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ABSTRACT

In the process of model fitting for fundamental matrix esti-
mation, RANSAC and its variants disregard and fail to re-
duce the interference of outliers. These methods select corre-
spondences and calculate the model scores from the original
dataset. In this work, we propose an inlier filtering method
that can filter inliers from the original dataset. Using the fil-
tered inliers can substantially reduce the interference of out-
liers. Based on the filtered inliers, we propose a new algo-
rithm called CLUSAC, which calculates model quality scores
on all filtered inliers. Our approach is evaluated through es-
timating the fundamental matrix in the dataset kusvod2, and
it shows superior performance to other compared RANSAC
variants in terms of precision.

Index Terms— Inlier filter, model quality score, funda-
mental matrix estimation, RANSAC

1. INTRODUCTION

Fundamental matrix estimation is an essential problem in the
field of computer vision. RANSAC (RANdom SAmple Con-
sensus) [1] and its variants have been widely used in funda-
mental matrix estimation. Standard RANSAC randomly se-
lects a sample subset of minimal size and fits the model, re-
peats these two steps, and returns the model with the high-
est quality. Since the publication of RANSAC, many im-
proved variants have been proposed. There are three main
ways to improve RANSAC: modify the model generation (in-
cluding sampling strategy) [2, 3, 4, 5, 6], modify the model
scoring strategy [7, 8, 9, 10] and modify the termination cri-
terion [11, 12, 13].

RANSAC and its variants select the sample subsets from
the original contaminated dataset to fit a model and calculate
the model score on all correspondences. These approaches
fail to consider and thus cannot reduce the interference of out-
liers in the process of model fitting. In this work, we focus on
reducing the interference of outliers in the model fitting pro-
cess, and propose to filter inliers from the original dataset and
calculate scores of the estimated model on the filtered inliers,
so as to reduce the interference of outliers.

As the major contribution of this paper, we propose a new
method of inlier filtering based on clustering. We cluster the
original dataset into two clusters based on the different char-
acteristics of inliers and outliers. As a second contribution,
we propose an algorithm based on the filtered inliers. The
proposed algorithm CLUSAC (Clustering Sample Consen-
sus) calculates the model quality score on all the filtered in-
liers. Using the filtered inliers to fit the model can reduce the
interference of outliers on the model estimation.

We compare the proposed algorithm CLUSAC with other
RANSAC variants in fundamental matrix estimation and
find that CLUSAC can estimate the fundamental matrix bet-
ter than the other compared RANSAC variants in dataset
kusvod2 in terms of precision.

2. RELATED WORK

Since we proposed an inlier filtering method and calculated
the model scores based on the filtered inliers, we review pre-
vious work related to model generation and model scoring.
Modify the model generation. GroupSAC [2], PROSAC [3],
NAPSAC [4] and EVSAC [14] modify the sampling strategy
to increase the probability of selecting an all-inlier sample
earlier. GroupSAC assumes that there are groups in the
dataset and uses hierarchical sampling to increase the prob-
ability of extracting all-inlier samples. PROSAC sorts the
matches linearly through a similarity function and extracts
the sample subset of the minimal size from the top-ranked
correspondences. NAPSAC utilizes the spatial correlation
between inliers and selects inliers by constructing a hyper-
sphere. EVSAC leverages Extreme Value Theory to model
the statistics of matching scores. MLESAC [5] assumes
that inliers and outliers obey different distributions, esti-
mates the model quality through maximum likelihood, and
returns the model with the maximum likelihood. Based on
LO-RANSAC [15], Graph-Cut RANSAC [6] exploits spatial
coherence, making it a local optimization RANSAC, which
alternates graph-cut and model re-fitting as the LO step.
These methods try to modify the model generation under cer-
tain assumptions to select an all-inlier sample earlier, but they
did not try to filter inliers from the original dataset to reduce
the interference of outliers on the model estimation.



