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Cancer cells obtain mutations which rely on the production of diffusible growth factors to confer a fitness
benefit. These mutations can be considered cooperative, and studied as public goods games within the
framework of evolutionary game theory. The population structure, benefit function and update rule all
influence the evolutionary success of cooperators. We model the evolution of cooperation in epithelial
cells using the Voronoi tessellation model. Unlike traditional evolutionary graph theory, this allows us
to implement global updating, for which birth and death events are spatially decoupled. We compare,
for a sigmoid benefit function, the conditions for cooperation to be favoured and/or beneficial for well-
mixed and structured populations. We find that when population structure is combined with global
updating, cooperation is more successful than if there were local updating or the population were
well-mixed. Interestingly, the qualitative behaviour for the well-mixed population and the Voronoi tes-
sellation model is remarkably similar, but the latter case requires significantly lower incentives to ensure
cooperation.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

1.1. Cooperation between cancer cells

Oncogenesis is a process of somatic evolution. In order to
become cancerous there are certain key mutations which cells
must obtain, corresponding to the hallmarks of cancer (Hanahan
and Weinberg, 2000; Hanahan and Weinberg, 2011). Evolutionary
game theory provides a framework for modelling mutations which
have a fitness effect beyond the cell itself. For example, certain
mutations can be considered cooperative, in that they invoke a cost
to the cell which is recuperated as a shared benefit. This is evident
when the benefit relies on the production of a diffusible growth
factor (Jouanneau et al., 1994; Axelrod et al., 2006), as is the case
for a number of the hallmarks of cancer, such as self-sufficiency
in growth signalling and sustained angiogenesis. The Warburg
effect, whereby tumour cells metabolise through glycolysis even
when oxygen is abundant (Warburg, 1956), can also be considered
cooperative (Archetti, 2014).

Cooperative mutations benefit the population as a whole; how-
ever, it is often the case that defection (e.g. not producing growth
factor) results in higher individual fitness. This is because the
defector shares in the benefits without paying any fitness costs
associated with cooperating. Understanding the conditions under
which cooperation can evolve, despite the incentive to defect,
has been a topic of extensive study within evolutionary game the-
ory (Nowak, 2006; Ohtsuki et al., 2006a; Allen et al., 2017).

Cooperation is usually considered to be a desirable outcome. For
example, within the social sphere or amongst healthy constituent
cells of a multicellular organism. Cooperation between cancer cells,
however, can drive tumour growth (Marusyk etal., 2014). This is of
course detrimental to the patient, and thus, disrupting cooperation
between cancer subclones, possibly by exploiting its evolutionary
weaknesses, could be an important avenue for treatment
(Archetti, 2013a; Zhou et al., 2017).
1.2. Public goods games

Applications of evolutionary game theory to model cancer evo-
lution have mainly focussed on two-player games, whereby cells
participate in multiple pairwise interactions within the population
(Tomlinson, 1997; Basanta and Deutsch, 2008; Hummert et al.,
2014). Interactions between cancer cells, however, tend to happen
in groups. For example, a cell producing a growth factor will pro-
vide a benefit to other cells within its diffusion range. These types
of mutations are thus better represented as multiplayer public
goods games (PGGs) (Archetti and Scheuring, 2012), played
between producer (cooperator) and non-producer (defector) cells.
The former produce growth factor at a fixed cost to their fitness.
Both producers and non-producers receive a fitness benefit as a
function of the frequency of producers in their interaction
neighbourhood.
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The most common PGG, known as the N-person prisoner’s
dilemma (NPD), uses a linear benefit function (Hauert et al.,
2002; Santos et al., 2008). However, non-linear benefit functions
may be more realistic (Archetti et al., 2015; Archetti et al., 2017),
and can lead to much richer dynamics, even for well-mixed popu-
lations. An example is the volunteer’s dilemma (VD), which defines
the benefit as a Heaviside step function (Bach et al., 2001; Bach
et al., 2006; Archetti, 2009a; Archetti, 2009b).

A sigmoid benefit function has been proposed as an appropriate
model for growth factor production. Experiments on neuroen-
docrine pancreatic cancer cells in vitro have found sigmoid depen-
dence of proliferation rates on the concentration of growth factor
IGF-II (Archetti et al., 2015). Furthermore, such a function is rela-
tively general, with both the NPD and VD arising as extreme cases
(Archetti and Scheuring, 2011).

1.3. Population structure and update rules

Most cancers originate in epithelia. These are tissues formed of
sheets of cells, which are approximately polygonal on their apical
surfaces. It is important to take into account this population struc-
ture when modelling the evolutionary dynamics. For both two-
player cooperation games (Ohtsuki et al., 2006b; Nowak et al.,
2010) and multiplayer PGGs (Peña et al., 2016), cooperators tend to
have greater success in structured populations, as compared to
well-mixed ones, because they are able to formmutually beneficial
clusters.

Evolution on structured populations is usually modelled within
the framework of evolutionary graph theory (Lieberman et al.,
2005), in which the population is represented as a fixed graph.
Epithelial cells tend to have six neighbours on average, and thus
can be represented as a hexagonal lattice. Introducing more realis-
tic population structures, with small variation in neighbour num-
ber, does not have a significant impact on evolutionary outcomes
(Archetti, 2016; Renton and Page, 2019).

The success of cooperation is also dependent on the update
dynamics.Withinevolutionarygraph theory, thepopulationevolves
according to an update rule. In general, update rules can be divided
into two categories: local and global (Nathanson et al., 2009).

1.3.1. Local updating
A local update involves a spatial relationship between birth and

death events. Evolutionary graph theory usually requires a local
update rule in order to maintain the fixed graph structure. Two
commonly used local update rules are defined as follows:

� birth–death: a cell is selected to divide with probability propor-
tional to fitness; one of its neighbours is chosen to die uniformly
at random.

� death-birth: a cell is chosen to die uniformly at random; one of
its neighbours is selected to divide with probability propor-
tional to fitness

In both cases the offspring of the dividing cell occupies the
empty site left by the dead cell (Zukewich et al., 2013). The choice
between these update rules has a substantive effect on evolution-
ary outcomes. For example, consider a two-player prisoner’s
dilemma game and a population represented by a regular graph.
Cooperation can be favoured for a death-birth update rule, so long
as the benefit is high enough. For the birth–death update, however,
as is the case with a well-mixed population, cooperation is only
favoured for an infinitely large benefit (Ohtsuki et al., 2006b).

These update rules are sometimes referred to as BD-B (birth–
death with selection on birth) and DB-B (death-birth with selection
on birth) to emphasise that selection is acting on birth. Alternative
update rules, for which selection acts on death, can then be
2

referred to as BD-D and DB-D (Masuda, 2009). In this paper, we
limit ourselves to the case where selection acts on birth, thus we
do not use this notation to differentiate the two cases.

1.3.2. Global updating
Under a global update rule there is no spatial dependence

between birth and death events; thus, cells are selected to repro-
duce and die from the population as a whole. Global updating is
generally seen for well-mixed populations, or when populations
are organised in phenotype space (Antal et al., 2009) or by sets
(Tarnita et al., 2009b).

Within evolutionary graph theory the shift update rule is an
example of global updating. In this case a cell is chosen to divide
with probability proportional to fitness, and a second cell is chosen
to die uniformly at random. A path is then selected on the graph
which connects the two. Cells are shifted along this path until there
is an empty node next to the dividing cell for its progeny to occupy.
This kind of update works well on a one-dimensional lattice (Allen
and Nowak, 2012), and promotes cooperation, even compared to
the death-birth update. However, it becomes more complex in
two-dimensions (Pavlogiannis et al., 2015), because division
causes cellular rearrangement at a distance from the event.

1.3.3. Epithelial structure and dynamics
Evolutionary graph theory has several shortcomings for mod-

elling invasion processes in epithelia. Firstly, it assumes that the
population can be represented by a static graph, whereas epithelia
are dynamic structures. Secondly, as we have discussed, introduc-
ing global update rules into evolutionary graph theory presents
challenges to the modelling framework (Pavlogiannis et al., 2015).

The question then arises as to which update rule is most realis-
tic for an epithelium. This will depend on the extent to which death
and division processes are spatially coupled. For homeostatic tis-
sues it is likely that contact inhibition, the phenomenon whereby
cells stop proliferating at high density, plays an important role in
maintaining the population size (Mesa et al., 2018). The death-
birth update rule could be an appropriate model when contact
inhibition is very strong, as tissue density is likely to be low near
a recent death. Conversely, a global update rule is likely to be more
realistic when contact inhibition is weaker and thus there is less
spatial dependence between death and division.

The death-birth and decoupled update rules represent extreme
cases of spatial coupling between division and death. In this paper
we focus on global updating, as the death-birth update rule, along
with other local update rules, has been extensively studied within
evolutionary graph theory (Ohtsuki et al., 2006b; Maciejewski
et al., 2014; Peña et al., 2016; Allen et al., 2017). In future work,
we will consider the spectrum of spatial coupling that can arise
in a tissue due to contact inhibition, and how this affects the evo-
lution of cooperation.

In line with our previous work (Renton and Page, 2019), we use
the Voronoi tessellation (VT) model (Meineke et al., 2001; Van
Leeuwen et al., 2009) to represent epithelial dynamics. Unlike tra-
ditional evolutionary graph theory models, the tissue structure is
dynamic and cells are able to divide and die independently. It is
thus straightforward to spatially decouple birth and death, and
we are able to introduce a global form of updating, we call the
decoupled update rule. In Renton and Page (2019), we used this
framework to analyse the two-player prisoner’s dilemma game,
finding that cooperation was more successful for the decoupled
update rule, than for a death-birth update rule. The present paper
extends these results to a wide range of multiplayer public goods
games, as well as deriving general results for global update rules.

We aim to extend the range of applicability of quasi-analytical
methods from evolutionary game theory to more realistic tissue
models. We have chosen to use the VTmodel, because it uses a very
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simple force law and, as a cell-centre model, naturally provides the
graph structure needed for evolutionary games (Meineke et al.,
2001). Furthermore, unlike cellular automata models, cell division
leads only to local topological changes. The VTmodel has been used
to represent cellular dynamics in colonic and intestinal crypts,
including for models of invasion (Mirams et al., 2012; Romijn et al.,
2020). Other tissue models, such as the vertex model (Farhadifar
et al., 2007), could also be appropriate for our purposes.

