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Abstract 

Background:  In the first study of its kind, we examine the association between growth and development in early life 
and DNAm age biomarkers in mid-life.

Methods:  Participants were from the Medical Research Council National Survey of Health and Development 
(n = 1376). Four DNAm age acceleration (AgeAccel) biomarkers were measured when participants were aged 
53 years: AgeAccelHannum; AgeAccelHorvath; AgeAccelLevine; and AgeAccelGrim. Exposure variables included: 
relative weight gain (standardised residuals from models of current weight z-score on current height, and previous 
weight and height z-scores); and linear growth (standardised residuals from models of current height z-score on 
previous height and weight z-scores) during infancy (0–2 years, weight gain only), early childhood (2–4 years), middle 
childhood (4–7 years) and late childhood to adolescence (7–15 years); age at menarche; and pubertal stage for men 
at 14–15 years. The relationship between relative weight gain and linear growth and AgeAccel was investigated using 
conditional growth models. We replicated analyses from the late childhood to adolescence period and pubertal tim‑
ing among 240 participants from The National Child and Development Study (NCDS).

Results:  A 1SD increase in relative weight gain in late childhood to adolescence was associated with 0.50 years (95% 
CI 0.20, 0.79) higher AgeAccelGrim. Although the CI includes the null, the estimate was similar in NCDS [0.57 years 
(95% CI − 0.01, 1.16)] There was no strong evidence that relative weight gain and linear growth in childhood was 
associated with any other AgeAccel biomarker. There was no relationship between pubertal timing in men and 
AgeAccel biomarkers. Women who reached menarche ≥ 12 years had 1.20 years (95% CI 0.15, 2.24) higher AgeAccel‑
Grim on average than women who reached menarche < 12 years; however, this was not replicated in NCDS and was 
not statistically significant after Bonferroni correction.

Conclusions:  Our findings generally do not support an association between growth and AgeAccel biomarkers in 
mid-life. However, we found rapid weight gain during pubertal development, previously related to higher cardiovas‑
cular disease risk, to be associated with older AgeAccelGrim. Given this is an exploratory study, this finding requires 
replication.
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Introduction
The demographic shift towards an ageing population is a 
recognised public health challenge. Despite increases in 
life expectancy, compression of morbidity is not evident 
and there is significant heterogeneity in the occurrence 
of age-related disease and functional capability among 
people of the same chronological age [1]. Definitions 
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of healthy ageing include survival to old age, delaying 
the onset of age-related diseases and maintaining func-
tion [2]. Ageing is a complex process involving changes 
at the molecular, cellular, physiological and functional 
level over time [3]. Biomarkers of ageing, which combine 
information from one or more of these processes, have 
been proposed as tools to capture healthy ageing [4]. A 
suitable biomarker of ageing should be better at predict-
ing survival, onset of age-related disease and functional 
capability at later ages than chronological age alone.

Epigenetic mechanisms, specifically DNA methylation 
(DNAm), have been implicated in the ageing process [5]. 
Several DNAm-based biomarkers of ageing have been 
developed [6–11]. The first generation of these biomark-
ers used a data-driven elastic net regression method 
to identify specific DNAm sites (CpGs) that are highly 
predictive of chronological age. These DNAm-based 
biomarkers of ageing include the blood-based Hannum 
and the multi-tissue Horvath clocks [7, 8]. The second 
generation of DNAm-based biomarkers of ageing, the 
Levine clock (also referred to as PhenoAge) and Grim-
Age, use information about age-related traits and mor-
tality in addition to chronological age [10]. The Levine 
clock was developed using composite age-related clinical 
physiological measures to identify associated CpGs from 
DNAm in whole blood [10, 11]. GrimAge was created by 
combining surrogate DNAm-based plasma protein esti-
mates, DNAm smoking pack years estimates, chronologi-
cal age and sex as a function of mortality [11]. It remains 
unclear exactly what aspects of ageing each of these bio-
markers are capturing [12]. However, having a higher 
DNAm age independent of chronological age (denoted 
age acceleration, AgeAccel) for each of these biomarkers 
has been shown to be associated with an increased risk of 
premature all-cause mortality, cardiovascular disease and 
cancer with AgeAccelLevine and AgeAccelGrim showing 
stronger associations than AgeAccelHannum or AgeAc-
celHorvath [10, 11, 13–16]. We have also recently dem-
onstrated that AgeAccelLevine and AgeAccelGrim are 
associated with markers of age-related physical and cog-
nitive performance [17].

Using a life course approach can provide novel insights 
into how biological, behavioural and psychosocial pro-
cesses over time affect healthy ageing [2]. Childhood is a 
sensitive period during which physiological changes can 
be initiated, leading to long-term health consequences 
in age-related physical and cognitive performance and 
age-related disease [18]. There may be a specific period 
during childhood where growth has a lasting impact on a 
particular age-related health outcome. Birth weight, child 
and adolescent weight and height gain have been associ-
ated with a range of age-related and disease outcomes, 
but patterns vary depending on the outcome [19–24]. 

Similarly, the timing of puberty has exhibited differential 
associations with later life heath; for example, younger 
age at puberty, particularly among women, is associated 
with higher risk of cardiovascular disease [25] and all-
cause mortality [26], but later puberty is associated with 
lower bone mineral density [27].

