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Abstract 34 

 35 

Aversive and rewarding experiences can exert a strong influence on subsequent 36 

behavior. While decisions are often supported by the value of single past episodes, 37 

most research has focused on the role of well-learned value associations. Recent 38 

studies have begun to investigate the influence of reward-associated episodes, but it is 39 

unclear if these results generalize to negative experiences such as pain. To investigate 40 

whether and how the value of previous aversive experiences modulates behavior and 41 

brain activity, in our experiments female and male human participants experienced 42 

episodes of high or low pain in conjunction with incidental, trial-unique neutral pictures. 43 

In an incentive-compatible surprise test phase, we found that participants avoided pain-44 

paired objects. In a separate fMRI experiment, at test, participants exhibited significant 45 

pain value memory. Neurally, when participants were re-exposed to pain-paired objects, 46 

we found no evidence for reactivation of pain-related patterns in pain-responsive 47 

regions such as the anterior insula. Critically, however, we found significant reactivation 48 

of pain-related patterns of activity in the hippocampus, such that activity significantly 49 

discriminated high versus low pain episodes. Further, stronger reactivation in the 50 

anterior hippocampus was related to improved pain value memory performance. Our 51 

results demonstrate that single incidental aversive experiences can build memories that 52 

affect decision making and that this influence may be supported by the hippocampus.  53 

  54 
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Significance Statement 55 

 56 

Aversive and rewarding experiences can exert a strong influence on our subsequent behavior. 57 

While decisions are often supported by single past negative or positive episodes, most 58 

research has focused on the role of well-learned value associations. In experiments using 59 

aversive heat pain in conjunction with incidental objects, we found that participant’s choices 60 

were biased by the level of pain associated with the objects. Further, when participants saw the 61 

objects again, pain-related neural patterns in the hippocampus were re-expressed and this was 62 

related to pain value memory performance. These results suggest a mechanism by which even 63 

single negative experiences can guide our later decisions. 64 

  65 
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Introduction  66 

 67 

Our decisions are oriented toward seeking out rewarding experiences and, conversely, 68 

avoiding negative experiences. When faced with a choice of how to get to a restaurant, 69 

we may use different kinds of memories to avoid a negative experience: we may be 70 

biased against taking the bus because it is always delayed, or against taking a 71 

particular subway route because the on the last ride, the train was unbearably hot. 72 

Research on learning and decision making has predominantly focused on the influence 73 

of well-learned values on choice (Daw and Doya, 2006; Schultz, 2006; Rangel et al., 74 

2008). However, our behavior is often influenced by single past experiences. Rapidly 75 

learning to avoid negative events from even a single exposure can be critical for 76 

survival, yet we know surprisingly little about the neural mechanisms that support the 77 

use of such memories in value-based decision making (Wimmer and Buchel, 2016).  78 

In the last few years, research in decision making has benefitted from becoming 79 

more integrated with research in memory, building on proposals that value-based 80 

choice can be supported by a mechanism that samples representations stored in 81 

memory (Hertwig et al., 2004; Stewart et al., 2006; Weber and Johnson, 2006; Biele et 82 

al., 2009; Gluth et al., 2015; Shadlen and Shohamy, 2016). Importantly, for memories to 83 

guide value-based choices, those memories often need to be combined with the 84 

positive or negative value of the original experience. Early studies in behavioral 85 

economics demonstrated that participants can compare the aversive value of two past 86 

episodes, such as different experiences of unpleasant cold water or aversive film clips 87 

(Fredrickson and Kahneman, 1993; Kahneman et al., 1993; Redelmeier and 88 

Kahneman, 1996). Building on this, recent studies of decision making in the reward 89 

domain have shown an influence of single past episodes on decision making (Duncan 90 

and Shohamy, 2016; Murty et al., 2016; Wimmer and Buchel, 2016; Bornstein et al., 91 

2017; Bornstein and Norman, 2017).  92 

The hippocampus is critical for episodic memory, and relational memory more 93 

generally (Eichenbaum and Cohen, 2001; Davachi, 2006), suggesting that it could also 94 

play a critical role in associating episodes with value. Thus far, however, no studies 95 

have demonstrated a role for the hippocampus in the implicit learning of values from 96 
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episodes. Activation in the hippocampus has been shown to correlate with the value of 97 

stimuli and snack foods (Lebreton et al., 2009; Gluth et al., 2015). Studies have also 98 

reported that the hippocampus is associated with decision making processes for well-99 

learned values such as snack foods, potentially implementing a memory sampling 100 

mechanism (Gluth et al., 2015; Bakkour et al., 2019). In our previous study of incidental 101 

episodic reward associations, using multivariate techniques we found reactivation of 102 

reward-related regions but no effects in the hippocampus (Wimmer and Buchel, 2016). 103 

However, the previous study employed brief experiences; by increasing episode length 104 

and separation (Ezzyat and Davachi, 2011), it may be possible to better test a role of 105 

the hippocampus in value memory. Interestingly, relational memory linking an element 106 

with value may even be unrelated to traditional measures of episodic memory (e.g. 107 

Wimmer and Shohamy, 2012; Wimmer and Buchel, 2016). 108 

The anterior hippocampus in particular may play an important role in encoding 109 

associations between episodes and value, given research demonstrating a central role 110 

for the anterior hippocampus in anxiety (Adhikari et al., 2010; Fanselow and Dong, 111 

2010; Bach et al., 2014) as well as in memory integration and generalization (Poppenk 112 

et al., 2013; Schlichting et al., 2015; Brunec et al., 2018). Particularly for negative 113 

experiences, understanding the role of the hippocampus in value memory may be 114 

important for the understanding mood disorders and post-traumatic stress disorder 115 

(Hamilton and Gotlib, 2008; Brewin et al., 2010; Shin and Liberzon, 2010). 116 

In contrast, the gradual learning of stimulus-value associations over multiple 117 

experiences is known to involve systems including the dopaminergic midbrain, striatum, 118 

insula, and amygdala (Schultz et al., 1997; LeDoux, 2000; Seymour and al., 2004; 119 

Schiller et al., 2008). In the case of learning from aversive stimuli such as heat, a 120 

network of pain-responsive regions including the insula and secondary somatosensory 121 

cortex is an additional likely substrate for memory for the value of pain (Seymour et al., 122 

2004; Apkarian et al., 2005; Tracey and Mantyh, 2007; Roy et al., 2014; Horing et al., 123 

2019).  124 

In the following experiments, we investigated whether single aversive episodes 125 

influence memory-based decision making and whether such an influence is supported 126 

by reactivation of distributed patterns of pain-related activity in the hippocampus and 127 
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pain-responsive regions. During the incidental learning phase, neutral objects were 128 

presented once, incidentally paired with high or low pain (Fig. 1a). A surprise choice 129 

phase or a pain value memory test phase followed (Fig. 1b-c). By training a multivariate 130 

classifier on initial pain experience, at re-exposure, we could then test for reactivation of 131 

pain-related patterns and whether these effects were related to value memory 132 

performance. 133 

 134 

 135 



 

 7 

 136 

Figure 1. Pain value memory experimental design. a, In the incidental learning 137 
phase, participants experienced high or low heat pain while being exposed to incidental 138 
trial-unique object pictures. Participants then rated their experienced level of pain. This 139 
phase was scanned in the fMRI study. b, Value memory choice phase in the behavioral 140 
experiment. Each trial presented two objects from the incidental learning phase in 141 
sequence. Participants then alternated between objects to select the object that they 142 
thought had been associated with lower heat pain. c, Value memory test phase in the 143 
fMRI experiment. Each trial presented a single object and participants responded with 144 
whether the object was paired with high or low heat pain and then rated their confidence 145 
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in this response. Finally, participants then rated their recognition strength on a 6-point 146 
new-to-old scale. 147 
 148 

 149 

Materials and Methods 150 

Participants. A total of 26 subjects participated in the behavioral choice experiment. 151 

Participants were right-handed fluent German speakers with no self-reported 152 

neurological or psychiatric disorders. Data from two participants were excluded due to 153 

technical problems with the thermode and data from three additional participants were 154 

excluded due to errors in response recording, leaving 21 participants (13 female; mean 155 

age 25.1 years; range 18-42). A total of 31 subjects participated in the fMRI experiment. 156 

