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Abstract
The revised International System of Units (SI) came into force on May 20, 2019.
Simultaneously, updated versions of supporting documents for the practical realization of the
SI base units (mises en pratique) were published. This review paper provides an overview of
the updated mise en pratique for the SI base unit of length, the metre, that now gives practical
guidance on realisation of traceable length metrology spanning 24 orders of magnitude. The
review begins by showing how the metre may be primarily realized through time of flight and
interferometric techniques using a variety of types of interferometer. Examples of techniques
for measuring the interferometric phase and coping when the integer interference order is
unknown are then described, together with examples of typical uncertainty contributions that
may be encountered. The requirements for traceable nanoscale metrology and the need for an
alternative secondary metre as identified by the Consultative Committee for Length’s Working
Group on Nanometrology are outlined. These led to the inclusion in the mise en pratique of
secondary realisations of the length unit at the nanometre and sub nanometre scale, based on
the lattice spacing of silicon. Three measurement techniques using this secondary realisation
are then described in detail. The paper concludes by emphasising that measurements made
today over 24 order of magnitude are still compatible with measurements made using the
metre as adopted over 200 years ago.

Keywords: mise en pratique, SI, realization of the length, length measurement, silicon lattice,
interferometry, speed of light
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1. Introduction

The International System of Units (SI) has been updated and
refined over many decades since its foundations were laid at
the end of the 18th and beginning of the 19th centuries, cul-
minating in the first formalisation of the SI at the 11th Gen-
eral Conference on Weights and Measures (CGPM) in 1960.
Since then, the SI has been updated and revised, adding a 7th
base unit for use in chemistry, as well as refining definitions
of derived and supplementary units, and providing rules for
prefixes. Following recent advances in measurement of funda-
mental constants, the SI was revised in May 2019, leading to
the current SI that is based on a set of seven defining constants,
drawn from the fundamental constants of physics and other
constants of nature, which is described in the 9th edition of the
SI brochure [1]. Accordingly, the supporting documents for the
practical realization of the SI units, mises en pratique (MeP)
[2], were adapted to reflect the revision of the SI and were also
published on May 20, 2019. In particular, the MeP for the SI
base units of mass, thermodynamic temperature, amount of
substance and electric current, were completely redefined in
2019. For a uniform, consistent SI, it was necessary to also
revise the MeP for those SI base units that are not affected by
the change to fixed constant redefinition, among them the MeP
for the SI base unit of length, the metre [3].

As with the other MeP, the fundamental revision of the MeP
for the metre was led by the idea that the realization of an SI
unit is related to primary measurement methods at the highest
level. While, for good readability, some of the explanations
contained in the new MeP for the metre [3] are repeated here,
this paper is aimed at providing an extended background for
different basic realization methods for the length unit.

The current SI definition of the metre is: ‘the metre, sym-
bol m, is the SI unit of length. It is defined by taking the fixed
numerical value of the speed of light in vacuum c to be 299
792 458 when expressed in the unit m s−1, where the second
is defined in terms of the caesium frequency ΔνCs.’ [4]. It
ensures continuity of the SI base unit of length and implies
that ‘the metre is the length of the path travelled by light in
vacuum during a time interval of 1/299 792 458 of a second’,
as stated in the previous definition of the metre from 1983
[5]. The revised MeP for the metre [3] does therefore provide
the link to primary measurement methods resulting in a ‘path
travelled by light’ from the light travel time. The fundamen-
tal equation underlying the above definition of the metre is a
direct relationship between the speed of light c, a time interval
Δt and a length l, in vacuum:

l = c ·Δt. (1)

As any previous length definition, including the earlier
definition of the metre by the international prototype [6], the
‘path travelled by light’ represents a geometrical length rather
than an optical path length, the latter being the product of
the geometric length and the refractive index of the medium
through which the light propagates. Only in vacuum, to which,
in a strict sense, the metre definition refers, does the discrep-
ancy between the geometrical length and the optical length
vanish. On the other hand, primary calibrations of lengths

and distances most commonly need to be made in air which
reduces the speed of light. Therefore, in the revised MeP for
the metre [3] it is noted as a key point that the exact determi-
nation of the air refractive index, n, is of major importance. A
distinction is necessary between c, the speed of light in vacuum
and c′, the speed of light in general (c′ = c/n):

l =
c
n
·Δt. (2)

Under atmospheric pressure, the air refractive index
reduces the speed of visible light with a relative effect of the
order of 2.8× 10−4 (n≈ 1.000 28), corresponding to about 280
μm per metre of measured length. In many cases, e.g., when
using modulated light, it is important to consider the group
refractive index of air, ng, instead of the (phase-) refractive
index, n:

l =
c
ng

·Δt. (3)

This is particularly important for light pulses that can be
viewed as a wave packet that travels as a unit. Generally, wave
packets consist of an infinite set of sinusoidal waves interfering
constructively only over a small region of space, and destruc-
tively elsewhere. The group refractive index can be simply
derived from the dispersion relation resulting in the following
expression:

ng = n − λ0 ·
dn
dλ0

= n + f · dn
d f

, (4)

in which f denotes the light frequency and λ0 the so-called
vacuum wavelength derived from it (λ0 = c/ f ). Considering
as an example green light (λ ≈ 520 nm) in atmospheric air,
ng − n is of the order of 10−5. This difference is comparable
in size to the variation of the phase refractive index of air over
the entire range of visible light (n(380 nm) − n(780 nm) ≈
9 × 10−6). Thus, using n instead of ng can cause an error of
about 10 μm per metre, which demonstrates the significance of
ng. Ultimately, primary methods for the practical realization of
the metre must refer to the exact speed of light in air which is
either c′ = c/n (equation (2)) or cg = c/ng (equation (3)).

2. Primary methods for the practical realization of
the definition of the metre

The practical approach to explore the travel time of light waves
is significantly different from that of other waves. For example,
while the propagation of sound waves can be tracked using
various signal detectors along the wave propagation, this con-
cept is inappropriate for light due to the speed of light itself,
which is also the highest possible signal speed. Therefore, the
approach to a setup for measuring the light travel time is gen-
erally based on dividing the light into two separate pathways,
a reference path and a measuring path.

2.1. Direct measurement of the light’s travel time (time of
flight measurement)

The direct measurement of the travel time of light requires
modulation of the light intensity in order to generate fiducial
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Figure 1. Scheme for the direct measurement of the light travel time which is determined from the time delay between light pulses travel
pathways of different lengths before reaching a detector.

features. The most vivid modulation is represented by a light
pulse, e.g., a laser light pulse which is formed from a wave
packet. The incident light pulse shown in figure 1 is split into
two pulses, one of which travels a short reference path, the
other one travels the measuring path. The mirrors in both path-
ways are arranged such that the light is retroreflected. After the
second passage through the beam splitter the light pulse orig-
inating from the short reference path first hits a light detector
and sets a first trigger at a defined threshold, defining a refer-
ence point in time. A second trigger is then generated by the
delayed light pulse originating from the measurement path.

From the time delay Δt between both triggers, the length
difference between measurement and reference pathways is
derived, which represents the length Δz = l = 1

2 cg ·Δt. For
example, if the length, l, of 1 m, is traversed twice by the light
pulse (outwards and return directions), then the time delay is
approximately 6 ns. Instead of utilizing light pulses, represent-
ing a wave packet, amplitude-modulated light can be used to
achieve higher resolutions. With this approach, the reference
mirror (see figure 1) is omitted and the phase of the intensity
modulation is determined electronically from the detector sig-
nal. The travel time for the light along the measuring path is
then the difference Δϕmod = ϕmodd − ϕmodi between the mea-
sured intensity modulation phases at the detector, ϕmodd =
2π f mod · (t +Δt), and before travel, ϕmodi = 2π f mod · t,
which leads to:

Δt =
Δϕmod

2π f mod
, (5)

in which f mod is the modulation frequency. High modula-
tion frequencies of the order of several gigahertz are used
in sophisticated devices using external electro-optic [7] or
electro-absorption modulators [8]. Using femtosecond lasers
as a light source, multiple highly stable modulation frequen-
cies from several hundred megahertz up to several tens of
gigahertz can be generated in parallel [9].

The direct measurement of the light’s travel time is largely
used for measurements at geodetic scales. Here, the group
refractive index of air, its homogeneity and invariance, are
the limiting factors of the attainable measurement uncertainty.

It is also used for even larger distances, e.g., from the earth
to the Moon [10]. For the realization of short lengths inter-
ferometrical methods are more effective and generally more
accurate.