While a few studies in childhood and adolescence 
have examined how AgeAccelHorvath is associated with 
growth and pubertal timing (not vice versa) [28–30], to 
our knowledge, no study has examined how physical 
growth during childhood or pubertal timing is related 
to DNAm-based biomarkers of ageing in later life. In 
the largest of these previous studies (n = 1018), higher 
AgeAccelHorvath at birth was associated with higher 
average fat mass and faster growth in weight and BMI 
between birth and 17  years [30]. In a cross-sectional 
study of Finnish children aged 11–13  years (n = 239), 
higher AgeAccelHorvath was associated with heavier 
weight-for-age, taller height-for-age and more advanced 
puberty based on Tanner Stage [29]. In a smaller longi-
tudinal (n = 94) study of Chilean girls aged 9–13  years, 
higher AgeAccelHorvath was associated with earlier 
age at menarche [28]. These studies suggest that higher 
AgeAccelHorvath in early life is associated with more 
rapid growth and earlier development [28–30]. It is not 
known if this association is similar for other AgeAccel 
biomarkers, if it tracks across adulthood, or if growth 
and development in childhood has additional effects on 
AgeAccel that persist across the life course.

In this exploratory study using data from a subsam-
ple of a nationally representative British birth cohort, 
we investigate the impact of birth weight and physical 
growth during infancy (birth to 2 years), early childhood 
(2–4 years), middle childhood (4–7 years) and late child-
hood to adolescence (7–15 years) and pubertal timing on 
four DNAm-based biomarkers of ageing in mid-life. We 
examine both linear growth and weight gain relative to 
linear growth to explore their potential separate effects 
[31]. Where possible we conducted a replication study 
among a sub-sample of participants from a British birth 
cohort born twelve years later.

Methods
Participants
Participants were from the Medical Research Coun-
cil National Survey of Health and Development study 
(MRC NSHD, or 1946 British birth cohort). NSHD is 
one of the longest running birth cohorts worldwide, and 
participants have been followed up 24 times since birth. 
Details about this cohort have been published previously 
[32–34]. Briefly, the 5362 original NSHD participants 
were singleton births born in 1  week in March 1946 to 
married parents in England, Scotland or Wales. This 
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study has been running for 75  years, and attrition has 
been documented in detail elsewhere [32]. When par-
ticipants were 53  years contact was not attempted for 
the 2227 participants who had died, previously refused 
to take part, were living abroad or untraceable. While 
avoidable non-response in adulthood was highest among 
those with adverse socioeconomic circumstances and 
with low scores on childhood cognitive measures, study 
participants remain broadly representative of the native 
British population born in the early post-war years [34–
36]. Of the participants who were still alive and resident 
in England, Scotland or Wales when they were 53 years 
old, 3035 provided information during a home visit by 
a research nurse and blood samples were taken from 
those who consented. The data collection at age 53 years 
received multicentre research ethics committee approval, 
and informed consent was given by respondents to each 
set of questions and measures. A subset of participants 
at 53  years with blood samples who also had informa-
tion on a wide range of health and age-related variables 
across the life course were selected for DNAm analyses 
(n = 1595). After quality control, 1376 participants with 
DNAm information who also had weight and/or height 
measured at least once between birth and 15 years were 
included in analyses.

DNAm‑based biomarkers of ageing
DNAm from participant’s blood samples was measured 
at > 850,000 CpG sites using Infinium MethylationE-
PIC BeadChips and processed using the ENmix package 
[37] in R to obtain methylation beta-values for qual-
ity control purposes. In addition, signals with a detec-
tion p value > 1 × 10–6 and a number of beads < 3 were 
set to missing. Samples with missing data in > 5% of the 
CpGs were excluded. CpGs with missing data in > 5% of 
the samples were excluded. Samples identified with out-
lier values (more than three standard deviations from 
the mean or three interquartile ranges below the first or 
above the third quartiles) in bisulphite intensity, total 
intensity or beta-value distribution were excluded. Sam-
ple identity was verified by estimating the correlation 
(r > 0.90) between the 59 SNPs included in the methyla-
tion beadchips and imputed genotype data.

We used four DNAm-based biomarkers of ageing in 
this study: DNAm AgeHannum; DNAm AgeHorvath; 
DNAm AgeLevine; and DNAm GrimAge [7, 8, 10, 11]. 
There are 71, 353, 513 and 1030 CpG sites included in 
each clock, respectively. DNAm GrimAge and DNAm 
AgeLevine were developed using both the Infinium 
HumanMethylation450 BeadChip and the Infinium 
MethylationEPIC BeadChips, while DNAm AgeHan-
num and DNAm AgeHorvath used the Infinium Human-
Methylation450 BeadChip only. Therefore, participants 

