3 An elaborate set of examples for this can be found in [17] and Section 10 in [8].
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5 On Success Probability of Our Attack

In this section we evaluate the exact probability that a random Boolean function
is such that the attack of Thm. 4.1 works when the Boolean function is chosen
at random. We have the following result:

Theorem 5.1 (Specific Annihilator Probability). The probability that (Z+
x(d+a+b+c+1)(a+d+e+ f+1) =0 when Z is a random Boolean
function with 6 variables is exactly 2716,

This result is not trivial: it potentially depends not only on two linear func-
tions but also potentially on how they interact (repeated variables). In order to
show this we need several more basic results. Let By be the ring of all Boolean
polynomials with N variables represented by their ANF. We denote by Ann(f)
the set of annihilators of a Boolean function f, and since this is a linear space
which also includes 0, let DimA(f) be the dimension of this space with:

| Ann(f)| = 2PmAL)
Now it is maybe less obvious that we have:
Theorem 5.2 (Annihilators and Weight).

_ By|
|Ann(f> - th(f)

where wt(f) denotes the Hamming weight of the Boolean function f, meaning
the number of 1’s in its truth table or, in other words, the cardinality of the
support of f. The proof of this result is found in Appendix A.

We study the probability that given a specific Boolean function f, a random
Boolean function Z will be in the annihilator set of f. There are several ways
to derive our result. the simplest method is to look at the weight of the product
(d+a+b+c+1)(a+d+e+ f+1), which is 2V /4 and applying Thm. 5.2 directly,
which gives 2-2 immediately. However we want to understand how this type of
result changes when we multiply factors, and establish convenient notations and
tools which can be used to solve similar problems, even in more complex cases.
For this reasons another method is studied in detail in Appendix C. A more
detailed study showing three methods to establish a similar result at a higher
degree equal to 3 can be found in Appendix C of [9]. A fourth method could be
through our equivalence result of Thm. 4.5.

6 Applications, Backdoors and Defensive Considerations

In this article the main attack scenario is that the Boolean function is chosen at
random or have been chosen by the adversary. One interesting question is could
a block cipher be backdoored in a precise sense that (Z +1)*(d+a+b+c+
(a+d+e+ f+1) =0 and does it conflict with known cipher design criteria.
In Section 5 we compute the probability that the attack of Thm. 4.1 works when
the Boolean function is chosen at random. In practice Boolean functions are
expected to be very strong, and satisfy multiple stringent requirements such as
good non-linearity, correlation immunity, etc. cf. [5,3]. Under these assumptions
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could the cipher nevertheless be broken due to Thm. 4.1 just because we are not
lucky and (Z+1)x(d+a+b+c+1)(a+d+e+ f+1) =07 With complex
combinations of non-linearity assumptions the probability is overall probably
different than the result of Thm. 5.1 in Section 5 below.

An interesting question would be to look back at how the Boolean function
of T-310 was generated, two precise sets of historical design criteria are given in
[13], and to re-evaluate this probability in more detail under these assumptions.
Our current understanding is that the Boolean function of T-310 was extremely
well chosen and we do not expect it to be weak in any way, not even accidentally*

6.1 Applications - Decryption and Key Recovery Attacks

An interesting question is how do we use such properties in decrypting T-310
communications. The answer is quite complex due to the highly secure stream
cipher mode in which this cipher operates, cf. [13], where key bits used in en-
cryption are extracted at a very low rate, of less than 1 bits every 127 rounds.
We refer to Section 9 in [9] and Section 6 in [10] for an introduction to this topic.
Some invariants (not all) introduce pervasive biases made of higher order corre-
lation properties which do not degrade as the number of rounds grows. Other
invariants do directly involve some key bits, see for example Section 9.1. in [9]
and [15]. This is a complex question which we consider to be out of scope for the
present paper which is a proof of concept for a single attack of degree 7. Most
likely, the peculiar invariant presented in this paper is not quite the one which
we would need.

6.2 Post-scriptum: Prime period and prime degree questions

Why is it interesting to study invariants such as in this paper? Interestingly 7 is a
prime and 127 is also a prime. There are several important reasons why we study
invariants with a prime period®. Unlike the attack of degree 8 from [9], they do
not seem to be easily constructed following the structure of our cipher with 4
branches. It is possible they would be in some sense “primitive” rather that not
derived from some simpler attacks. Is it possible that an invariant property of
period 127 exists? Such a property could be highly relevant due the period 127
being actually used in real-life encryption. A first proof of concept showing that
this is actually possible can be found in Section 3 of [18].