Participants were right-handed fluent German speakers with no self-reported 157 

neurological or psychiatric disorders and normal or corrected-to-normal vision. Data 158 

from two participants were excluded due to technical problems with the thermode, 159 

leaving 29 participants (15 female; mean age 26.0 years; range 20-33 years). In one 160 

participant, pain memory confidence ratings and memory recognition strength in the 161 

immediate test session were not recorded due to a technical error. The Ethics 162 

committee of the Medical Chamber Hamburg approved the study and all participants 163 

gave written consent. 164 

 165 

Experimental design. The experiments were designed to allow an investigation of the 166 

cognitive and neural mechanisms that support memory for aversive experiences, which 167 

is the focus of the current report. Secondarily, and separately, the experiment allows for 168 

an investigation of the behavioral and neural correlates of pain modulation of short term 169 

and very long-term recognition memory. For the latter question, a subset of participants 170 

returned one year later to assess whether the maintenance of recognition memory was 171 

modulated by pain and neural activity during the fMRI session; these results will be 172 

published separately (Wimmer and Buchel, 2015). 173 

 As an overview, the behavioral and fMRI experiments each started with a heat 174 

calibration phase. This was followed by the incidental learning phase (which was 175 

scanned in the fMRI experiment), where an abstract cue probabilistically associated 176 

with high or low heat were followed by the presentation of a trial-unique object in 177 
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conjunction with high or low heat pain. A test phase followed that measured whether 178 

pain value memory could support rewarded choice of a low pain-associated object over 179 

a high pain-associated object (in the behavioral experiment) and single-item pain value 180 

memory (in the fMRI experiment).  181 

 The test phase was designed to be as sensitive as possible to behavioral 182 

signatures of pain value memory established via single episodes. Thus, we explicitly 183 

instruct participants to retrieve pain value associations. Such instruction differs from 184 

decisions about well-learned value associations, which can frame instructions in terms 185 

of preference. However, our use of many diverse stimuli prevents the use of such a 186 

general preference question: participants are bound to have idiosyncratic and widely 187 

varying preferences for the object pictures themselvesThus, if a preference instruction 188 

had been used, these idiosyncratic preferences would be likely to dominate behavioral 189 

and neural responses at test phase re-exposure. Further, due to the requirement for 190 

novel experiences, a pre-rating phase to collect baseline object ratings was not 191 

possible. 192 

The test phase in the fMRI experiment allowed for the investigation of the critical 193 

question of whether pain-related patterns of activity were re-activated upon re-exposure 194 

to objects and whether individual differences in reactivation related to individual 195 

differences in value memory performance. Here, we employed multivariate methods, 196 

which are powerful and highly sensitive tools for investigating neural representations in 197 

memory and of pain experience (Poldrack, 2011; Rissman and Wagner, 2012; Wager et 198 

al., 2013). 199 

 200 

Heat calibration. Before the incidental learning phase, heat levels were calibrated for 201 

each participant to achieve the same subjective high and low aversive pain experience 202 

across participants. Thermal stimulation was delivered via an MRI compatible 3 × 3 cm 203 

Peltier thermode (MSA; Somedic, Sweden) applied to the inner left forearm. During the 204 

visual presentation of a white square, heat was applied for 10 s. Pain ratings were 205 

recorded with a 1-8 rating scale with 0.5-point increments, superimposed on a yellow-to-206 

red gradient (as depicted in Fig. 1a). Participants moved an arrow cursor from the initial 207 

mid-point starting location using left and right key-presses and confirmed the rating by 208 
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pressing the spacebar. A rating of ‘8’ corresponded to the highest level of heat pain a 209 

participant could endure multiple times. If the level of pain was intolerable, participants 210 

moved the rating past the ‘8’ end of the scale, at which point a ‘9’ appeared on the 211 

screen. Participants rated the pain associated with a pseudo-random list of 10 different 212 

temperatures ranging from 39.5 to 49.5ºC. A linear interpolation algorithm then selected 213 

a low temperature estimated to yield a ‘2’ rating and a high temperature estimated to 214 

yield a ‘7.5’ rating. 215 

 To ensure no damage to participants’ skin due to the administered heat 216 

stimulation, the maximum temperature allowed in the experiment was 50.5 ºC. Further, 217 

as described in detail below, if participants at any point entered a ‘9’ rating during the 218 

experiment, the high temperature was subsequently decreased by 0.8 ºC. 219 

 220 

Procedure: incidental learning phase. In the incidental learning phase, participants 221 

experienced high or low heat pain while being exposed to trial-unique object pictures 222 

(Fig. 1a; common to both the behavioral and fMRI experiments). In the fMRI study, this 223 

phase was conducted inside the fMRI scanner. 224 

Importantly, the encoding of the object pictures was incidental (not instructed) in 225 

order to more closely resemble the incidental nature of encoding in many real-world 226 

situations. Regarding the incidental object pictures, participants were given slides with 227 

the following instructions in text: “In the middle of the screen you will see object pictures 228 

during the experiment that you can just look at.” Later, they were instructed: “Attention 229 

test: If the shapes or the object pictures blink, please press the spacebar. The object 230 

pictures are there to keep your attention on the screen during the heat stimulus.” Color 231 

pictures of objects were drawn from a database of images compiled via internet search 232 

(as used previously; Wimmer and Buchel, 2016); objects were largely composed of 233 

familiar non-food household items set on white backgrounds. 234 

Heat pain was probabilistically cued (70% predictive) to allow for some prediction 235 

of pain but also for surprise at pain onset, with a design adapted from Atlas et al. (2010) 236 

(see also Geuter et al., 2017; Fazeli and Buchel, 2018). Across 4 blocks, 33 included 237 

high heat trials and 33 included low heat trials were presented (of 35 total; Fig. 1a), 238 

including 10 low-to-high and 10 high-to-low mismatch trials. To allow for initial 239 
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adjustment to the task, data from two initial low heat trials were excluded. In the 240 

behavioral choice study, these objects were omitted from the choice phase or in the 241 

fMRI study, these objects were presented first and then excluded from analysis. Given 242 

the low number of mismatch trials and the relatively low and inconsistent effect of cues 243 

on ratings (see Results), all analyses focused on administered heat irrespective of cued 244 

heat to ensure reliability of imaging estimates.  245 

To maintain attention on the screen during object presentation, participants were 246 

instructed to respond to occasional flickers in image brightness. The visual cue 247 

illumination flickered (decreased in illumination) once for 0.35 s in a random 50% of 248 

trials. Flicker timing was randomly distributed throughout the first 1.5 s of visual cue 249 

presentation. Similarly, in a separately determined random 50% of trials the object 250 

picture flickered in illumination during heat stimulation. When either a visual cue or 251 

object flicker was detected, participants were instructed to press the down button. 252 

To detail the timing of events in an incidental learning phase trial, first, a visual 253 

cue signaling likely high or low heat was presented for 2.5 s. Participants responded to 254 

a visual flicker if one occurred. After a 4 s ISI, the incidental object appeared. The 255 

incidental object was presented for a total duration of 10 s. Participants responded to a 256 

visual flicker if one occurred. Following the heat stimulation and after a 4 s ISI, a pain 257 

rating scale appeared. Participants used left and right buttons to move a selection arrow 258 

from the initial cursor position (randomized between 4.5-5.5) to their experienced pain 259 

level and pressed the down button twice to make their selection; responses were self-260 

paced. After the participant entered their response, trials were followed by a variable 2 s 261 

mean (range: 0.5-6 s) inter-trial-interval (ITI).  262 

To allow for a better match between the appearance of the object and the onset 263 

of noticeable heat, heat onset started 0.75 s prior to object appearance (for a similar 264 

method, see Forkmann et al., 2013). The thermode temperature increased from 265 

baseline (33°C) to the desired temperature at a rate of 5 degrees per second, which 266 

translates to approximately 3.5 s to reach the range of the high heat temperature. After 267 

the 10 s object presentation period, the thermode temperature decreased at a similar 268 

rate. Thus, for low heat trials where the thermode did not need to reach a high value, 269 

the temperature during the 10 s presentation of the object was approximately constant 270 
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at the desired value. For high heat trials, it took up to 2.5 seconds at the beginning of 271 

the 10 s period for the thermode to reach the peak. After each incidental learning phase 272 

block, the thermode was moved to a new location on the inner arm to avoid 273 

sensitization.  274 

To maintain similar differences in subjective experience between the high and 275 

low heat conditions, temperatures were automatically adjusted throughout the task to 276 

maintain the targeted pain rating values. If the median of the previous 6 validly cued low 277 

heat trials fell below a rating of 1.5, the low temperature was increased by 0.2 ºC; if the 278 

median rating was above 3, the low temperature was decreased by 0.2 ºC. For the high 279 

temperature, if the median rating fell below 7.5, the high temperature was increased by 280 

0.2 ºC (if the temperature was below 50.5 ºC). If a rating of “9” was given, indicating an 281 

intolerably high level of pain, the high temperature was decreased by 0.8 ºC. Such on-282 

line adjustments of administered temperature are not commonly employed in pain 283 

research that focuses on effects of expectation or placebo (e.g. Atlas et al., 2010), as in 284 

these cases administered temperature needs to be constant across the task. However, 285 

our focus here was on the subjective response to pain, and thus on-line adjustment 286 

allowed us to maintain very similar subjective responses to the majority of high and low 287 

heat stimuli. 288 

Two pseudo-random orderings of incidental object pictures were used for 289 

counterbalancing object and heat associations. The assignment of abstract circles to 290 

high and low heat was also counterbalanced across participants. Further, after the first 291 

two blocks of the experiment, two new abstract circles were used as cues, with visual 292 

and verbal instruction about the new cues preceding the block. Visual cues were 293 

probabilistically associated with the level of heat, correctly predicting high or low heat in 294 

70% of trials (Atlas et al., 2010). On invalid trials, the alternative heat level was 295 

administered. Additionally, 6 trials included a probe of cue-related pain expectancy: 296 

after 2.5 s of cue presentation, a question appeared below the cue asking participants 297 

whether they expected low or high heat to follow. These probes were used to ensure 298 

participants remained aware of the cue-pain associations. After the probe, trials 299 

continued as normal.  300 

 301 
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Procedure: behavioral choice test phase. In the behavioral study, a surprise choice 302 

test phase followed the incidental learning phase to examine value memory for the 303 

objects incidentally associated with high or low heat in the preceding phase. 304 

Participants were instructed to select the object, out of two alternatives, that was 305 

associated with lower heat pain in the preceding phase. One object had been 306 

associated with the administration of high heat (independent of the cue) and the 307 

alternative object that had been associated with low heat (independent of the cue). 308 