2.2. The basic idea of indirect measurement of light travel
time by utilizing interferometric techniques

For the realization of lengths below a few metres, as well as
for the most accurate realization of length in general, interfer-
ometric techniques are far superior. Monochromatic light can
be considered as an electromagnetic wave, the electric field of
which is propagating along the measurement pathway (defined
as z-direction)3:

E(z, t) = A · cos (ϕ) = A · cos (k · z − ω · t + δ) (6)

in which A is the amplitude, ϕ the phase, k the wave number,
ω the angular frequency, t the time, and δ the initial phase. The
relationship between the parameters k and ω with wavelength
λ and frequency f is given by k = 2π/λ and ω = 2π · f .
Wavefronts travel the distance of a single wavelength during
a single oscillation period T (T = 1/ f ). The frequency of vis-
ible light waves lies in the range from 300 THz to approxi-
mately 600 THz. The respective oscillation period is there-
fore extremely short and, because the upper frequency limit
of detectors is too low, the oscillation period could not be
recorded directly by any real detector. The only measurable
parameter of a single light wave is a mean intensity

〈
E2
〉

t. The

infinite average (t →∞) of the latter, limt→∞
1
t

∫ t
0 (E (t, z))2 dt

results in the constant value of the light intensity: I = 1
2 A2.

Two waves can be brought into interference with the sim-
plest kind of interferometer shown in figure 2, left, which
is basically the same arrangement as in figure 1. The ampli-
tude ratio of the two waves, which interfere when leaving the

3 Alternatively, the notation E = Re
[
A · ei·ϕ] can be used. Equation (6)

describes a plane wave. In real interferometers, deviations from the plane wave
exist, caused by imperfect optics and diffraction, which are briefly mentioned
in section 4.5.
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Figure 2. Left: simplest interferometer scheme: an incident monochromatic light-wave is split before travel pathways of different lengths
the same way as in figure 1. The blue dashed line indicates the position of equal path length of the measuring and reference pathways. Right:
the resulting intensities according to equation (8) as a function of Δz and the effect of the interference contrast.

interferometer, depends on the reflectivity of the beam split-
ter and it can be assumed that both waves have the same
initial phase and frequency. However, the phase of the light
wave E2(z, t) = A2 · cos [k · (z + 2Δz) − ω · t + δ] which dou-
ble passes the measurement path is enlarged by k · 2Δz com-
pared to the wave E1(z, t) = A1 · cos [k · z − ω · t + δ] travers-
ing the reference path. The sum of both waves represents the
interference wave which can be written as4:

E12 = E1 + E2 = A12 · cos (k · z − ω · t + δ12) . (7)

The amplitude of the interference wave is given by
A12 =

√
A1

2 + A2
2 + 2A1 · A2 cos (2k ·Δz)

and the phase shift by δ12 =
arctan 2 (A1 · sin (2k ·Δz) , A1 · cos (2k ·Δz) + A2).

The infinite average of
〈
E12

2
〉

t→∞, which represents the
intensity, is thus given by:

I12 =
1
2

A12
2 = I0

(
1 + γ cos

(
2π · Δz

λ/2

))
, (8)

where γ denotes the interference contrast γ =
2
√

I1I2/ (I1 + I2) = (Imax − Imin) / (Imax + Imin) and
I0 = I1 + I2 = (A1

2 + A2
2)/2.

As shown in figure 2, there is a relationship between the
length of the measurement path and the number of oscillations,
the so-called interference order, due to the phase change:

Δϕ

2π
=

Δz
λ/2

. (9)

Viewed from the other side, measurement ofΔϕ/2π allows
determination of Δz based on the cumulative phase change. In
the simplest case the integer interference order, i.e. the integer
part ofΔϕ/2π, is obtained by counting the number of intensity
periods while continuously shifting the measurement mirror.

4 a · cos (x + α) + b · cos (x + β) =
√

a2 + b2 + 2ab · cos (α − β) ·
cos (x + δ), in which δ = a tan 2 (a sin α+ b sin β, a cos α+ b cos β)
and a tan 2 represents the extended arctangent.

In any case, the size of shift of the measurement mirror, i.e. a
length, is measured as an arithmetic product of half of the light
wavelength and the interference order:

l = Δz =
1
2
λ · Δϕ

2π
=

1
2

c
n
· Δϕ

ω
. (10)

Accordingly, equation (10) reveals (see equation (2)) that
the travel time of light is obtained from:

Δt =
Δϕ

ω
=

Δϕ

2π f
. (11)

Again (for comparison see equation (5)), the travel time
of light results from the quotient of a phase difference and a
frequency.

Equation (11) clearly reveals that the indirect measure-
ment of the travel time of light requires measurement of the
following quantities:

(a) The frequency f of the light;
(b) The phase difference Δϕ between the two interfering

waves resulting from the observation of the intensity of
interference using an interferometer.

2.3. Measurement of the frequency of the light

As equations (10) and (11) reveal, knowledge of the frequency
of the light, f , is an essential requirement for the realization
of the unit of length. It provides the scaling factor between
a measured phase difference and the length that is realized by
interferometry. For the highest demands on the accuracy of the
light frequency, a light source could be synchronized to the
primary frequency standards by an appropriate technique.

Generally, the amount of the frequency dif-
ference |Δ f | of a light source under test (wave
E2 (t) = A2 · cos ((k +Δk) · z − (ω +Δω) · t + δ2)) with
respect to the frequency of a reference source (wave
E1 (t) = A1 · cos (k · z − ω · t + δ1)), is measured also by
the interference detection technique. In this approach

4
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the two light waves are brought into coincidence along
the same path direction of propagation. In analogy to
equation (7), the associated interference wave can be
written as E12 (t) = A12 (t) · cos (k · z − ω · t + δ (t)), in
which A12 (t) represents the oscillating amplitude A12 (t) =√

A1
2 + A2

2 + 2A1 · A2 cos (Δk · z −Δω · t + δ2 − δ1) and
z the position of the detector. Again, the high frequency
term of E12 (t), which includes the light frequency itself,
cannot be acquired with any detector. Therefore, the mea-
surable interference intensity is given by I12 (t) = 1

2 A12(t)2 =
I0 (1 + γ cos (Δk · z −Δω · t + δ2 − δ1)). For the purpose
of further considerations, made in the following paragraphs,
Δk = k1 − k2 is expressed as 1

c (n1 · ω1 − n2 · ω2) and n2 as
n2 = n1 + (ω2 − ω1) · dn

dω . This results in:

I12 (t) =
1
2

A12(t)2

= I0

(
1+γ cos

(
−2π ·Δ f ·

(
t− 1

c
ng · z

)
+δ2 − δ1

))
,

(12)

in which ng is the group refractive index. Equation (12) repre-
sents the so-called beat signal from which |Δ f | can be derived
electronically. The frequency of a light source (E) under test
( f EUT) is therefore related to the frequency of a standard:
f EUT = f standard ± f beat. To achieve unambiguity, it is neces-
sary to have more than one standard frequency light source
available, or to be able to vary the standard frequency in a
known direction, e.g. by reducing the frequency by a small
amount and observing the change in f beat.

As an alternative to direct measurement of the light fre-
quency, one may use one of the values from the list of
‘recommended values of standard frequencies for applications
including the practical realization of the metre and secondary
representations of the second’ [11]. This list is updated peri-
odically by recommendation of new candidate standard fre-
quencies. Candidate frequencies are examined according to a
published set of guidelines and procedures [12] and only those
that pass the necessary checks are recommended to the CIPM
for entry into the list.

From the calibrated frequency of the light source, the wave-
length λ0 can be calculated which in vacuum is generally
assumed to be identical to the path length corresponding to
a single order of interference (l = 1

2λ). While this assumption
is correct for an ideal interference of two plane waves, it does
not apply if the light is not perfectly monochromatic, or for
non-planar waves (see section 4.5 for the corresponding effect
to the measurement uncertainty).

3. Measurement of the phase difference Δϕ in
various interferometric approaches

As described above, the basic principle of distance measuring
interferometers is the observation of the periodically changing
detector signal of the interference intensity during a change
of the distance of a measuring mirror with respect to a sta-
ble reference mirror, (see figure 2). Each period corresponds

to a unitary change in the interference order, i.e. to a change
in distance by half the wavelength of the light used (equation
(10)). In such interferometers, the moving mirrors are usually
positioned on carriages. To cope with angular changes during
the movement, retroreflectors are typically used instead of flat
mirrors which makes the observed interference signal insen-
sitive to small tilts. Over the distance to be measured a huge
change in the interference order is counted, e.g. approximately
3 million oscillations per metre when using a typical red laser
(λ ≈ 633 nm). Due to the large coherence length of today’s
laser light sources, it would be theoretically possible to mea-
sure distances in the kilometre range. However, air turbulences
make counting of integer interference order changes practi-
cally impossible at larger distances, especially in uncontrolled
environments such as outdoors. A further limit is the mechani-
cal stability of the interferometer. Generally, an interferometer
using a single wavelength is called a homodyne interferometer.