Modify the model scoring strategy. Standard RANSAC pre-
defines an inlier-outlier threshold, and if the point-to-model
residual is smaller than the threshold, the point is an inlier,
otherwise, the point is an outlier. RANSAC returns the model
with the most number of inliers. RANSAC variants try to
modify the model scoring strategy to make the model scor-
ing process faster and better. Preemptive RANSAC [7], Td,d
test [8] and Bail-out test [9] are RANSAC variants that try to
make RANSAC scoring faster. Preemptive RANSAC uses a
preemptive scoring strategy in the scoring process, and Td,d
test and Bail-out test terminate the scoring process early if
it is sufficiently certain that the score being computed will
fail to be better than the previously recorded best consen-
sus score. Latent RANSAC [11] maps the hypothesis to a
latent space and defines the hypothesis distance as the dif-
ference in the size of the correspondences residuals, and this
method can evaluate the RANSAC hypothesis within a con-
stant time. Other RANSAC variants try to modify the model
quality function to select a better model. The state-of-the-art
algorithm MAGSAC [10] assumes the noise σ to be a ran-
dom variable, marginalizing the log-likelihood quality func-
tion to get the updated quality function without parameter σ.
MAGSAC solves the problem where the inlier noise scale
needs to be defined by the user. These RANSAC variants cal-
culate the model scores on the original dataset, and thus the
quality of the estimated model can be interfered by outliers in
the process of estimation.

3. CLUSTERING SAMPLE CONSENSUS (CLUSAC)

The existence of outliers will affect the model fitting process.
RANSAC and its variants did not try to reduce the interfer-
ence of outliers in the process of model fitting. In this work,
We propose an inlier filtering method and then an algorithm
that calculates the model quality scores based on the filtered
inliers to reduce the interference of outliers.

3.1. Inlier Filtering

Standard RANSAC randomly selects a sample subset of min-
imal size to fit the model and returns the model with the most
number of inliers. The model obtained by RANSAC is ran-
dom, hence both the estimated model θ and the residual γ of
each point to the estimated model are random variables.

For each estimated model θi, the point-to-model residu-
als of inliers should be smaller than the residuals of outliers.
Hence, the different characteristics of correspondences can be
used to distinguish inliers and outliers and thus filter inliers.

For each estimated model θi, we calculate the residuals of
all correspondences pj , j = 1, . . . ,m. In order to filter the
inliers, we estimate the model n times, and thus we can get
the residual list into a n×m matrix Γ. By transposing matrix
Γ, each row of the transposed matrix represents the residuals
of each correspondence for different models. As the inliers

and outliers have different characteristics of residuals, we can
use a clustering method to group the original dataset into two
clusters, and the cluster with smaller residual can be treated
as the filtered inliers.

The proposed inlier filtering algorithm is summarized in
Algorithm 1. Firstly, we fit the model multiple times and cal-
culate the residuals of each model for all correspondences.
We fit RANSAC models 40 times in experiments. To obtain
a better clustering result, we normalize the residuals of each
model for all correspondences. Secondly, we transpose the
residual list Γ, and get its principal component list ζ using
principal component analysis. Using PCA to get the principal
component list is because each row of the transposed matrix
may be related. Thirdly, we cluster original correspondences
into two groups through the list ζ. Finally, we output the clus-
ter with the smaller residual as the filtered inliers I.

Algorithm 1 Inlier filtering.
Input:

P - data points, σ - inlier-outlier threshold;
n1 - number of models, n2 - dimension of PCA;

Output:
I - filtered inliers

1: for i = 1→ n1 do
2: Fit model θi, calculate the model’s residuals for all cor-

respondences γij , j = 1, . . . ,m.
3: Normalize the calculated residuals of each model θi.
4: end for
5: Transpose residual list Γ and get its n2 principal compo-

nent list ζ using PCA.
6: Cluster the original dataset into two clusters through list
ζ.

7: Output the cluster with the smaller RMS residual as the
filtered inliers I.

3.2. Model Quality Score

To evaluate the quality of the model, we define the quality
score of the model θ as follows:

Q(I, θ) =
1

L(I, θ)
, (1)

where

L(I, θ) =

√
1

|I|
∑
pi∈I

γ2(pi, θ) (2)

is a loss function that calculates the model’s RMS residual on
all filtered inliers, in which γ(pi, θ) is the residual of point
pi to the estimated model θ and I is the set of filtered inliers.
A smaller loss function value means that the model fits the
filtered inliers better.

CLUSAC uses Eq.(1) as the quality function to score the
estimated model. As the model scores are calculated in the
filtered inliers, we can reduce the interference of outliers.



3.3. Termination Criterion

We calculate the model score of each model on the filtered in-
liers. This score represents the fitness between the estimated
model and the filtered inliers. By predefining a model score
threshold, we terminate the iteration process if the model
score of the estimated model is larger than the predefined
score threshold. To avoid the issue due to an overly-small
predefined model score threshold, we set the maximum num-
ber of iterations. When the number of iterations is larger than
the maximum number of iterations, terminate the iteration
process, and output the model with the highest quality score.

