
Applied Energy 302 (2021) 117519

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Applying reinforcement learning and tree search to the unit commitment
problem
Patrick de Mars ∗, Aidan O’Sullivan
UCL Energy Institute, United Kingdom

A R T I C L E I N F O

Keywords:
Unit commitment
Reinforcement learning
Tree search
Deep learning
Power systems

A B S T R A C T

Recent advances in artificial intelligence have demonstrated the capability of reinforcement learning (RL)
methods to outperform the state of the art in decision-making problems under uncertainty. Day-ahead unit
commitment (UC), scheduling power generation based on forecasts, is a complex power systems task that is
becoming more challenging in light of increasing uncertainty. While RL is a promising framework for solving
the UC problem, the space of possible actions from a given state is exponential in the number of generators and
it is infeasible to apply existing RL methods in power systems larger than a few generators. Here we present
a novel RL algorithm, guided tree search, which does not suffer from an exponential explosion in the action
space with increasing number of generators. The method augments a tree search algorithm with a policy that
intelligently reduces the branching factor. Using data from the GB power system, we demonstrate that guided
tree search outperforms an unguided method in terms of computational complexity, while producing solutions
that show no performance loss in terms of operating costs. We compare solutions against mixed-integer linear
programming (MILP) and find that guided tree search outperforms a solution using reserve constraints, the
current industry approach. The RL solutions exhibit complex behaviours that differ qualitatively from MILP,
demonstrating its potential as a decision support tool for human operators.
1. Introduction

Unit commitment (UC) is a fundamental problem in power systems
operation. It requires estimating the optimal schedule of generators
to commit (turn on/off) to meet demand while minimising costs and
maintain system stability. Generators must usually be committed hours
or days in advance of delivery to account for generator startup and
shutdown constraints and to allow the system operator time to evaluate
security of the grid. Therefore, solutions to the UC problem must
account for uncertainties arising from inaccurate forecasts of demand
and renewables generation as well as other contingencies.

A reserve constraint is often enforced to manage uncertainties, and
the resulting deterministic optimisation problem is solved by mixed-
integer linear programming (MILP) [1]. However, these determinis-
tic UC (DUC) approaches can be economically sub-optimal in high
uncertainty power systems, due to the reliance on heuristic reserve
constraints [2]. Research has shown that DUC can be improved upon
by solving stochastic formulations of the problem that more rigorously
account for uncertainties [3,4]. However, these methods have not seen
widespread uptake in industry, due to their much higher computa-
tional requirements [2]. Nevertheless, the ubiquity and growing size

∗ Corresponding author.
E-mail address: patrick.demars.14@ucl.ac.uk (P. de Mars).

of power systems means that even small relative efficiency improve-
ments afforded by improved UC solution methods may yield significant
economic and environmental benefits in absolute terms.

Recent advances in artificial intelligence (AI) have demonstrated
promising results in learning optimal control strategies in complex
domains by repeated trial-and-error in simulated environments. This
approach of reinforcement learning (RL) has shown especially impres-
sive results in games-playing domains [5,6], where AI has been able
to exceed expert human performance without prior knowledge using
self-play.

RL is a promising methodology for the UC problem, as it is capable
of converging to optimal behaviour in complex stochastic domains,
and much of the computational expense can be conducted ‘offline’
during training, in advance of the decision period. RL has shown
some promising applications in power systems domains, such as for
maintaining system security using remedial actions [7]. However, the
curse of dimensionality in both state and action spaces means that
applying RL methods to the UC problem ‘out-of-the-box’ is intractable
for large problem systems. For this reason, existing applications of RL
to the UC problem have considered small power systems of up to 12
generators [8].
vailable online 7 August 2021
306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.apenergy.2021.117519
Received 15 March 2021; Received in revised form 21 July 2021; Accepted 29 July
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2021

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:patrick.demars.14@ucl.ac.uk
https://doi.org/10.1016/j.apenergy.2021.117519
https://doi.org/10.1016/j.apenergy.2021.117519
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2021.117519&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
Fig. 1. Flowchart of guided tree search (GTS). The initial policy 𝜋𝜃 begins with random parameters 𝜃, and is trained by model-free RL in the simulation environment. For unseen
test problems, the trained policy 𝜋𝜃 calculates a distribution over actions, indicated by the blue line. Low probability actions are removed from the search tree. The reduced search
tree (with branches indicated by black arrows) is then solved with uniform-cost search, outputting a UC schedule for each problem.
RL methods can be augmented by using tree search lookahead
strategies which improve reliability in safety-critical contexts such
as power systems operation. Inspired by similar approaches in other
domains [9,6], in this paper we use a novel RL-aided tree search
algorithm, ‘guided tree search’, to solve the UC problem with uncertain
demand and wind generation. Policy gradient RL is used to learn a
policy mapping states to a distribution over actions, which can be
used to intelligently reduce the branching factor of a search tree. The
policy is parametrised as a neural network. We use sample average
approximation (SAA) and a simple tree search algorithm to find the
least expected cost path through this reduced tree. Using SAA directly
optimises for the expected costs, avoiding the use of heuristics to
manage uncertainty. A schematic of our methodology, training with RL
and testing with guided tree search, is shown in Fig. 1.

In order to determine whether the run time of guided tree search
scales better in the number of generators than an exhaustive unguided
tree search while producing UC solutions of similar operating cost, we
simulate power systems of between 5–30 generators using demand and
wind data based on the GB power system. We then evaluate whether
guided tree search can provide operating costs that are competitive
with industry-standard MILP solutions. To the best of our knowledge,
this research is the largest simulation study using RL to solve the UC
problem. In addition, it is the only study that uses unseen test profiles
to evaluate performance. Given that RL policies often take hours or
days to converge, the ability to generalise to unseen profiles is an
important characteristic of an RL solution to the UC problem, allowing
the training computation to be conducted in advance of the decision
period.

Our results show that guided tree search does not exhibit the
exponential time complexity in the number of generators faced by the
unguided tree search algorithm. Guided tree search achieves lower
operating costs as compared with MILP using a reserve constraint for
systems of up to 30 generators. We find that the policy generalises from
the problems seen in training to the unseen test problems and exhibits
novel operational strategies in its solutions.