Participants were instructed that they could win €0.50 euro for each correct choice of 309 

the lower heat object on top of their payment for participation. 310 

The choices sampled each of the 66 objects from the incidental learning phase 311 

without repetition, resulting in 33 choices. The objects from the first two trials in the 312 

incidental learning phase were not included in any choice. Choices were presented in a 313 

pseudo-random order. A given choice included either 2 objects that had been correctly 314 

cued to be of low and high heat or a choice between one validly cued object and one 315 

invalidly cued object. We found no influence of the invalid cue or whether pain was 316 

higher or lower than expected on choice accuracy (p-values > 0.31) so we collapse 317 

across this factor in all analyses. Following these choices, an additional 4 trials 318 

presented choices between the abstract circle cues that had been predictive of high 319 

versus low heat pain. 320 

To detail the timing of events on a choice trial, first, the choice options were 321 

presented serially in a random order (Fig. 1b). The first option was presented either on 322 

the left side or on the right side of the screen (determined at random) for 4 s, followed 323 

by a 1 s ISI. The second option was then presented in the alternate spatial location for 4 324 

s, followed by a 1 s ISI. Then the first option returned to the screen, below the prompt 325 

“Lower heat? (€0.50 reward)”. Participants could select the on-screen option by 326 

pressing the ‘space’ key, or press the ‘left’ or ‘right’ key to alternate between the 327 

options. Alternation was allowed for an unlimited amount of time. After choice entry, a 328 

confidence rating followed, presenting the options: “Guess”, “Low”, “Medium”, and 329 

“High”. Participants responded using the 1-4 keys. A variable 3 s ITI followed. 330 

 331 
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Procedure: fMRI memory test phase. In the fMRI study, a surprise memory test 332 

followed the incidental learning session. While collecting fMRI data, we assessed 333 

memory for the level of pain experienced with the object and recognition memory 334 

strength (Fig. 1c). Participants saw each of the “old” objects from the incidental learning 335 

phase. As noted above, the first two trials allowed for habituation and presented the first 336 

two objects from the incidental learning phase; these trials were not analyzed. The old 337 

objects were intermixed with 20 “new” objects for a total of 86 included trials.  338 

The participants were given slides with text instructions, which included the 339 

following: “Try your best to indicate the heat strength that you remember being 340 

associated with them. It is likely that this is very difficult for you. Please just give your 341 

best guess or gut feeling. It is likely that you remember more than you think.” Before the 342 

start of this phase, they were reminded: “The heat question can seem difficult, but it's 343 

very important to the experiment, so try to do your best. Guessing is okay!” For the 344 

recognition memory strength responses, participants were given the following 345 

instructions: “You have already seen most of the pictures in the first part, but some are 346 

also "new". For the new pictures, it doesn't matter what you say about the heat rating 347 

and the question of how sure you are.” 348 

In our test phase trials, the pain association response was collected first, prior to 349 

the control measure of recognition strength, a reverse in question order compared to 350 

common in memory paradigms. This key feature was explicitly designed to allow us to 351 

best detect behavioral and neural evidence of pain value memory, and was motivated 352 

by multiple considerations. First, our design focused participants on any pain memory 353 

associations immediately upon the re-presentation of an object in order to increase 354 

behavioral performance and to best temporally isolate neural reactivation of pain, which 355 

we expected to be triggered immediately upon object re-presentation. Second, this 356 

order maximizes data collection by avoiding the loss of value memory responses for 357 

items rated as “new” as in common designs. Third, we prioritized value memory over 358 

the control recognition measure as our previous results found no link between reward 359 

value memory and recognition (Wimmer and Buchel, 2016). Fourth, our design 360 

facilitates generalization to decisions outside the lab: when making choices in the 361 
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outside world, decisions about avoidance or approach can progress independently from 362 

recognition, and the ability to make such a determination quickly is likely to be adaptive. 363 

To detail the timing of events on a memory phase trial, first, a single object was 364 

presented alone for 5 s. Next, after a 1 s ISI, an unmarked yellow-to-red heat scale with 365 

superimposed left- and right-pointing arrows was shown. Participants pressed the left or 366 

right buttons to indicate whether they thought that the object had been associated with 367 

low heat pain or high heat pain in the incidental learning phase. For objects that 368 

participants definitely considered to be “new”, participants were told that they could pick 369 

either the high or low heat response at random. If they were not sure if an object was 370 

new, participants were instructed to try to recall the level of heat it may have been 371 

paired with. All test phase responses were self-paced. Next, a confidence rating screen 372 

appeared with 4 levels of response: “guess”, “somewhat certain”, “certain”, and “very 373 

certain”. For stimuli participants believed were definitely new and thus had no 374 

associated heat experience, participants were instructed to respond with a low 375 

confidence answer. After a variable ISI (mean: 4 s; range: 3-6.5 s), a 6-point memory 376 

recognition strength scale was presented (e.g. Schwarze et al., 2012). Participants 377 

indicated whether they thought the object was “new” (not previously seen) or “old” (seen 378 

during the learning task) with 6 levels of response: “certain new”, “somewhat certain 379 

new”, “guess new”, “guess old”, “somewhat certain old”, “certain old”. Participants used 380 

the left and right buttons to move from the randomly initially highlighted “guess new” or 381 

“guess old” response option to their selected response and then pressed the down 382 

button twice to make their selection. A variable ITI with a mean of 4 s (range: 2-8 s) 383 

followed.  384 

The order of the old pictures was pseudo-randomized from the incidental learning 385 

phase order, and the old and new pictures were pseudo-randomly intermixed. The 386 

duration and distribution of ITIs (or “null events”) was optimized for estimation of rapid 387 

event-related fMRI responses as calculated using Optseq software 388 

(http://surfer.nmr.mgh.harvard.edu/optseq/). 389 

At the end of the experiment, participants completed a written questionnaire 390 

querying their knowledge of the task instructions and their expectations (if any) 391 

regarding the incidental object pictures. Task instructions and on-screen text were 392 
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presented in German for all parts of the experiment; for the figures and methods, on-393 

screen text has been translated into English. 394 

 395 

Data Acquisition. The experiment was presented using Matlab (Mathworks, Natick, 396 

MA) and the Psychophysics Toolbox (Brainard, 1997). For the behavioral study and the 397 

pain calibration phase of the fMRI study, data were collected using a 15” Apple 398 

Macbook Pro laptop. Responses were made using left and right arrow keys and the 399 

space key. In the scanner for the fMRI study, the task was projected onto a mirror 400 

above the participant’s eyes. Responses were made using a 4-button interface with a 401 

“diamond” arrangement of buttons. Skin conductance was recorded from the 402 

hypothenar of the left hand. The signal was amplified using a CED 2502 amplifier and 403 

digitized at 200 Hz using a CED micro1401 (both by Cambridge Electronic Design, 404 

Cambridge, UK) and downsampled offline to 100 Hz. 405 

Whole-brain imaging was conducted on a Siemens Trio 3 Tesla system equipped 406 

with a 32-channel head coil (Siemens, Erlangen, Germany). Functional images were 407 

collected using a gradient echo T2*-weighted echoplanar (EPI) sequence with blood 408 

oxygenation level-dependent (BOLD) contrast (TR = 2460 ms, TE = 26 ms, flip angle = 409 

80; GRAPPA factor of 2; 2 x 2 x 2 mm voxel size; 40 axial slices with a 1 mm gap). 410 

Slices were tilted approximately 30° relative to the AC–PC line to improve signal-to-411 

noise ratio in the orbitofrontal cortex (Deichmann et al., 2003). Head padding was used 412 

to minimize head motion; no participant’s motion exceeded 3 mm in any direction from 413 

one volume acquisition to the next. For each functional scanning run, five discarded 414 

volumes were collected prior to the first trial to allow for magnetic field equilibration.  415 

During the incidental learning phase, four functional runs of an average of 190 416 

TRs (7 min and 48 s) were collected, each including 17 trials. During the memory test 417 

phase, four functional runs of an average of 196 TRs (8 min and 2 s) were collected, 418 

each including 22 trials. If a structural scan had been collected for the participant at the 419 

center within the past 6 months, the previous structural scan was used. If not, structural 420 

images were collected using a high-resolution T1-weighted magnetization prepared 421 

rapid acquisition gradient echo (MPRAGE) pulse sequence (1 x 1 x 1 mm voxel size) 422 

between the incidental learning phase and the immediate memory test phase (12 423 
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participants). We found no relationship between the consequently varying time delay 424 

between the end of the incidental learning phase and the start of the test phase on 425 

value memory performance, recognition memory performance, or fMRI pain reactivation 426 

measures (from n = 28 participants with timing and structural scan origin information). 427 

All voxel locations are reported in MNI coordinates, and results are displayed 428 

overlaid on the average of all participants’ normalized high-resolution structural images 429 

using the xjView toolbox (http://www.alivelearn.net/xjview) or AFNI (Cox, 1996). 430 

 431 

Behavioral Analysis. Our primary behavioral question was whether memory-based 432 

decisions were influenced by the pain that had been experienced with objects in the 433 

preceding incidental learning phase. In the behavioral experiment, choice trials were 434 

excluded if the administered heat for the high heat stimulus did not exceed that for the 435 

low heat stimulus (in rare cases when the thermode failed to increase temperature; on 436 

average less than 1 trial per participant). 437 

In both experiments, we conducted simple a priori comparisons of behavioral 438 

performance to chance (50%) using t-tests, with a significance threshold of p < 0.05 439 