The standard termination of RANSAC is as follows [10]:

k(θ, σ,P) =
ln(1− η)

ln(1− ( |I(θ,σ,P)|
|I| )m)

, (3)

where k is the iteration number, η is the manually set con-
fidence, |I(θ, σ,P)| is the inlier number of so-far-the-best
model, and m is the size of the minimal sample.

We use the maximum number of iterations of the standard
RANSAC as a reference and set a maximum iteration thresh-
old greater than k.

3.4. CLUSAC Algorithm

The CLUSAC algorithm is summarized in Algorithm 2.
Firstly, we filter inliers from the original correspondences us-
ing Algorithm 1. Then, we randomly select a sample subset
of the minimal size on the filtered inliers I and fit the model.
For each estimated model, we calculate its RMS residual on
all filtered inliers and the model’s quality. If the score of the
estimated model is larger than the predefined score thresh-
old or the iteration number reaches the maximum number of
iteration, we output the model with the highest quality.

Algorithm 2 CLUSAC
Input:

P - data points, k - maximum iteration number;
σ - inlier-outlier threshold, τ - model quality threshold;
n1 - number of models, n2 - dimension of PCA;

Output:
θ - model parameters

1: Filter inliers I(P , σ, n1, n2) (Algorithm 1)
2: for i = 1→ k do
3: Randomly select sample subset of the minimal size on

filtered inliers I, and fit the model.
4: Calculate the estimated model’s RMS residual on all

filtered inliers I, get the model’s quality Qi.
5: if Qi >τ then
6: break.
7: end if
8: end for
9: Output the estimated model θ with the highest quality.

4. EXPERIMENTAL RESULTS

Dataset. The performances of CLUSAC and RANSAC vari-
ants are compared in dataset kusvod21. These image pairs
were previously used in RANSAC variants [3] [6] [16] [17];
it contains 16 image pairs for fundamental matrix estima-
tion. For a fair comparison, we used the point pairs ob-
tained by matching the SIFT descriptors of MSER’s in LO+-
RANSAC [16]. This dataset has two parts of point pairs: the
first part is used to fit the model, the second part is used to cal-
culate the precision of the estimated model, which contains
about ten pairs of manually annotated ground-truth point. We
checked all these ground-truth point pairs in kusvod2 to en-
sure that these ground-truth points are reliable. Fig.1 shows
the scene Shout with eleven manually annotated ground-truth
point pairs.

Fig. 1. The scene Shout with ground-truth point pairs. We
checked all these point pairs in kusvod2 to ensure that they
are reliable.

Compared RANSAC variants. The compared RANSAC
variants are RANSAC [1], LO-RANSAC [15], MSAC [18],
LO-MSAC [16], MSAC+Lsq [16], LO’-RANSAC and LO+-
RANSAC [16]. The inlier-outlier threshold related param-
eter σ of all compared RANSAC variants was set to 0.3.
The state-of-the-art algorithm MAGSAC [10] also used the
dataset kusvod2 to estimate the fundamental matrix. The av-
erage RMS Sampson distance of 16 image pairs of kusvod2 in
MAGSAC is 0.38, which is much smaller than the experimen-
tal result in LO+-RANSAC [16]. This is because MAGSAC
merged the two parts of point pairs in the dataset kusvod2
and augmented the manually annotated ground truth corre-
spondences as follows2: First, the implied model is estimated
from the manually selected inliers. Second, the inliers of the
ground-truth model are selected. In contrast, LO+-RANSAC
did not include those manually annotated ground truth point
pairs in the estimation process, nor does our experiments.
Hence, we do not include MAGSAC for comparison.
What is measured. To compare the precision of the esti-
mated fundamental matrix, we calculate the error of the esti-

1http://cmp.felk.cvut.cz/data/geometry2view/
2https://github.com/danini/magsac/blob/

9bf48cc8a7d20ef617f71ffdccf0ca1208c29b67/src/main.
cpp

http://cmp.felk.cvut.cz/data/geometry2view/
https://github.com/danini/magsac/blob/9bf48cc8a7d20ef617f71ffdccf0ca1208c29b67/src/main.cpp
https://github.com/danini/magsac/blob/9bf48cc8a7d20ef617f71ffdccf0ca1208c29b67/src/main.cpp
https://github.com/danini/magsac/blob/9bf48cc8a7d20ef617f71ffdccf0ca1208c29b67/src/main.cpp