3.1. Homodyne interferometers with quadrature detection
scheme for measuring the phase difference

With the arrangement shown in figure 2, the direction in
which the measuring mirror is moved cannot be detected (see
equation (8)). In extreme cases, moving the measurement mir-
ror forward and backward can even simulate uniform motion
along the z-axis. For this reason, most homodyne interfer-
ometers are equipped with additional components, using the
‘quadrature procedure’ in order to establish a unique rela-
tionship to the position of the measuring mirror. As shown
in figure 3, a linearly polarized laser beam whose polariza-
tion axis is tilted by 45◦ hits a polarizing beam splitter which
splits the incident light into the two polarization components
that are perpendicular to each other. While the component
which is polarized parallel to the incident plane (p-beam)
entirely passes through the beam splitter, the vertically polar-
ized component (s-beam) is fully reflected. These two beams
are reflected and then brought together at the polarizing beam
splitter. For the generation of interference between the two
mutually perpendicular components s and p polarizers are
required, the axis of which is tilted by 45◦.

Additionally, the beam which is transmitted at the beam
splitter traverses a λ/4 delay plate before the polarizer which
causes a mutual phase shift of π/2. Thus, the signal at this
detector is shifted by π/2 compared to the signal of the other
detector. The quadrature detection thus provides two interfer-
ence signals that are shifted by π/2 with respect to each other
and are thus called sine and cosine signals, respectively. The
signals Ĩsin and Ĩcos can be represented as shown in figure 3 on
the right, e.g. by means of an oscilloscope in the xy mode. A
shift of the measuring mirror then leads to a circle being dis-
played. Depending on the direction of displacement, the corre-
sponding vector rotates in one or the other direction. Hereby,
a full revolution corresponds to one integer interference order
(Δϕ = 2π) and thus to a shifting of the measuring mirror by
Δz = λ/2, which can be clearly detected with this procedure.
While the number of revolutions can be counted electronically,
in this approach the fractional part of the phase difference Δϕ
is represented by the angleϕ = arctan 2

(̃
Isin, Ĩcos

)
(see figure 3,

right). In reality unavoidable imperfections, e.g. unequal

5
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Figure 3. Extension of a homodyne interferometer by polarization components to generate two interference signals whose phases are
shifted by π/2 (left). On the right, the vector yielded from the signals Ĩsin and Ĩcos is plotted.

detector gains and offsets can cause distortions of the circle
resulting in an ellipse that can be ‘corrected’ back to a circle in
the post processing by a Heydemann or similar correction (see
[13–15] and references therein). Incomplete separation of the
differently polarized partial beams in a polarizing interferom-
eter as well as multiple back reflections, so-called optical mix-
ing errors also produce periodic non-linearities (see [16–19]
and references therein).

3.2. Heterodyne interferometers

Laser sources can be designed to emit two or more coher-
ent light waves of slightly different frequency that are polar-
ized perpendicular to each other. For He–Ne lasers, this is
often achieved by external magnetic fields inducing the Zee-
man effect [16], leading to frequency differences of typi-
cally 1 MHz to 3 MHz. Larger frequency differences can be
generated by suitable laser resonator designs [20]. Further-
more, it is possible to shift the frequency of a light wave
by a defined value, e.g. by means of acousto-optic mod-
ulators. Figure 4 shows a scheme of such an interferom-
eter known as a heterodyne interferometer. The laser light
source used here generates two waves with different fre-
quencies: E1 (t) = A1 · cos (k1 · z − ω1 · t + δ1) and E2 (t) =
A2 · cos (k2 · z − ω2 · t + δ2) that are polarized perpendicular
to each other (‘s’ indicates vertical polarization with respect
to the image plane and ‘p’ parallel polarization). First, both
light waves are split using a non-polarizing beam splitter. The
two reflected waves then hit a polarizer, the axis of which is
inclined by 45◦ with respect to the two polarization directions.

As a result, the now equally polarized components of the
interference waves E1 and E2 lead to a beat signal at the
reference detector (see derivation of equation (12) above):

Iref (t) ∝ 1+γ cos

(
−(ω2 −ω1) ·

(
t− 1

c
ng · zref

)
+δ2 − δ1

)
,

(13)
in which zref is the length of pathway travelled by E1 and E2 to
the reference detector. The two light waves that pass through

the non-polarizing beam splitter hit a polarizing beam split-
ter where E1 is reflected and E2 is transmitted and pass the
measurement path. After both waves have been reflected by
the retroreflectors, they are combined after the second pass of
the polarization beam splitter. After passing through a polar-
izer, the axis of which is inclined by 45◦ in relation to the two
polarization directions, a second beat signal is generated at the
measuring detector:

Imeas (t)∝ 1+γ cos

(
k2 · 2Δz− (ω2 − ω1) ·

(
t− 1

c
ng · z1,meas

)

+ δ2 − δ1

)
, (14)

in which z1,meas is the length of pathway of E1 via the ref-
erence mirror to the measuring detector and Δz is again the
length difference between the distances from measuring mir-
ror and reference mirror, respectively, to the beam splitter
(2Δz = zmeas

2 − zmeas
1 ). Considering equations (13) and (14),

the difference between the phases of Imeas with respect to Iref ,
which can be measured electronically, is represented by:

ϕmeas − ϕref = k2 · 2Δz + ϕ0, (15)

in which k2 = 1
cω2 · n2 represents the wave number of E2 and

ϕ0 = (ω2 − ω1) · 1
c ng ·

(
zmeas

1 − zref
)

can be considered as a
constant value, provided that positions of detectors and the
reference mirror, but also ng are unchanged. Therefore, when
considering a movement of the measuring mirror in a distance
measurement, the length of the distance is again obtained from
equation (10). The effect of non-linearities in heterodyne dis-
placement interferometry and how to reduce them is widely
discussed in the literature (e.g. see [16, 21] and references
therein).

3.3. Frequency sweeping interferometers (FSI)

The larger the length to be measured, the more likely that beam
interruptions can occur, the more impractical the movement of
a measuring mirror over a distance becomes. The relationship

6
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Figure 4. Scheme of a heterodyne interferometer. Two orthogonally polarized laser beams s and p of different laser frequencies are used.

between a path length and the phase difference via equation
(10) can be considered inversely, i.e. Δϕ = 2

cω · n · l = 4π
c f ·

n · l. When the frequency of the light source can be altered, e.g.
when using a suitable tuneable laser, that allows a time depen-
dent frequency f (t), phase differences are observed as a func-
tion of the light frequency. In this approach, from the measured

slope of dΔϕ
d f = 4π

c · l ·
(

n + f · dn
d f

)
= 4π

c · l · ng the length is

determined:

l =
1

4π
· c

ng
· dΔϕ

d f
, (16)

in which ng is the group refractive index of air (see equation
(4)). While various concepts for frequency sweeping interfer-
ometer (FSI) [22–26] form the basis of versatile length mea-
surements, the uncertainty in the resulting length is typically
much larger than one-quarter of a wavelength. Critical to the
traceability of FSIs is the determination of the rate of frequency
change with a link to the SI second. This can be performed by
simultaneously observing the laser output through an absorp-
tion medium which offers quantum transitions at well-known
frequencies, such as the spectra of acetylene and HCN in
the infra-red part of the spectrum. Currently the CIPM has
approved a set of 111 recommended frequencies for transitions
in various species of the acetylene molecule [11] at around
19 THz (1.5 μm wavelength) with uncertainties at the level
of a few parts in 1011, and work is underway internationally to
secure agreement on similar transitions in HCN [27].

3.4. Multiple-beam interferometers

Figure 5 shows a diagram for a multi-beam interferometer,
in which the interference of the light is observed in reflec-
tion. After passing through the beam splitter, the light passes
through a semi-transparent optical plate. Some of the light
reflected by the mirror is reflected by the semi-transparent sur-
face and goes back to the mirror. The higher the reflectivity R
of the semi-transparent surface, the more often this sequence
is repeated.