included in this study have all CpGs for DNAm Grim-
Age and DNAm AgeLevine and are missing 6 CpGs 
for DNAm AgeHannum and 19 CpGs for DNAm Age-
Horvath. Previous studies have found that the DNAm 
age estimate is unaffected by platform differences [38]. 
Besides those CpG sites already expected to be missing, 
in this study few DNAm age CpG sites among a small 
number of participants did not pass quality control. 
Among all participants, the mean number of DNAm 
CpG sites that failed quality control was 0.40 (range 0–5) 
for DNAm AgeHorvath (excluding the 19 CpGs that are 
not present in the EPIC array), 0.1 (range 0–2) for DNAm 
AgeHannum (excluding the 6 CpGs that are not pre-
sent in the EPIC array) and 2.46 (range 2–8) for DNAm 
Levine. Likewise, among DNAm CpG sites, the mean 
number of participants with a missing value was 1.70 
(range 0–64) for DNAm AgeHorvath, 2.20 (range 0–58) 
for DNAm AgeHannum and 7.01 (range 0–1460) for 
DNAm Levine. Each DNAm-based biomarker was cal-
culated using freely available software (https://​labs.​genet​
ics.​ucla.​edu/​horva​th/​dnama​ge/) with the normalisation 
option and advanced analysis for blood samples. Input 
data were produced using ssNoob pre-processing of the 
DNA methylation arrays in minfi [39]. DNAm-based age 
biomarkers were estimated using the epigenetic age cal-
culator which implements its own data processing and 
normalisation steps to minimise batch effects in methy-
lome datasets obtained from different sources. There-
fore, DNAm-based age biomarkers are robust to batch 
effects. Chronological age-independent DNAm-based 
biomarkers (residuals from a regression of DNAm age on 
chronological age) were calculated within this software to 
represent the difference between an individual’s DNAm 
Age and chronological age: AgeAccelHannum, AgeAccel-
Horvath, AgeAccelLevine and AgeAccelGrim (in units of 
a year). Estimated blood cell counts (naïve and exhausted 
CD8 + T-lymphocytes, CD4 + T-lymphocytes, B cells, 
natural killer cells, monocytes and granulocytes) were 
also calculated within this software.

Weight and height
Weight (kg) and height (cm) in childhood were meas-
ured using standardised protocols at 2 (exact age not 
recorded), 4 (mean: 4.3  years; range 4.2–4.9  years), 7 
(mean: 7.1  years; range 6.92–7.75) and 15  years (mean: 
14.54  years; range 14.33–15.17  years). Birth weight 
was extracted from birth records to the nearest quar-
ter pound and converted to kg. Birth length was not 
recorded. We conceptualised different periods of growth 
as: infancy (birth to 2 years); early childhood (2–4 years); 
middle childhood (4–7 years); and late childhood to ado-
lescence (7–15  years which captures the full period of 
pubertal growth). All weight and height measures were 
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converted to sex-specific z-scores using the mean and 
standard deviation to facilitate comparison of estimates 
between different ages.

Pubertal timing
Pubertal stage for boys at age 14–15 years was based on 
physical examination by school doctors of four criteria: 
visibility of pigmented pubic hair; the visibility of axillary 
hair; the development of genitalia; and whether the voice 
had broken [40]. Based on responses to these questions, 
boys were grouped into fully mature (i.e. those who expe-
rienced the earliest pubertal timing), advanced puberty, 
early puberty and pre-pubertal.

Age at menarche for girls was obtained from mother’s 
reports when the girls were 14–15  years. Of those who 
had not reached menarche at this date (n = 188), age at 
menarche was obtained from self-report at 48  years 
(n = 94). A previous study found moderate agreement 
between prospective and retrospective measures of 
menarche [41].

Individual patterns of height and weight growth dur-
ing puberty were estimated using the SITAR model of 
growth curve analysis and used in sensitivity analyses 
[42]. Briefly, the SITAR model summarises each indi-
vidual’s growth curve in terms of three parameters: size, 
tempo and velocity, each expressed relative to the mean 
curve. The tempo parameter indicates the relative timing 
of puberty based on the age at peak velocity with higher 
scores reflecting later pubertal timing.

Additional variables
We selected a number of additional variables a priori for 
descriptive purposes. Socioeconomic position (SEP) at 
53 years (or 43 years if missing) was based on occupation 
grouped according to the Registrar General’s social class 
and categorised into non-manual and manual. Similarly, 
father’s SEP when the cohort member was 4  years old 
was categorised as non-manual or manual. Smoking sta-
tus at 53 years was self-reported and categorised as cur-
rent, ex-smoker or never smoker.

Statistical analyses
All analyses were conducted in Stata 14 using the four 
AgeAccel biomarkers as outcomes. Further mention of 
AgeAccel refers to all four biomarkers unless specified. 
Models using AgeAccel as an outcome were adjusted 
for sex and age (in months) when the DNA sample was 
taken.

We assessed if participants characteristics differed 
between those included in our main analyses and those 
who were not included in our analyses using t tests and 
Chi-squared tests.

In preliminary analyses, we investigated associations 
between weight and height from infancy to adolescence 
and AgeAccel. The relation of weight and height z-scores 
with AgeAccel was examined using separate multiple 
regression models for each age for descriptive purposes. 
Since weight and height are correlated, these models 
were mutually adjusted for weight or height z-scores. 
Interactions between sex and height or weight z-scores 
were tested to assess whether associations were different 
for men and women.

For our main analyses, we used regression with condi-
tional growth measures [43–46]. This method involves 
computing a sex-specific conditional growth measure, 
i.e. the standardised residuals from a regression of cur-
rent size on the previous size measure. These conditional 
growth variables are by definition uncorrelated with size 
at the previous age and represent the deviation of a par-
ticipant’s current size from that expected given their pre-
vious measure and the growth of the other participants 
in the sample. In order to examine the effects of both lin-
ear growth and relative weight gain, we used an approach 
described by Adair and colleagues [31]. Conditional rela-
tive weight was calculated as the standardised residuals 
of current weight z-score accounting for previous weight 
and height z-score as well as current height z-score. 
Conditional height was calculated as the standardised 
residuals from a regression of current height z-score on 
previous height and weight z-scores (but not current 
weight z-score). For each period of childhood, linear 
regression models were used to examine the association 
between the conditional growth measure and AgeAccel.