4 Qur current experience looking for interesting annihilation events in various cipher
S-boxes suggests that Boolean functions which have many zeros inside their Walsh
spectrum are going to be vulnerable to this type of annihilations less frequently, than
with random Boolean functions. This is related to the study of the Walsh spectrum
and k-normal Boolean functions, cf. [6].

The relation between the degree and period in invariant attacks is not straightfor-
ward. Many complex attacks become simpler when we increase the period, while
some attacks with period k, can be constructed from cycles on simple polynomials
with a period of exactly k, cf. Section 5.6 and Fig. 5 in [9]. A non-linear attack of de-
gree k can be constructed by multiplying polynomials lying a cycle for a hypothetical
set of transitions with period k - this topic is studied in [19].

ot
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7 Conclusion

Block ciphers have been with us since the 1970s and have iterated periodic struc-
ture. Extremely few attacks in symmetric cryptanalysis benefit from this period-
icity really well and work when the number of rounds is large. A major question
is how to discover new round-invariant properties. The space of solutions is dou-
ble exponential and systematic exploration is not feasible [2]. For some 50 years
researchers found very few attacks of this type except recently [8,26]. Follow-
ing [8] polynomial invariant attacks are feasible when two Boolean polynomials
become equal, or the so called Fundamental Equation vanishes. In this article
we present a new very specific construction a polynomial invariant attack. Our
goal is to make two different products of 7 factors equal (as polynomials). Our
construction relies on several algebraic simplification or annihilation/absorption
events. In fact such equality with two products would be rather unthinkable if
the ring of multivariate polynomials B,, had unique factorisation. Our construc-
tion is compared to other similar attacks in [9] and [18] which use the same basic
polynomials.

One way to interpret the result in this article is showing how to “backdoor”
the Cold War block cipher T-310, making it weak on purpose. However it is also
more generally about “proper” cryptanalysis of block ciphers. Each and every
property we require about the cipher wiring or the Boolean function happens
with a probability which is not too small. Such attacks can therefore happen
accidentally, also when the whole cipher specification and the non-linear compo-
nents are the strongest possible and were not chosen by the attacker.

How good is our result? We do not claim that the probability of 276 in Thm.
5.1 is very large and we must recognise that a Boolean function with an annihi-
lator of degree 2, is not likely to be admitted as a legitimate choice in a block
cipher. This is because a typical function on 6 bits has annihilators of degree 3
but not 2, cf. [7], Therefore the invariant attack described in this article is yet
weak. The present attack does not work for any real-life long-term keys (LZS)
for T-310 [20]. However if this polynomial invariant P of degree 7 does not work,
another similar property of degree 7 may eventually work. In future works we
intend to demonstrate that as the degree of P increases, the power of our attack
increases, and the success probabilities go up. For example the “product attack”
of degree 8 described in [9] has a higher success probability. This previous attack
in [9] involved two cycles with 4 polynomials closely following natural transitions
in a Feistel cipher with 4 branches. This article shows that there exists yet less
trivial and more complex periodic polynomial invariant attacks on block ciphers
where the polynomial is a particular product of well chosen 7 linear polynomi-
als. A factorisation of a Boolean polynomial is not unique and the same attack
can be obtained in more than one way, cf. Section 4.4. This provides valuable
insights about why certain attacks work. In Section 6.1 we explain how invari-
ant attacks could potentially be used to decrypt encrypted communications, and
why it is potentially important to search for periodic properties with a degree
and/or period being a prime number such as 7 or 127.
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A Our Formula For Annihilator Space Cardinality

In this appendix we provide a proof of the formula of Thm. 5.2:

B
Aun(f)] = 12V (12)

where wt(f) denotes the Hamming weight of the Boolean function f, i.e. the
number of 1’s in its truth table. We start by observing that:

geAm(f) & gf=0&(g=0V[f=0)=(g=1—f=0)

< supp(g) C supp(l + f) (13)

We are going to prove the formula by showing a bijection between two finite
sets, one with cardinality |Ann(f)|, the other with cardinality equal to %
Let’s start by defining our map in the general case.