The version of the VT model we use represents a simple epithe-
lium1 as a two-dimensional structure. Thus our results aremostly rel-
evant to the early stages of tumorigenesis or field cancerization
(Curtius et al., 2017) in simple epithelia. While models of later stage
tumour evolution would be more appropriately modelled in three
dimensions, two-dimensional models can still be useful in the first
instance.
1.4. Measures of mutant success

For stochastic evolutionary games without mutation, we can
compare the success of different strategies by calculating fixation
probabilities. Here we consider the dynamics of two cell types: A
and B. The fixation probability qX is then defined as the probability
that a single initial mutant X will eventually take over the entire
population. We consider two measures for the success of an A
mutant (Zukewich et al., 2013; Maciejewski et al., 2014):

� A is a beneficialmutation when qA > q0. Here q0 ¼ 1=Z is the fix-
ation probability for a neutral mutant and Z is the population
size.

� A is favoured by selection, or has an evolutionary advantage,
when qA > qB. This is equivalent to the condition that the equi-
librium frequency of A is greater than a half when mutation is
allowed (A is the dominant strategy).

In general, these conditions are not equivalent, thus it is possi-
ble for a mutation to be beneficial but not favoured, or vice versa.
One or the other condition might be more relevant to quantifying
mutant success depending on the circumstances. Furthermore,
under certain circumstances these two conditions are equivalent
(Maciejewski et al., 2014).

The remainder of this paper explores conditions under which a
mutation is beneficial and/or favoured. We begin in Section 2 by
setting out the mathematical formalism for multiplayer evolution-
ary games, focussing particularly on PGGs played between cooper-
ators and defectors. Section 2.1 then introduces the r-rule, which
is used to determine whether a strategy is favoured. We outline
several known results on graphs with local update rules, as well
as deriving results for a birth–death and shift update rule on a
cycle. We then derive the conditions for favourability on a general
population structure with global updating. In Section 2.2 we derive
a similar rule, but for a strategy to be beneficial. In Section 3 we
apply this theory to consider conditions for cooperator success in
an epithelium, using spatial statistics calculated through simula-
tion of the Voronoi tessellation model. Finally, in Section 4, we dis-
cuss the implications of our work for the evolution of cooperative
public goods in epithelia and make some remarks on the different
significance of beneficial and favourable mutants.
2. Evolutionary dynamics of multiplayer games

We consider an arbitrary multiplayer game with two strategies,
A and B. Players interact in groups of size N ¼ kþ 1, and obtain
1 A simple epithelium is formed of a single layer of cells, whereas a stratified
epithelium is multilayered.
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payoffs aj;k and bj;k respectively, where j is the number of A co-
players and k is the total number of co-players. For a graph-
structured population, the co-players are direct neighbours. The
fitness of each individual is then defined as 1þ daj;k or 1þ dbj;k,
where d is the selection strength parameter.

The population evolves according to a Moran process (Moran,
1958), i.e. at each time-step one individual dies and another repro-
duces. Thus, the population size Z remains constant. How these
individuals are chosen is determined by the update rule. We con-
sider cases where reproduction, but not death, is dependent on
fitness.

Many of the results we derive in the following sections are for
general games, however we are focussed on PGGs played between
producer/cooperator cells (C) and non-producer/defector cells (D).
These games are defined by a benefit function b � b xð Þ and a cost
function, which we take to be constant c, with b > c. Here, x is
the proportion of cooperators in a cell’s interaction group. Thus,
cooperator and defector payoffs are defined respectively as

aj;k ¼ b � b jþ 1
kþ 1

� �
� c; bj;k ¼ b � b j

kþ 1

� �
: ð1Þ

In order to ensure that the payoff is higher when all players
cooperate than when no players cooperate we enforce the condi-
tion b � b 1ð Þ � c P b � b 0ð Þ. Often this is done by setting
c ¼ 1; b > 1; b 1ð Þ ¼ 1 and b 0ð Þ ¼ 0.

The NPD and VD can both be defined in this form by specifying
the benefit functions:

b xð Þ ¼ x NPDð Þ ð2Þ
b xð Þ ¼ H x� ~xð Þ; VDð Þ ð3Þ

where H xð Þ is the Heaviside step function and ~x is the minimum
proportion of cooperators required to obtain the benefit. Further-
more we can define a general sigmoid benefit function:

b xð Þ ¼ a xð Þ � a 0ð Þ
a 1ð Þ � a 0ð Þ ; ð4Þ

where

a xð Þ ¼ 1
1þ es h�xð Þ ð5Þ

is the logistic function, s is the steepness and h is the inflection
point. We can regain the NPD and VD by taking the limits s ! 0
and s ! 1 respectively (see Fig. 1).

2.1. The r-rule: conditions for cooperation to be favoured

For a particular update rule and population structure, the r-rule
allows us to determine which is the favoured strategy (Wu et al.,
Fig. 1. Logistic benefit function. Left panel: h ¼ 0:5; s ¼ 1 (dash-dot), s ¼ 10 (dash)
and s ¼ 1000 (solid). We can regain the limiting cases by letting s ! 0 (NPD) or
s ! 1 (VD). Right panel: s ¼ 10; h ¼ 0:2 (dash-dot), h ¼ 0:5 (dash), h ¼ 0:8 (solid).
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2013). We recall from Section 1.4, that a strategy A is favoured over
B, when qA > qB.

The r-rule states that

qA > qB ()
Xk

j¼0

rj aj � bk�j

� �
> 0; ð6Þ

where rj are the structure coefficients. It is assumed that the group
size N ¼ kþ 1 is fixed. Thus, we have let aj;k ¼ aj and bj;k ¼ bj. The
structure coefficients are dependent on the population structure
and update rule, but not the payoffs. Therefore, if we calculate rj

for a given population structure and update rule, we can determine
the favoured strategy for any game.

For certain population structures, such as the well-mixed popu-
lation and the cycle graph, the state is fully described by the num-
ber of A-players, n. Thus we can define the ratio of fixation
probabilities as

qA

qB
¼

YZ�1

n¼1

Tþ
n

T�
n
; ð7Þ

where T�
n are the transition probabilities to go from n ! n� 1 A-

type individuals (Traulsen et al., 2009). This does not hold in gen-
eral, as the transition probabilities in more complex population
structures will depend on the spatial configurations of different cell
types, and thus, are not uniquely defined by n. However, it is still
possible to utilise this equation, as we see in Sections 2.1.6 and
2.2, by averaging over possible states to approximate T�

n .
In the following we consider various cases where the structure

coefficients can be calculated from transition probabilities in the
weak selection limit, i.e. when d � 1. This limit is commonly
employed within evolutionary graph theory in order to obtain ana-
lytical results, e.g.(Nathanson et al., 2009; Tarnita et al., 2009a;
Allen et al., 2017). Essentially, weak selection implies that the pay-
offs obtained by playing the game are only a small contribution to
overall fitness. It allows expansion of fixation probabilities in pow-
ers of the selection strength parameter.

We outline known results for the well-mixed population, the
cycle graph with death-birth update rule and k-regular graphs with
death-birth update rule. We also introduce some new results,
deriving the structure coefficients for the cycle graph with birth–
death and shift update rules. Finally, we derive a new approximate
expression for the structure coefficients of any population struc-
ture with global updating.

2.1.1. Well-mixed population
The structure coefficients for a well-mixed population are given

by Gokhale and Traulsen (2010):

rj ¼
1; if 0 6 j 6 N � 2
Z�N
Z ; if j ¼ N � 1

(
ð8Þ

(see also Section 2.1.6). Thus we can obtain the condition for
qA > qB by plugging these into Eq. 6. For a PGG defined by Eq. 1
the condition that cooperators are favoured is

Z � N
Z

b b 1ð Þ � b 0ð Þ½ � >
XN�1

j¼0

rjc: ð9Þ

This becomes

b
c
>

N Z � 1ð Þ
Z � N

; ð10Þ
4

when we set b 1ð Þ ¼ 1 and b 0ð Þ ¼ 0. Clearly the shape of the benefit
function does not impact whether cooperation is favoured. For a
large population this condition becomes b=c > N.

2.1.2. Cycle graph: death-birth update
We can obtain exact expressions for the structure coefficients of

the cycle graph, in the weak selection limit. The cycle is a one-
dimensional lattice with periodic boundary conditions. Individuals
interact with their two nearest-neighbours, thus we have group
size N ¼ 3.

The structure coefficients for the death-birth update rule are
derived in Peña et al. (2016). They are given by

r0 ¼ 1; r1 ¼ Z � 2; r2 ¼ Z � 3: ð11Þ
From Eq. 6 we obtain the condition for cooperation to be

favoured under an NPD, defined by Eq. 3:

b
c
>

3 Z � 2ð Þ
2 Z � 3ð Þ ; ð12Þ

which for Z ! 1 becomes b=c > 3=2. These conditions are lower
than those obtained for a well-mixed population. For a general
PGG defined by Eq. 1 we can write down the condition

b
c
>

2 Z � 2ð Þ
Z � 3ð Þ b 1ð Þ þ b 2=3ð Þ � b 1=3ð Þ � b 0ð Þ½ � : ð13Þ
2.1.3. Cycle graph: birth–death update
We derive novel results for the birth–death and shift update

rules on the cycle, using a similar method to Peña et al. (2016)
for the death-birth update rule. For the cycle, the transition prob-
abilities are uniquely defined by the number of A-players in the
population, n. Thus we can write down the ratio of transition prob-
abilities for each n. For a birth–death update rule these are

Tþ
n

T�
n
¼

1þ da0ð Þ= 1þ db1ð Þ; if n ¼ 1
1þ da1ð Þ= 1þ db1ð Þ; if 1 < n < Z � 1
1þ da1ð Þ= 1þ db2ð Þ; if n ¼ Z � 1:

8><
>: ð14Þ

Substituting these into Eq. 7, and taking the limit, d � 1, we
obtain

qA

qB
� 1þ d a0 � b2 þ Z � 2ð Þ a1 � b1ð Þ½ �: ð15Þ

In order that qA > qB, the second term must be positive. Thus,
comparing this condition with Eq. 6, we find the structure
coefficients

r0 ¼ 1; r1 ¼ Z � 2; r2 ¼ 0: ð16Þ
For the NPD, cooperation is favoured when

b
c
>

3 Z � 1ð Þ
Z � 3

; ð17Þ

which becomes b=c > 3 in the large population limit, Z ! 1. These
conditions are equivalent to those obtained for the well-mixed pop-
ulation. For a general PGG defined by Eq. 1 the condition is

b
c
>

Z � 1
Z � 3ð Þ b 2=3ð Þ � b 1=3ð Þ½ � : ð18Þ
2.1.4. Cycle graph: shift update
We follow the same procedure to derive the structure coeffi-

cients for the shift update rule. This time the ratio of transition
probabilities is given by
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Tþ
n

T�
n
¼

Z�1ð Þ 1þda0ð Þ
2 1þdb1ð Þþ Z�3ð Þ 1þdb0ð Þ ; if n ¼ 1
Z�nð Þ 2 1þda1ð Þþ n�2ð Þ 1þda2ð Þð Þ
n 2 1þdb1ð Þþ Z�n�2ð Þ 1þdb0ð Þð Þ ; if 1 < n < Z � 1
2 1þda1ð Þþ Z�3ð Þ 1þda2ð Þ

Z�1ð Þ 1þdb2ð Þ ; if n ¼ Z � 1:

8>>><
>>>: ð19Þ

In the weak selection limit, d � 1, Eq. 7 becomes

qA

qB
� 1

þ d a0 � b2ð Þ þ 2 HZ�1 � 1ð Þ a1 � b1ð ÞÞ þ Z � 2HZ�1ð Þ a2 � b0ð Þ½ �;
ð20Þ

where Hm is the m-th harmonic number:

Hm ¼
Xm
n¼1

1
n
: ð21Þ

Thus the structure coefficients are given by

r0 ¼ 1; r1 ¼ 2 HZ�1 � 1ð Þ; r2 ¼ Z � 2HZ�1ð Þ: ð22Þ
The condition for cooperation to be favoured for the NPD is

b
c
>

3 Z � 1ð Þ
3 Z � 1ð Þ � 4HZ�1

: ð23Þ

In the large population limit this becomes b=c > 1. As this con-
dition is required in the definition of the NPD, we can state that
cooperation is always favoured in the large population limit for a
shift update under weak selection.

In fact, if we consider a general cooperation game as defined by
Eq. 1, we obtain the condition

b
c
>

1
b 1ð Þ � b 0ð Þ ð24Þ

in the large population limit, Z ! 1. Letting b 1ð Þ ¼ 1 and b 0ð Þ ¼ 0,
we regain the condition b=c > 1. Thus, for the shift update on the
cycle, as with the well-mixed population, the condition for cooper-
ation to be favoured is not dependent on the shape of the benefit
function (although in this case we required the large population
limit). Furthermore, cooperation is favoured on the cycle with shift
update for all PGGs, as defined by Eq. 1, given that the population is
sufficiently large.

2.1.5. Approximate results for k-regular graphs
In higher dimensions the transition probabilities are no longer

uniquely defined by the number of A-players in the population,
but depend also on their configuration. Peña et al. (2016) have
derived expressions for the structure coefficients of regular graphs
of degree k P 3, with death-birth updating, using pair approxima-
tion and diffusion approximation (Ohtsuki et al., 2006b). They
compared theoretical predictions with simulation results for the
case of a volunteer’s dilemma game. They find a good fit for ran-
dom regular graphs, but that the approximations underestimate
the critical benefit-to-cost ratio for lattices.

We do not state the full expressions here which are non-trivial
functions of k. The condition for cooperation to be favoured with
the NPD in the large population limit (Z 	 k) is given by Peña
et al. (2016)

b
c
>

kþ 1
2

: ð25Þ
2.1.6. Structure coefficients under global updating
In the following we derive novel results for the structure coef-

ficients under global updating. We find a general expression which
is exact under certain conditions, and provides an approximation
for the structure conditions for any population structure with glo-
bal update rule. The preceding sections have considered games
5

played on a fixed graph or well-mixed population, within groups
of fixed size, N. For well-mixed populations we were free to choose
N (although some results required N � Z), while for regular graphs
we set N ¼ kþ 1, where k is the degree of the graph. Here, we relax
this condition and allow for variable group size.

We make the assumption that there is a fixed distribution,

f A=Bj n; kð Þ, defining the probability that an A=B-player interacts with
j co-players of type A, given it has k co-players in total and there
are n players of type A in the population. If the population were
defined on a graph, this would be the probability of an A=B-
player having j A-type neighbours, given k total neighbours. This
assumption is true for a well-mixed population or cycle graph,
but not necessarily for other population structures where

f A=Bj n; kð Þ depends on the specific configuration of players. The fre-
quency of individuals with k neighbours is given by gk. We make
the further assumptions that this distribution is fixed, and does
not depend on type. See Appendix B for a discussion of the validity
of this assumption for the VT model.

In general, for a global update rule, we can define the transition
probabilities

Tþ
n ¼ Z � n

Z
nFA

nFA þ Z � nð ÞFB
T�
n ¼ n

Z
Z � nð ÞFB

nFA þ Z � nð ÞFB
; ð26Þ

where

FA ¼ 1þ d
XZ�1

k¼1

Xk

j¼0

f Aj n; kð Þgkaj;k ð27Þ

FB ¼ 1þ d
XZ�1

k¼1

Xk

j¼0

f Bj n; kð Þgkbj;k ð28Þ

are the population averaged fitnesses. The payoffs aj;k and bj;k

depend explicitly on the number of neighbours k.
Substituting Eqs. 26-28 into Eq. 7, and taking the weak selection

limit we obtain

qA

qB
� 1þ d

XZ�1

n¼1

XZ�1

k¼1

Xk

j¼0
gk f Aj n; kð Þaj;k � f Bj n; kð Þbj;k

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

: ð29Þ

Thus qA > qB when C > 0. In the weak selection limit,

f Aj n; kð Þ ¼ f Bk�j Z � n; kð Þ ð30Þ
must hold by symmetry, and thus

XZ�1

n¼1

f Aj n; kð Þ ¼
XZ�1

n¼1

f Bk�j n; kð Þ: ð31Þ

Therefore we have

C ¼
XZ�1

k¼1

Xk

j¼0

XZ�1

n¼1

gkf
A
j n; kð Þ aj;k � bk�j;k

� �
: ð32Þ

The condition for A to be favoured over B is thus given by

XZ�1

k¼1

Xk

j¼0

rj;k aj;k � bk�j;k
� �

> 0; ð33Þ

where

rj;k ¼ gk

XZ�1

n¼1

f Aj n; kð Þ ð34Þ

are the structure coefficients. For a fixed group size, N ¼ kþ 1, this
reduces to Eq. 6, with

rj ¼
XZ�1

n¼1

f Aj nð Þ; ð35Þ
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where we have dropped the explicit dependence on k.
Recall that this derivation is based on the assumption that gk

and f Aj n; kð Þ are fixed. While this is not true in most cases, we can
obtain an approximation for the structure coefficients by averaging
over a large ensemble of population configurations, i.e. letting

f Aj nð Þ ¼ f Aj nð Þi0
D

. Here, :h i represents the mean taken over possible

configurations and the 0 indicates that these are obtained in the
neutral selection limit, i.e. d ¼ 0.

The well-mixed population is an example where f Aj nð Þ is fixed. It
is defined by a hypergeometric distribution:

f Aj nð Þ ¼ Z � 1
k

� ��1 n� 1
j

� �
Z � n

k� j

� �
: ð36Þ

We can therefore find the structure coefficients (Gokhale and

Traulsen, 2010) by substituting this expression for f Aj nð Þ into Eq.
35:

rj ¼
Z � 1
k

� ��1 XZ�1

n¼1

n� 1
j

� �
Z � n

k� j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

:
ð37Þ

It can be shown (see Appendix A in Gokhale and Traulsen
(2010)) that

S ¼

Z

kþ 1

� �
if 0 6 j < k

Z � 1
kþ 1

� �
if j ¼ k:

8>>><
>>>: ð38Þ

Thus the structure coefficients are given by

rj ¼
Z

kþ1 if 0 6 j < k
Z�k�1
kþ1 if j ¼ k:

(
ð39Þ

These are equivalent to Eq. 8 up to a constant factor. The cycle

graph also has a fixed distribution, f Aj nð Þ, thus the structure coeffi-
cients for the shift update rule can also be obtained exactly using
Eq. 35.

For a variable group size the structure coefficients for the well-
mixed population are given by

rj;k ¼ gkrj kð Þ ¼ gk

Z
kþ1 if 0 6 j < k
Z�k�1
kþ1 if j ¼ k;

(
ð40Þ

where rj kð Þ are defined in Eq. 39.
As we have seen in previous sections, once the structure coeffi-

cients have been determined, we can use Eq. 6 or Eq. 33 to find the
condition under which cooperation is favoured. For a PGG defined
by Eq. 1 this is given by

b
c
>

Z � 1XZ�1

k¼1

Xk

j¼0

rj;k b jþ1
kþ1

� �
� b k�j

kþ1

� �h i : ð41Þ
2.2. Conditions for cooperation to be beneficial under global updating

Thus far, we have considered conditions under which a mutant
is favoured. However, we recall from Section 1.4, that an alterna-
tive measure of mutant success can be obtained by considering
the conditions under which it is beneficial. Here, we derive the
condition for an A-mutant to be beneficial, i.e. qA > q0.
6

As in the previous section, we make the assumption that the

distributions gk and f A=Bj n; kð Þ are fixed. Thus the population aver-
aged fitnesses of A and B players are defined by Eqs. 27 and 28
and the transition probabilities by Eq. 26. The fixation probability
for a single A-mutant (Traulsen et al., 2009) is then given by

qA ¼ 1þ
XZ�1

m¼1

Ym
n¼1

T�
n

Tþ
n

" #�1

: ð42Þ

Substituting in the transition probabilities and taking the weak
selection limit d � 1 we obtain

qA ¼ 1
Z
þ d

Z2

XZ�1

k¼1

Xk

j¼0

hAj;kaj;k � hBj;kbj;k

� �
þ O d2

� �
; ð43Þ

where we have defined

hAj;k ¼ gk

XZ�1

m¼1

Xm
n¼1

f Aj n; kð Þ ð44Þ

hBj;k ¼ gk

XZ�1

m¼1

Xm
n¼1

f Bj n; kð Þ ¼ gk

XZ�1

m¼1

Xm
n¼1

f Ak�j Z � n; kð Þ: ð45Þ

The final equality is obtained by symmetry arguments in the
weak selection limit.