(two-tailed). We also examined the influence of cue expectation on pain ratings using a 440 

paired t-test. In the fMRI experiment, we further verified in initial comparisons that “old” 441 

objects (whether paired with high or low pain) were recognized at a higher rate than 442 

“new” objects.  443 

To further investigate value memory, multilevel regression models were 444 

implemented in R using lme (from the nlme package) for linear regression and 445 

glmmTMB (from the glmmTMB package) for logistic regression. All predictors and 446 

interactions were included as random effects, following the ‘maximal’ approach (Barr et 447 

al., 2013). In all regressions, participant was entered as a random effect along with all 448 

other variables of interest. Correlations between random effects were included when 449 

convergence was achievable with this structure. All reported p-values are two-tailed. In 450 

a control model, we verified that the presence vs. absence of a visual “flicker” during 451 

object presentation was not related to value memory or recognition memory strength. 452 

We additionally tested whether nonsignificant results were weaker than a 453 

moderate effect size using the two-one-sided t-test (TOST) procedure (Schuirmann, 454 
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1987; Lakens, 2017) and the TOSTER library in R (Lakens, 2017). In the behavioral 455 

experiment (n = 21), we used bounds of Cohen’s d = 0.64, where power to detect such 456 

a medium-size is estimated to be 80%. In the larger fMRI sample (n = 29), we used 457 

bounds of Cohen’s d = 0.55 to achieve the same estimated power. 458 

 459 

fMRI preprocessing. Preprocessing and data analysis were performed using Statistical 460 

Parametric Mapping software (SPM12; Wellcome Department of Imaging Neuroscience, 461 

Institute of Neurology, London, UK). Before preprocessing, slices with artifacts were 462 

identified as having mean image intensity greater than or equal to 5% above the across-463 

run slice mean. Individual slices with artifacts were replaced with the mean of the two 464 

surrounding timepoints using a script adapted from the ArtRepair toolbox (Mazaika et 465 

al., 2009). Images were then slice-timing corrected, realigned to correct for participant 466 

motion, and then spatially normalized to the Montreal Neurological Institute (MNI) 467 

coordinate space by estimating a warping to template space from each participant’s 468 

anatomical image and applying the resulting transformation to the EPIs. Images were 469 

filtered with a 128 s high-pass filter and resampled to 2 mm cubic voxels. Images were 470 

then smoothed with a 6 mm FWHM Gaussian kernel for univariate and connectivity 471 

analyses. 472 

 473 

fMRI univariate analyses. fMRI model regressors were convolved with the canonical 474 

hemodynamic response function and entered into a general linear model (GLM) of each 475 

participant’s fMRI data. The six scan-to-scan motion parameters produced during 476 

realignment were included as additional regressors in the GLM to account for residual 477 

effects of participant movement. All regressions were conducted with automatic 478 

orthogonalization in SPM turned off. 479 

Our primary univariate analysis was a “localizer” analysis to identify main effects 480 

of pain during the incidental learning phase. The GLM included regressors for the cue 481 

period (2.5 s duration), the initial pain onset period (2 s), the full pain and object 482 

presentation period (10 s), and the pain rating period (with a variable duration based on 483 

response time). The cue period regressor was accompanied by a parametric modulator 484 

contrasting high versus low expected pain. The pain onset period regressor was 485 
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accompanied by two parametric modulators: the mismatch between cue and pain as 486 

well as the unsigned (absolute value) mismatch between cue and pain (these 487 

regressors were not correlated; r = 0.007). The full pain period regressor was 488 

accompanied by a parametric modulator representing the pain rating given on that trial. 489 

Note that the regions identified as correlating with pain during the 10 s pain period were 490 

the same with or without the inclusion of the 2 s pain onset regressor. 491 

Then we conducted several control univariate analyses. First, we examined 492 

learning phase activity correlated with later successful pain value memory and 493 

recognition memory strength. This model was based on the GLM above, but instead of 494 

the pain rating parametric modulator, we included parametric modulators for 495 

subsequent correct value memory and subsequent recognition memory strength. 496 

Separate parametric regressors were used for high and low pain-associated objects to 497 

allow for baseline differences (yielding four parametric regressors in total); results were 498 

then combined at the second level. 499 

The remaining control univariate analyses examined activity in the test phase. In 500 

these models, a 5 s regressor modeled activity during the object re-presentation period. 501 

Additional regressors modeled the pain memory response period, the pain memory 502 

confidence response period, and the memory response period; the durations for all 503 

these periods matched the participant’s response time. First, we looked for univariate 504 

correlates of pain reactivation to confirm that any multivariate results were not primarily 505 

driven by univariate activity. Thus, the object re-presentation regressor was 506 

accompanied by a parametric modulator representing the level of heat pain experienced 507 

with objects in the preceding learning phase. Second, a control test phase univariate 508 

analysis examined correlates of pain value memory success and recognition memory 509 

strength. Here, the object re-presentation regressor was accompanied by parametric 510 

regressors representing value memory success and recognition memory strength; as in 511 

the learning phase, separate regressors were used for high and low pain-associated 512 

objects and were combined at the second level. 513 

 514 

Multivariate fMRI analyses. To test our primary fMRI prediction that patterns of BOLD 515 

activity associated with negative emotional experience were reactivated at retrieval, we 516 
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utilized multivariate classification analyses. These analyses used the non-smoothed 517 

fMRI data. In the incidental learning phase and the memory test phase we estimated 518 

mass-univariate GLMs where each trial was modeled with a separate regressor. For the 519 

incidental learning phase, each regressor modeled the onset of an object and continued 520 

through the 10 s duration of the heat stimulus. For the memory test phase, each 521 

regressor began at the onset of the object and continued for the 5 s duration of object 522 

presentation (prior to any responses). Models included the six nuisance motion 523 

regressors (translations and rotations). 524 

Multivariate analyses were conducted using The Decoding Toolbox (Hebart et 525 

al., 2014). Classification utilized a L2-norm learning support vector machine (LIBSVM; 526 

Chang and Lin, 2011) with a fixed cost of c = 1. The classifier was trained on the full 527 

incidental learning phase balanced via bootstrapping. The trained classifier was then 528 

tested on the full memory test phase data. Note that for the primary across-phase 529 

classification analysis, no cross-validation is necessary for training because no 530 

inferences are drawn and no results are reported from the incidental learning phase 531 

data. Memory test phase classification is reported as area under the curve (AUC), which 532 

uses graded decision values and better accounts for biases in classification that may 533 

arise due to the different processes engaged by the incidental learning and memory test 534 

phases. Supplemental ROI analyses examined training and testing within the learning 535 

phase or memory test phase using cross-validation. Using cross-validation, we 536 

computed the strength of discriminability in the localizer phase in our regions of interest. 537 

Additionally, we conducted a searchlight analysis for further localization using 538 

The Decoding Toolbox (Hebart et al., 2014). We used a 4-voxel radius spherical 539 

searchlight (approx. 208 voxels). Training of the classifier on the incidental learning 540 

phase and testing on the memory test phase were conducted as described above for 541 

the ROI MVPA analyses. Individual subject classification accuracy maps were 542 

smoothed with a 6 mm FWHM kernel before group-level analysis. We also performed 543 

covariate analyses to determine whether behavioral performance was correlated with 544 

classification accuracy. 545 

It has been shown that it is not valid to conduct statistical inference specifically 546 

on cross-validated classification accuracy measures of information using t-tests (Allefeld 547 
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et al., 2016). In part, as informational measures cannot be below zero, assumptions 548 

underlying the t-test are violated for cross-validation within the same dataset. Our 549 

classifier training and testing were conducted on separate datasets (“cross-550 

classification” between the incidental learning and the memory test phase) which does 551 

allow for potential “true” below-zero values, a case not addressed by Allefeld et al. 552 

(2016). Further, we found that cross-classification AUC values in all our regions of 553 

interest followed a normal distribution (Anderson-Darling goodness-of-fit hypothesis 554 

test). While the above concern may still apply to inferences made about the main effects 555 

of pain during the incidental learning phase, our primary hypothesis rests on the cross-556 

classification of pain-related patterns from the memory test phase. 557 

 558 

Connectivity analyses. We additionally conducted psychophysiological interaction 559 

(PPI) analyses to examine differences in functional connectivity for successful versus 560 

unsuccessful value memory retrieval. These analyses used a hippocampal ROI as the 561 

seed region (defined in Results). In the incidental learning phase, we estimated a PPI 562 

contrasting correct versus incorrect later value memory retrieval, modeling the 10 s 563 

duration of the object and pain period. In the memory test phase, we estimated a similar 564 

PPI analysis, contrasting correct versus incorrect value memory retrieval, modeling the 565 

5 s duration of the object presentation period. At the second level, we performed 566 

correlation analyses to determine whether behavioral performance was related to 567 

differences in connectivity for correct versus incorrect encoding or retrieval of value 568 

memory associations. 569 

 570 

Statistical correction and regions of interest. For both univariate and searchlight 571 

results, linear contrasts of univariate SPMs were taken to a group-level (random-effects) 572 

analysis. We report results corrected for family-wise error (FWE) due to multiple 573 

comparisons (Friston et al., 1993). We conduct this correction at the peak level within 574 

small volume ROIs for which we had an a priori hypothesis or at the whole-brain cluster 575 

level (in each case using a cluster-forming threshold of p < 0.005 uncorrected, except 576 

for the pain rating correlation, where we used p < 0.00001 to yield more interpretable 577 

clusters).  578 
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We focused on two a priori ROIs motivated by two separate hypotheses. Given 579 

the anterior insula’s role in processing the affective qualities of pain (Kurth et al., 2010; 580 