After passing through the beam splitter, the interference
wave resulting from the multi-beam interference hits a detec-
tor. The amplitude of the interference wave can be derived
from the infinite sum of partial light waves (see, for example,

[28]). As in the case of the two-beam interference, the
associated interference intensity is a periodic function of
Δϕ = Δz/

(
1
2λ
)
, i.e. the periodicity is given by half the wave-

length of the light used. The interference intensity, the formula
of which is shown in figure 5, leads to an increasingly sharper
structure with increasing reflectivity R of the semi-transparent
plate (see insert in figure 5).

A multiple-beam interferometer is called a ‘Fizeau
interferometer’ if the distance between the two flat surfaces on
which the reflection takes place is large compared to the wave-
length of the light. An advantage of such interferometers is the
spatial narrowness of the fringe minima which can be accu-
rately localised using e.g. CCD detectors. On the other hand,
the dependency of the interference signal on the path differ-
ence is more complicated for Fizeau interferometers. With an
absorbing film used as a beam-splitter, the interference profile
of the reflected light will even be asymmetric.

A Fabry–Pérot interferometer (FPI) is a Fizeau interferom-
eter operated with two semi-transparent mirrors whose reflec-
tivity R is typically large. The so-called ‘finesse’ serves to
characterize the resonator. It is defined as the ratio of the so-
called free spectral rangeΔλ to the full width at half maximum
δλ of an individual maximum of the interference intensity:
F = Δλ/δλ = π

√
R/ (1 − R). Extremely stable resonators

with high finesse can be used for short-term frequency stabi-
lization of laser sources. FPI resonators made of monocrys-
talline silicon, for example, enable frequency stabilization of
commercial laser systems of better than 10−16 [29]. In a lim-
ited range of the length FPIs can also function as displace-
ment sensors [30]. Suitable FPIs can also be used to accurately
determine the refractive index of air [31].

3.5. Large-field imaging interferometers

The interferometers described above have beams with small
diameter, typically a few millimetres, however, there is another
class of interferometers, namely large field interferometers
which are equipped with optical components to generate
beam diameters of about 50 mm or larger. Besides collimat-
ing lenses, with a focal length of typically several hundred
millimetres, comparatively large beam splitter and mirrors
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Figure 5. Multiple beam (Fizeau-) interferometer operated in reflection mode. The characteristics of the interference intensity as function
Δz is dependent on the reflectance of the semi-transparent plate.

are necessary. Such interferometers are often combined with
imaging optics, which make it possible to locate objects (e.g.
the front of a gauge block) in relation to the pixel coordinates
of a camera sensor. These large-field imaging interferometers
can be designed as two-beam interferometer or multi-beam
interferometer (Fizeau interferometer). These are suitable for
the measurement of the length of bar shaped material mea-
sures, e.g. gauge blocks [32] wrung to a flat platen forming
a step height. Although the basic physical principles of mod-
ern large field interferometers are unchanged for more than a
century [33–36], today’s interferometers benefit from highly
monochromatic stabilized lasers, high dynamic range cameras,
computer-controlled equipment including phase stepping and
sophisticated software analysis (e.g. see [37]). Further, modern
light sources can be stabilized to frequency standards by using
optical frequency comb techniques (e.g. see [38]). The basic
scheme of a two-beam large field interferometers is shown in
figure 6. A point light source located in the focus of a colli-
mator creates a large bundle of parallel rays that covers the
prismatic body, such as a gauges block, as shown in figure 6
along with its end platen. In this way, the interference intensi-
ties for each partial beam of the bundle are laterally resolved5:

Δϕ (x, y)

I = I0

⎧⎨
⎩1 − γ cos

⎡
⎣︷ ︸︸ ︷

2π
λ/2

(z2 (x, y) − z1 (x, y))

⎤
⎦
⎫⎬
⎭ ,

(17)

where z1/2 (x, y) represents the distribution of the geometric
paths (1: reference, 2: measurement) perpendicular to the opti-
cal axis. Recall γ from equation (8). If the reflecting surfaces
were completely flat, the path difference z2 (x, y) − z1 (x, y)
would describe a plane whose tilt depends on the alignment
of the surfaces with one another.

The cosine function in the equation is the main term respon-
sible for the appearance of the fringes with maxima for path

5 Since the reference beam is reflected once more by the optically denser
medium (outer surface of the beam splitter) than the measuring beam, the sign
of the interference term is reverse—compared to equation (8).

differences of mλ/2 and minima for
(
m + 1

2

)
λ/2, where m

is an integer. The prismatic body in the measuring arm of the
interferometer represented in figure 6 causes the occurrence
of two offset fringe systems. The value of this offset in rela-
tion to the fringe spacing corresponds to the length, l, of the
artefact, but only the fractional interference order, q, is visible.
Together with the integer interference order, i, which must be
determined separately, the length of a prismatic body can then
be obtained:

l =
λ0

2n
Δϕ

2π
=

λ

2
· (i + q) . (18)

The sharpness of the interferograms is affected by the
finite size of the aperture, which is positioned in the focal
plane of the focussing lens at the output of the interferom-
eter. This aperture serves to suppress disturbing secondary
reflections. The application of digital processing techniques
[39, 40] to phase shift interferometry has significantly
improved measurement efficiency and accuracy. The basic
concept of phase shift interferometry is that one can deter-
mine the phase modulo 2π over a beam diameter by acquir-
ing multiple interferograms, each phase shifted by a cer-
tain amount, wherein the phase shift might be generated
by variation of the interferometer’s reference pathway. Con-
siderable efforts have been made to develop effective and
error-compensating phase extraction algorithms [41–47]. The
algorithm proposed by Tang [47] is based, for example, on five
intensities Ik = I0 {1 − γ cos [Δϕ+ (k − 3)α]}, k = 1 . . . 5,
which are recorded successively with equally spaced phase
steps α, which leads to the phase difference:

Δϕ = arctan

(√
[2 (I4− I2)+ (I5− I1)] [2 (I4− I2)− (I5 − I1)]

I1 + I5 − 2I3

)
,

(19)
as illustrated in figure 7.

For Fizeau interferences there exists a dedicated phase
determination algorithm [48] which takes into account the
non-sinusoidal intensity of fringes in Fizeau interferometers.

The installing of a permanently evacuated cell in the mea-
suring arm of a large-field interferometer allows accurate
determination of the refractive index of air for the specific
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Figure 6. Interferometer for realizing the length of prismatic bodies. The interferogram shown as an inset illustrates the situation in which
the reference mirror is slightly inclined. In such a case the fractional order of interference can be read directly from the fringe mismatch, q,
by comparison against the fringe size.

Figure 7. Illustration for a phase value obtained from a series of
intensities using a five frame phase-stepping algorithm.

wavelength of the light used. Here, the refractive index of air
is determined from the difference of the optical path lengths in
vacuum and air, along a common cell length [49]. If the col-
limated beam of a large-field interferometer is large enough
to contain both a gauge block and a vacuum cell next to it,
the effective refractive index of the air can be determined
from a common phase topography. A rough estimate of the
air refractive index will suffice [50].

3.6. Extension of the unambiguity range

When the integer interference order cannot be determined, e.g.
in the measurement of long distances, the ambiguity range
is limited to about a quarter of the wavelength. The range
of unambiguity can be enlarged by applying more than a
single light source, with a different wavelength in a length
measurement by interferometry.

Considering the simplest case of two different light sources,
for a given length l the respective phase differences can each

be written as Δϕi = 2π · l/
(

1
2λi

)
(see equation (10)). Thus,

the differenceΔϕ2 −Δϕ1, which is called the synthetic phase
Φsynth, corresponds to

Φsynth = Δϕ2 −Δϕ1 = 2π
l

Λsynth/2
, (20)

in which Λsynth denotes the so-called synthetic wavelength
(Λsynth = λ1 · λ2/ (λ1 − λ2)).
Consequently, the length can be rewritten as

l =
1
2
Λsynth ·

Φsynth

2π
. (21)

Compared to equation (10), the unambiguity range in a
length measurement that is based on equation (21) is greatly
enlarged due to the fact that the synthetic wavelength is much
larger than a single wavelength. On the other hand, the accu-
racy of Φsynth is limited by the accuracies of the individual
phase differences Δϕ. Therefore, the uncertainty of the length
is generally upscaled be a factor of approximately λ/Δλ.