Linear regression models were also used to examine 
the association between pubertal timing and AgeAc-
cel. For girls, we used both continuous age at menarche 
and a dichotomised score of < 12  years and ≥ 12  years 
to examine early menarche. For boys , pubertal stage at 
14–15 years was assessed.

We conducted 44 tests in our main analyses. We apply 
a Bonferroni correction to account for multiple testing.

Sensitivity analyses
We conducted five main sensitivity analyses. To account 
for the exact age at height and weight measurement in 
months, we repeated the growth analyses using sex-
specific standard deviation scores for weight and heights 
using internally generated growth charts known as the 
LMS method (L = skewness; M = median; S = coeffi-
cient of variation) [47, 48]. Using an internally generated 
growth chart is preferable to an external reference for 
historical cohorts [49]. Second, while our primary aim in 
this study was to investigate associations between con-
ditional growth during early life and AgeAccel, irrespec-
tive of adult body size, we conduct sensitivity analyses 
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adjusting for body size at 53  years to assess whether 
any observed associations with growth are mediated 
through body size in adulthood. Third, since more par-
ticipants had information on the SITAR variables than 
timing of puberty, and SITAR can be an alternative 
approach to capture pubertal timing, we repeated the 
analysis using height-tempo. Fourth, we adjusted the 
conditional growth models and timing of puberty for 
estimated cell counts (naïve and exhausted CD8 + T-lym-
phocytes, CD4 + T-lymphocytes, B cells, natural killer 
cells, monocytes and granulocytes). Finally, a subsample 
of participants in NSHD also had AgeAccel measures at 
60–64  years (n = 482). Therefore, we investigated if the 
associations between growth and development in early 
life and AgeAccel were consistent when AgeAccel was 
measured approximately ten years later.

Replication
We used data from the National Child and Development 
Study (NCDS; 1958 British birth cohort) to replicate find-
ings where possible. NCDS is a nationally representative 
birth cohort where participants (n = 18,558) were born 
within the same week in 1958 and have been followed up 
11 times to date. Details of this cohort along with attri-
tion have been described in detail previously [50]. Briefly, 
by 44 years 2555 cohort members had died or emigrated 
and 9377 (58.6% of the eligible sample) participated in a 
biomedical survey. Of these, 3641 participants had data 
from every sweep and gave consent for DNA extraction. 
For this analysis, we used data from a small subsample of 
these NCDS participants (n = 240). These participants 
were randomly selected from those that had no missing 
data on key health and demographic variables. When 
comparing these 240 participants to the remaining par-
ticipants at 45 years, there were no differences in weight, 
height or age at menarche. However, men included in our 
analyses were less likely to experience puberty at a later 
stage than those not included (data available on request). 
AgeAccel measures were obtained using the same meth-
ods as NSHD. Height and weight were measured at ages 
7, 11 and 16 years. We used weight z-scores in NCDS at 
7 and 16  years to replicate analyses for growth during 
the late childhood to adolescence period and AgeAc-
cel observed in NSHD using regression with conditional 
growth measures as outlined above.

Pubertal stage among boys in NCDS was assessed by a 
physical examination by trained medical personnel when 
participants were 16 years. We used the following crite-
ria to assign boys as fully mature (i.e. those who experi-
enced the earliest pubertal timing) or later puberty for 
comparison with NSHD: visibility of pigmented pubic 
hair; the visibility of axillary hair; whether the voice had 
broken; and the visibility of facial hair. Age at menarche 

was reported by the medical officer (or parent if missing) 
at the 16  year examination. Two women in the NCDS 
sample had not reached menarche by 16 years and were 
coded as greater than 16 years.

Results
Descriptive characteristics of participants included in the 
main analysis (n = 1376) are outlined in Table  1. There 
were no major differences in body size, pubertal tim-
ing, smoking status or SEP among participants included 
in our main analysis versus all other NSHD participants 
responding to the 53 year data collection (n = 1659, Addi-
tional file 1: Table 1).

The median absolute difference between DNAm Age-
Hannum, DNAm AgeHorvath, DNAm Levine and 
DNAm GrimAge and chronological age at 53 years was 
11.1, 4.0, 14.7 and 2.8 years, respectively. The correlation 
coefficients between the different AgeAccel biomarkers 
ranged from r = 0.1 for AgeAccelHorvath and AgeAc-
celGrim to r = 0.4 for AgeAccelLevine with AgeAc-
celHannum, AgeAccelHorvath and AgeAccelGrim 
(Additional file 1: Table 2).

Preliminary analyses: AgeAccel at 53 years and weight 
and height z‑scores at each time point in childhood
We find little evidence of any strong relationships 
between weight and height at each age separately with 
any AgeAccel biomarker at 53  years (Fig.  1). The larg-
est differences in coefficients from one age to the next, 
which are indicative of the importance of change in size, 
are observed between 7 and 15 years for weight in rela-
tion to AgeAccelGrim and also with AgeAccelHannum 
and AgeAccelLevine. There were also differences in coef-
ficients observed between 2 and 4 years and 4 and 7 years 
for height in relation to AgeAccelHanum and AgeAc-
celLevine. There was no consistent evidence for sex dif-
ferences except for AgeAccelHorvath where there was 
evidence for an interaction between sex and birth weight 
z-score and weight z-score at 4  years (pinteraction ≤ 0.03; 
0.39 [95% CI 0.05–0.73] for men and − 0.11 [95% CI 
− 0.41 to 0.18] for women).