This paper contributes to the literature a novel approach for solving
the UC problem with RL and tree search. Using RL we are able to
overcome the curse of dimensionality, making our approach applicable
to larger power systems. In addition, our method is applied in stochastic
environment and to unseen problems.

The paper is structured as follows: Section 2 reviews literature on
applications of RL to the UC problem. Section 3 presents our formula-
tion of the UC problem as a Markov Decision Process (MDP). Section 4
describes our approach to solving the UC MDP. Section 5 describes
the experimental setup for training and testing. Section 6 presents the
2

results, comparing guided tree search, unguided tree search and MILP
solutions. We discuss our results in Section 7. Section 8 concludes the
paper and proposes future work.

2. Literature review

Unit commitment has been a major topic of research for decades
and for a comprehensive review see [10,11]. Here we will review RL
approaches to the problem.

Q-learning, a popular class of RL methods, has been applied to
the UC problem in [12–14]. These papers have applied tabular Q-
learning [12] and function approximation [13,14] with applications
to problems of up to 10 generators. In [13], the results are validated
against by comparison with Lagrangian Relaxation for a small deter-
ministic problems while elsewhere Q-learning is not compared with the
state of the art. The Q-learning methods applied so far are only applied
to relatively small power systems and suffer from curses of dimension-
ality in the state space when tabular methods are used [12] and action
space due to its combinatorial structure. Moreover, these methods do
not consider testing on unseen problems, and the Q-learning agent is
trained from scratch for each problem.

The cross-entropy method is used in [15] which solves a two-stage
combined problem of day-ahead UC and real-time dispatch for the
IEEE RTS-96 system. The action space is limited to choosing from a
set of 20 generator commitments over the portfolio that is used for
the entire day. There is therefore only one decision period for the UC
component of this problem, representing a significant simplification of
the UC problem that is likely to be sub-optimal.

Tree search methods are used to solve the UC problem in [8], which
followed a similar approach to this paper. The authors investigate algo-
rithms which choose greedily with respect to the least cost path from
a given state to a fixed horizon. A tree search considering all available
actions up to a fixed horizon produces 27% lower operating costs than
a metaheuristic solution for a system of 12 generators. The authors
apply a method for sub-sampling actions based on their distance in the
action space to the current commitment, which decreases the execution
time for longer time horizons. Compared with the approach used in this
paper, the tree search in [8] does not exploit model-free RL or function
approximation. In addition, the problems do not include stochastic
demand or renewables generation, and no comparison is made with
the state of the art.

The existing research on RL for UC has shown some promising
results, but curses of dimensionality in both state and action spaces
has limited these methods to small-scale problems. The only larger

scale application [15] simplifies the problem by considering just a

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
single commitment decision, applied to all periods, chosen from a
reduced action set of 20 actions which is determined by a heuristic.
Moreover, there has been limited research on the generalisability of RL
agents to unseen problems. In other domains, deep learning has been
used to overcome the curse of dimensionality and train generalisable
policies. Combined with Monte Carlo tree search (MCTS), this approach
has seen success in the game of Go [6] and chemical synthesis [9].
However, while highly effective in problems formulated as game trees,
MCTS is not well-suited nor designed for optimisation tasks such as
the UC problem. Novel approaches are required in order to exploit the
potential of RL and tree search methods for the UC problem, which we
explore in this paper.

3. Unit commitment as a Markov decision process

In order to apply RL methods, we formulate the UC problem as a
Markov Decision Process (MDP) with 𝑇 decision periods, representing
market settlement periods. MDPs consist of states, actions, rewards and
a transition function determining the probability of moving from one
state to the next following an action. A decision-making agent acts
according to a policy which maps states to actions, and the task of RL
is to determine a policy which maximises the long run expected return
(sum of rewards) in the MDP [16].

In the UC MDP, the task is to maximise reward by minimising
the operating cost of the power system. Demand and wind generation
are stochastic, and the dispatchable thermal generators must meet the
net demand (demand minus wind generation), or incur a lost load
penalty. At each timestep 𝑡 the agent observes the state of the power
system 𝑆𝑡 and takes an action 𝐴𝑡 determining the commitment decision
for generators at time 𝑡 + 1. The agent receives a reward 𝑅𝑡+1 that
reflects the operating cost of the grid and advances to a new state 𝑆𝑡+1,
determined by a transition function 𝐹 (𝑠, 𝑠′, 𝑎) = Pr(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 =
𝑎). In transitioning to a new state, the economic dispatch problem is
solved giving the real power outputs of committed generators which
is used to calculate the fuel costs. The objective is to maximise the
expected return E[𝐺0] = E[

∑𝑇−1
𝑡=0 𝛾 𝑡𝑅𝑡+1], equivalent to minimising the

total operating cost of the grid. 𝛾 ≤ 1 is the discount factor, which
determines the present value of future rewards [16]. If 𝛾 = 1, the agent
assigns as much credit to distant rewards as to immediate ones; if 𝛾 = 0,
the agent only aims to maximise the immediate reward.

An episode is defined by a forecast demand profile, �̄�0, forecast
wind profile �̄�0 and initial generator up/down times 𝒖0 as well as
parameters for the stochastic processes of wind and demand forecast
errors. At each timestep, forecast errors for demand 𝑋𝑡 and wind 𝑌𝑡 are
sampled, determining the demand and wind realisations 𝐷𝑡 = 𝑑𝑡 + 𝑋𝑡
and 𝑊𝑡 = �̄�𝑡 + 𝑌𝑡. The forecast errors are modelled with autoregressive
moving average (ARMA) processes. We will now detail the states,
actions, rewards and transition function of the UC MDP:

States. The observable state vector 𝑆𝑡 includes the current generator
up/down times 𝒖𝑡 = [𝑢1, 𝑢2,… , 𝑢𝑁] (where 𝑢𝑖 ≠ 0), for 𝑁 generators;
the demand forecast �̄�𝑡 = [𝑑𝑡+1, 𝑑𝑡+2,… 𝑑𝑇]; the wind forecast �̄�𝑡 =
[�̄�𝑡+1, �̄�𝑡+2,… �̄�𝑇]. The forecast errors 𝑋𝑡 and 𝑌𝑡 are not observed in
our problem, since these are not available when solving the day-ahead
UC problem. A state is terminal when 𝑡 = 𝑇 .