Application of such ‘synthetic wavelength interferometry’
in air benefits from a separate consideration of the air refractive
index. Continuing the above example of two wavelengths, each
written as λk = λ0

k/nk, in which λ0
k denote so called vacuum

wavelengths (λ0
k = c/ f k), the synthetic phase corresponds to

Φsynth = 4π · l · λ
0
2 − λ0

1

λ0
1 · λ0

2

·
(

n1 − λ0
1 ·

n2 − n1

λ0
2 − λ0

1

)
. (22)

For small differences Δλ0 = λ0
2 − λ0

1 it can be easily
demonstrated that the term n1 − λ0

1 · (n2 − n1) /
(
λ0

2 − λ0
1

)
is

close6 to the group refractive index ng (see equation (4))
considered at the average vacuum wavelength λ0

1 +
1
2Δλ0.

6 Agreement is within 10−8 for wavelengths > 450 nm and Δλ0 < 10 nm.
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Accordingly, the length can then be rewritten as

l =
1
2

Λ0
synth

ng
· Φsynth

2π
, (23)

in which Λ0
synth denotes the synthetic vacuum wavelength

(Λ0
synth = λ0

1 · λ0
2/
(
λ0

2 − λ0
1

)
). Such two-colour synthetic

wavelength interferometer is suitable for absolute measure-
ment of even very large distances (e.g. see [51, 52] and
references therein).

While measurement of the synthetic phase and considera-
tion of the synthetic wavelength can provide appropriate esti-
mates in a length measurement [53], the accuracy of the length
according to equation (23) is typically larger than a quarter of
a wavelength.

The exact total number of integer interference orders can
by determined by the so-called ‘method of exact fractions’
which was first suggested by Benoit [54]. Here, the phase
difference, 1

2πΔϕ representing the total interference order,
is split into an integer part, i, and a fractional part q, i.e.
l = 1

2λ · (i + q). When different wavelengths, λk, are available
for each wavelength the length is expressed as:

lk = (ik + δk + qk)λk/2, (24)

in which ik represent estimate integer orders, calculated from
an estimate of the length, lest (ik = round

[
lest/

(
1
2λk

)]
, where

‘round[]’ represents the operator for rounding to the nearest
integer) and δk are variation integers. For a set of N differ-
ent wavelengths the mean length, l , and the average deviation
from the mean length, Δ, can be considered as described in
more detail in [50]:

l =
1
N

N∑
k=1

lk, Δ =
1
N

N∑
k=1

∣∣l − lk
∣∣ . (25)

The resulting set
{

l ,Δ
}

can be displayed as scatterplot
which represents a coincidence pattern. Considering the case
of two wavelengths, the value of Δ is exactly given by
1
2 |l1 − l2|. Assuming that i1 and i2 correspond to the cor-
rect integer orders (δ1 = 0, δ2 = 0), the two lengths, writ-
ten as l1 = (i1 + q1)λ1/2 and l2 = (i2 + q2)λ2/2, coincide
(Δ = 0) when q1 and q2 are given ‘exactly’. A relation for fur-
ther variation integers (δ1 
= 0, δ2 
= 0) for which coincidence

is obtained can be extracted by setting Δ = 1
2

∣∣∣l̃ 1 − l̃ 2

∣∣∣ =
1
2 |(i1 + δ1 + q1)λ1/2 − (i2 + δ2 + q2)λ2/2| = 0, in which l̃1

and l̃2 correspond to blunder lengths. This situation is
expressed with equation (26):

Δ = 0 = |λ1δ1 − λ2δ2| ⇒ Δ = 0 for
δ2

δ1
= ±λ1

λ2
. (26)

Therefore, integer interference orders could be calculated
incorrectly when their ratio is equal to the ratio of the wave-
lengths used in the measurements, i.e. a rational number. In
particular, the issue occurs when the first wavelength is given
by an integer multiple of the second wavelength, i.e. λ1 =
aλ2 (a is an integer), coincidence (Δ = 0) is obtained when
δ2 = aδ1.

Figure 8. Fictive coincidence pattern when using the two fictive
wavelengths 532.3 nm and 548 nm.

Assuming the two fictive wavelengths 532.3 nm and
548 nm, the example coincidence pattern shown in figure 8
demonstrates that at the length deviation l − lest = δl there
exists a minimum of Δ that is exactly zero (marked by the
dotted circle). Further local minima exist which are sepa-
rated by the amount of half the synthetic wavelength, Λsynt =
λ1λ2/ |λ2 − λ1|, i.e. at positions l − lest = δl + m · Λsynt/2 in
which m is an integer. However, it should be noted that the
coincidence pattern (grouped values of Δ belonging to a cer-
tain number of m) is always different. The next neighboured
minima for which Δ is nearly zero can be found at specific
multiples of Λsynt/2. In the example of figure 8 these minima
are localized at m = ±3. This number is strongly dependent
on the wavelengths λ1 and λ2. The amount of m could be cal-
culated in the same way as the ‘range multiplier’ suggested by
de Groot (see equation (14) of [53]). The lengths which are
closest to the correct minimum l − lest = δl (Δ = 0) are sep-
arate by a single integer interference order, i.e. at l − lest =
δl ± (λ1 + λ2) /2. The corresponding values of Δ amount to
|λ1 − λ2| /4. This reveals a very important requirement for the
applicability of the method of exact fractions: the wavelengths
must be clearly separate. Otherwise, the value of Δ for the
neighbouring lengths becomes too small. When, e.g.,λ1 andλ2

would be just 2 nm apart from each other, for {δ1 ± 1, δ2 ± 1}
the values of Δ would result in 0.5 nm which is very close
to zero (Δ = 0 is obtained for the correct variation numbers
{δ1, δ2}). It is therefore important to note that in such case,
despite the small values of Δ, the corresponding lengths are
apart by relatively large amounts, namely ± (λ1 + λ2) /2. In
other words, the ambiguity range critically depends on the
uncertainty in the measurement of the fractional interference
orders qk, with the remark that uncertainty contributions to the
measured length, which are the same for all wavelengths used,
have no influence on this ‘method of exact fraction’.

4. Typical uncertainty contributions in the
practical realization of the length unit by
interferometry

When considering the model equation(s) representing a length
measurement, as required in order to derive the sensitivity
coefficients for a GUM-compliant [55] uncertainty budget, a
selection of contributions to the measurement uncertainty are
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Table 1. Main influence parameters affecting the air refractive index,
their values at standard conditions, and their sensitivity coefficients
evaluated at standard conditions.

Influence parameter
Value at standard

conditions
Refractive index

sensitivity coefficient

Temperature 20 ◦C −9.2 × 10−7 K−1

Pressure 101 325 Pa +2.7 × 10−9 Pa−1

CO2 content 400 ppm +1.4 × 10−10 (ppm)−1

Humidity
As relative humidity 50% RH −8.7 × 10−9 (% RH)−1

As dew point 9.27 ◦C −1.5 × 10−8 K−1

As water vapour pressure 1168 Pa −1.8 × 10−10 Pa−1

observed which are common across many length measure-
ment systems based on optical interferometry. Typically, the
largest source of uncertainty, when measuring the length of an
artefact comes from correction of the measured length to the
standard temperature of 20 ◦C, as prescribed in ISO 1 [56],
due to inaccuracies in the measurement of the artefact tem-
perature and lack of precise knowledge of the coefficient of
thermal expansion (CTE). These issues can be obviated when
the artefact is made of low CTE material, and then the remain-
ing major uncertainty contributions come from the application
of the optical interferometry to the length measurement. The
uncertainty of the optical frequency is then usually the smallest
contribution to the uncertainty, and the dimensional metrolo-
gist must consider instead, many items which are highlighted
in annex 2 of the MeP [3].

4.1. Determination of the air refractive index

As mentioned in section 1, for measurement in air, the refrac-
tive index is significant and must be measured directly (e.g.
through comparison of equal optical path lengths in air and in
vacuum in a refractometer) or determined from measurement
of the parameters given in table 1 through use of empirical
equations.

If one considers the typical daily changes in the param-
eters in table 1, the sensitivity coefficients allow calculation
of the commensurate changes in refractive index; by far the
largest variations come from pressure and temperature, leading
to refractive index changes of several parts in 106.