Table 1. CLUSAC’s RMS Sampson distance compared with RANSAC variants. The best is in bold.
scenes RSC LO-RSC MSC LO-MSC MSC+LSq LO’-RSC LO+-RSC CLUSAC
Booksh 3.22 1.82 3.05 1.77 2.81 2.83 1.77 1.29

Box 49.46 62.28 50.16 62.58 54.71 56.78 58.52 7.63
Castle 4.58 0.95 4.29 0.94 3.54 2.35 0.81 3.76
Corr 0.51 0.21 0.48 0.18 0.37 0.31 0.18 0.47
Graff 2.74 3.03 2.69 3.09 2.63 2.15 3.08 0.91
Head 0.78 0.32 0.78 0.31 0.40 0.30 0.31 0.21

Kampa 16.54 13.89 14.27 12.46 14.10 9.12 12.52 1.75
Kyoto 2.27 0.87 2.25 0.81 1.64 1.07 0.78 0.71
Leafs 8.19 3.87 7.94 3.88 5.86 3.18 3.85 1.39
Plant 23.84 23.44 21.24 20.93 21.31 16.63 20.93 7.85

Rotunda 1.31 0.47 1.30 0.52 0.62 0.44 0.43 2.27
Shout 1.77 0.86 1.72 0.82 1.62 1.34 0.82 1.46

Valbonne 30.21 29.29 29.46 28.56 29.67 28.03 28.54 25.82
Wall 2.26 0.45 2.23 0.42 1.06 0.53 0.49 0.21
Wash 1.05 0.30 1.04 0.27 0.39 0.28 0.27 6.74
Zoom 2.49 0.89 2.39 0.86 1.92 1.52 0.86 0.64

mated model on manually annotated ground-truth correspon-
dences. The error is the RMS Sampson distance in pixels; the
Sampson distance [19] is defined as follows:(

x′i
T
Fxi

)2
(Fxi)

2
1 + (Fxi)

2
2 + (FTx′i)

2
1 + (FTx′i)

2
2

, (4)

where xi and x′i are point pairs and F is the estimated fun-
damental matrix. A smaller error indicates a better preci-
sion; however, small differences in small values are insignifi-
cant [16].
Results and analysis. CLUSAC uses the normalized eight-
point method [20] to calculate the fundamental matrix, thus
we draw a minimal sample subset of size eight in each it-
eration. The parameter σ is set to 0.3 as other compared
RANSAC variants, the model score threshold τ is set to 1.5,
and the maximum iteration number is set to 1000. The error
of CLUSAC and compared RANSAC variants are shown in
Table 1, with the best in bold.

It can be seen from Table 1 that CLUSAC is superior
to other compared RANSAC variants in terms of precision.
The RMS Sampson distance of the fundamental matrix esti-
mated by CLUSAC is smaller than other RANSAC variants
in most of the scenes in kusvod2. Especially in the scenes
Box, Kampa, and Plant, the RMS Sampson distances are
much smaller than other compared RANSAC variants, which
means that CLUSAC can estimate the fundamental matrix
much better in those scenes. For example, in the scene Box,
the RMS Sampson distance of CLUSAC is 7.63, while most
of the other compared RANSAC variants are more than 50.
CLUSAC is the worst on scenes Rotunda and Wash; how-
ever, both the compared RANSAC variants and CLUSAC
have small errors on these scenes, and small differences be-
tween small errors are not significant.

Fig. 2. The epipolar lines and the ground-truth points in the
scene Box. Errors: RMS Sampson distance = 7.63 pixels.

In Fig.2 we plot the epipolar lines of the estimated funda-
mental matrix and the manually annotated ground-truth point
pairs in the scene Box. We can find that most of the epipolar
lines are near the ground-truth point pairs, which clearly in-
dicates that the fundamental matrix estimated by CLUSAC is
excellent in this scene.

5. CONCLUSIONS

In this paper, we propose a method of inlier filtering, and
based on the filtered inliers, we propose the algorithm
CLUSAC, which calculates the model quality scores on all
filtered inliers. By using the filtered inliers to fit the model
and calculate the model scores, we can reduce the interfer-
ence of the outliers on the process of model fitting. The
proposed algorithm is evaluated through estimating the fun-
damental matrix in the real-world dataset kusvod2, and the
result demonstrates that the proposed algorithm is superior to
other compared RANSAC variants in terms of precision.
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