Actions. An action is a commitment decision that determines the on/off
statuses of generators for the next timestep. An action is defined as
a binary array 𝒂𝑡 = [𝑎1,𝑡, 𝑎2,𝑡 … , 𝑎𝑁,𝑡], 𝑎𝑖,𝑡 ∈ {0, 1} for 𝑁 generators.
In other words, the agent chooses to turn each generator on (𝑎𝑖 = 1)
or off (𝑎𝑖 = 0) at the following timestep. Actions must obey minimum
up/down time constraints of the generators. The total number of unique
actions is 2𝑁 , but from a given state is limited to a subset of legal
actions that obey operating constraints.
3

Rewards. The reward function for testing is the negative total operat-
ing cost of the system:

𝑅𝑡 = −
[

𝑉𝐿𝐿𝑡 +
𝑁
∑

𝑖=1
(𝐶𝑓

𝑖 (𝑝𝑖,𝑡(𝐷𝑡 −𝑊𝑡)) + 𝐶𝑠
𝑖 (𝑢𝑖,𝑡, 𝑢𝑖,𝑡−1))

]

(1)

where 𝐶𝑓
𝑖 (⋅) and 𝐶𝑠

𝑖 (⋅) are the fuel and start cost functions respectively
for generator 𝑖. 𝑝𝑖,𝑡(𝐷𝑡 − 𝑊𝑡) is the power output of generator 𝑖 at net
demand 𝐷𝑡 − 𝑊𝑡, and is determined by solving the economic dispatch
problem. This is a convex optimisation problem that is solved with the
lambda iteration method [17]. 𝑢𝑖,𝑡 is the generator up/down time in
periods. 𝐿𝑡 is the lost load (difference between supply and demand),
and 𝑉𝐿 is the value of lost load.

Since the reward depends on the realisations of demand and wind
forecast errors which are not included in the state vector, 𝑅𝑡 is a
random variable with respect to the state vector.

Transitions. When the agent acts on the environment, the transition
function causes the environment to advance to the next timestep. Recall
that the observable state vector comprises generator up/down times
and the demand and wind forecasts. In our problem, the generator
up/down time updates are deterministic. Given a commitment deci-
sion 𝑎𝑖,𝑡 and integer generator up/down time 𝑢𝑖,𝑡 for generator 𝑖, the
transition function for the generator up/down time is:

𝑢𝑖,𝑡+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑖,𝑡 + 1, if 𝑎𝑖,𝑡 = 1 and 𝑢𝑖,𝑡 > 0
1, if 𝑎𝑖,𝑡 = 1 and 𝑢𝑖,𝑡 < 0
−1, if 𝑎𝑖,𝑡 = 0 and 𝑢𝑖,𝑡 > 0
𝑢𝑖,𝑡 − 1, if 𝑎𝑖,𝑡 = 0 and 𝑢𝑖,𝑡 < 0

(2)

Demand and wind forecasts roll forward one timestep with each
transition, such that 𝑑𝑘+1 becomes 𝑑𝑘.

The demand and wind forecast errors are sampled from ARMA(𝑝, 𝑞)
processes. At timestep 𝑡, the demand forecast error is sampled from:

𝑋𝑡 =
𝑝
∑

𝑖=1
𝛼𝑖𝑋𝑡−𝑖 +

𝑞
∑

𝑖=1
𝛽𝑖𝜖𝑡−𝑖 + 𝜖𝑡 (3)

where 𝛼𝑖 and 𝛽𝑖 are constant parameters and 𝜖𝑡 is a normally distributed
random variable with mean 0 and standard deviation 𝜎. Wind forecast
errors are sampled from an ARMA process with different parameters.

Having formulated the UC problem as an MDP, the agent’s objective
is to select a sequence of actions (i.e. a UC schedule) that maximises
the expected return from the initial state. In the next section we will
describe our methodology for solving the MDP with RL and tree search.

4. Methodology

The UC MDP described in Section 3 is solved by a tree search
algorithm which searches for the path of least expected cost through
a search tree representing the MDP up to a fixed horizon. Our novel
adaptation is guided tree search, which uses a policy to choose a subset
of actions to consider. This reduces the branching factor of the tree,
thereby making it more tractable in large action spaces with more
generators. The policy is trained by model-free RL. In this section we
will first describe the unguided tree search algorithm, then the RL-aided
(guided) tree search. Finally, we will describe the process for training
the policy with RL.

4.1. Tree search

The basis for the tree search algorithm is similar to that described
in [8]. A search tree is used to represent the MDP, where nodes
represent states and edges represent actions. Traversing an edge (a
state–action pair) incurs a cost which is the negative reward in the
MDP. We calculate the least cost path through the tree up to a lim-
ited depth, representing the lookahead horizon, to save computation.
Uniform-cost search is used to determine the least cost path, which is a

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan

s
l

𝑠
t
f
i
𝐽
w
l
d
i
g
f
𝜋

t
U

T
P
f
s
s
a
s
g
e
t
a
b
t
w

d
n

𝜋
d
t
u
m
e

simple, heuristic-free algorithm that is guaranteed to find the optimal
solution [18].

Once the least cost path is found from a root node at state 𝑠𝑡 up to
earch depth 𝐻 , we greedily choose the first action 𝑎𝑡 in the least cost

path. We then solve again for the new root at 𝑠𝑡+1 ∼ 𝐹 (𝑠𝑡, 𝑎𝑡), retaining
the search tree.

In order to apply this approach to an environment with a stochastic
reward function, we must consider the distribution of costs for travers-
ing an edge on the tree. The expected cost of an edge on the search
tree is evaluated by averaging over the operating costs for multiple
scenarios (sample average approximation) for the demand and wind
forecast errors. The scenarios are generated by sampling from the
ARMA processes. This approximates the expected reward of a given
(𝑠, 𝑎) transition. Calculating the expected cost for 𝑁𝑠 scenarios of a
given (𝑠, 𝑎) pair involves solving the convex economic dispatch problem
𝑁𝑠 times, so has linear run time complexity in 𝑁𝑠.