Wiech et al., 2014), we predicted that the insula may relate to the modulation of memory 581 

by pain. For this pain hypothesis-motivated anterior insula ROI, we first created a 582 

bilateral anterior insula mask (Brooks et al., 2002; Wiech et al., 2014), covering the 583 

insular cortex anterior to y = 9, as well as up to 4 millimeters lateral or superior to the 584 

insular cortex to account for signal blurring and anatomical variability. This mask was 585 

further restricted by the main effect of pain rating taken from the incidental learning 586 

phase localizer GLM defined above, thresholded at p < 0.0001 uncorrected 587 

(https://neurovault.org/collections/6126/). We also defined a broader pain-related mask 588 

based on the localizer GLM thresholded at p < 0.0001 uncorrected, excluding the 589 

cerebellum. Separately, we focused on the hippocampus because of its role in episodic 590 

and relational memory (Eichenbaum and Cohen, 2001; Davachi, 2006). We also 591 

conducted follow-up analyses in the anterior hippocampus, given its role in negative 592 

emotion-related memory and generalization (Fanselow and Dong, 2010; Poppenk et al., 593 

2013). The bilateral hippocampus ROI was derived from the Harvard-Oxford atlas at a 594 

threshold of 50%. We focused on a restricted mask of the hippocampus in order to limit 595 

the size of the ROI for multivariate analyses. We confirmed that there was no overlap 596 

between the hippocampus and pain-related masks. We defined the anterior 597 

hippocampus as the mask region anterior to Y = -21, approximating the position of the 598 

uncal apex (Poppenk et al., 2013). While somatic processing of thermal pain does not 599 

primarily involve the amygdala, as a control we also examined the amygdala, defined 600 

from the Harvard-Oxford atlas at a threshold of 50%. 601 

Correlations between classification accuracy and behavioral performance were 602 

conducted using Pearson’ correlation. Statistical comparison of the difference between 603 

correlations was computed using Steiger’s test for differences in dependent 604 

correlations. 605 

 606 

Data availability. Behavioral data are available on the Open Science Framework 607 

(https://osf.io/gr9xd/). Whole-brain fMRI results are available on NeuroVault 608 

(https://neurovault.org/collections/6126/).  609 
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 610 

 611 

Results 612 

 613 

Choice study behavior.  614 

Our behavioral question was whether single aversive episodes can lead to memory for 615 

value associations, which we refer to as value memory, and that such memory supports 616 

later decision making. In the behavioral study, participants experienced episodes of low 617 

or high heat pain incidentally associated with trial-unique object pictures. Subsequently, 618 

in a surprise choice test phase, participants made choices between two objects that had 619 

been incidentally associated with different levels of heat, with the goal of choosing the 620 

object that had been paired with low heat.  621 

During the incidental learning phase, participants could clearly discriminate the 622 

heat pain levels: on the 1-8 rating scale, where ‘8’ corresponds to high pain, the mean 623 

pain rating for high pain stimuli was 7.00 (95% CI [6.68 7.31]), while the mean pain 624 

rating for low pain stimuli was 2.26 [1.94 2.57]. Participants’ pain ratings were also 625 

highly correlated with the administered heat temperature on a trial-to-trial basis (mixed-626 

effects model coefficient  = 0.9399 [0.7682 1.036]; z = 10.899 p < 0.001). The cue 627 

preceding the high or low pain was inaccurate on 30% of trials. We found no significant 628 

interaction between high versus low pain and cue validity ( = 0.0292 [-0.0295 0.0867]; t 629 

= 1.010, p = 0.326). There was no significant effect of invalid cues on low pain ratings 630 

(valid 2.23 [1.94 2.52]; invalid 2.32 [1.93 2.72];  = 0.0472 [-0.0349 0.1304]; t = 1.106, p 631 

= 0.282) and a no significant effect of invalid cues on high pain ratings (valid 7.00 [6.69 632 

7.32]; invalid 6.98 [6.64 7.33];  = -0.0111 [-0.0893 0.0655]; t = -0.287, p = 0.821). The 633 

minimal influence of the cue on ratings is likely due to the use of two very different and 634 

easily discriminable temperatures, which differs from previous work (Atlas et al., 2010; 635 

Fazeli and Buchel, 2018). 636 

In the incentivized choice test phase, participants were successfully able to 637 

choose the low pain object over the high pain object (mean 58.7% correct choices [53.2 638 

64.2]; versus chance (50%), t(20) = 3.28, p = 0.0037). Interestingly, we found that choice 639 
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performance significantly increased with the difference in the learning phase pain 640 

ratings between the two choice objects ( = 0.1278 [0.0228 0.2327]; z = 2.387, p = 641 

0.0170; Fig. 2a). Choice performance also increased with higher levels of choice 642 

confidence ( = 0.4409 [0.2506 0.6312]; z = 4.541, p = 0.000006), indicating significant 643 

metacognitive awareness. In this experiment, a supplemental recognition strength 644 

measure was not collected. Thus, we could not examine any links between choices and 645 

recognition, which may be related to attention during incidental encoding. We would 646 

expect inattention during learning to decrease performance, as participants would need 647 

to rely on information encoded about the alternative object. However, we speculate that 648 

instances of inattention for one or both objects would be reflected in low confidence, low 649 

accuracy choices, which would, if anything, decrease our ability to detect an effect. 650 

Overall, the results from the behavioral study demonstrate that value-based choices, 651 

here to avoid a pain-associated item, can be guided by the strength of single 652 

experiences. 653 

 654 

 655 

Figure 2. Decision making and value memory performance. a, In the behavioral 656 
experiment, accuracy in selecting the object that had been incidentally associated with 657 
low versus high pain was significantly related to the difference in pain reported for the 658 
objects during the incidental learning phase (regression on continuous measure). For 659 
visualization only, the pain rating difference between choice options was binned based 660 
on whether the options differed by <= 3 rating points (Low), > 3 and <= 5 points 661 
(Medium), and 5 or more points (High). b, Test phase performance in the fMRI study. 662 
Participants exhibited value memory: memory for the value associated with single 663 
episodes. c, Recognition memory response distribution for old objects for individual 664 
participants (n = 28 with ratings data). Participants are colored based on memory 665 
performance; green for higher rates of combined “old” and “certain old” responding and 666 
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black for lower rates. (Individual points represent individual participants; error bars 667 
represent standard error of the mean (SEM); * p < 0.05; **p < 0.01.) 668 
 669 

fMRI study behavior.  670 

In the fMRI study, as in the behavioral study, our behavioral question was whether 671 

single aversive episodes can support later value-based decision making. Participants 672 

experienced episodes of high or low heat pain incidentally associated with trial-unique 673 

object pictures. Subsequently, in a surprise memory test, participants were cued with an 674 

object and instructed to remember whether the object was associated with high or low 675 

pain in the preceding incidental learning phase. Following this key pain value memory 676 

response, as a control, participants then rated their recognition strength for the object.  677 

In the incidental learning phase, pain ratings given after each trial reliably 678 

differentiated high and low heat (high, 7.34 95% CI [7.20 7.48]; low, 2.34 [2.13 2.55]; 679 

scale range: 1-8). Participants’ pain ratings were highly correlated with the administered 680 

heat temperature on a trial-to-trial basis ( = 0.7093 [0.6406 0.7799]; z = 20.12, p < 681 

0.001). The cue preceding the high or low pain was inaccurate in 30% of trials. We 682 

found a significant interaction between high versus low pain and cue validity ( = 0.0870 683 

[0.0428 0.1310]; t = 3.967, p < 0.001), unlike the behavioral study. This interaction was 684 

driven by a positive effect of invalid cues on low pain ratings (valid 2.27 [2.09 2.44]; 685 

invalid 2.52 [2.19 2.85];  = 0.1260 [0.0287 0.2264]; t = 2.461, p = 0.008) and a 686 

numerically negative effect of invalid cues on high pain ratings (valid 7.37 [7.24 7.50]; 687 

invalid 7.27 [7.10 7.45];  = -0.0480 [-0.1047 0.007]; t = -1.686, p = 0.094). 688 

In the surprise memory test, we found that value memory accuracy was 689 

significantly above chance (54.96% correct [51.43 58.49]; t(28) = 2.879, p = 0.0076; Fig. 690 

2b). Importantly, value memory accuracy significantly increased with increasing 691 

confidence ( = 0.2979 [0.1689 0.4270]; z = 4.525, p = 0.000006; n = 28 participants 692 

with confidence and memory ratings), with performance rising to 72.42% at the highest 693 

confidence level. As in the behavioral study, this relationship indicates that value 694 

memory responses were often based on underlying accurate memories that were 695 

accessible to awareness. Nevertheless, the level of performance was lower than what 696 

we observed in a study where objects were incidentally associated with monetary 697 
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reward (61%; Wimmer and Buchel, 2016). We did not find better value memory 698 

performance for objects associated with more extreme high or low pain ratings (high 699 

pain rating difference between correct versus incorrect episodes, p = 0.341; low pain 700 

rating difference, p = 0.753), unlike the behavioral choice experiment. It is possible that 701 

the binary choice measure in the behavioral study was more sensitive to this effect. 702 