There are several equations which can be used to cal-
culate refractive index [49, 57–60] which all separate the
effects of dispersion (wavelength-dependency, Kλ) from the
density-dependent terms (Dtp)

(n − 1)tp = Kλ · Dtp. (27)

The density term is modified for the effects of water vapour
(humidity) and for the effects of increased CO2 in the atmo-
sphere. The empirical equations claim standard uncertainties
of the order of 1 × 10−8 for readings from perfect sensors,
however sensor errors (calibration, drift) and inhomogeneity
of the air between the sensor location(s) and the air path to
be measured by interferometry, lead to overall uncertainties of
the order of several parts in 108. Achievement of this level of
accuracy requires metrology-class sensors costing around 15

thousand euro or more. Care must be taken to ensure all optical
paths in air are suitably compensated to avoid deadpath errors
(e.g. when the zero position of the measurement arm does not
coincide with a zero length from the beamsplitter).

4.2. Cosine error

An angular misalignment between the measurand length and
the light path length in the measuring arm of an interferometer
contributes an error directly proportional to the cosine of the
angle, θ, between the two lengths. For small misalignments,
using the small angle approximation, the fractional error is
approximatelyθ2/2, e.g. for θ= 1 second of arc misalignment,
the fractional error, given by δl/l = d · cos θ, is 1.2 × 10−11.
Minimisation of cosine error requires careful alignment of the
interferometer with respect to the measurand.

4.3. Abbe error

When the measured length and the light path length are paral-
lel, but laterally offset from one another, angular error,α, in the
motion of the moving reflector in the measurement arm causes
a length measurement error proportional to both the tangent of
the angle, and the lateral offset, d, between the two lengths,
e.g. for α = 5 s of arc and d = 100 mm, the error, given by
δl = d · tanα, is 2.4 μm. Note that this error is length indepen-
dent—it depends on the offset, d, and the motion error, α, not
on l. Abbe error can be minimised by either reducing rotational
errors caused by imperfect motion axes, or by minimising the
lateral offset between the measurand length and the light path.

4.4. Light source aperture correction

Interferometers with collimated beams are subject to obliquity
errors due to the finite (non-zero) size of the source. Some
forms of interferometer require the source aperture to be offset
from the focal point of the collimator lens (i.e. not on the prin-
cipal axis). In such cases, the off-axis source causes a small
angular deviation of the measurement beam with respect to
the measurand axis, similar to a cosine error; for a negligible
sized source, positioned a distance s off-axis with a collima-
tor lens of focal length f , the error scales as δl/l = s2/2 f 2

[61]. For an interferometer with the source perfectly on axis,
if the source size is finite, then elements of the source will
still be off-axis and the resulting effect may be calculated by
integrating the effect of all such infinitesimally small elements
each contributing a cosine error. The result shows that the
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length error, for a source of diameter d and a collimator lens
of focal length f , is given by δl/l =

(
d/4 f

)2
[61], e.g. for

d = 1 mm, f = 1000 mm, the relative error is 6.25 × 10−8.

4.5. Wavefront aberrations and non-planar wavefronts

For wide field interferometers optical aberrations, especially
those unique to either the reference or measurement arm, lead
to topographic errors in measured surfaces, with a one-to-one
correspondence, as a minimum (some errors will accumulate
during propagation). Typical commercial optics can achieve
around λ/20 to λ/40 wavefront quality, leading to 15 nm to
30 nm measurement error across the aperture-limited surface.
Most of this so-called optical error can be corrected by using
an almost ideally flat surface (e.g. a flatness standard). The
remaining optical error after correction is then of the order of
magnitude of the flatness deviation of the standard.

Even for ‘perfect’ optical components, the physical wave-
fronts are not perfectly planar due to diffraction and the
distance travelled by a wavefront during one period of the
oscillation of the electromagnetic wave differs from that of an
ideal plane wave and will also depend on location. A typical
exemplar of this is the well-known TEM00 mode emitted by
He–Ne lasers, which is Gaussian. For well-designed interfer-
ometers operating near the diffraction limit, the effect can be
shown to be of the order of 1 or 2 nm [62, 63].

4.6. Polarisation effects (transport and crosstalk)

Both homodyne and heterodyne interferometers often use
polarisation to separate the light for the two arms of the inter-
ferometer. The separated polarisation states are often achieved
using polarisation-dependent optics. Polarisation jitter and
imperfect extinction during splitting and recombination appear
as phase errors, as do any extraneous rotations of the polar-
isation state during path length traversal, leading to length
measurement errors [16–19], typically of the order of a few
nanometres.

4.7. Parasitic reflections and non-linearity of fringes

All interferometers, and especially those utilising polarization
optics for beam steering and phase measurement are prone to
phase errors caused by parasitic beams which cause optical
fringe interpolation to become non-linear, leading to errors of
a few nanometres. For some effects, compensation is possible
through sampling across several fringe periods [13] or improv-
ing the design of interferometer, but for the most demanding
applications, where multiple parasitic beams produce a spec-
trum of phase non-linearities, detailed modelling is required to
achieve the necessary compensation [64].

4.8. Reference path instability

Apart from Fizeau designs of interferometer, in which the ref-
erence path is of zero length, all interferometers have a finite
length of the reference path (usually the separation between
the beam splitter and the reference mirror). Erroneous changes
in the reference path length directly contribute to length mea-
surement error. Variation of the reference path length can be

caused by e.g. vibrations or thermal changes in the mounting
mechanism, e.g. consider a 1 m mechanical arm made of steel
(CTE 10.7× 10−6 K−1), a 0.1 ◦C change in temperature would
change the arm length by 1.07 μm, leading to a length error
of the same value if the change occurred during the time the
measurement arm was being monitored.

4.9. AC detection issues

When using AC detection, the detector itself can influence
the phase measurement, e.g. typical detectors contain a small
active area with some focussing optics in which any local inho-
mogeneity will couple with beam wandering (due to turbu-
lence or surface form errors in optics) to cause phase errors.
Other effects such as amplitude to phase coupling may be
present depending on the type of sensor. It is possible that
errors up to 1/2 fringe may be encountered.

4.10. Optical component errors and parasitic motions

For length measuring interferometers where a physical motion
is monitored using a laser beam (fringe counting) parasitic
motions of the moving part such as roll, pitch, and even yaw
may cause errors in the reflected beam which returns to the
detector. If plane mirrors are used to reflect the beam, roll and
pitch cause angular deflections in the returned beam, which can
cause sine errors if large aperture detectors are used. Even with
cube corner retro reflectors, roll, pitch, and yaw will contribute
errors which can be as large as 0.5 μm for parasitic rotations
of 0.36◦ [65].

4.11. Light optical frequency (vacuum wavelength)

An uncalibrated, unstabilized 633 nm He–Ne laser can be
assumed to have a vacuum wavelength λ= 632.9908 nm with
a relative standard uncertainty of 1.5× 10−6, according to [66].
If this is insufficient, stabilized lasers are available commer-
cially which can achieve frequency stability of around 10−9;
frequency stabilized lasers can be calibrated by beat frequency
against a reference laser or optical frequency comb with an
uncertainty of a few parts in 1011, thus for the majority of
the length scale, the instability or calibration error of the light
source is usually the least significant error source.

It is possible for a 633 nm He–Ne laser to have a small
secondary mode lasing on the He–Ne 3s2 → 2p2 transition at
640 nm, which might cause a non-linearity in the fringe inter-
polation, so it may be desirable to check for the presence of
such modes [66]. About 50 years ago, an NMI reported that
a laser purporting to operate at 633 nm was found to actually
operate almost exclusively on the 640 nm transition. Rather
than a non-linearity, this extreme case causes a systematic
length-proportional error of 1.1% due to the incorrect value of
the wavelength. We are not aware of more recent occurrences
of this extreme problem but there is still a small possibility
of a small amount of 640 nm light contaminating the 633 nm
output.

A certain amount of ‘parasitic light’, which comes from an
undesired mode of the resonator of a laser, can even lead to a
relative error of a few parts in 107 when measuring a length,
although the light frequency of the main mode was calibrated

12



Metrologia 58 (2021) 052002 Review

to a relative uncertainty of 10−12. As shown in [67] for a single
parasitic light mode, the maximum effect on a length measure-
ment is given approximately by 0.16/η fractional interference
orders, where η is the ratio between the intensity of the main
light mode and that of the parasitic light mode. It therefore
appears desirable to have information about the amount of
parasitic light. An additional error source in stabilized lasers
comes from parasitic reflections inside the laser system (often
from the optics used in the stabilization scheme) [68]. The
phase of such reflections varies with the optical path length
and wavelength of the laser; for lasers employing modulation-
based stabilization schemes, such as the less-often used Lamb
dip (e.g. 32 kHz modulation to 16 MHz optical frequency
depth), the phase difference modulates, giving rise to an inten-
sity modulation at the same frequency as the modulation sig-
nal. This can bias the stabilization circuit, especially during
warm-up. In two-mode stabilized and transverse Zeeman sta-
bilized lasers which operate with two orthogonally polarized
modes, optical feedback can cause changes in the quality fac-
tor of the optical cavity, causing reduction in the frequency
stability performance [68].