Main analyses: AgeAccel at 53 years and conditional 
relative weight and linear growth in childhood
There was no evidence that relative weight gain and lin-
ear growth during childhood was associated with AgeAc-
celHannum or AgeAccelHorvath (Table 2).

In the conditional growth models (Table  2), a 1 SD 
increase in relative weight gain between the ages of 7 
and 15 years was associated with 0.50 years (95% CI 0.20, 
0.79) higher AgeAccelGrim. This association remained 
statistically significant after Bonferroni correction.
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For linear growth, there was modest evidence that 
more rapid growth between 2 and 4 years was associ-
ated with lower AgeAccelLevine (− 0.39 years [95% CI 
− 0.74, − 0.04]). However, this association was not sta-
tistically significant after Bonferroni correction.

Main analyses: AgeAccel at 53 years and pubertal timing
There was no relationship between pubertal timing in 
men and any of the AgeAccel biomarkers at 53  years 
(Table  3). Women who reached menarche at 12  years 
or older had 1.20  years (95% CI 0.15, 2.24) higher 
AgeAccelGrim on average than women who reached 
menarche younger than 12 years. This association was 
not statistically significant after Bonferroni correction.

Sensitivity analyses
We observed no substantial differences in results after 
applying age-adjusted standard deviation scores for 
weight and heights using internally generated growth 
charts (Additional file 1: Table 3).

Adjusting for body size at 53  years did not attenuate 
the association between relative weight gain between the 
ages of 7 and 15 years and AgeAccelGrim (0.57 [95% CI 
0.25, 0.90]).

We observed no associations between the SITAR meas-
ure of pubertal timing in men or women with any AgeAc-
cel biomarker (Additional file 1: Table 4).

Adjusting the conditional growth models for esti-
mated cell composition attenuated the estimates; the 
estimate for the association of linear growth between 2 

Table 1  Descriptive characteristics (n = 1376)

AgeAccel: Age Acceleration

*Fully mature group are the group who experienced the earliest pubertal timing

Men Women

N Mean (SD) N Mean (SD)

AgeAccel measures at 53 years

DNAm age Hannum (years) 656 43.1 (4.3) 720

AgeAccelHannum 656 0.79 (4.28) 720 − 0.66 (3.95)

DNAm age Horvath (years) 656 50.7 (4.2) 720 49.6 (3.9)

AgeAccelHorvath 656 0.54 (4.15) 720 − 0.54 (3.86)

DNAm age Levine (years) 656 39.0 (5.6) 720 38.9 (5.6)

AgeAccelLevine 656 0.06 (5.59) 720 − 0.02 (5.61)

GrimAge (years) 656 58.0 (5.1) 720 55.3 (4.8)

AgeAccelGrim 656 1.40 (5.14) 720 − 1.28 (4.79)

Weight (kg)

At birth 656 3.46 (0.53) 719 3.34 (0.49)

At 2 years 586 13.23 (1.50) 617 12.54 (1.39)

At 4 years 626 17.42 (2.10) 672 16.84 (2.02)

At 7 years 656 23.00 (2.84) 643 22.39 (3.11)

At 15 years 624 51.83 (9.73) 608 51.53 (8.58)

Height (cm)

At 2 years 576 86.11 (5.08) 598 84.81 (4.44)

At 4 years 611 103.47 (5.15) 653 102.54 (4.87)

At 7 years 656 120.49 (5.86) 678 119.42 (5.36)

At 15 years 623 162.24 (9.17) 611 158.51 (6.05)

Age at menarche (years) 617 13.11 (1.26)

N % (N)

Pubertal stage at 14–15 years (men)

Fully mature* 172 26.22 (172)

Advanced puberty 211 32.16 (211)

Early puberty 200 30.49 (200)

Pre-pubertal 73 11.13 (73)
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Fig. 1.  Preliminary results for DNAm Age Acceleration at 53 years and weight and height z-scores. Adjusted for height/weight z-score, age in 
months at 53 years and sex. Each coefficient represents mean change in AgeAccel (y) for a 1 SD increase in height/weight. Separate analyses were 
conducted at each age
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Table 2  DNAm age acceleration at 53 years and conditional growth

Adjusted for age in months at 53 years and sex. RWG: Relative weight gain, i.e. standardised residuals from regression of present weight z-score on previous weight 
and height z-scores and present height z-score

CLG: Conditional linear growth, i.e. standardised residuals from regression of present height z-score on previous height and weight z-scores

*p = 0.04 after Bonferroni correction

**p = 1.0 after Bonferroni correction

N AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim

Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P valve Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P value

Relative weight gain

RWG between 
birth and 2 years

1127 − 0.09 (− 0.34, 0.16) 0.48 − 0.09 (− 0.34, 0.15) 0.44 − 0.05 (− 0.39, 0.29) 0.76 − 0.08 (− 0.38, 0.22) 0.62

RWG between 2 
and 4 years

1065 0.11 (− 0.15, 0.37) 0.41 0.18 (− 0.07, 0.43) 0.16 − 0.07 (− 0.42, 0.28) 0.69 − 0.11 (− 0.42, 0.19) 0.47

RWG between 4 
and 7 years

1168 − 0.17 (− 0.43, 0.08) 0.18 − 0.08 (− 0.33, 0.16) 0.51 0.05 (− 0.29, 0.40) 0.76 0.08 (− 0.23, 0.39) 0.60