The condition for A to be a beneficial mutation, qA > 1=Z, is
therefore given by

XZ�1

k¼1

Xk

j¼0

hAj;kaj;k � hBj;kbj;k

� �
> 0: ð46Þ

If we consider a PGG as defined by Eq. 1, then cooperation is
beneficial when

b
c
>

Z Z � 1ð Þ

2
XZ�1

k¼1

Xk

j¼0

hAj;k b
jþ1
kþ1

� �
� hBj;k b

j
kþ1

� �h i : ð47Þ

For a fixed group size N ¼ kþ 1 these conditions simplify to

Xk

j¼0

hAj aj � hBj bj

� �
> 0 ð48Þ

and

b
c
>

Z Z � 1ð Þ

2
Xk

j¼0

hAj b
jþ1
kþ1

� �
� hBj b

j
kþ1

� �h i ; ð49Þ

where

hA=Bj ¼
XZ�1

m¼1

Xm
n¼1

f A=Bj n; kð Þ: ð50Þ
3. Public goods games in an epithelium

A number of studies have considered the evolutionary dynam-
ics of sigmoid PGGs in epithelia, representing the tissue either as
a well-mixed population (Archetti, 2013b), or a fixed graph struc-
ture with various local update rules (Archetti, 2013c; Archetti,
2016). Here, we use the framework introduced in Renton and
Page (2019) to incorporate explicit tissue dynamics, using the Vor-
onoi tessellation (VT) model, with a spatially decoupled (global)
update rule. This means that when the population is updated, a



Fig. 2. Time snapshots for a simulation of mutant invasion in the Voronoi tessellation model with decoupled update rule. The simulation is initialised with a single neutral
mutant (grey) in a population of Z ¼ 100 cells and run until fixation. Selection is neutral (d ¼ 0), so all cells have equal fitness. Parameters for the Voronoi tessellation model
are given in Table 1.
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division and death occur simultaneously, but there is no spatial
dependence between the two events.

In this section we briefly introduce the VT model, before calcu-
lating conditions under which cooperation is favoured and benefi-
cial for a sigmoid PGG. We verify theoretical results by running
simulations in various parameter regimes. We also compute the
gradient of selection in order to obtain a fuller picture of the
dynamics. In all cases we compare VT model results with the
well-mixed population.

3.1. Voronoi tessellation model

The VT model represents a tissue as a set of points, correspond-
ing to cell centres (Meineke et al., 2001; Van Leeuwen et al., 2009).
The shape of each cell, as well as its neighbour connections, is
determined by performing a Voronoi tessellation. Cells move sub-
ject to spring-like forces, which they exert on their neighbours.

The population evolves through a process of sequential update
events, each consisting of a cell division and a cell death, which
occur simultaneously. We choose to temporally couple division
and death in this way to maintain a constant population size.
Allowing separate stochastic birth and death processes, without
some other mechanism to maintain homeostatic population size,
would result in population extinction or rapid growth. This is
something we will address in future work, by introducing contact
inhibition as a means of controlling the population size.

Update events occur at rate k, according to a continuous time
Moran process. When an update occurs, a cell is chosen to divide
with probability proportional to fitness. This parent cell is removed
from the tissue and replaced with two identical progeny cells, sep-
arated by a distance �, across a uniformly random axis. Simultane-
Fig. 3. Degree distribution for the Voronoi tessellation model. Error bars show
standard deviation. Data is obtained from simulations with population size,
Z ¼ 100.

7

ously, a cell is chosen to die uniformly at random, and is removed
from the tissue. A full description of the VT model used is given in
Appendix A.

We obtain gk and f Aj n; kð Þ by averaging over a large ensemble of
possible states in the weak selection limit. We then make the
assumption that variation around this mean can be neglected.

Figs. 3 and 4, show the distributions gk and f Aj n; kð Þ for the VT
model under neutral selection, calculated by averaging over 500
simulations, each of which starts with a single neutral mutant
and is run to fixation. An example simulation is shown in Fig. 2.
See Appendix B for further discussion on neighbour distributions
in the VT model and the validity of assuming gk is independent
of n and cell type.

3.2. Favourable cooperation

The condition for cooperation to be favoured can be approxi-
mated by calculating the structure coefficients using Eq. 34.
Fig. 5 plots the VT model structure coefficients with those for a
well-mixed population as defined by Eq. 39.

Using the structure coefficients we can derive the condition for
cooperation to be favoured for an arbitrary PGG, as defined by Eq.
1. We define the critical benefit-to-cost ratio b=cð Þ
1, such that
qC > qD when b=c > b=cð Þ
1. Thus, from Eq. 41 we can write

b
c

� �


1
¼ Z � 1XZ�1

k¼1

Xk

j¼0

rj;k b jþ1
kþ1

� �
� b k�j

kþ1

� �h i : ð51Þ

For an NPD, defined by Eq. 3, this becomes

b
c

� �


1
¼ Z � 1XZ�1

k¼1

Xk

j¼0

rj;k
2jþ1�k
kþ1

: ð52Þ

Substituting in the structure coefficients we obtain
b=cð Þ
1 � 2:22 for the VT model with decoupled update rule and
population size Z ¼ 100. For a well-mixed population with the
same group size distribution we obtain b=cð Þ
1 � 7:35. As we would
expect there is a significant increase in the success of cooperative
mutants under the VT model. This is due to the high level of assort-
ment in the VT model, which means cooperators are likely to have
more cooperator neighbours than defectors.

On average, cells have six neighbours, thus the mean group size
is seven. We can therefore compare the critical benefit-to-cost
ratio for a well-mixed population with variable group size, given
above, to that of a well-mixed population with fixed group size,
N ¼ 7. The latter is given by Eq. 10 to be b=cð Þ
1 ¼ 7:45. Clearly,
incorporating variation in group size into the well-mixed popula-
tion has a negligible impact on whether cooperation is favoured.
We note however, that the level of variation in group size we have



Fig. 4. Frequency distributions f Aj n; kð Þ and f Bj n; kð Þ for Z ¼ 100. These define the probability that a cell of type A=B has j neighbours of type A, given k neighbours total and n
cells of type A in the population. The lower panel compares values of f Bj n; kð Þ calculated directly through simulation (black) with values obtained from the simulated data for A
cells defined by f Bj n; kð Þ ¼ f Ak�j Z � n; kð Þ.
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considered, which is realistic for an epithelium, is small. Larger
variation in group size, such as that observed for scale-free net-
works, may have a larger effect (Archetti, 2016).

We can also use Eq. 51 to determine b=cð Þ
1 for a sigmoid benefit
function, defined by Eq. 4. Recall that the logistic function has two
parameters: the steepness, s, and the inflection point, h. Fig. 6 com-
pares the predicted values of b=cð Þ
1 for the VT model, with those
for a well-mixed (WM) population with group size 7, and hexago-
nal lattice (HL) with death-birth update rule. These are obtained
from Eq. 51 by using the relevant structure coefficients in each case
(structure coefficients for death-birth update on regular graphs are
derived in Peña et al. (2016)).
8

Values of b=cð Þ
1 are symmetric across h ¼ 0:5 for all three cases,
and minimised at h ¼ 0:5 for the hexagonal lattice and VT model.
In Appendix C we show that b=cð Þ
1 is in fact minimised at
h ¼ 0:5, so long as the structure coefficients increase with j for
0 6 j < k. For the well-mixed population b=cð Þ
1 does not vary with
either s or h. Furthermore, it is clear for all population types, that as
the NPD is approached (s ! 0), b=cð Þ
1 becomes independent of h.

In all parameter regimes, b=cð Þ
1 is highest for the well-mixed
population. Both the VT model with decoupled update and HL with
death-birth update show similar variation with s and h; however,
b=cð Þ
1 is always lower for the VT model. Therefore, in terms of



Fig. 5. Comparing the structure coefficients for the Voronoi tessellation model with decoupled update (VT) and a well-mixed (WM) population with variable group size.
Variation in group size arises naturally in the VT model due to its neighbour distribution, which is plotted in Fig. 3. We set the group size distribution for the WM population
to be equal to that of the VT model. Members of each group are then selected uniformly at random for the WM population.

Fig. 6. Comparing the critical benefit-to-cost ratio, b=cð Þ
1 at which qC > qD , for a
logistic benefit function. For a well-mixed population with N ¼ 7 (WM), b=cð Þ
1 is
highest, and independent of the inflection point, h, and steepness, s. For the Voronoi
tessellation model with decoupled update (VT) and fixed hexagonal lattice with
death-birth update (HL), b=cð Þ
1 varies with h and s. For small s the benefit function
approaches linearity and we regain the results for an NPD.

Fig. 8. Critical benefit-to-cost ratio, b=cð Þ
1, above which qC > qD , for a logistic
benefit function. The solid line plots Eq. 51 and circles are simulation data. For both
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thresholds for favourability, we can determine that cooperation is
most successful in the VT model with decoupled update, followed
Fig. 7. Critical benefit-to-cost ratios for the VT model with decoupled update. These are
Parameters s and h correspond to the steepness and inflection point of the benefit functio
b=c > b=cð Þ
1 (right).
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by the hexagonal lattice with death-birth update. Cooperation does
least well in the well-mixed population. This suggests that both
population structure and global updating promote cooperation.