In the limit of 𝐻 and 𝑁𝑠, this approach will minimise the expected
operating cost over all scenarios by exhaustively searching for the
least expected cost path through the MDP. However, using uniform-
cost search will, in the worst case, visit each node in the search tree
exactly once [18]. It therefore has a time complexity of (2𝑁𝐻) for 𝑁
generators. The exponential time complexity in 𝑁 makes this method
unscalable to large power systems. In addition, it risks making short-
sighted decisions if there are long time dependencies due to generator
constraints.

Next we will describe a method for using RL to improve the scala-
bility of this tree search algorithm to larger power systems.

4.2. Guided tree search

Since the tree search algorithm previously described scales expo-
nentially in the number of generators, it cannot be easily applied
to large power systems. To make it tractable, we use an ‘expansion
policy’ 𝜋(𝑎|𝑠) to reduce the breadth of the search tree. The policy
gives a probability distribution over actions for a given state, which
can be used to intelligently reduce the branching factor of the tree.
This probability distribution represents the relative value of different
actions, with high probability actions being more promising than low
probability ones. Instead of adding all available actions to the tree from
state 𝑠, we instead only add those actions which satisfy 𝜋(𝑎|𝑠) ≥ 𝜌,
where 0 ≤ 𝜌 ≤ 1 is a branching threshold. The maximum number of
nodes 𝑀 that can be added to the tree is therefore limited to 𝑀 ≤ 1

𝜌 ,
since ∑

𝑎∈𝐴 𝜋(𝑎|𝑠) = 1. In summary, if 𝐴(𝑠) is the complete set of
available actions available from state 𝑠, the expansion policy is used
to choose a subset of actions 𝐴𝜋 (𝑠):

𝐴𝜋 (𝑠) = {𝑎 ∈ 𝐴(𝑠)|𝜋(𝑎|𝑠) ≥ 𝜌} (4)

Using an expansion policy prevents the exponential time complexity
of the tree search algorithm in the number of generators. We call this
method guided tree search, and the algorithm described in Section 4.1
without an expansion policy unguided tree search.

The breadth and depth of the search tree are controlled by 𝜌 and
𝐻 respectively. There is a trade-off between these two parameters,
as reducing 𝜌 and increasing 𝐻 both increase the run time of guided
tree search. Setting 𝜌 to be large results in a narrow search that can
cause operating costs to increase. Similarly, a shallow search using a
low setting of 𝐻 can also degrade performance due to short-sighted
decision-making. The optimal setting of 𝐻 and 𝜌 for a given computa-
tional budget can be determined experimentally, and depends on the
MDP characteristics.

The expansion policy can be defined with expert rules, trained by
supervised learning on expert data, or trained by RL as in this paper.
4

Next we will describe our approach for training the expansion policy.
4.3. Expansion policy

During the training phase, we use policy gradient RL to learn a
policy 𝜋𝜃(𝑎|𝑠) to be used in guided tree search. Policy gradient methods
earn a policy parameter 𝜃 to maximise the performance 𝐽 (𝜃) = 𝑣𝜋𝜃 (𝑠0),

where 𝑣𝜋𝜃 (𝑠) is the value function giving the expected return from state
when acting under policy 𝜋𝜃 [16]. In other words, we aim to learn

he policy parameter 𝜃 that will result in the highest expected reward
rom the initial state 𝑠0. Numerous algorithms have been designed to
mprove on the policy parameter with gradient ascent with respect to
(𝜃). For our research we use proximal policy optimisation (PPO) [19]
ith entropy regularisation. PPO uses a clipped objective that prevents

arge policy updates which can cause large temporary performance
ecreases resulting in insecure operational strategies. Entropy regular-
sation promotes more stochastic policies and is widely used in policy
radient RL to prevent premature convergence. In our case it also
avours policies which will propose a diverse pool of actions satisfying
(𝑎|𝑠) ≥ 𝜌 when used in guided tree search.

As is common in policy gradient RL methods, we simultaneously
rain a ‘critic’ to learn the state-value function 𝑉 (𝑠𝑡) = E

∑∞
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘+1.
sing a critic reduces the variance of policy gradient updates [16].

The policy is parametrised using a feed forward neural network.
he size of the action space in the UC MDP is 2𝑁 for 𝑁 generators.
arametrising the neural network with 2𝑁 output nodes is not feasible
or even moderately large power systems. It also does not exploit
ymmetries in the action space, such as that base-load generators
hould be very rarely turned off. We design the neural network as
binary classifier which sequentially predicts each bit in the action

equence 𝒂 = [𝑎1, 𝑎2,… , 𝑎𝑁], where 𝑎𝑖 ∈ {0, 1}. Each 𝑎𝑖 is a sub-action
iving the commitment for generator 𝑖. The output of the classifier at
ach iteration is passed as an input into the next forward-pass through
he network, thus maintaining the history of bits already classified. In
ddition, the input vector includes a one-hot encoding indicating the 𝑎𝑖
eing classified on each forward pass. This parametrisation preserves
he inter-dependencies between generator commitment probabilities,
hile remaining scalable to larger numbers of generators.

The critic does not share neural network weights with the actor,
ue to the different dimensions of the input vectors of actor and critic
etworks.

It is not possible to analytically compute the entire distribution
(⋅|𝑠) with this parametrisation. It is necessary to approximate the
istribution in order to determine which actions meet the branching
hreshold 𝜌 in the expansion phase of guided tree search (Eq. (4)). We
se a Monte Carlo method to approximate the distribution, sampling
any actions and observing their frequencies. In other words, we

stimate that 𝜋(𝑎|𝑠) = 𝑛𝑎
𝑁 where 𝑛𝑎 is the number of times 𝑎 was sampled

and 𝑁 is the total number of samples.
We will now describe the setup of the problem environments used

for training the expansion policy with RL and testing guided tree search.