We then examined the control measure of recognition memory strength. 703 

Recognition responses were collected after the pain value memory confidence 704 

responses on each trial. Participants reliably discriminated old from new objects (old 705 

object mean 4.87 [4.65 5.09]; new object mean 2.11 [1.85 2.37], p < 0.001), with a 706 

recognition rate of 79.90% and relatively high corrected rate of 66.70% (hits minus false 707 

alarms; range 19.48 – 98.51) (Wimmer and Buchel, 2015). More than two-thirds of old 708 

items were rated as ‘old’ or ‘certain old’ (69.0% [63.0 75.1]). As illustrated in the 709 

response distribution for all participants in Fig. 2c, recognition memory for objects 710 

experienced in the learning phase were highly biased toward ‘old’ responses (percent of 711 

the 66 old trials rated ‘certain new’ = 4.3%; ‘new’ = 7.1%; ‘guess new’ = 8.9%; ‘guess 712 

old’ = 10.7%; ‘old’ = 15.0%; ‘certain old’= 54.0%).  713 

We found that recognition memory strength was not modulated by heat pain 714 

experienced in the preceding phase (where a rating of ‘6’ represents certain old: high 715 

pain 4.86 [4.65 5.07]; low pain 4.87 [4.65 5.09]; two-one-sided equivalence test (TOST) 716 

p = 0.006; thus we can reject the presence of a medium- or larger-sized effect; n = 28 717 

participants with value memory confidence and recognition memory ratings). The null 718 

effect of pain on recognition memory was validated in a multilevel regression model ( = 719 

0.0096 [-0.051 0.070]; z = 0.311, p = 0.756; TOST p = 0.007). Recognition memory 720 

strength was also not significantly related to value memory accuracy ( = 0.0542 [-721 

0.0165 0.1250]; z = 1.501, p = 0.133), though we cannot rule out a medium-sized effect 722 

(TOST = 0.078). In a combined model including trial-by-trial value memory confidence 723 

alongside recognition, value memory confidence remained significantly related to value 724 

memory accuracy (p = 0.000008), while recognition was not significantly related to value 725 

memory accuracy (p = 0.191; TOST p = 0.055). Thus, we find no relationship between 726 

experienced heat and recognition memory, and no relationship between recognition 727 

memory and value memory performance.  728 
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The results from both the behavioral and fMRI experiments demonstrate that 729 

single aversive episodes of high or low heat pain can support later memory-based 730 

decisions. When making a choice between two aversive options that have been only 731 

experienced once before (Kahneman et al., 1993), a value-based decision is, from a 732 

different perspective, a decision about remembered stimulus intensity. Critically, 733 

however, in the domain of aversive experiences, which carry a negative valence, a 734 

decision about stimulus intensity is inherently a decision about value. 735 

Importantly, arousal (or stimulus intensity) alone is unlikely to primarily drive 736 

these behavioral results. In a previous study, we combined the same incidental learning 737 

phase procedure from the current study with a reward-based incidental learning phase 738 

(Wimmer and Buchel, 2016). At a surprise test, participants chose between reward- 739 

versus pain-associated objects or between two objects within the same valence. If value 740 

memory choice performance was based primarily on arousal, then performance would 741 

be poor when choosing between high-arousal reward-associated objects and high-742 

arousal pain-associated objects. However, in new analyses, we found that performance 743 

on choices between high reward- and high pain-associated objects was, if anything, 744 

higher than performance on choices between two objects with the same valence 745 

(reward versus pain 69.09% [63.67 74.51]; t(19) = 7.376, p < 0.0001; same-valence 746 

(within reward or pain) 62.50% [54.55 70.45]; t(19) = 3.290, p = 0.004; difference t(19) = 747 

1.972, p = 0.063). 748 

 749 

fMRI univariate pain results. 750 

In the imaging analyses, we first examined whether heat pain activated the network of 751 

regions implicated in pain processing (Apkarian et al., 2005; Tracey and Mantyh, 2007). 752 

We found that trial-by-trial pain ratings positively correlated with activation in regions 753 

previously associated with pain processing including the anterior and posterior insula, 754 

cingulate, thalamus, and secondary somatosensory cortex (all p < 0.05 whole-brain 755 

FWE corrected; Fig. 3 and Figure 3-1). A region of the right hippocampus also showed 756 

a correlation with pain ratings (20, -18, -14; z = 3.55, p = 0.025 SVC), although this 757 

effect could be related to the use of spatial smoothing in the data underlying the 758 

univariate analyses; note that subsequent multivariate analyses use non-smoothed 759 
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data. We also examined the response to pain-predictive cues. We found activation for 760 

high versus low cues in a cluster extending from the left anterior orbitofrontal cortex 761 

(OFC) to more posterior medial OFC (-32, 50, -14; z = 4.12; p < 0.001 whole-brain 762 

FWE; no other regions survived whole-brain correction; 763 

https://neurovault.org/collections/6126/), but no significant activation in pain-related 764 

regions or the hippocampus. No regions exhibited significantly greater activity for low 765 

versus high pain cues. 766 

 767 

fMRI multivariate results. 768 

Next, we addressed our primary question of whether distributed patterns of activity 769 

during object re-presentation reflected incidental pain value associations. We trained a 770 

classifier on the multivoxel patterns of activation evoked by actual pain in the incidental 771 

learning phase. To check whether the classifier trained on actual pain experience during 772 

the incidental learning phase was able to classify pain, we examined cross-validated 773 

results in regions of interest defined by the univariate correlation with pain ratings. We 774 

defined two masks, one including voxels in the anatomical anterior insula that exhibited 775 

a correlation with pain ratings (using an uncorrected p < 0.0001 threshold) and one 776 

including any brain voxels correlated with pain ratings (p < 0.0001, uncorrected). MVPA 777 

analyses revealed high rates of classification of high versus low pain in the anterior 778 

insula (84.5% AUC classification performance; note that these results are provided for 779 

illustration only given that the definition of the ROI was itself based on pain responses) 780 

and from the whole-brain pain region mask (89.1%). We also found that distributed 781 

activity patterns in the hippocampus discriminated high versus low pain (68.4%, p < 782 

0.0001). Note that the data underlying the multivariate analyses are not spatially 783 

smoothed, making it unlikely that effects in adjacent regions contribute to multivariate 784 

results. 785 

 Building on the behavioral finding that single aversive experiences can support 786 

memory-based decisions, we then turned to our primary question of whether patterns of 787 

neural activity during high versus low heat pain exposure were reactivated when 788 

participants were re-presented with heat-paired object pictures. During the memory 789 

retrieval phase, participants were presented with an object for 5 s, followed by a heat 790 
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rating prompt where they responded with whether they remembered that the object 791 

picture had been paired with high versus low heat (Fig. 1c). Using the multivoxel p 792 

classifier trained on the activation evoked by actual pain in the incidental learning 793 

phase, we then tested the performance of this classifier on activation during object re-794 

presentation. 795 

 796 

 797 

Figure 3. Heat pain response during the incidental learning phase, and heat pain 798 
reactivation in the insula during re-presentation of pain-associated objects. a, Pain 799 
rating correlation during heat pain administration in the anterior insula and other regions 800 
(images thresholded at p < 0.0001, activation significant at p < 0.05 FWE; see also 801 
Figure 3-1; unthresholded map available at https://neurovault.org/images/306227/). b, 802 
Classification of later re-presentation of high- versus low-pain objects in the memory 803 
test phase based on patterns of activation to pain in the anterior insula pain-responsive 804 
region of interest. (Individual points represent individual participants; error bars 805 
represent SEM.) 806 
 807 

 Upon re-exposure to objects incidentally paired with heat pain, we found no 808 

significant evidence for reactivation of pain-related patterns in traditional pain-809 

processing regions, including the anterior insula (Fig. 3a). Classification performance in 810 

the anterior insula was not greater than chance (51.43 AUC [48.84 53.51]; t(28) = 1.07, p 811 

= 0.312; TOST p = 0.032; Fig. 3b). Further, in a network of regions across the whole 812 

brain that exhibited a correlation with pain experience, classification performance at test 813 

was also not greater than chance (51.43 [48.70 54.17]; t(28) = 1.07, p = 0.293; TOST p = 814 

0.035). We predicted that somatic sensation (heat) would primarily be reflected in the 815 

insula, but we also examined activity in the amygdala as a control region. Amygdala 816 

patterns of activity did not show evidence of reactivation of pain associations (50.61 817 

[47.52 53.71]; t(28) = 0.41, p = 0.688; TOST p = 0.008). 818 
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In the hippocampus, however, we found evidence for significant reactivation of 819 

pain-related patterns (53.31 [50.30 56.32]; t(28) = 2.25, p = 0.032; Fig. 4a). As noted 820 

above, value memory behavioral performance in the current experiment was relatively 821 

low; thus, we also examined a subgroup of participants that approximated the stronger 822 

behavioral value memory performance in our previous study using reward (Wimmer and 823 

Buchel, 2016). Within a subgroup of 21 participants who exhibited value memory 824 

performance above 50% (mean 59.5% performance), we found numerically stronger 825 

classification of pain-associated episodes in the hippocampus (55.07 [51.38 58.77]; t(20) 826 