Fig. 7 (right panel) shows the variation of b=cð Þ
1 with h and s for
the VT model. As we have discussed, these results are based on the

approximation that f Aj n; kð Þ and gk are fixed. In order to verify the
accuracy of this approximation we compare Eq. 51 with simulation
results in Fig. 8. Simulated values of b=cð Þ
1 were obtained for each
parameter set s;hð Þ as follows. We calculated qC=D for various b=c
given by Eqs. 51 and 53 for a PGG with logistic benefit function, defined by Eq. 4.
n, respectively. Cooperation is beneficial when b=c > b=cð Þ
0 (left) and favoured when

s ¼ 5 and s ¼ 10 there is symmetry across h ¼ 0:5, at which point b=cð Þ1 is
minimised.



Fig. 9. Critical benefit-to-cost ratio, b=cð Þ
0, above which qC > q0, for a logistic benefit function. The solid line plots Eq. 53 and circles are simulation data. For small s the
logistic benefit function becomes near linear and the game approaches an NPD. Thus, there is little variation in b=cð Þ
0. For larger s there is strong dependence on the inflection
point, h, particularly for h > 0:5.
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values, by running 104 simulations of the VT model to fixation,
starting with a single C=D mutant and population size Z ¼ 100. In
all simulations we use small selection strength (d ¼ 0:025) and
set c ¼ 1. Thus b=cð Þ
1 is determined by the point at which qC ¼ qD.

There is a decent fit between simulation and theory. It is possi-
ble this could be improved by running larger numbers of simula-
tions, however the model is computationally expensive. In any
case, the qualitative behaviour is consistent. For a fixed steepness,
s; b=cð Þ
1 is minimised at h ¼ 0:5 and (near) symmetric across this
value. The values of b=cð Þ
1 are highest when h ¼ 0 and h ¼ 1, where
the benefit function provides diminishing returns or increasing
returns respectively.
3.3. Beneficial cooperation

Thus far we have considered conditions for cooperation to be
favoured, i.e. where qC > qD. We can also define the critical
benefit-to-cost ratio b=cð Þ
0 above which cooperation is beneficial,
i.e. qC > q0. From Eq. 47 this is given by

b
c

� �


0
¼ Z Z � 1ð Þ

2
XZ�1

k¼1

Xk

j¼0

hAj;k b
jþ1
kþ1

� �
� hBj;k b

j
kþ1

� �h i ; ð53Þ

where hA=Bj;k are calculated from the distributions f A=Bj n; kð Þ and gk

according to Eqs. 44 and 45.
Fig. 7 (left panel) plots b=cð Þ
0 against s and h. We can see that for

large s; b=cð Þ
0 is maximised at h ¼ 1 and has a minimum at
h � 0:35. For smaller s this minimum moves towards h ¼ 0. As s
decreases further, the logistic function approaches linear and there
is negligible variation in b=cð Þ
0 with h. In the limit s ! 0 the game
becomes an NPD, with b=cð Þ
0 ¼ b=cð Þ
1 � 2:2. Fig. 9 compares simu-
Fig. 10. Comparing the critical benefit-to-cost ratio, b=cð Þ
0 at which qC > q0, for a PGG
population with N ¼ 7 (WM), than for the Voronoi tessellation model with decoupled upd
with h is small. For WM, b=cð Þ
0 increases with h, taking its minimum value at h ¼ 0. By c
For both WM and VT, b=cð Þ
0 is maximised at h ¼ 1, for any given s>0.
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lated values of b=cð Þ
0 with the theoretical prediction, finding good
agreement between the two for a range of s and h values.

We saw in Fig. 6 that the critical benefit-to-cost ratios for coop-
eration to be favoured, b=cð Þ
1, are lower in the VT model compared
to the well-mixed population. Fig. 10 plots b=cð Þ
0 for a well-mixed
population with N ¼ 7 and the VT model with decoupled update,
showing clearly that the critical benefit-to-cost ratios for coopera-
tion to be beneficial are also lower for the VT model. Thus under
both measures, cooperation is promoted by the VT model. In con-
trast to b=cð Þ
1, which was independent of the shape of the benefit
function for the well-mixed population, b=cð Þ
0 is an increasing
function of h, so long as s is sufficiently large.

In general, conditions for cooperation to be beneficial are not
equivalent to conditions for cooperation to be favoured. This is evi-
dent from Fig. 11, where we plot b=cð Þ
0 and b=cð Þ
1 against h for var-
ious values of s. The parameter space can be divided into regions
where cooperation is both favoured and beneficial, favoured but
not beneficial, beneficial but not favoured, and neither favoured
nor beneficial.

From Fig. 11 we can see that b=cð Þ
0 ¼ b=cð Þ
1 when h ¼ 0:5. Fur-
thermore, as s decreases, the regions of parameter space where
cooperation is beneficial, but not favoured, or favoured, but not
beneficial, get smaller. For sufficiently small s we obtain
b=cð Þ
0 � b=cð Þ
1. In Appendix D we show that the sigmoid public
goods game satisfies a property called antisymmetry-of-invasion
when s ! 0 or h ¼ 0:5. This guarantees that the conditions for a
mutant to be beneficial and favoured are equivalent. For both the
VT model and well-mixed populations it is clear that behaviour
where cooperation is beneficial but not favoured, is only possible
when h < 0:5. Conversely behaviour where cooperation is favoured
but not beneficial occurs only when h > 0:5.

We can understand this intuitively by considering the extreme
cases (h ¼ 0;1) of the VD game, obtained by letting s ! 1. When
h ¼ 0, a cooperator always receives the full benefit, even if it has
with logistic benefit function. The critical ratio is always higher for the well-mixed
ate (VT). For small s the benefit function becomes near linear and variation of b=cð Þ
0
ontrast, for VT, there is a minimum of b=cð Þ
0 at h � 0:35 when s is sufficiently large.



Fig. 11. Success of cooperator mutants in the VT model (left) and well-mixed population (right), for a PGG with logistic benefit function. The solid line corresponds to b=cð Þ
0,
where qC ¼ q0. The dashed line corresponds to b=cð Þ
1, where qC ¼ qD . Blue region (top): C is beneficial and favoured (qC > qD and qC > q0). Green region (left): C is beneficial
but not favoured (qD > qC > q0). Pink region (right): C is favoured but not beneficial (q0 > qC > qD). Orange region (bottom): C is neither beneficial not favoured (qC < qD and
qC < q0).
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no cooperator neighbours. Defectors require a single cooperator
neighbour to obtain the benefit. Thus, both cooperators and defec-
tors have higher than average fitness early on in the invasion pro-
cess, when they are most vulnerable to extinction. It is therefore
possible, depending on the benefit-to-cost ratio, that both perform
better than a neutral invader, and therefore both are beneficial
mutations. However, one can still be favoured over the other if
its fixation probability is higher.

The converse is true when h ¼ 1: defectors will never receive
any benefit, and cooperators only obtain the benefit when sur-
rounded by other cooperators. Thus when the number of coopera-
tors/defectors is small, they have lower than average fitness, and
there is a high chance they die out early in the invasion process.
Therefore, it is possible that neither performs better than a neutral
invader.

3.4. Gradient of selection

We can obtain more insight into what is happening in the dif-
ferent parameter regions by looking at the gradient of selection,
G nð Þ ¼ Tþ nð Þ � T� nð Þ. The transition probabilities are defined by
Eq. 26, thus in the weak selection limit, d � 1, the gradient of
selection becomes

G nð Þ � Z � n
Z

n
Z
d

XZ�1

k¼1

Xk

j¼0

gk f Aj n; kð Þaj;k � f Bj n; kð Þbj;k

� �( )
: ð54Þ

The sum essentially gives the difference in expected payoffs of A
and B players. Thus, the right-hand side is identical to that of the
replicator equation, which describes the deterministic dynamics
obtained in the large-population limit. The sign of G nð Þ indicates
the direction of selection, and we can consider the roots of G nð Þ
as ‘fixed points’. Of course, for a finite population there are only
two absorbing states, n ¼ 0 and n ¼ Z, however the location of
fixed points is still important. In particular, the systemmay remain
for a long time near a stable fixed point. We can classify the beha-
viour of the system in different parameter regions based on the
fixed points of the gradient of selection.

Fig. 12 plots G nð Þ for a PGG with various values of h; s and b=c,
both for the VT model and well-mixed population. There are four
11
dynamical regimes, consistent with the deterministic results for
PGGs in a well-mixed population in Archetti (2013b):

(i) Dominance: there are only two fixed points at n ¼ 0 and
n ¼ Z. Defection dominates if the n ¼ 0 fixed point is stable,
while cooperation dominates if the n ¼ Z fixed point is stable.
(ii) Coexistence: there is an internal stable fixed point, nR, along
with two unstable fixed points at n ¼ 0 and n ¼ Z. Selection
pushes the system towards the stable fixed point, thus it can
take a long time to reach one of the absorbing states.
(iii) Coordination: there is an internal unstable fixed point, nL,
along with two stable fixed points at n ¼ 0 and n ¼ Z.
(iv) Coexistence & coordination: In addition to the fixed points at
n ¼ 0 (stable) and n ¼ Z (unstable), there is both an unstable
internal fixed point on the left, nL, and a stable internal fixed
point on the right, nR. Thus it resembles coexistence, in that
there is a stable mixed state; and coordination in that there
are two stable fixed points.

These regimes are all familiar in the evolutionary game theory
literature for well-mixed populations. The first three correspond
to the behaviour of two-player matrix games in well-mixed popu-
lations (Traulsen et al., 2009): (i) prisoner’s dilemma/harmony
game, (ii) snowdrift game, and (iii) stag-hunt game. The final type,
coexistence & coordination, arises for both the N-player stag-hunt
(Pacheco et al., 2009) and N-player snowdrift games (Souza et al.,
2009).

For the well-mixed population we see dominance when s is suf-
ficiently small, and thus the PGG is approximating an NPD. As
expected, cooperation is dominant when b=c is sufficiently high.
For higher values of s there is a wide range of behaviour. In a region
around h ¼ 0:5, if b=c is large enough, there are coexistence & coor-
dination dynamics. There is a large basin of attraction for nR and if
the system reaches this fixed point it will spend a long time in the
vicinity. However, a single mutant invader must cross nL to reach
this, against the selection pressure. As b=c is increased, nL and nR

move further apart, increasing the size of the basin of attraction
for nR. For h ¼ 0:5, the gradient of selection is symmetric
(nL ¼ Z � nR).