4.12. Phase change on reflection

Reflection and transmission of light can be described by the
well-known Fresnel equations. If a light wave, written in com-
plex notation as E = Re

[
A · ei·(k·z−ω·t)], is reflected at perpen-

dicular incidence at the surface of a material, the ratio between
reflected (Er) and incident light wave (E) is generally given by:

Er/E = (n̂1 − n̂2) / (n̂1 + n̂2) , (28)

in which n̂1 is the complex refractive index of the medium in
which the wave propagates and n̂2 is the complex refractive
index of the material from which the light is reflected. Assum-
ing that n̂1 is a real number n1 (such as for air, glass or vacuum
and other dielectric materials), this ratio results to: Er/E =
(n1 − (n2 + i · κ2)) / (n1 + (n2 + i · κ2)) and can be written as
Er/E = |Er/E| · ei·δϕP where δϕP describes the phase change
on reflection7:

δϕP = arg
[
Er/E

]
= a tan 2

[
−2 · n1 · κ2, n1

2 − n2
2 − κ2

2
]
.

(29)
While for κ2 = 0 and n2 > n1 equation (29) returns exactly

π radians, which is the known phase change on reflection for
dielectric materials, increased values of κ2 lead to an increased
phase change for non-dielectric materials, e.g. metals (see [69]
and references therein). This effect can be interpreted as the
virtual penetration of the light into the material and must be
generally taken into consideration in the measurement of the
(geometrical) length.

When measuring step heights in a wide field interferome-
ter, e.g. the measurement of a gauge block central length when
wrung to a platen, any difference in the complex refractive

7 This equation refers to the notation n̂ = n + i · κ which relates to the phase
definition in equation (6) (ϕ = k · z − ω · t + δ). For the alternative notation
n̂ = n − i · κ, which refers to phases definition ϕ = ω · t − k · z + δ, the phase
change correction is δϕ = arctan 2

[
2 · n1 · κ2, n1

2 − n2
2 − κ2

2
]
.

index between the upper and lower surfaces will cause an erro-
neous difference in the phase of the reflected wavefronts lead-
ing to a fringe shift and a length measurement error. Measure-
ments of n2 and κ2 for a number of steel gauge blocks using
ellipsometry [70] indicated a 20% variation in κ2, resulting in
a 5◦ variation of δϕP, corresponding to a variation in measured
length of ∼5 nm, for λ ∼= 633 nm [71]. Typical values include
∼20 nm difference between e.g. steel and glass.

Semi-transparent surface layers on the material cause mul-
tiple reflections that lead to an additional phase change. This
must be taken into account in particular if the desired mea-
surement uncertainty is in the sub-nm range. A prominent
example is the volume determination of highly enriched 28Si
spheres [72], where it is important to collect information
about the composition and thickness of several surface lay-
ers and to calculate the influence of these layers on the mea-
surement. Another example is the correction for the phase
change occurring on dielectric mirrors of a Fabry–Perot cavity
refractometer [73].

5. Secondary methods of realizing the metre for
dimensional nanometrology

A major addition to the mise en pratique for the metre with
the 2019 revision of the SI was the introduction of secondary
realisations of the metre based on the silicon lattice parameter.
Details of this can be found in the mise en pratique [3], asso-
ciated guidance documents [74–76] and a recently published
overview [77]. A summary is presented here.

The growth in nanotechnology was originally predicted by
Feynman [78]. Some years later Taniguchi [79] plotted the
machining accuracy for different levels of machining as a func-
tion of time over the twentieth century extrapolating into the
mid twenty-first century. His plot (a modified version of his
graph has been reproduced in figure 9) showed that in the first
quarter of the current century nanoscale metrology would be
routinely required. Also shown in figure 9 are the primary
scale attributes of three ways of realising the metre: the his-
torically used 1 m platinum–iridium International Prototype
metre (which was made obsolete by the revised SI definition
of the metre in 1960), the vacuum wavelength of the popu-
lar 633 nm He–Ne laser stabilised to saturated absorption in
iodine, and the 192 pm d220 silicon lattice spacing. The rela-
tive uncertainties are also given for the latter two. The error
sources described earlier in the paper (section 4) show that
the frequency uncertainty of suitable lasers cannot be equated
with the measurement uncertainty in the primary realisation of
the metre. In fact, these sources of error dominate the overall
measurement uncertainty, i.e. the laser frequency uncertainty
is typically only a small contributor when using optical inter-
ferometry. For example, the relative frequency uncertainty of
the iodine stabilised He–Ne laser is 2.1 × 10−11. On the other
hand, the measurement uncertainty for the primary realisation
of lengths in air is a few parts in 108. Achieving sub-nanometre
accuracy with optical interferometers requires considerable
care, often supported by independent verification that the non-
linearity terms have been reduced to a sufficiently low level
[64, 80]. Taniguchi’s modified graph in figure 9 shows that
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Figure 9. Taniguchi’s plot of machining tolerances modified to include the accuracy of metre realisations. Reproduced from [77]. © IOP
Publishing Ltd. All rights reserved.

to achieve sub-nanometre uncertainties will become increas-
ingly challenging for optical interferometry, especially when
working in air. To meet this demand for nanoscale dimensional
metrology, the Consultative Committee for Length’s Working
Group for Nanometrology considered alternative metre real-
isations at the nanoscale. A bottom-up approach in line with
Feynmann’s prediction seemed logical; the Working Group
recommended the lattice parameter of silicon. The silicon d220

lattice spacing has been measured extensively as part of the
Avogadro project [81–86]. It is listed in the Committee on
Data for Science and Technology (CODATA) list of constants
[87] with a value of d220 = 192.015 5714 × 10−12 m, with
a standard uncertainty of 0.000 0032 × 10−12 m, i.e. rela-
tive uncertainty of Δd/d = 1.67 × 10−8 at a temperature of
22.5 ◦C in vacuum. Recent lattice parameter measurements
have been performed on an isotopically enriched silicon 28
[88]. For the purposes of length metrology at the nanometre
and picometre scale the lattice spacing uncertainty is sufficient
for dimensional metrology. A 1 mm displacement would be
equivalent to ∼5.2083× 106 lattice spacings. With the quoted
uncertainty of the lattice spacing, the corresponding relative
uncertainty on the measurement of 1 mm based purely on the
lattice spacing would be

√
n · UC (d220) ∼ 10−14 m, where n is

the number of atoms per unit cell.
Obviously other factors need to be taken into account to

calculate the overall uncertainty, depending on the technique

used to realise the use of the lattice spacing, but nevertheless
the potential of the lattice spacing is clear.

X-ray interferometry was originally developed by Bonse
and Hart [89] with Hart suggesting the potential of the x-
ray interferometer for dimensional metrology in his paper,
‘the angstrom ruler’ [90]. The theory of the operating princi-
ple of an x-ray interferometer for displacement measurement
was described by Bonse and Hart [91]. Figure 10 shows a
schematic plan view of a monolithic x-ray interferometer. The
monolithic interferometer has been machined from a single
crystal of defect free silicon that has been orientated such that
planes from which x-rays have been diffracted (220) are per-
pendicular to the faces of three vertical lamellae (B, M and
A) shown in figure 10. Incoming x-rays are incident at the
Bragg angle and diffracted by the first lamella, B, that acts as a
beam splitter. The two inward diffracted beams are diffracted
again from the second lamella, M, and recombine at the third
lamella, A, to form an interference pattern that is given by the
lattice spacing rather than the wavelength of the x-rays being
diffracted. This can be compared to a grating interferometer
[92].

The third lamella has a flexure mechanism machined
around it so that it can be moved parallel to the lamella face.
When it is translated, a moiré fringe pattern is formed between
the interfering x-ray beams and the planes in the third lamella
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Figure 10. Plan view of monolithic x-ray interferometer.

from which x-rays have been diffracted. With careful align-
ment the fringes can be ‘fluffed out’ across the full width of the
x-ray beam. This monolithic construction is favoured from the
point of ease of construction, alignment, translation of the third
lamella, and stability, however, its scanning range is typically
limited to a few micrometres which is nevertheless suitable for
many dimensional metrology applications. For lattice param-
eter measurements, a longer range of up to 1 mm is required
and the interferometers used for such experiments comprise
two separate components made from the same original piece
of silicon. Since x-ray interferometry is the route for traceable
measurement of the silicon lattice spacing, it is appropriate
that it is one of the three methods chosen for realisation of
the lattice parameter of silicon as a route to traceability for
dimensional metrology.