5. Experimental setup

The experiments will first compare guided tree search (which uses
an expansion policy to reduce the search breadth) to unguided tree
search (which does not use an expansion policy, and hence exhaustively
searches for the least cost path through the tree). We aim to evaluate
whether the run time of guided tree search scales better with the
number of generators as compared with the unguided (exhaustive)
search, without significant increase in operating costs. Second, guided
tree search will be compared with MILP to compare whether the
solutions are comparable in terms of operating costs with industry
standard approaches. We will begin by describing the power systems
used in our experiments.

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan

f
o
𝑡
t
e

a
c
o
f
F
t
g
f
w
d
g
f
a
t
W
t
o

5
d
g

s
R

5

i
e

S

t
n
e
e
p
2
t
r
p
c
i
(
u

5

A
i
m
i
t
c
o
p
r

c
i
o
D
s
b

Table 1
Generator specifications for the 10 generator problem [20].
𝑝min 𝑝max 𝑢0 𝑎 𝑏 𝑐 𝑡down

min 𝑡up
min 𝑐𝑠

150 455 16 0.00048 16.19 1000.0 16 16 4500
150 455 16 0.00031 17.26 970.0 16 16 5000
20 130 −10 0.00200 16.60 700.0 10 10 550
20 130 −10 0.00211 16.50 680.0 10 10 560
25 162 −12 0.00398 19.70 450.0 12 12 900
20 80 −6 0.00712 22.26 370.0 6 6 170
25 85 −6 0.00079 27.74 480.0 6 6 260
10 55 −2 0.00413 25.92 660.0 2 2 30
10 55 −2 0.00222 27.27 665.0 2 2 30
10 55 −2 0.00173 27.79 670.0 2 2 30

5.1. Power system setup

Comparing guided and unguided tree search, we consider power
systems of between 5–10 generators. Comparing guided tree search and
MILP, we consider 10, 20 and 30 generator power systems. Each day-
ahead UC problem is comprised of 48 settlement periods of 30 min
each. The generator data is from [20], a widely-used UC benchmark
problem, which specifies generator data for 10 generators. This data is
displayed in Table 1, where the coefficients 𝑎, 𝑏, 𝑐 specify quadratic fuel
cost curves of the form:

𝐶𝑓 (𝑝) = 𝑥𝑇 (𝑎(𝑝)2 + 𝑏(𝑝) + 𝑐) (5)

for each generator operating at power output 𝑝 in MW. 𝑇 is the dispatch
requency in hours and 𝑥 ∈ {0, 1} is the generator commitment (off or
n). Each generator has minimum up/down time constraints 𝑡up

min and
down
min , and a startup cost 𝑐𝑠. The initial status 𝑢0 is only used for the
est problems; in training the 𝑢0 are randomly initialised to promote
xploration of the state space.

A subset of the generators is used to create the smaller test systems
nd for larger systems we duplicate the 10 generators. Each episode
onsists of a demand forecast and a wind forecast, while the parameters
f the ARMA processes are the same between episodes. For demand
orecasts we use National Grid Demand Data [21] from 2016–2019.
or each problem setting (10, 20 or 30 generators) we linearly scaled
he demand to be between 40%–100% of the total capacity of the
eneration mix. For wind forecasts, we used openly available data
or Whitelee onshore wind farm [22], chosen as a relatively large
ind farm that operated continuously between 2016–2019. The wind
ata was scaled to be between 0%–40% of the total capacity of the
eneration mix. For both cases we used data from 2016–2019 inclusive
or training and randomly sampled 20 days to withhold for testing. The
verage wind penetration (wind generation as proportion of demand) in
raining was 17.2%, with a maximum daily wind penetration of 58.1%.

e set the value of lost load (VOLL) to be $10,000 per MWh for both
raining and testing, set to represent the approximate VOLL for a range
f customer types [23].

The demand and wind forecast errors are sampled from ARMA(5,
) processes, as described in Section 3, and we scaled the standard
eviation of the white noise 𝜖𝑡 (Eq. (3)) linearly with the number of
enerators.

The RL environment used for training and testing is available open-
ource as a Python package, using the common OpenAI Gym API for
L research.1

.2. Training details

We trained a policy using RL for each power system. During train-
ng, the RL agent samples a random day from the training data for each
pisode and the initial generator up/down times 𝑢0 are set randomly

1 https://github.com/pwdemars/rl4uc
5

Table 2
Summary of the 20 unseen profiles used as test problems for the 10 generator power
system.

Date DOTW Wind (%) 𝐷min (MW) 𝐷max (MW)

2016-01-12 Tuesday 11.0 990.9 1593.1
2016-07-25 Monday 21.7 790.2 1118.5
2016-11-21 Monday 18.1 972.5 1545.3
2017-03-18 Saturday 21.3 827.5 1253.9
2017-04-07 Friday 7.4 880.2 1214.2
2017-05-12 Friday 14.4 867.5 1176.9
2017-05-26 Friday 14.8 817.4 1058.7
2017-06-25 Sunday 2.8 700.3 954.1
2017-12-18 Monday 8.1 1011.6 1599.9
2017-12-30 Saturday 18.4 916.4 1318.7
2018-01-15 Monday 15.0 893.3 1513.2
2018-03-08 Thursday 7.0 1024.1 1509.8
2018-03-18 Sunday 36.8 943.6 1432.6
2018-05-30 Wednesday 16.5 782.9 1177.1
2018-09-11 Tuesday 30.8 799.6 1183.8
2018-11-13 Tuesday 31.1 852.6 1409.8
2019-04-03 Wednesday 15.6 901.0 1306.3
2019-05-22 Wednesday 10.1 819.0 1104.8
2019-10-30 Wednesday 9.5 938.8 1414.2
2019-11-09 Saturday 8.9 918.5 1356.7

to encourage exploration of the state space. The agent operates the
grid ‘online’, and observes a single sample of the reward after each
action, rather than the sample average approximate expected cost used
by the tree search algorithms. The episode ends if the agent encounters
lost load. In addition, we set the discount factor 𝛾 = 0.95, defined in
ection 3.