Lemma A.1. Given any subset K C ]Fév , the following map is a bijection:

A:{g:F3 —Fy:supp(g) CK} — {x: K — {0,1}}
9 F Xsupp(g)

Where the map Xgsupp(g) is the characteristic map of the support of g defined on
the set K:

N (z) = 1 z € supp(y)
supp(g) 0 T ¢ supp(g)

Proof of Lemma A.1.
1. Injectivity:
A(g1) = A(92) € Xsupp(gr) = Xsupp(ga) & SUPP(g1) = supp(g2) < g1 = g2

2. Surjectivity: trivial because every Boolean function coincides with the char-
acteristic function of its support.

O

From this lemma the formula (12) follows directly, when we consider it in the
case K = supp(l + f). The set on the left has cardinality equal to |Ann(f)|
thanks to (13), while the set on the right has of course cardinality 2lsupp(1+£)[
Therefore we obtain the result claimed:

IBn|
Qwt(f)

|Ann(f)| = 2/surp(+HI — 92" —[supp(f)| _
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B Supports or Boolean Functions and HW Sum Formula

In this section we show an alternative interpretation of Boolean functions. In
what follows denote the power set of a set X by P(X), which is defined as
the set of all subsets of X. The symbol A will denote the symmetric difference
between sets, i.e. AAB = (A\ B)U(B\ A) which is the set operation equivalent
of logical XOR. The main idea is that By and P(IF5 ) are Boolean rings with
their own operations which are in a one to one correspondence.

<>

Fig. 5. Venn diagram for the set symmetric difference.

Fact B.1. We have an isomorphism between two Boolean rings (By, +, *) and
(P(FY), AA,N) defined as follows with the following four properties:
(B, +,%) — (P(F3), A, N)
f = supp(f)

. The map is a bijection.

- f+ g supp(f) A supp(g)
- f* g+ supp(f) N supp(g)
. The inverse map respects the operations as well

=W N

We will now use this isomorphism to prove the theorem needed in this paper:

Theorem B.2. Given any two Boolean functions f,g € By, we have the fol-
lowing relation between the Hamming weights:

wt(f + g) = wt(f) +wt(g) — 2 wt(fg)

Proof of Thm. B.2. Hamming weight is defined cardinality of the support,
therefore due to isomorphism above, our result becomes the well known fact
about sets:

|AA B|=|A|+|B|—2|ANn B|

where we take A and B are supp(f) and supp(g) respectively. This ends the
proof.

O

We also provide an example to show how Thm. B.2 works in practice. We have
generated two random Boolean functions and we see how the truth tables for
f,9,f+g and fg are related. We see that wt(f +g) = wt(f) +wt(g) —2-wt(fg).

5 O[1[1]O[1]1
Pz 1(1|lO0|O|O[1
F -+ g|1l|Oo[1|lO[1]O
Fa |O|[1|lolo[o][1
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C Another Method to Derive our Success Probability

We study the probability that given a specific Boolean function f, a random
Boolean function Z will be in the annihilator set of f. We assume that the choice
of the function Z is uniformly random inside the space of Boolean functions B .
Then this probability is equal to the relative size of the set of Ann(f) inside By:

Definition C.1. Given a Boolean function f, we define the probability value

associated to it as: |Ann(f)]
AP def P(Z Random in By, Z € Ann(f)) = ﬁ
N

C.2 Annihilator Combination Theorem

We recall that due to Thm. 5.2 our probability is always directly related to the
Hamming weight of the function f, in particular we see that APy = (%)w’f(f).
An interesting question is what happens when f is a product of two Boolean
functions like f = f f2, whose decomposition is not unique.

Theorem C.3 (Combination Formula). Given any two Boolean functions
f1 and fy we have:

Al f Al f:
AP = —_ 2 14
fif2 APf1 fo ( )

Proof of Thm. C.3. This formula follows from the following formula which is
formally proven in Thm. B.2 in Appendix B:

wi(fi+ f2) = wi(f1) + wt(fz) — 2 - wt(f1f2) (15)
Rearranging the formula (15) we can write:
1
wi(fufa) = 5 (wit(fr) + wt(fz) — wt(fi + f2)) (16)
which yields the formula (14) in the following way:

P (1>w'5(f1f2) (1) 3 (wt(f1)+wt(f2)—wi(f1+f2)) ApflAsz
fife =\ 5 5 =\ T
e 2 Apf1+f2

2
From here we obtain another derivation for our Thm. 5.1. We are going to
apply Thm. C.3:

Ap(d+a+b+c+1)Ap(a+d+e+f+l)
AP (44 atbtet1)+(atdtetf+1)

p= Ap(d+a+b+c+1)(a+d+e+f+1) =

Each affine function here is balanced and we have We start by noticing that

wt(d+a+b+c+1) 26—wt(d+a+b+c) 25
P (1 (1 (1
(dtatbtetl) = | 5 =13 =3

Putting everything together we obtain the desired result of Thm. 5.1:

1 1
= 2? = 2? = 2_16 ~ 1.53 % 10_5