RWG between 7 
and 15 years

1161 0.16 (− 0.08, 0.40) 0.19 − 0.01 (− 0.24, 0.23) 0.94 0.22 (− 0.11, 0.54) 0.19 0.50 (0.20, 0.79)  < 0.001*

Linear growth

CLG between 2 
and 4 years

1085 − 0.06 (− 0.31, 0.20) 0.67 0.07 (− 0.18, 0.32) 0.57 − 0.39 (− 0.74, 
− 0.04)

0.03** − 0.24 (− 0.55, 0.06) 0.12

CLG between 4 
and 7 years

1204 0.11 (− 0.12, 0.33) 0.36 − 0.04 (− 0.26, 0.19) 0.75 0.16 (− 0.15, 0.47) 0.32 0.01 (− 0.27, 0.28) 0.97

CLG between 7 
and 15 years

1174 0.11 (− 0.13, 0.35) 0.36 0.03 (− 0.20, 0.26) 0.78 0.01 (− 0.31, 0.33) 0.97 0.14 (− 0.15, 0.43) 0.35

Table 3  DNAm age acceleration at 53 years and pubertal timing

Adjusted for age in months at 53 years. *Fully mature group are the group who experienced the earliest pubertal timing

**P value from latest comparing models with and without categorical puberty variable

***P = 1.0 after Bonferroni correction

N AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim

Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P value

Women

Age at menarche 
(years)

617 0.07 (− 0.18, 0.32) 0.59 0.04 (− 0.20, 0.29) 0.73 − 0.02 (− 0.37, 
0.33)

0.91 0.22 (− 0.08, 0.53) 0.15

Age at menarche

 < 12 years 96 Ref Ref Ref Ref

 ≥ 12 years 521 0.37 (− 0.49, 1.23) 0.40 0.27 (− 0.57, 1.11) 0.53 0.73 (− 0.48, 1.94) 0.24 1.20 (0.15, 2.24) 0.03***

Men: Pubertal status at 14–15 years

Fully mature* 172 Ref Ref Ref Ref

Advanced puberty 211 0.17 (− 0.70, 1.03) 0.56** − 0.36 (− 1.20, 
0.48)

0.83** 0.95 (− 0.17, 2.08) 0.08** − 0.29 (− 1.33, 
0.75)

0.93**

Early puberty 200 0.39 (− 0.48, 1.27) − 0.18 (− 1.03, 
0.66)

0.50 (− 0.64, 1.64) − 0.05 (− 1.10, 
1.00)

Pre-pubertal 73 − 0.40 (− 1.57, 
0.77)

− 0.39 (− 1.54, 
0.75)

− 0.83 (− 2.36, 
0.70)

− 0.30 (− 1.71, 
1.11)

Fully mature 172 Ref Ref Ref Ref

Later puberty 484 0.18 (− 0.57, 0.92) 0.64 − 0.29 (− 1.02, 
0.43)

0.43 0.50 (− 0.48, 1.47) 0.32 − 0.19 (− 1.09, 
0.70)

0.67
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and 4  years and AgeAccelLevine was halved to − 0.20 
(95% CI − 0.50 to 0.10) (Additional file  1: Table  5). The 
association between age at menarche and AgeAccelGrim 
was greatly attenuated to 0.53 years (95% CI − 0.46, 1.53) 
when adjusting for estimated cell composition (Addi-
tional file 1: Table 6).

When using AgeAccel at 60–64  years as the outcome 
where the sample size is smaller, the association between 
relative weight gain between 7 and 15 years and AgeAc-
celGrim was weaker than that observed at 53  years 
(0.38 [95% CI − 0.04 to 0.79] (Additional file 1: Table 7). 
An association between relative weight gain between 
7 and 15  years and AgeAccelLevine was observed at 
60–64  years (0.69 [95% CI 0.12, 1.26]. The estimated 
association between linear growth between 2 and 4 years 
and AgeAccelLevine was similar (− 0.37 [95% CI − 0.97 
to 0.22]) to that found at age 53 years.

The direction of the estimates between pubertal tim-
ing and AgeAccel using the subsample from NSHD 
at 60–64  years was in a similar direction as 53  years. 
Associations between age at menarche (≥ 12  years ver-
sus < 12 years) and AgeAccelLevine at 60–64 years were 
stronger compared with AgeAccel biomarkers from 
53 years (Additional file 1: Table 8). Among men, much 
larger estimates were observed when compared with 
53  years. For example, compared to men with early 

puberty, those with later puberty had 1.27  years lower 
(95% CI − 2.47, − 0.06) AgeAccelGrim at 60–64  years 
and 0.19 years lower (95% CI − 1.09, 0.70) at 53 years.

Replication in NCDS
A 1 SD increase in relative weight gain between the ages 
of 7 and 16 years was associated with 0.57 (95% CI − 0.01 
to 1.16) years higher AgeAccelGrim (Table 4). Although 
this association crossed the null, the estimate is similar 
to that observed in NSHD (0.50 95% CI 0.20–0.79). There 
was no association between pubertal timing and any 
AgeAccel biomarker in NCDS.

Discussion
We did not find strong evidence of associations between 
growth in early life and AgeAccel biomarkers in mid-
adulthood. We did observe an association between faster 
weight gain during pubertal growth and higher AgeAc-
celGrim in mid-adulthood in NSHD. A similar estimate 
of the association was observed in the smaller sample 
from the NCDS, although the CI included the null value.