Fig. 12. Gradient of selection, G nð Þ for a PGG with logistic benefit function in a well-mixed population (WM) and Voronoi tessellation model with decoupled update (VT). The
qualitative behaviour is very similar between the two, however, occurs at different values of the benefit, b=c. Where G nð Þ > 0, selection is working to increase n, and vice
versa. The roots of G nð Þ ¼ 0 can be considered as fixed points, and we can use these to classify the behaviour in different parameter regions.
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Decreasing h from 0:5, causes nL and nR to move to the left,
eventually entering the coexistence regime. The basin of attraction
for the internal stable fixed point is now 0 < n < Z. The system
may spend a large amount of time near this point, although it will
ultimately end up in one of the absorbing states. In the coexistence
regime, as we discussed in Section 3.3 for the VD game with h ¼ 0,
cooperators and defectors have a selective advantage when they
are in sufficiently small numbers. This can lead to the case where
both are beneficial mutants, and thus cooperation is able to be ben-
eficial but not favoured.

Conversely as h is increased from 0:5;nL and nR move to the
right and we enter the coordination regime. This corresponds to
12
the region in Fig. 11 where very high values of the benefit-to-
cost ratio are required for cooperation to be beneficial, even when
cooperation is favoured. In Section 3.3 we argued, for the VD game
with h ¼ 0:5, that this is due to the fact that both cooperators and
defectors are at a disadvantage when in small numbers. Indeed this
is the defining feature of the coordination regime, that n ¼ 0 and
n ¼ 1 are stable fixed points. Thus, any invader is at a disadvantage
initially, as selection pushes it towards dying out. Therefore, it is
possible that defectors and cooperators can be at an evolutionary
disadvantage compared to a neutral mutant.

The VT model behaviour is qualitatively very similar to that of
the well-mixed population. The major difference is that the full
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spectrum of behaviour is available for a much smaller range of b=c
values for the VT model. This means that cooperation is successful
at smaller benefit-to-cost ratios, as is consistent with our previous
findings. It should be noted, however, that these classifications are
often approximate for the VT model. We observe, in a number of
cases, additional fixed points very close to n ¼ 0 and n ¼ Z. It is also
clear from Fig. 12 that the coexistence & coordination behaviour is
much less pronounced that it is for the well-mixed case, with the
internal fixed points much closer to the boundaries.
4. Discussion

There is an extensive literature on cancer modelling, which goes
way beyond evolutionary game theory. For a review, see for exam-
ple (Altrock et al., 2015). However, evolutionary game theory is
increasingly used in cancer modelling (Rockne et al., 2019;
Archetti and Pienta, 2019; Wölfl et al., 2020) both to elucidate
tumorigenesis (Tomlinson and Bodmer, 1997; Bach et al., 2003;
Basanta et al., 2008; Basanta et al., 2008; Archetti, 2016) and to
inform potential treatment strategies (Basanta et al., 2012;
Kaznatcheev et al., 2017; Zhang et al., 2009; West et al., 2018).
Experimental evidence that malignant cells cooperate to drive
tumour growth has been found for breast cancer (Marusyk etal.,
2014; Cleary et al., 2014) and glioblastoma (Inda et al., 2010. Fur-
thermore, evolutionary games have been explicitly quantified in
non-small cell lung cancer Kaznatcheev et al., 2019) and neuroen-
docrine pancreatic cancer cell cultures (Archetti et al., 2015). These
cancers both originate in epithelial cells, of the lung and pancreas,
respectively. Disrupting cooperation could therefore be important
for improving cancer treatment (Zhou et al., 2017).

Many models of cancer evolution assume populations of cells to
be well-mixed (Basanta et al., 2012; Archetti, 2013b; Gerlee and
Altrock, 2017; West et al., 2018). However, the importance of spa-
tial structure is increasingly recognised, even for simple mutations
(Waclaw et al., 2015; West et al., 2021). Population structure has
long been established as a mechanism for promoting the evolution
of cooperation (Nowak, 2006). If interactions are limited to an indi-
vidual’s neighbourhood, then cooperators can form mutually ben-
eficial clusters. However, the success of cooperation is also
influenced by the update rule. Results for the cycle graph in Sec-
tion 2.1 demonstrate that a global update rule, such as the shift
update, can lead to less stringent conditions for cooperation to be
favoured when compared to local update rules. Within the local
update rules there are also clear differences: cooperation tends to
fare better with a death-birth update rule than a birth–death. In
fact for the birth–death update on a cycle, the condition for coop-
eration to be favoured under an NPD game is equivalent to the
well-mixed population. Thus the benefits of clustering are negated
in this case.

It is therefore important to take into account realistic popula-
tion structure and update dynamics of the tissue or tumour when
considering the evolution of cooperation amongst cells. Our focus
has been to consider how global updating affects the evolution of
cooperation in a population structure representative of an epithe-
lium. We have used the VT model to represent an epithelium,
which allows death and division to be implemented
independently, and therefore, it is trivial to implement what we
call the decoupled update rule (Renton and Page, 2019). We chose
to focus on global updating, as it presents the opposite extreme to
local update rules which have been extensively studied within evo-
lutionary graph theory (Zukewich et al., 2013; Allen et al., 2017;
Peña et al., 2016). Furthermore, we have been able to derive
quasi-analytical results, which could be applied to other popula-
tion models that use global updating. Our results are general for
multiplayer games; however, we have focused on the analysis of
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sigmoid public goods games, as it has been proposed that they pro-
vide good models for the production of diffusible growth factors.

We have demonstrated that, for a sigmoid PGG, cooperation is
more successful in the VT model compared to a well-mixed popu-
lation. In both cases, the evolutionary outcomes depend on the
parameters s and h of the logistic benefit function, as well as the
benefit-to-cost ratio. In general, a lower benefit-to-cost ratio is
required for cooperative success for the VT model, than the well-
mixed population. In other words, cells need a lower incentive to
cooperate. This is consistent with our expectations: both models
use global updating, however the population structure in the VT
model allows for positive assortment of cooperators.

Although cooperation is more successful in the VT model, than
the well-mixed population, the qualitative behaviour is very simi-
lar. We have characterised the evolutionary dynamics by consider-
ing conditions for which cooperation is beneficial and/or
favourable, as well as calculating the gradient of selection.

As long as the steepness, s, is large enough, we tend to see coex-
istence behaviour when the inflection point, h, is less than a half
and coordination behaviour when it is greater. These regimes are
characterised by the fixed points of the gradient of selection. They
also correspond to the regions in parameter space where coopera-
tion is beneficial, but not favourable (coexistence), and favourable,
but not beneficial (coordination). For small steepness, the game
approaches an NPD and there is dominance behaviour. In this
regime, conditions for cooperation to be beneficial and favoured
coincide.

Examining the gradient of selection enables us to identify an
additional dynamical regime: mixed coexistence & coordination,
which occurs in a region around h ¼ 0:5, as long as s and b=c are
sufficiently large. This regime is characterised by two stable fixed
points, one corresponding to all-defection, and the other to a
heterogenous, majority-cooperator state. This dynamic has been
identified previously for both well-mixed populations (Archetti,
2013b) and graph-structured populations with local updating
(Archetti, 2016). We have shown that it can also occur for the VT
model, however the internal fixed points tend to be much closer
to the boundaries.

It is beyond the scope of this paper to consider the full dynamics
for an epithelial population structure with local update rules. How-
ever, we have considered conditions for cooperation to be favour-
able on a hexagonal lattice with death-birth update rule using
results from Peña et al. (2016). We found the critical benefit-to-
cost ratios to be intermediate between the well-mixed population
and VT model. This is consistent with previous results for two-
player games (Renton and Page, 2019). Taken together, these
results suggest not only that population structure promotes coop-
eration, but that global updating also plays a crucial role. We can
thus consider a general rule for cooperation is that it prefers local
game play but global competition for offspring.

It is worth taking a moment to consider the implications of ben-
eficial and favourable mutations for invasion, and how we distin-
guish between the two concepts. Whether or not a mutation is
beneficial is perhaps the most relevant measure for a single inva-
sion event. It essentially tells us that the mutated cell has a higher
probability of invasion in a wild-type population than a wild-type
cell would have, and therefore it has an evolutionary advantage.
The significance of a mutation being favourable is a little less clear,
as it compares two different invasion processes: the probability of
invasion of a mutated cell in a wild-type population is higher than
the converse scenario, where a wild-type cell invades a population
of mutants. However, the condition for a mutant to be favoured is
also equivalent to the condition for cooperation to dominate, if
mutation is allowed.



Table 1
Table of parameters used in the Voronoi tessellation model (Osborne et al., 2017;
Renton and Page, 2019).

Parameter Description Value

l spring constant 50
s natural cell separation 1
� initial sibling cell separation 0.1
g drag coefficient 1
Dt time-step (h) 0.005
k rate of division/death (h�1) 12�1
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These results suggest that the population structure, the update
rule and the game all play important roles in determining the evo-
lutionary success of cooperation. Cancer models which utilise evo-
lutionary games (You et al., 2017; Gatenby and Brown, 2020) may
therefore underestimate the success of cooperative phenotypes, if
they fail to account for population structure or assume that death
and division are more tightly coupled than is realistic. For example,
therapeutic strategies that aim to eliminate cooperation by manip-
ulating evolutionary dynamics, rely on accurate predictions of
those dynamics (Archetti, 2013a).

We do not suggest that our regime, with fully local interactions
and fully global competition is necessarily realistic for invasion
processes in tissues. We have assumed that cells only interact with
their immediate neighbours; however, interaction groups may be
much larger and likely depend on the specific context. For example,
in the case of growth factor production, group size will depend on
diffusion range. Estimates of these diffusion ranges are difficult to
obtain experimentally (Archetti et al., 2017). However, larger
group sizes tend to suppress cooperation (Archetti and Scheuring,
2012), so it is an important consideration.

We chose to focus on global updating, as it presents the oppo-
site extreme to a local update rule. It is likely, however, that update
dynamics in a real epithelium lie somewhere in between. Contact
inhibition (McClatchey and Yap, 2012), and other density-
dependent processes (Eisenhoffer et al., 2012; Fernandez-
Gonzalez and Zallen, 2012), result in spatial coupling between
death and division, which is likely tissue dependent. Stronger con-
tact inhibition could result in dynamics closer to the death-birth
update (Mesa et al., 2018), while weaker contact inhibition is clo-
ser to global updating.