= 2.87, p = 0.0096). This brain classification performance is of the same magnitude as 827 

previously reported for reward episode classification (Wimmer and Buchel, 2016).  828 

 829 

 830 
 831 
Figure 4. Heat pain reactivation in the hippocampus during re-presentation of objects. 832 
a, Significant classification of later re-presentation of high versus low pain objects in the 833 
test phase based on incidental learning phase patterns of activation to pain in the 834 
hippocampus (p = 0.032). (Individual points represent individual participants; error bars 835 
represent SEM.) b, Illustration of positive but non-significant searchlight reactivation of 836 
high versus low pain in the hippocampus. Images thresholded at p < 0.005 uncorrected 837 
for display, clusters p < 0.10 SVC. (For unthresholded map, see: 838 
https://neurovault.org/images/390597/.) 839 
 840 

We tested for but did not find a difference in classification accuracy in the 841 

hippocampus based on whether participants were correct in their pain memory 842 

response (correct high pain vs low: 54.56 [49.93 59.20]; t(28) = 2.018, p = 0.053; 843 

incorrect high pain vs low: 52.31 [48.32 56.31]; t(28) = 1.186, p = 0.26; comparison, t(28) = 844 

0.75, p = 0.46). If such a difference in classification due to correct behavioral responses 845 

had been found, it would have been difficult to distinguish actual value memory 846 

reactivation from an effect of behavioral response (high versus low pain) in the test 847 
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phase that itself triggered an affective reaction. This null effect of accuracy replicates a 848 

previous null result for reward associations in reward-responsive regions (Wimmer and 849 

Buchel, 2016). We also verified that the reactivation effect was not driven by a simple 850 

effect of test phase pain memory response itself. A classifier trained on pain and tested 851 

on test phase pain memory response (high vs low) found no effect (50.20 [46.95 53.44]; 852 

t(28) = 0.13, p = 0.90; TOST p = 0.004). 853 

We next confirmed that the pain pattern reactivation result in the hippocampus 854 

was selective to distributed multivariate patterns and not overall changes in activity. We 855 

extracted test phase trial-by-trial univariate beta values, averaged across the 856 

hippocampus, and trial-by-trial classifier decision values, representing the strength of 857 

evidence for high versus low heat pain reactivation in the hippocampus. First, in a 858 

multilevel regression analysis utilizing trial-by-trial classifier decision values from the 859 

multivariate analysis, we validated the finding that test phase high versus low pain 860 

reactivation in the hippocampus was significantly predicted by high versus low pain 861 

experience in the incidental learning phase ( = 0.0415 [0.0104 0.0727]; t = 2.613, p = 862 

0.009). Interestingly, we found a numerically stronger link between subjective pain 863 

ratings and pain reactivation ( = 0.0182 [0.0064 0.0300]; t = 3.037, p = 0.0024). 864 

Second, in control analyses we found that test phase univariate activity at object re-865 

presentation was not related to pain experienced in the learning phase ( = 0.0084 [-866 

0.0302 0.04693]; t = 0.427, p = 0.669; TOST p = 0.009). In a combined model, we found 867 

that multivariate pain patterns were significantly related to high versus low experienced 868 

pain while univariate activation was not (multivariate  = 0.1622 [0.0357 0.2886]; z = 869 

2.514, p = 0.0119; univariate  = 0.0305 [-0.1045 0.1656]; z = 0.443, p = 0.658; TOST p 870 

= 0.009). Further, the trial-by-trial multivariate hippocampal reactivation measure itself 871 

was unrelated to trial-by-trial hippocampal univariate activity (p = 0.702). 872 

To demonstrate the selectivity of pain pattern reactivation to episodic high versus 873 

low heat pain experiences, we tested for a relationship between pain pattern 874 

reactivation and test phase recognition memory strength. As value associations can 875 

drive behavior independent of explicit memory (e.g. Wimmer and Shohamy, 2012), and 876 

following a previous null finding relating recognition and reactivation of episodic reward 877 

associations (Wimmer and Buchel, 2016), we did not expect pain pattern reactivation to 878 
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be related to memory strength. First, we found that classifier decision values indexing 879 

pain reactivation were not significantly related to graded recognition memory strength 880 

ratings ( = 0.0193 [-0.0041 0.0428]; t = 1.617, p = 0.106; TOST p = 0.095; n = 28). 881 

Next, in a model including both high versus low pain and recognition memory as 882 

independent variables, we found that high versus low pain remained significantly related 883 

to pain reactivation in the hippocampus (p = 0.0219) while the relationship between 884 

recognition memory and reactivation remained non-significant (p = 0.110). We also 885 

found no significant relationship between pain reactivation and the interaction between 886 

high versus low pain and recognition memory ( = 0.0192 [-0.0025 0.0411]; t = 1.733, p 887 

= 0.083). Finally, we found no relationship between reactivation memory and the 888 

absolute value of multivariate pain pattern reactivation (a measure of the strength of 889 

classifier evidence in either direction;  = -0.0182 [-0.0389 0.0024]; t = -1.733, p = 890 

0.083). Together, these control analyses support the interpretation that our results are 891 

selectively related to pain value memory and not the strength of recognition memory for 892 

an experience. 893 

The above classification analyses demonstrated that distributed patterns of 894 

activity in the hippocampus but not pain-related regions showed significant classification 895 

of pain reactivation. To examine classification performance based on local information, 896 

we performed a searchlight analysis (Kriegeskorte et al., 2006). This analysis revealed 897 

no significant clusters across the whole brain, no effects in the insula or wider pain-898 

related ROI mask, and no significant effects in the hippocampus. However, illustrating 899 

local information that may drive the whole-ROI result above, three clusters in the 900 

hippocampus showed non-significant positive effects (left posterior: -26, -36, -4; z = 901 

3.35, p = 0.089 SVC; right middle: 24, -24, -12; z = 3.34, p = 0.091 SVC; left anterior: -902 

26, -16, -14; z = 3.71, p = 0.097; Fig. 4b; unthresholded map available at 903 

https://neurovault.org/collections/6126/).  904 

 905 

Multivariate reactivation and value memory performance.  906 

We then examined the critical question of whether individual differences in pain-related 907 

reactivation was related to participants’ pain value memory performance. We correlated 908 

the whole-brain searchlight analysis results with individual performance in value 909 
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memory retrieval. A region in the left anterior hippocampus showed a significant 910 

relationship between searchlight pain classification strength and value memory 911 

performance (-28, -12, -26; z = 3.64, p = 0.038; Fig. 5a). This correlation was also 912 

evident in an ROI analysis of the anterior hippocampus (r = 0.470, p = 0.0204, corrected 913 

for two comparisons; Fig. 5b). Comparisons of the anterior and posterior hippocampus 914 

ROIs showed a stronger correlation with behavior in the anterior versus posterior 915 

hippocampus (posterior r = -0.108, p > 1.0, corrected for two comparisons; difference z 916 

= 2.36, p = 0.018).  917 

The brain-behavior correlation in the anterior hippocampus was selective to the 918 

multivariate pain reactivation measure and to value memory performance. First, 919 

differential univariate anterior hippocampal activity for re-exposure to high versus low 920 

pain objects was not related to value memory performance (p = 0.353). Second, we 921 

found no link between learning phase pain discrimination in the anterior hippocampus 922 

and test phase value memory performance (r = -0.239, p = 0.213). Importantly, 923 

variability in test phase pain pattern reactivation in the anterior hippocampus was also 924 

unrelated to recognition memory (r = 0.298, p = 0.132). Further, even though value 925 

memory and recognition memory measures were positively correlated across 926 

participants, in a model including both measures as independent variables, value 927 

memory performance remained significantly related to anterior hippocampus pain 928 

reactivation (t(25) = 2.249, p = 0.034) while there was no relationship with recognition 929 

memory (t(25) = -0.358, p = 0.723).  930 

These results demonstrate that for single aversive episodes, distributed 931 

multivariate patterns in the hippocampus during object re-presentation significantly 932 

resemble those evoked by actual pain during the original experience. More generally, 933 

this demonstrates that affect-related neural patterns are re-expressed at later retrieval. 934 
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 935 

Figure 5. Hippocampal classification and the relationship between hippocampal 936 
connectivity and behavior. a, In a searchlight analysis, the reactivation of pain patterns 937 
in the left anterior hippocampus was positively associated with value memory behavioral 938 
performance across participants (full anterior MTL cluster selected for display; images 939 
thresholded at p < 0.005 for display, p = 0.038 SVC; 940 
https://neurovault.org/images/390598/) b, Illustration of the anterior hippocampus 941 
reactivation-performance relationship in an anatomical anterior hippocampal mask. 942 
Individual points represent individual participants. c, Connectivity between the anterior 943 
hippocampus for correct versus incorrect value memory retrieval trials correlated with 944 
value memory performance during the incidental learning phase (left hippocampus p = 945 
0.022 SVC; right hippocampus p = 0.084 SVC; https://neurovault.org/images/390601/), 946 
and d, during the memory test phase (left hippocampus p = 0.003 SVC; right 947 
hippocampus p = 0.035 SVC; https://neurovault.org/images/390602/). e, Conjunction in 948 
the left hippocampus of the connectivity relationship with individual differences in value 949 
memory performance in the incidental learning phase (red), memory test phase (blue) 950 
and overlap (purple). For main effects of value memory success and recognition 951 
memory strength, see Figure 5-1 and Figure 5-2. 952 
 953 