There are no previous studies with which to directly 
compare our findings. However in an English study, 
higher birth weight was correlated with higher AgeAc-
celHorvath at 7  years but with lower AgeAccelHorvath 
by 17 years, with no information for correlations beyond 

Table 4  DNAm age acceleration at 45 years, conditional growth between 7 and 16 years and pubertal timing in the National Child 
and Development Study

Adjusted for sex. RWG: Relative weight gain, i.e. standardised residuals from regression of weight z-score at 16 years on weight and height z-scores at 7 years and 
height z-score at 16 years. CLG: Conditional linear growth, i.e. standardised residuals from regression of height z-score at 16 years on height and weight z-scores at 
7 years

*Those starting after 16 years coded as ≥ 16 years

**Fully mature group are the group who experienced the earliest pubertal timing

N AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim

Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P valve Coefficient (95% 
CI)

P value Coefficient (95% 
CI)

P value

Conditional growth

RWG between 7 
and 16 years

240 − 0.04 (− 0.48, 
0.39)

0.84 0.23 (− 0.25, 0.70) 0.35 0.20 (− 0.47, 0.86) 0.56 0.57 (− 0.01, 1.16) 0.06

Pubertal timing

Women

 Age at menarche 
(years)*

112 − 0.21 (− 0.76, 
0.33)

0.44 − 0.20 (− 0.77, 
0.38)

0.50 − 0.21 (− 0.94, 
0.53)

0.58 − 0.08 (− 0.71, 
0.55)

0.80

 Age at menarche

  < 12 years 12 Ref Ref Ref Ref

  ≥ 12 years 100 − 0.77 (− 3.02, 
1.47)

0.50 − 0.71 (− 3.07, 
1.65)

0.55 − 1.06 (− 4.07, 
1.96)

0.49 − 0.01 (− 2.61, 
2.58)

0.99

 Men: Pubertal sta‑
tus at 16 years

  Fully mature** 13 Ref Ref Ref Ref

  Later puberty 99 0.08 (− 1.77, 1.93) 0.93 − 0.002 (− 2.050, 
2.047)

1.00 − 0.99 (− 4.29, 
2.31)

0.55 − 1.50 (− 4.38, 
1.39)

0.31
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adolescence [51]. In the same study looking at the asso-
ciation in the other direction, higher AgeAccelHorvath 
at birth was associated with more rapid childhood and 
adolescent development including faster weight and BMI 
gains between childhood and adolescence [30]. Simi-
larly, in a cross-sectional study of Finnish children aged 
11–13  years (n = 239), higher AgeAccelHorvath was 
associated with heavier weight-for-age and taller height-
for-age [29]. We did not observe any strong associations 
with birth weight and AgeAccelHorvath in mid-life, sug-
gesting that if these associations do exist, they may not 
persist into adulthood.

We did observe a relationship between faster gains 
in weight during pubertal growth with AgeAccelGrim. 
Among adults, there is a consistent association between 
higher BMI and higher AgeAccel in all four biomarkers 
[10, 11, 52]. Since rapid pubertal weight gain is associated 
with higher adult BMI, our findings suggest that the rela-
tionship we observed with AgeAccelGrim in mid-life may 
have been at least partly established in early life. In sen-
sitivity analyses, we found that adjusting for adult BMI 
did not attenuate the association between faster gains in 
weight during pubertal growth and AgeAccelGrim, sug-
gesting that the association is not fully mediated by body 
size in adulthood.

Our finding of an association between faster linear 
growth in early childhood and higher AgeAccelLevine 
among NSHD participants should be interpreted with 
caution. The estimates we observed for the association 
between faster linear growth in early childhood and 
higher AgeAccelLevine were not as large as the estimates 
for rapid weight gain in adolescence and did not remain 
statistically significant after adjusting for multiple testing. 
Adjusting for cell composition attenuated the association 
observed between linear growth and AgeAccelLevine 
however, since cell composition is a component in the 
creation of DNAm age Levine, this could be an over 
adjustment. We were unable to replicate this finding due 
to a lack of early life growth measures in NCDS.

While two previous studies in Finland and Chile 
observed that higher AgeAccelHorvath among children 
aged 9–13  years was associated with more advanced 
puberty based on Tanner stage or earlier age at menarche 
[28, 29], to our knowledge no previous study has exam-
ined the relationship between pubertal timing and 
AgeAccel biomarkers in later life. We found no evidence 
for an association between pubertal timing in men and 
any of the AgeAccel biomarkers at 53 years in NSHD or 
at 44 years in NCDS. Early puberty was associated lower 
AgeAccelGrim at 60–64  years among men in NSHD; 
however, this was a small sample and would need repli-
cation in a larger study. An association between older 
age at menarche and higher AgeAccel was observed in 

NSHD at both 53 years and 60–64 years. This finding is 
unexpected as older age at menarche is generally associ-
ated with better age-related outcomes and reduced risk 
of mortality [26]. This association did not remain statisti-
cally significant after adjusting for multiple testing, was 
not replicated in NCDS or when using age at menarche 
as a continuous variable. We also observed no association 
when SITAR variables were used to represent pubertal 
timing. Previous analysis in NSHD found no association 
between age at menarche and all-cause mortality, sug-
gesting that different mortality rates by pubertal timing 
in women are unlikely to have biased this finding [53]. 
In sensitivity analyses, we found that the associations 
between older age at menarche and higher AgeAccel 
attenuated following adjustment for cell composition. As 
there is some evidence that pubertal timing is associated 
with white blood cell counts [54], it is possible that blood 
cell counts confounded our observed association. With 
all this in mind, these associations should be interpreted 
with caution and require further investigation in larger 
samples.