Interestingly, loss of contact inhibition is associated with malig-
nancy (McClatchey and Yap, 2012), suggesting that updating is
more global, and thus cooperation could be more successful, than
in healthy tissues. In future work, we will consider the effect of
contact inhibition on cooperation, and the spectrum of behaviour
between local and global updating. Understanding the nature of
spatial coupling in real epithelia, or in cancerous tumours, could
be crucial for predicting evolutionary outcomes.

Our general conclusion that local game play and global compe-
tition for offspring favour cooperation has implications beyond
applications to cancer, where cooperation unusually may be con-
sidered undesirable. In a societal context, where cooperation is
desirable, it may be promoted by engineering an environment rich
in local social interactions, which nevertheless allows for imitation
of successful strategies more globally.
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Appendix A. Voronoi tessellation model

The Voronoi tessellation (VT) model was introduced in Meineke
et al. (2001) and Van Leeuwen et al. (2009). We use the version and
parameter values from Renton and Page (2019) in all simulations
in this paper. Parameters are given in Table 1 and the model is
defined as follows.

The VT model represents a tissue as a set of points in a fixed
domain with periodic boundary conditions. Each point corresponds
to a cell-centre and moves subject to spring-like forces that cells
exert on their neighbours.

We define the force cell j exerts on its neighbour i to be

F ij tð Þ ¼ �l rij tð Þ
jrij tð Þj jrij tð Þj � sij tð Þ� �

; ð55Þ

where l is the spring constant, rij ¼ ri � rj is the vector pointing
from cell j to cell i, and sij is the natural separation between cells i
and j. This is set be a constant sij ¼ s, with the exception that new-
born sibling cells have a separation � immediately after division. For
these cells, sij grows linearly over the course of an hour to reach s.
The total force on a cell i is given by

F i tð Þ ¼
X

j2Ni tð Þ
F ij; ð56Þ

where Ni tð Þ denotes the set of cells neighbouring i.
It is assumed that motion is over-damped and thus the equation

of motion for i is the first order differential equation

g
dri
dt

¼ F i tð Þ; ð57Þ

where g is the damping constant. This is solved numerically using

ri t þ Dtð Þ ¼ ri tð Þ þ Dt
g

F i; ð58Þ

where the time-step, Dt, is sufficiently small to ensure numerical
stability.

At each time-step, after cells have moved, a Voronoi tessellation
is performed. This partitions the domain into polygonal regions,
each corresponding to the shape of a cell. It also defines the neigh-
bourhood connections, which are needed to determine the forces
cells exert on one another, as well as cell fitnesses.

Cell division is implemented within the VT model, by removing
the parent cell and replacing it with two progeny cells, separated
by a distance �, across a uniformly random axis. Cell death simply
requires the dead cell to be removed. After a death or division, Vor-
onoi tessellation must be performed to obtain new neighbour
connections.

Appendix B. Neighbour distributions in the VT model

In Sections 2.1 and 2.2 we derived conditions under which
cooperation is favoured and beneficial, given by Eqs. 41 and 47,
respectively. These derivations are based on the assumption that
the frequency of cells with k neighbours is a fixed distribution,

https://github.com/jessierenton/pgg-epithelium
https://github.com/jessierenton/pgg-epithelium


Fig. 13. Neighbour distributions in the Voronoi tessellation model for cooperators (C) and defectors (D), for varying cooperator population size, n. Data is generated from
simulations with total population size Z ¼ 100 in the neutral selection limit, d ¼ 0.
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gk, independent of the cell type or the number of cooperators in the
population, n.

Fig. 13 plots neighbour distributions from simulations of the VT
model for cooperators and defectors at different values of n. It is
clear from the plot that the assumption is a reasonable one. The
neighbour distributions are approximately equal for different val-
ues of n and for the two cell types. The exception is when there
are either very few cooperators or very few defectors, i.e. near
n ¼ 1 and n ¼ 99 respectively. In the case where there is only
one or very few cooperators, the cooperator neighbour distribution
becomes slightly more narrow. The converse is true when there are
few defectors.

Appendix C. Minimising the critical benefit-to-cost ratio at
which cooperation is favoured

In Section 2.2 we considered conditions for cooperative success
for a sigmoid benefit function b x;hð Þ, as defined by Eq. 4. Here, we
have made explicit the dependence on the inflection point. It is
clear from Fig. 6 that the critical benefit-to-cost ratios, b=cð Þ
1, at
which qC ¼ qD, are minimised at h ¼ 0:5, and symmetric across
that point. This appears to hold for both the Voronoi tessellation
model with decoupled update, and for the death-birth update on
a fixed hexagonal lattice. In the following we show that this is
indeed true for any system where 0 < s < 1 and the structure
coefficients, rj, are increasing for 0 6 j < k.

We rewrite Eq. 51, defining c=bð Þ
1, such that cooperation is
favoured for c=b < c=bð Þ
1
c
b

� �


1
¼ 1

Z � 1

Xk

j¼0

rj b
jþ 1
kþ 1

;h
� �

� b
k� j
kþ 1

; h
� �	 


: ð59Þ

We have assumed that the number of neighbours, k, is fixed;
however, the results are easily generalisable to variable k. Defining

cjðhÞ ¼ b
jþ 1
kþ 1

;h
� �

� b
k� j
kþ 1

; h
� �

ð60Þ

we obtain
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c
b

� �


1
¼ 1

Z � 1
rk þ

X
k>jPk=2

rj � rk�j�1
� �

cjðhÞ
" #

: ð61Þ

By taking derivatives with respect to h we show that for
k=2 6 j < k; cj hð Þ is maximised when h ¼ 0:5. In order that this cor-

responds to a unique maximum of c=bð Þ
1, and thus a minimum of
the critical benefit-to-cost ratio, certain conditions on rj must be
satisfied.

First we show that cj has one extremum at h ¼ 0:5 for
0 < s < 1. We substitute Eq. 4 into Eq. 60 and take the first deriva-
tive with respect to h, letting r ¼ jþ1

kþ1. Thus we obtain

dcj
dh

¼ d
dh

1þ es h�rð Þ� ��1 � 1þ es hþr�1ð Þ� ��1

1þ es h�1ð Þð Þ�1 � 1þ eshð Þ�1

" #
ð62Þ

¼ d
dh

es r�1ð Þ � e�sr

1� e�s
� 1þ es h�1ð Þ� �

1þ esh
� �

1þ es h�rð Þð Þ 1þ es hþr�1ð Þð Þ

" #
ð63Þ

¼ s � e
s r�1ð Þ � e�sr

1� e�s
� e

sh 1þ e�s � e�sr � es r�1ð Þ� �
1� es 2h�1ð Þ� �

1þ es hþr�1ð Þð Þ2 1þ es h�rð Þð Þ2
: ð64Þ

Setting dcj=dh ¼ 0, gives one root at h ¼ 0:5, for 0 < s < 1. This

is a unique stationary point of c=bð Þ
1 so long as there is at least one
value of j 2 k=2; k½ Þ for which rj � rk�j�1

� �
– 0. We can show that

this is a maximum by considering the second derivative at h ¼ 0:5

d2cj
dh2

�����
h¼1

2

¼ �2s2 � e
s=2 1þ e�s � e�sr � es r�1ð Þ� �

es r�1ð Þ � e�sr
� �

1� e�sð Þ 1þ es r�1=2ð Þð Þ2 1þ e�s r�1=2ð Þð Þ2
ð65Þ

which is negative given that 1=2 < r < 1. This corresponds to
k� 1ð Þ=2 < j < k, encompassing all the values of j which we sum
over in Eq. 61. Therefore, in order that c=bð Þ
1 is maximised when
h ¼ 0:5, we require that rj � rk�j�1

� �
P 0 for k=2 6 j < k and non-

zero for at least one value of j in the range. This condition is guar-
anteed if rj is an increasing, but not constant function for 0 6 j < k.

It is clear from Fig. 5 that rjþ1;k > rj;k 8j; k for the VT model with
decoupled update, and therefore, h ¼ 0:5 maximises c=bð Þ
1 in this
case. For k-regular graphs with death-birth update rule, we can



Fig. 14. Structure coefficients, rj , for k-regular graphs with death-birth update rule
(Peña et al., 2016). It is clear that rj is increasing (or constant) for j < k.
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verify whether this is true by using the approximate expressions
for the structure coefficients derived in Peña et al. (2016). These
are plotted for various k values in Fig. 14. For smaller values of k,
we can see that rj is strictly increasing for 0 6 j < k. However, as
k increases, a growing region appears for which rj is constant. So
long as there is at least one value of j < k for which
rj � rk�j�1
� �

> 0; c=bð Þ
1 is maximised at h ¼ 0:5. However, as
k ! 1, we approach the case where rj are constant for j < k, and
we regain the well-mixed population result that c=bð Þ
1 is indepen-
dent of h.

Thus far we have limited ourselves to the case where 0 < s < 1.
In the limit s ! 0, we obtain an NPD game with a linear benefit
function which is independent of h. The value of c=bð Þ
1 therefore
does not depend on h either, as can be seen in Fig. 6. In the limit
s ! 1, the VD game is approached and the benefit function ceases
to be continuous. In this case the unique maximum at h ¼ 0:5 is
maintained only if rj are strictly increasing, and therefore
rj � rk�j�1
� �

> 0. This is true for the VT model with decoupled
update and for k-regular graphs with death-birth update, if k is suf-
ficiently small. On the other hand, if rj � rk�j�1

� � ¼ 0 for some val-
ues of j 2 k=2; k½ Þ;h ¼ 0:5 ceases to be an isolated maximum, and
there is a region of h values, around h ¼ 0:5, which maximise
c=bð Þ
1.

Appendix D. Equivalence of beneficial and favoured mutants

D.1. Antisymmetry-of-invasion property

In Sections 2.1.6 and 2.2 we derived the conditions under which
a mutant is beneficial or favoured, respectively, for a global update
rule. Here, we show that these conditions are equivalent if the pay-
offs satisfy a property we call antisymmetry-of-invasion. We con-
sider multiplayer games with fixed group size. However, the
results can be generalised to variable group size, given certain
conditions.