Each policy was trained over 8 parallel workers, with weights of
he actor and critic neural networks periodically updated and synchro-
ised [24] after every epoch of 2000 policy evaluations. Note that at
ach timestep, the policy is evaluated multiple times corresponding to
ach generator sub-action, due to the sequential parametrisation of the
olicy (see Section 4.3). For the 5–9 generator problems, we trained for
5,000 epochs (approx. 2 h). For 10, 20 and 30 generator problems we
rained for 100,000 (6 h), 200,000 (8 h) and 300,000 epochs (13 h),
espectively. A grid search approach was used to determine the best
erforming combination of neural network architectures for actor and
ritic networks, testing combinations of the three architectures used
n [25]: (64, 64), (100, 50, 25) and (400, 300). We determined the
64, 64) and (100, 50, 25) architectures to be the best performing and
sed these in our experiments.

.3. Testing details

We held out 20 days from the training data to use as test problems.
summary of test problems for the 10 generator system are shown

n Table 2 showing date, day of the week (DOTW), wind penetration,
inimum demand 𝐷min and maximum demand 𝐷max. The tree search

s used to solve each day based on the demand and wind forecasts. We
hen used a Monte Carlo method to estimate the expected operating
osts over forecast error scenarios for each solution. 1000 realisations
f demand and wind forecast errors were sampled from the ARMA
rocesses, and the economic dispatch problem was solved for each,
eturning a distribution of operating costs for each solution.

To determine whether the performance of guided tree search is
ompetitive with the industry methods, we compared with mixed-
nteger linear programming (MILP) solving a deterministic formulation
f the UC problem. This approach is widely used in industry [2]. The
UC problem is described in [26], and we used the Power Grid Lib

oftware package2 to solve it within a 1% optimality bound. Two MILP
enchmarks are used MILP(4𝜎) and MILP(perfect). The first uses a

2 https://github.com/power-grid-lib/pglib-uc

https://github.com/pwdemars/rl4uc
https://github.com/power-grid-lib/pglib-uc

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
Fig. 2. Average operating cost per timestep for 10 generator policy training. The dark
blue line shows a rolling average over 100 epochs (1 epoch = 2000 policy evaluations);
lighter blue shows the data for each epoch.

reserve constraint which is fixed to be 4 times the long-run standard de-
viation of the net demand forecast errors, an industry method described
in [27]. The second assumes perfect foresight of demand and wind
generation, and includes no reserve constraint. As with the tree search
methods, a Monte Carlo method is used to evaluate the operating costs
for 1000 realisations of demand and wind for the MILP(4𝜎) approach.
Since MILP(perfect) is solved only for the point forecast, we do not
apply the Monte Carlo evaluation method to this solution.

In the first experiment, comparing guided and unguided tree search,
we set 𝐻 = 2. Due to the exponential time complexity of unguided
tree search with respect to 𝐻 , higher settings of 𝐻 were not feasible in
practical run times. In the second experiment, comparing guided tree
search with MILP, we set 𝐻 = 4. We chose 𝜌 = 0.05 as the most suitable
setting for all our experiments using guided tree search, limiting the
branching factor to 20 actions. Lower settings of 𝜌 were more expensive
to compute as the branching factor is inversely proportional to 𝜌, and
performed only slightly better. Higher settings of 𝜌 had faster run times
but yielded higher operating costs as a result of narrower search.

6. Results

In this section we will present the results of our experiments. First
we present the convergence of the expansion policies during training
with RL. Then we will compare the performance of the RL-aided
guided tree search with that of unguided tree search. Finally, for larger
problems we will compare our approach to the two MILP benchmarks
described in Section 5.3.

6.1. Training performance

For each problem setting (number of generators) we trained a policy
using PPO as described in Section 5.2. In this setup, the agent interacts
with the environment ‘online’ observing states and rewards as it plays
through each day.

All policies converged to stable levels of average reward within
the training epochs. Fig. 2 shows the convergence of the 10 generator
policy in terms of operating cost per timestep (negative reward per
timestep). The policy improves rapidly as it learns to avoid lost load
events, before converging after around 40,000 epochs. There is still
significant variability between epochs, shown in the faded blue of Fig. 2
which shows that the RL agent’s operation of the grid is quite insecure.
We used the policies to solve the test problems without tree search, and
found it had a high loss load probability (4.0% for the 10 generator
6

problem).
Fig. 3. Mean computation time for guided and unguided tree search from 5–10
generators. Dotted lines show the maximum and minimum time taken for a single
problem. Unguided search run time increases exponentially with the number of
generators for a fixed search depth, while guided search shows no significant increase
in run time.

6.2. Guided vs. unguided tree search

Having trained the expansion policy, we will now apply it in guided
tree search. To evaluate whether our method is capable of overcoming
the curse of dimensionality in the number of generators without in-
creasing operating costs, we will compare the performance to unguided
tree search. As described in Section 4, unguided tree search calculates
the lowest expected cost path over the full search tree to a fixed depth
𝐻 while guided search considers a reduced set of actions from each
state by using an expansion policy (Eq. (4)).

For the 5 and 10 generator problems, the comparison between
guided tree search with 𝐻 = 2, 𝜌 = 0.05 and unguided search perform-
ing on 20 test problems with 1000 realisations of demand and wind
generation is presented in Table 3. The guided tree search solutions
produce nearly identical mean operating costs in both cases. Loss of
load probability (LOLP) in the 10 generator case is significantly lower
using guided tree search. The guided search is roughly 3 times faster to
compute for 5 generators and around 500 times faster for 10 generators
due to the reduced branching factor.

Fig. 3 shows that the computation time of the unguided search
rises exponentially with the number of generators 𝑁 . The run time for
guided tree search remains comparatively stable, with a maximum run
time of 220 s.

6.3. Guided tree search vs. MILP

Having shown that guided tree search overcomes the curse of di-
mensionality faced by unguided tree search without increasing operat-
ing costs, we will now compare its performance with industry-standard
deterministic UC for power systems of 10, 20 and 30 generators. We
compare with MILP(4𝜎), which enforces a reserve constraint equal to 4
times the standard deviation of the net forecast demand error (4𝜎). We
also compare with MILP(perfect), which assumes the forecast is perfect
and has no reserve constraint. Each solution is again evaluated over
1000 realisations of demand and wind forecast errors.