Our main results are based on relatively young par-
ticipants at 53 years. While age-related disease may not 
always be evident at this age, it is possible that age-related 
DNAm changes are occurring. In order to examine if 
our observed associations change with age we repeated 
analyses on a subsample of NSHD participants who also 
had AgeAccel measures ten years later. We found that 
the estimates at 60–64 years were generally in the same 
direction but that some associations were weaker and 
some were stronger at 60–64  years. As participants age 
and accumulate more age-related changes the effect of 
early life development may become more evident. How-
ever, given the small sample size at 60–64  years, these 
findings would need replication in larger studies.

The use of DNAm to predict biological age is a newly 
emerging field, and there are many unknowns. We 
observed a large difference between the DNAm age bio-
markers and chronological age. For example, DNAm 
age Levine was 14.7  years younger than chronological 
age in NSHD and 6.7 years younger in NCDS. This may 
indicate that participants in our analyses were unusually 
healthy; however, we do not observe this when compar-
ing the analytical sample to the full cohort (Additional 
file  1: Table  1). This underestimation of chronological 
age has been observed in previous studies of the origi-
nal DNAm age measures in healthy older population 
samples [55] and may partly reflect tissue-specific cali-
bration issues in samples obtained from mid-life and at 
older age [56]. It is difficult to ascertain what aspects of 
ageing these biomarkers are capturing and the underly-
ing biology of these relationships [12]. For this reason, 
we examined four AgeAccel biomarkers with the aim 
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of informing future studies. We observed weak cor-
relations between the four AgeAccel biomarkers, sug-
gesting that they are not necessarily capturing the same 
underlying ageing construct. There are a few differences 
between how these biomarkers were constructed that 
may explain the differences in the results. The first gener-
ation of biomarkers are generally considered chronologi-
cal age predictors, and the models were trained (i.e. the 
CpG sites and weights were determined) primarily using 
cross-sectional data. The second-generation biomark-
ers used additional age-related outcomes to select the 
CpG sites and were trained using longitudinal data [12]. 
The nature of the relationships in our study may provide 
more insight into the utility of these biomarkers. Assum-
ing that growth in early life has an effect on age-related 
health outcomes, our finding of no associations between 
growth from infancy to middle childhood in any of the 
AgeAccel biomarkers suggests that these biomarkers are 
not fully capturing the effects of early life growth on age-
related conditions. However, the finding of an association 
between faster gains in weight during adolescence and 
higher AgeAccelGrim is similar to that seen with cardio-
vascular risk factors such as obesity, blood pressure and 
vascular structure and cardiovascular disease [19–21, 
57]. This may suggest that the second-generation AgeAc-
cel biomarkers (particularly AgeAccelGrim) is capturing 
a cardiovascular pathway, perhaps due to the inclusion of 
cardiovascular risk-factors in their construction.

The main strengths of this study are the inclusion of 
participants from two well characterised prospective 
population-based birth cohorts, the prospective repeated 
measures of body size from infancy, and the replication 
of the main finding. There are also a number of limita-
tions to keep in mind when interpreting these findings. 
As with all prospective cohort studies, there is attrition 
in NSHD; however, at 53 years respondents were found 
to be generally representative of the white British popula-
tion [32]. We observed no major differences in sociode-
mographic characteristics between participants included 
in our analyses and those who responded to the 53 year 
data collection but were not included in our analyses. 
Our replication cohort consisted of a small subsample 
of NCDS. While these participants share similar attrib-
utes to the full NCDS sample, they are not representative 
and findings from our study would need to be replicated 
among study samples that are representative of the target 
population. For both cohorts, there is a possibility that 
collider bias could have been introduced, as the selection 
for having DNAm was from those with complete growth 
and development data in childhood. If having lower 
DNAm age and faster weight gain was associated with 
participation, the estimates may have been biased [58]. 
Where possible we repeated our analyses in a subsample 

from NCDS to replicate findings. Since measures were 
not obtained from exactly the same ages we were una-
ble to test for replication of the associations in infancy, 
early childhood or middle childhood. Similarly, timing 
of puberty was assessed slightly differently between the 
studies which may have accounted for some differences 
in findings. We applied Bonferroni correction to adjust 
for multiple testing in our main analyses. However, this 
approach may have been too conservative in this explora-
tory study [59, 60]. Finally, as with all observational stud-
ies, unmeasured cofounding remains a limitation. We 
decided a priori to adjust only for sex and age at home 
visit. A thorough investigation of potential confounders 
and/or mediators would be required before any inference 
to causality could be made.

The two purposes of our study are the examination of 
the utility of newly emerging aging biomarkers, and the 
importance of growth and development in early life on 
ageing. Our findings suggest that in general these AgeAc-
cel biomarkers do not capture the age-related effects of 
childhood growth. The second-generation AgeAccel bio-
markers, particularly AgeAccelGrim, appear to be more 
sensitive to growth during puberty. The observed rela-
tionship between faster gains in weight during puberty, 
previously associated with cardiovascular risk, and 
AgeAccelGrim indicates that this period of growth in 
early life requires further investigation.
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