The values hAj and hBj , defined by Eq. 50, can be written as

hAj ¼
XZ�1

n¼1

Z � nð Þf Aj nð Þ

hBj ¼
XZ�1

n¼1

nf Ak�j nð Þ:
ð66Þ

Thus we have

hAj þ hBk�j ¼ Z
XZ�1

n¼1

f Aj nð Þ ¼ Zrj; ð67Þ
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where the last equality is from the definition of rj as stated by Eq.
35. The condition for A to be beneficial, given by Eq. 48, thus
becomes

Xk

j¼0

hAj aj � Zrj � hAj

� �
bk�j

h i
> 0: ð68Þ

This can be rewritten in the form

Xk

j¼0

hAj �
Z
2
rj

� �
aj þ bk�j
� �þ Z

2

Xk

j¼0

rj aj � bk�j
� �

> 0: ð69Þ

If the payoffs satisfy

aj þ bk�j ¼ Q ; ð70Þ
where Q is a constant that is independent of j, then the first term in
Eq. 69 vanishes. The condition for A to be beneficial, therefore,
becomes

Xk

j¼0

rj aj � bk�j
� �

> 0; ð71Þ

which is equivalent to the condition for A to be favoured, as defined
by Eq. 6. Thus the conditions for cooperation to be beneficial and
favoured are equivalent when Eq. 70 holds, which we call the
antisymmetry-of-invasion property. If Q is independent of k, this
result generalises to variable group size.

D.2. Implications of antisymmetry-of-invasion

In games which satisfy antisymmetry-of-invasion, defined by
Eq. 70, there is a fixed total payoff that can be obtained when equal
numbers of A and B co-players are distributed between an A and B
player. By this we mean that the A-player has j other A-players in
its group and k� j B-players, whilst the B-player has j other B-
players, and k� j A-players. Regardless of how the co-players are
distributed (the value of j), the sum of the payoffs to the A and B
player are the same.

The implications of this property can be better understood if we
consider symmetric invasion processes. Consider, for example, an
arbitrary evolutionary path through the state space. This path
can be represented by a sequence of states

S ¼ G0; s0ð Þ ! G1; s1ð Þ ! . . . ! GL; sLð Þ; ð72Þ
where Gq are graphs representing the population structure at time
tq and sq are Z-dimensional vectors giving the type of each individ-
ual at time tq. Thus, sq

� 
i ¼ 1 if the ith individual is an A-player and

sq
� 

i ¼ 0 if it is a B-player. Recall Z is the population size. There are L
transitions between states, each of which is caused by an update
event (i.e. a death and a division).

The symmetric invasion process S
�
is obtained by flipping the

type of each individual (A ! B and B ! A), as illustrated in
Fig. 15. Thus

S
�
¼ G0;~s0ð Þ ! G1;~s1ð Þ ! . . . ! GL;~sLð Þ; ð73Þ

where ~sq
� 

i ¼ 1� sq
� 

i.

Given any evolutionary path S and a symmetric path S
�
we can

show that, if the antisymmetry-of-invasion property holds, the
probabilities of each occurring are related in the following way:

P Sð Þ � P S0ð Þ ¼ P S0ð Þ � P S
�� �

; ð74Þ

at least to O dð Þ. Here, S0 is the evolutionary path with neutral selec-
tion d ¼ 0, i.e. all individuals have the same fitness. Thus, if any



Fig. 15. Symmetric states. (a) a mutant clone of A-players is invading a population
of B-players. (b) a mutant clone of B-players is invading a population of A-players. If
the antisymmetry-of-invasion property holds a given A-player in state (a) has
payoff aj , the equivalent B-player in state (b) has payoff bk�j ¼ Q � aj.
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given path has an advantage over the neutral process, the symmet-
ric path must have an equivalent disadvantage.

We can further show that the following relation between the
fixation probability for an A-player and the fixation probability of
a B-player, denoted by qA and qB, respectively, must hold:

qA � 1=Z ¼ 1=Z � qB; ð75Þ
again to O dð Þ. Recall that q0 ¼ 1=Z is the fixation probability for a
neutral mutant. Thus, antisymmetry-of-invasion ensures that
qA > q0 implies qB < q0, and hence that the conditions for A or B
to be favourable are the same as to be beneficial.

Proof of Eq. 74. Consider a path S as described by Eq. 72. The
transition probability from state Gq; sq

� �
to Gqþ1; sqþ1

� �
is given by

P Gq;sq
� �! Gqþ1;sqþ1

� �� � ¼ P sq ! sqþ1
� � �P Gq !Gqþ1jsq ! sqþ1

� �
¼ 1

Z2
1þd pbirth Gq;sq

� ��p Gq;sq
� �� � � �wq;

ð76Þ
where pbirth is the payoff of the proliferating individual and p is the
average payoff in the population. The probabilities for transitions
between graphs are given by P Gq ! Gqþ1jsq ! sqþ1

� � ¼ wq.
The probability of S occurring, given initial state G0; s0ð Þ, is given

by multiplying the transition probabilities, i.e.

P Sð Þ ¼
YL�1

q¼0

P Gq; sq
� � ! Gqþ1; sqþ1

� �� �
; ð77Þ

which in the weak selection limit d ! 0 becomes

P Sð Þ ¼ 1
Z2L 1þ dX Sð Þð ÞW Sð Þ þ O d2

� �
: ð78Þ

Here,

X Sð Þ ¼
XL�1

q¼0

pbirth Gq; sq
� �� p Gq; sq

� �� � ð79Þ

and

W Sð Þ ¼
YL�1

q¼0

wq: ð80Þ

The symmetric evolutionary path S
�
is equivalent to S, except

that every individual has flipped its type. We assume that, in the
weak selection limit at least, graph transitions do not depend on

type, and thus, W S
�� �

¼ W Sð Þ. The payoffs of course do depend

on type, thus we write

X S
�� �

¼
XL�1

q¼0

pbirth Gq;~sq
� �� p Gq;~sq

� �� �
: ð81Þ
17
If the antisymmetry-of-invasion property, defined by Eq. 70,
holds then

X S
�� �

¼
XL�1

q¼0

Q � pbirth Gq; sq
� �� �� Q � p Gq; sq

� �� �� � ¼ �X Sð Þ: ð82Þ

Therefore, substituting into Eq. 78, we obtain

P S
�� �

¼ 1
Z2L 1� dX Sð Þð ÞW Sð Þ þ O d2

� �
: ð83Þ

Setting d ¼ 0 gives P S0ð Þ ¼ W Sð Þ=Z2L. Therefore, by summing

Eqs. 78 and 83, we obtain P Sð Þ þ P S
�� �

¼ 2P S0ð Þ to O dð Þ, fromwhich

Eq. 74 follows.
Proof of Eq. 75. The fixation probability for a single initial A-

player is obtained by summing P Sið Þ over all paths Si that start with
a single initial A-player, and end with fixation for A-players. Sum-
ming over Eq. 78, we obtain

qA ¼
X
i

W Sið Þ
Z2L Sið Þ þ

X
i

dW Sið Þ
Z2L Sið Þ X Sið Þ þ O d2

� �
¼ 1

Z þ
X
i

dW Sið Þ
Z2L Sið Þ X Sið Þ þ O d2

� �
;

ð84Þ

where we have used the fact that the fixation probability for neutral
selection (d ¼ 0) is q0 ¼ 1=Z. The fixation probability for B-players

can similarly be obtained by summing P ~Si
� �

over all paths ~Si that

start from a single B-player and end with B-player fixation. Thus,

qB ¼ 1
Z
�
X
i

dW Sið Þ
Z2L Sið Þ X Sið Þ þ O d2

� �
: ð85Þ

Summing Eq. (84) and (85) gives us qA þ qB ¼ 2=Z to O dð Þ, and
thus Eq. 75.

D.3. Antisymmetry-of-invasion for public goods games in epithelia

In Section 3 we considered the conditions under which cooper-
ative mutants are beneficial and favoured for sigmoid public goods
games in the VT model with global updating and for the well-
mixed population. Cooperation is beneficial when b=c > b=cð Þ
0
and favoured when b=c > b=cð Þ
1. It is is evident from Fig. 11, that
in general b=cð Þ
0 – b=cð Þ
1. However, it appears in the figure that
they are equal when h ¼ 0:5 and/or s ! 1. Recall, that h is the
inflection point and s is the steepness of the logistic function,
defined by Eq. 5. Here, we show that both cases satisfy the
antisymmetry-of-invasion property defined by Eq. 70 and thus
b=cð Þ
0 ¼ b=cð Þ
1 must hold.

When s ! 0 we approach the NPD, which has a linear benefit
function, given by Eq. 3. The cooperator and defector payoffs are
thus

aj;k ¼ b � jþ 1
kþ 1

� �
� c and bj;k ¼ b � j

kþ 1

� �
; ð86Þ

respectively. We therefore obtain

aj;k þ bk�j;k ¼ b� c: ð87Þ
As b� c is a constant independent of j and k, this satisfies

antisymmetry-of-invasion, defined by Eq. 70. The critical benefit-
to-cost ratio above which cooperation is favoured must, therefore,
be equal to the critical benefit-to-cost ratio above which coopera-
tion is beneficial, i.e. b=cð Þ
0 ¼ b=cð Þ
1.

We can also show that antisymmetry-of-invasion is satisfied
when h ¼ 0:5. The sigmoid benefit function, defined by Eq. 4, has
the symmetry property b xð Þ ¼ 1� b 1� xð Þ when h ¼ 0:5. The
cooperator and defector payoffs are therefore given by
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aj;k ¼ b � b jþ1
kþ1

� �
� c ¼ b � 1� b k�j

kþ1

� �h i
� c

bj;k ¼ b � b j
kþ1

� �
;

ð88Þ

respectively. Once again, we find that aj;k þ bk�j;k ¼ b� c. Therefore,
there is antisymmetry-of-invasion when h ¼ 0:5, so b=cð Þ
0 ¼ b=cð Þ
1
must hold.
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