The results comparing MILP and guided tree search are shown in
Table 4. All guided tree searches were conducted with 𝐻 = 4 and
𝜌 = 0.05. Guided tree search reduces costs as compared with MILP(4𝜎)
constraint by 0.33%, 0.87% and 0.45% for the 10, 20 and 30 generator
problems respectively. The LOLP is 28%, 56% and 51% lower than
MILP(4𝜎) for 10, 20 and 30 generator problems. Guided tree search
is 6.19%, 6.56% and 7.99% more expensive respectively than the
MILP(perfect) solution with no reserve constraint and perfect forecast.

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
Table 3
Comparison of guided and unguided search for 5 and 10 generator problems.
Num. gens Version Mean cost (mln. $) Std. cost Mean time (s) Max. time Min. time LOLP (%)

5 Guided 4.63 0.32 27.7 52.5 8.9 0.077
5 Unguided 4.63 0.31 94.1 141.8 35.9 0.074

10 Unguided 9.43 1.11 13249.9 28272.4 3037.9 0.177
10 Guided 9.44 0.83 28.3 50.6 9.2 0.152
Fig. 4. Comparison of schedules produced by guided and unguided tree search, for the day 2018-03-08 with 5 generators. The generation floor is the sum of minimum operating
outputs 𝑝min of committed generators. The unguided tree search makes more frequent commitment changes and operates tighter reserve margins.
Table 4
Comparison of MILP and guided tree search solutions for 10, 20 and 30 generator
problems.

Num. gens Version Mean cost (mln. $) Std. cost LOLP (%)

10 MILP(perfect) 8.82 0.00 0.000
10 Guided 9.36 0.76 0.128
10 MILP(4𝜎) 9.40 1.02 0.180
20 MILP(perfect) 17.58 0.00 0.000
20 Guided 18.73 1.41 0.107
20 MILP(4𝜎) 18.90 2.92 0.244
30 MILP(perfect) 26.31 0.00 0.000
30 Guided 28.41 2.04 0.142
30 MILP(4𝜎) 28.53 4.94 0.291

Our results show that guided tree search results in reduced operating
costs and lower LOLP as compared with the MILP(4𝜎) solution with a
reserve constraint for our problem instance.

7. Discussion

Our results found that guided tree search exhibited no significant
increase in run time when increasing from systems of 5 to 10 genera-
tors, and costs were slightly lower than those produced by the unguided
tree search. Comparing with MILP, guided tree search outperformed the
reserve constrained MILP(4𝜎) approach for all problem sizes.

There are differences in the operation patterns of guided and un-
guided tree searches. Guided tree search used 11% and 15% fewer
startups than unguided startups for 5 and 10 generator problems,
respectively. Unguided tree search uses more frequent commitment
changes and operates tighter reserve margins. Fig. 4 illustrates the
more inconsistent operation of unguided tree search. Unguided search,
with a horizon of 2 timesteps, decommits generation at the beginning
of the day, then performs restarts shortly after. By contrast, guided
tree search avoids these short-sighted actions, suggesting that these
are not proposed by the expansion policy which has learned to avoid
such actions during training. In addition to the preferable run time
complexity in the number of generators, the avoidance of short-sighted
actions is another advantage of guided tree search over unguided tree
search, which may explain its lower LOLP.

There are also some qualitative differences between the schedules
produced by guided tree search as compared with MILP(4𝜎). Actions
taken by guided tree search are more concentrated towards those
which change the commitment of multiple generators at once, as shown
in Fig. 5 for the 10 generator problem. At the same time, guided
7

Fig. 5. Frequency of actions changing the commitment of multiple generators for the
10 generator problem. The guided tree search solution makes more frequent use of
actions changing the status of 2 or more generators.

tree search makes more frequent use of the action which keeps all
commitments the same. Fig. 6 shows example solutions for guided tree
search and MILP(4𝜎) for the 20 generator problem. Compared with the
MILP solution, guided tree search is characterised by longer periods of
no commitment changes, and larger reserve margins at the end of the
day when forecast errors are more likely to be large. The RL agent has
learned complex behaviours, and guided tree search takes actions that
would be difficult for a human operator to identify. As a result, this
method shows promise for application as a decision support tool.

Some test problems were solved more quickly than others by guided
tree search. In cases where the expansion policy evaluates states with a
high degree of certainty, the tree search can complete very quickly as
the branching factor is small. When the policy produces a relatively flat
distribution, representing higher uncertainty, guided tree search took
longer to complete. The guided tree search therefore adaptively spends
more computation on more challenging states.

In [8], which is the closest research to our own, the tree search
algorithm is shown to outperform a meta-heuristic method for a deter-
ministic problem with up to 12 generators and 24 settlement periods.
Through our experiments on 20 and 30 generator problems with 48
decision periods, we have shown that RL-aided tree search methods can
be applied to larger problems using an expansion policy.

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
Fig. 6. Guided tree search and MILP(4𝜎) solutions for the 20 generator profile 2019-11-09. Guided tree search makes more frequent use of actions making 0 switches, thereby
avoiding startup costs. The guided tree search solution also employs larger reserve margins at the end of the day when forecast errors can be larger.
8. Conclusion

In this paper we presented a novel guided tree search method for
solving the unit commitment (UC) problem with uncertain renewables
generation and demand using reinforcement learning (RL) and tree
search. Guided tree search was shown to scale better than unguided
tree search with increasing number of generators, while at the same
time producing solutions with similar operating costs. Existing research
either considered small power systems when applying RL [8,12–14],
or simplified the problem to achieve tractability [15]. Our approach
used RL to train a policy to reduce the action space, allowing for
application to larger problem sizes, and showed that operating costs did
not increase as a result. We applied our approach to a power system
of 30 generators which, to the best of our knowledge, is the largest
application of RL to the UC problem in the literature.

We also compared our results with the industry standard, mixed-
integer linear programming solving a deterministic UC problem, and
found that guided tree search reduces operating costs and loss of load
probability. The application of RL generalising to unseen test problems
is a novel contribution to the UC literature which, to the best of our
knowledge, has not been attempted before now. Our results showed
that this approach is effective, and the RL agent is capable of learning
complex behaviours in a domain with high dimensional state and action
spaces.