To overcome the limited range of a monolithic x-ray inter-
ferometer, it has been combined with an optical interferom-
eter (COXI) to provide a long range (1 mm) facility for the
calibration of displacement measuring transducers [93]. Sub-
sequently, x-ray interferometers have been used both as actu-
ators to generate traceable sub nanometre displacements for
positioning [94] and to measure sub nanometre errors in opti-
cal interferometers and encoders [95, 96]. Bergamin et al first
proposed the idea of servo control of x-ray interferometers
for quantised fringe positioning [97] in the combined optical
and x-ray interferometer project [93]. Using this technique,
the scanning stage of the x-ray interferometer can either be
held fixed on the linear part of an x-ray fringe or moved in
discrete steps of x-ray fringes. The development of a digital
control system for an x-ray interferometer made during the
Nanotrace project [80], where NMI-developed interferometers
were assessed for non-linearity, enabled sub-fringe positioning
and quadrature detection of x-ray signals [98] making x-ray
interferometry a picometre ruler.

The second method chosen by the Working Group is
based on transmission electron microscopy (TEM) to sup-
port linewidth metrology for the semiconductor industry.

Linewidth metrology is typically performed using a critical
dimension atomic force microscope (CD-AFM) that measures
the sidewalls of linewidth structures. Unlike a conventional
AFM, a CD-AFM [99, 100] servo controls the position of the
AFM tip in a lateral direction rather than the traditional vertical
direction and it uses a double anvil shaped AFM tip with the
tips being horizontal. The measurement of linewidth is subtly
different from measurement of pitch. When measuring pitch,
the separation between identical structures in a row or column
is being measured and the effects of dilation of the size of a
structure due to probe sample interaction effects is cancelled
out as common features are being measured. On the other
hand, when measuring the width of a structure, the effects of
probe sample interaction dilate the width of the structure; the
probe can be either a tactile probe where the tip shape has an
effect or electrons from an SEM where scattering can broaden
the shape of the structure [101]. For several techniques, models
have been developed to estimate the uncertainty contribution
of the probe sample interaction. This limited the typical mea-
surement uncertainty of linewidth structures to 2 nm for sub-
micrometre wide structures. Knowledge of the lattice spacing
of silicon combined with lattice resolving techniques for TEM
offers the potential for a reduced measurement uncertainty for
linewidth metrology. However, the destructive nature of sam-
ple preparation in the TEM means that TEM must be used in
conjunction with other microscopy techniques such as scan-
ning electron, optical or atomic force. Both NIST and PTB
have been extremely active in this area developing measure-
ment techniques and samples so that the effects of the tip width
on CD-AFM measurements could be calculated and taken into
account in the final measurement uncertainty [102–107]. Sam-
ples were developed that comprised a series of linewidth struc-
tures that could be measured using CD-AFM. One of the struc-
tures was then cross-sectioned so that it could be examined
using TEM and the number of silicon atoms on the struc-
ture counted. This allowed the true width of the structure to
be determined and then the CD-AFM measurements of all
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Figure 11. (a) An overview image of the alignment marks and five line features measured by STEM (smallest line feature L1 marked on the
right); (b) the line L1 with a nominal feature width of 50 nm measured by STEM; (c) the averaged intensity profile of the STEM image at
the marked area in (b) with an inset figure showing the periodic crystal lattice planes of the silicon. Reproduced from [103]. © IOP
Publishing Ltd. All rights reserved.

Figure 12. Optical images of (a) step free region (b) staircase and (c) amphitheatre structures. In sub-figures (b) and (c) the height between
successive terraces is 0.314 nm. Reproduced with permission from [76].

the structures could be compensated based on the difference
between the CD-AFM and TEM measurements of the same
structure. Using this approach, the measurement uncertainty
has been reduced to below 2 nm (k = 2) with the uncer-
tainty associated with the TEM-CD-AFM experiment 0.6 nm a
(k = 2) [102–106].

Figure 11 shows an example of SEM and AFM analysis of
a linewidth structure by PTB.

The third method by which the silicon lattice spacing
can be realised is via monoatomic silicon steps for the

calibration of scanning probe microscopes. The calibration
of the topography axis of a scanning probe microscope is
usually realised through height standards that have been cal-
ibrated by a national measurement institute using a metro-
logical atomic force microscope [108]. These standards com-
prise a series of pillars or troughs of known height or depth
that are positioned such that the substrate either side of the
step can also be measured. This enables compensation for
the effects of tilt of the sample in accordance with measure-
ment methods described in ISO 5436 [109] and ISO 11952
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[110] to be used. There are currently only a few suitable
standards with heights below 10 nm and nothing available
in the sub-nanometre range. To address this, partners in the
European Metrology Research Programme project CRYSTAL
[111] developed standards based on monoatomic terraces of
silicon. This follows on from initial work undertaken at NIST
[112, 113]. Although their steps demonstrated the principle of
using the silicon lattice spacing, the steps were unidirectional
and too narrow. Within the CRYSTAL project three types
of sample have been produced and examples are shown in
figure 12.

Figure 12(a) shows an example of a large area atomically
flat region that can be used for identifying instrumentation
artefacts since there should be no topography on the region
scanned other than an apparent slope caused by tilting of the
sample with respect to the lateral scan axes. Any topography
present is likely to be an artefact of the instrument caused,
for example, by stray light from the scanning AFM cantilever
detection system.

Figure 12(b) shows the staircase of single (111) silicon
steps for which the lattice spacing is 0.314 nm and figure 12(c)
shows an example of the amphitheatre like structure. These
structures are much more appropriate for the calibration of
the vertical axes as not only do they have a series of steps,
but they allow measurements to be made both descending the
amphitheatre and then ascending so that the effect of sam-
ple tilt can be taken into account. Further work by Garnæs
et al [114] developed algorithms specifically for the areal pro-
cessing of AFM measurements of atomic steps to aid the cal-
ibration of SPMS. These algorithms are available in the open
source AFM image processing software Gwyddion [115].

6. Conclusions

In the new mise en pratique for the metre, published in 2019,
the relationship to the primary parameters was clearly pre-
sented and the achievable measurement uncertainty as well
as the influencing variables and corrections to be considered
for the representation of the metre are specifically identified.
Examination of the influencing variables clearly shows that the
limiting factor for achieving traceability in length measure-
ment is not the realisation of the metre in terms of a length
derived from an optical frequency, but relating such an SI-
traceable length to a physical length to be measured. At the
nanometre scale, the achievable resolution from optical wave-
length sub-division becomes the limiting factor and alternative
methods for the secondary realisation of the metre in the field
of nanometrology were also proposed and described in section
3 guidelines of the advisory committee for length (CCL),
which are based, among other things, on the work within the
framework of the international Avogadro cooperation.

The motto of the International System of Units is ‘for all
people, for all time’ expressing the desire that the system is
both accessible (‘for all people’) and eternal (‘for all time’).
Since the first definition of the metre, in 1793, as a fraction
of the Earth polar meridian, each successive re-definition has
maintained consistency with its antecedents while adapting
to the latest technology and scientific knowledge. The 1983

redefinition based on the speed of light was the first metre
definition to deliberately move away from specifying any par-
ticular material or object (metal bars, particular wavelengths),
choosing instead the more fundamental and abstract basis of
the speed of light itself, taking advantage of recent work at the
time on linking the krypton wavelength to the caesium clock
frequency. The MeP for the metre was created to take care of
the practical details and to collect together the details of the
known optical frequency standards for reference, in anticipa-
tion that optical frequency sources would become cheaper and
readily available for use in length measuring systems (such as
laser interferometers).

This anticipation of emerging uses for high-precision length
standards continues with the 2019 redefinition, where a further
fundamental change to the MeP is to include a secondary real-
isation of the metre, based on the silicon lattice, opening the
way for access to sub-nanometre standards for nanotechnol-
ogy. But we should not lose sight that although the SI length
scale is now extended to the world of the very small, the very
same scale still covers the original range of metres to plane-
tary dimensions, and much further. At the present, the Voyager
spacecraft represent the longest range traceable dimensional
measurement to a human-manufactured object—through time
of flight [116]. The SI traceable, physical, length scale now
runs from 10−11 m to over 1013 m and yet is still compatible
with measurements made using the metre as first adopted over
200 years ago—a remarkable achievement.
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