CRediT authorship contribution statement

Patrick de Mars: Conceptualisation, Methodology, Software, Val-
idation, Investigation, Data curation, Visualisation, Writing – original
draft. Aidan O’Sullivan: Conceptualisation, Methodology, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors acknowledge the use of UCL’s Myriad High Perfor-
mance Computing cluster for this research. This research was supported
by an Engineering and Physical Sciences Research Council, United
Kingdom research studentship (grant number: EP/R512400/1).
8

References

[1] Carrión M, Arroyo JM. A computationally efficient mixed-integer linear for-
mulation for the thermal unit commitment problem. IEEE Trans Power Syst
2006;21(3):1371–8.

[2] Bertsimas D, Litvinov E, Sun XA, Zhao J, Zheng T. Adaptive robust optimization
for the security constrained unit commitment problem. IEEE Trans Power Syst
2012;28(1):52–63.

[3] Ruiz PA, Philbrick CR, Zak E, Cheung KW, Sauer PW. Uncertainty management
in the unit commitment problem. IEEE Trans Power Syst 2009;24(2):642–51.

[4] Quan H, Srinivasan D, Khambadkone AM, Khosravi A. A computational frame-
work for uncertainty integration in stochastic unit commitment with intermittent
renewable energy sources. Appl Energy 2015;152:71–82.

[5] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al.
Playing atari with deep reinforcement learning. 2013, arXiv preprint arXiv:
1312.5602.

[6] Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science 2018;362(6419):1140–4.

[7] Marot A, Donnot B, Romero C, Donon B, Lerousseau M, Veyrin-Forrer L, et al.
Learning to run a power network challenge for training topology controllers.
Electr Power Syst Res 2020;189:106635.

[8] Dalal G, Mannor S. Reinforcement learning for the unit commitment problem.
In: 2015 IEEE Eindhoven PowerTech. IEEE; 2015, p. 1–6.

[9] Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature 2018;555(7698):604–10.

[10] Padhy NP. Unit commitment—A bibliographical survey. IEEE Trans Power Syst
2004;19(2):1196–205.

[11] Zheng QP, Wang J, Liu AL. Stochastic optimization for unit commitment—A
review. IEEE Trans Power Syst 2014;30(4):1913–24.

[12] Jasmin E, Ahamed T. Reinforcement learning solution for unit commitment
problem through pursuit method. In: 2009 International conference on advances
in computing, control, and telecommunication technologies. IEEE; 2009, p.
324–7.

[13] Jasmin E, Ahamed T, Remani T. A function approximation approach to reinforce-
ment learning for solving unit commitment problem with photo voltaic sources.
In: 2016 IEEE international conference on power electronics, drives and energy
systems. IEEE; 2016, p. 1–6.

[14] Li F, Qin J, Zheng WX. Distributed 𝑄-learning-based online optimization al-
gorithm for unit commitment and dispatch in smart grid. IEEE Trans Cybern
2019;50(9):4146–56.

[15] Dalal G, Gilboa E, Mannor S. Hierarchical decision making in electricity grid
management. In: International conference on machine learning. PMLR; 2016, p.
2197–206.

[16] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 2018.
[17] Wood AJ, Wollenberg BF, Sheblé GB. Power Generation, Operation, and Control.

John Wiley & Sons; 2013.
[18] Russell SJ, Norvig P. Artificial Intelligence: A modern approach. 3rd ed.. Pearson;

2009.
[19] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy

optimization algorithms. 2017, arXiv preprint arXiv:1707.06347.
[20] Kazarlis SA, Bakirtzis A, Petridis V. A genetic algorithm solution to the unit

commitment problem. IEEE Trans Power Syst 1996;11(1):83–92.
[21] National Grid Demand Data; https://www.nationalgrideso.com/data-explorer.
[22] Balancing Mechanism Reporting Service; https://www.bmreports.com.
[23] Schröder T, Kuckshinrichs W. Value of lost load: An efficient economic indicator

for power supply security? A literature review. Front Eng Res 2015;3:55.

http://refhub.elsevier.com/S0306-2619(21)00899-0/sb1
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb1
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb1
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb1
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb1
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb2
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb2
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb2
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb2
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb2
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb3
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb3
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb3
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb4
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb4
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb4
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb4
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb4
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb6
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb6
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb6
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb6
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb6
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb7
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb7
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb7
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb7
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb7
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb8
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb8
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb8
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb9
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb9
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb9
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb10
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb10
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb10
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb11
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb11
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb11
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb12
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb13
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb14
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb14
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb14
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb14
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb14
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb15
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb15
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb15
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb15
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb15
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb16
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb17
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb17
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb17
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb18
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb18
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb18
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb20
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb20
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb20
https://www.nationalgrideso.com/data-explorer
https://www.bmreports.com
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb23
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb23
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb23

Applied Energy 302 (2021) 117519P. de Mars and A. O’Sullivan
[24] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asyn-
chronous methods for deep reinforcement learning. In: International conference
on machine learning. PMLR; 2016, p. 1928–37.

[25] Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D. Deep
reinforcement learning that matters. 2017, arXiv preprint arXiv:1709.06560.
9

[26] Knueven B, Ostrowski J, Watson J-P. On mixed-integer programming
formulations for the unit commitment problem. INFORMS J Comput
2020;32(4):857–76.

[27] Holttinen H, Milligan M, Kirby B, Acker T, Neimane V, Molinski T. Using
standard deviation as a measure of increased operational reserve requirement
for wind power. Wind Eng 2008;32(4):355–77.

http://refhub.elsevier.com/S0306-2619(21)00899-0/sb24
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb24
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb24
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb24
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb24
http://arxiv.org/abs/1709.06560
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb26
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb26
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb26
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb26
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb26
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb27
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb27
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb27
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb27
http://refhub.elsevier.com/S0306-2619(21)00899-0/sb27

	Applying reinforcement learning and tree search to the unit commitment problem
	Introduction
	Literature review
	Unit commitment as a Markov decision process
	Methodology
	Tree search
	Guided tree search
	Expansion policy

	Experimental setup
	Power system setup
	Training details
	Testing details

	Results
	Training performance
	Guided vs. unguided tree search
	Guided tree search vs. MILP

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