Connectivity and value memory performance.  954 

We then examined whether connectivity during incidental encoding or at test was 955 

related to value memory. Specifically, we tested for differences in connectivity during 956 

successful versus unsuccessful value memory using a PPI analyses, focusing on the 957 

hippocampus. Prior to the PPI analyses, we examined univariate correlates of 958 

successful pain value memory. During the incidental learning phase, we found no 959 
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significant positive correlations with value memory accuracy (Figure 5-1). In the test 960 

phase, we also found no activity significantly correlated with value memory accuracy 961 

(Figure 5-2). 962 

In the PPI analyses, we used the region of the left anterior hippocampus that 963 

correlated with behavioral performance as a seed (masking the effect by the 964 

hippocampus anatomical mask). The behavioral contrast was trial-by-trial correct versus 965 

incorrect later value memory. In the incidental learning phase, we found no overall 966 

differences in connectivity for correct versus incorrect later value memory between the 967 

anterior hippocampus and any other hippocampal region or brain region. However, 968 

individual differences in value memory performance were significantly correlated with 969 

the PPI contrast in a region of the left anterior hippocampus (-22, -10, -24; z = 3.78, p = 970 

0.022 SVC; Fig. 5c, left) and at a positive but non-significant level in the right anterior 971 

hippocampus (22, -12, -22; z = 3.34, p = 0.084 SVC). This correlation indicates that 972 

participants with higher value memory performance overall showed greater intra-973 

hippocampal connectivity during successful value memory encoding. 974 

We then conducted a similar connectivity analysis in the memory test phase, 975 

again using the left anterior hippocampus as a seed and correct versus incorrect value 976 

memory performance as the contrast. We found no overall connectivity differences. 977 

Again, however, we found an association between anterior hippocampal connectivity 978 

with the bilateral hippocampus and individual differences in value memory performance 979 

(left, -22, -10, -22; z = 4.34, p = 0.003 SVC; right, 30 -10 -20; z = 3.69, p = 0.035 SVC; 980 

Fig. 5c, right). The bilateral hippocampal clusters identified in the learning phase PPI 981 

overlapped with the clusters identified in the test phase (Fig. 5d). Finally, we examined 982 

whether these relationships were selective to value memory performance versus 983 

recognition memory. In alternative covariate analyses including recognition memory, we 984 

found no significant across-participant correlations in the hippocampus (p-values > 985 

0.73). Together, these results indicate that in individuals with better behavioral 986 

discrimination of high versus low heat pain episodes, intra-hippocampal connectivity is 987 

stronger during both successful encoding and successful retrieval.  988 

 989 

 990 
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Control univariate analyses of pain value memory and recognition memory.  991 

Finally, while our hypotheses were based on multivariate patterns of activity, for 992 

completeness, we also examined the results of several control univariate analyses 993 

related to pain, value memory, and recognition memory. First, we looked for overall 994 

activation differences at test due to the incidental association of objects with high versus 995 

low heat pain, parallel to the multivariate results reported below. We found no evidence 996 

of pain value memory reactivation in the test phase in pain-related ROIs, the 997 

hippocampus, or across the whole brain (https://neurovault.org/collections/6126/).  998 

 Second, we examined univariate correlates of recognition memory strength 999 

during learning and test. Note that multivariate analyses analogous to the pain 1000 

reactivation analyses are not possible with the unbalanced memory strength categories 1001 

that result from the very high rate of old object recognition (Fig. 2c). The univariate 1002 

models also examined correlates of successful value memory encoding or retrieval, but 1003 

as noted in the preceding connectivity results, we found no significant results. In the 1004 

incidental learning phase, we found several clusters at the whole-brain level correlated 1005 

with recognition memory strength, including the left middle temporal gyrus and left 1006 

fusiform gyrus (n = 28 participants with memory strength data; Figure 5-1). Further, we 1007 

found that activity in the left posterior hippocampus was significantly related to 1008 

subsequent memory (-18, -42, 4; z = 4.08, p = 0.009 SVC). In a multivariate control 1009 

analysis, none of these three regions were able to classify pain pattern reactivation at 1010 

test (p-values > 0.510). In the memory test phase, we found two significant clusters in 1011 

the left parietal lobe and striatum / thalamus correlated with recognition memory 1012 

strength at a whole-brain level (Figure 5-2). Neither of these regions were able to 1013 

classify pain pattern reactivation at test (p-values > 0.307). 1014 

 1015 

 1016 

  1017 
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Discussion 1018 

 1019 

We found that memory for the values of single aversive experiences can guide later 1020 

decision making and that value memory was related to reactivation of pain-related 1021 

activity patterns in the hippocampus from the original experience. In our experiments, 1022 

we first presented incidental, trial-unique object pictures during high or low pain 1023 

episodes. Then we administered a surprise test where the objects were re-presented in 1024 

order to measure pain value memory for the incidental pain associations. In a choice 1025 

experiment, participants successfully avoided pain-associated objects. In an fMRI 1026 

experiment, pain-related patterns of activity in the hippocampus – but not in traditional 1027 

pain-associated regions such as the secondary somatosensory cortex and the insula – 1028 

were reinstated upon re-exposure to objects. Importantly, individual differences in the 1029 

strength of reactivation in the anterior hippocampus positively related to value memory 1030 

behavioral performance. Our results suggest that after an aversive experience, a 1031 

reminder of the event can reactivate neural patterns in the hippocampus to promote 1032 

avoidance. 1033 

The hippocampus is critical for forming memory for episodes, and more generally 1034 

for forming relational associations between elements of experience (Eichenbaum and 1035 

Cohen, 2001; Davachi, 2006). Our results suggest that the hippocampus is also 1036 

important for linking memory for items with representations of value. Importantly, all of 1037 

our value memory findings were independent of recognition memory strength for the 1038 

objects. Further, while the heat pain was designed to be salient, and previous studies 1039 

have reported both pain-related memory improvements and impairments (Schwarze et 1040 

al., 2012; Forkmann et al., 2013), we found no relationship between recognition 1041 

memoryand either heat pain or pain reactivation. The potential role of the hippocampus 1042 

in rapid value association learning aligns with research demonstrating that the 1043 

hippocampus is important for using relational associations to automatically infer reward 1044 

value (Wimmer and Shohamy, 2012) and to imagine the value of novel experiences 1045 

(Barron et al., 2013). While these and other studies in humans have primarily shown a 1046 

role for the hippocampus in reward domains (Lebreton et al., 2009; Peters and Buchel, 1047 

2010; Foerde and Shohamy, 2011; Foerde et al., 2013; Gluth et al., 2015; Wimmer et 1048 
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al., 2018), our results suggest that the hippocampus also plays a role in associating 1049 

episodic experiences with negative value. Our findings additionally accord with the role 1050 

of the hippocampus in fast learning during contextual fear conditioning in rodents 1051 

(Phillips and LeDoux, 1994). Building on these findings, an interesting question for 1052 

future research is whether and how linking an item with value relates to other findings 1053 

on relational integration (Davachi, 2006; Staresina and Davachi, 2009). Further, a 1054 

relational account may also predict that the hippocampus is important for encoding 1055 

associations between experiences and stimulus intensity in general; for example, the 1056 

coolness of outside temperature, or the intensity of birdsong. However, our association 1057 

reactivation results involve salient aversive episodic associations, where successful 1058 

memory can be critical for adaptive behavior. 1059 

We found that across participants, stronger reactivation in the anterior 1060 

hippocampus was related to better value memory performance. The anterior 1061 

hippocampus has been associated with anxiety (Adhikari et al., 2010; Fanselow and 1062 

Dong, 2010; Bach et al., 2014) as well as memory integration and generalization 1063 

(Poppenk et al., 2013; Schlichting et al., 2015; Brunec et al., 2018). Given that episodes 1064 

of experience never repeat exactly, successful use of previous experiences to guide 1065 

future decisions is likely to involve significant generalization, which may be facilitated by 1066 

the anterior hippocampus. Interestingly, in a related study which utilized monetary 1067 

reward instead of pain, we did not find evidence for hippocampal reactivation of value-1068 

related patterns (Wimmer and Buchel, 2016). In addition to the higher salience for pain 1069 

compared to monetary reward, one difference between these experiments is that the 1070 

current study utilized a relatively slow trial duration and longer separation of emotional 1071 

events, potentially leading to better separation of individual episodes and greater 1072 

hippocampal involvement in memory encoding (Ezzyat and Davachi, 2011). 1073 

Recent research has proposed that choices may be guided by sampling 1074 

representations of previous experiences stored in memory, in contrast to the more 1075 

common view that choices being are driven by scalar value representations (Hertwig et 1076 

al., 2004; Lengyel and Dayan, 2005; Weber and Johnson, 2006; Biele et al., 2009; 1077 

Gluth et al., 2015; Shadlen and Shohamy, 2016). Whether and how agents form 1078 

successful memory for the value of episodes is a critical component of memory-based 1079 
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models of decision making. Several previous studies provided initial evidence that 1080 

agents are capable of learning and using the value or “remembered utility” of previous 1081 

experiences such as freezing cold water or pleasant vacations (Kahneman et al., 1993; 1082 

Redelmeier and Kahneman, 1996; Fredrickson, 2000; Wirtz et al., 2003). The choice 1083 

test in our behavioral study, where participants were incentivized to choose the lower-1084 

pain object, closely aligns with choice preference measures utilized in classic behavioral 1085 

economics studies (Fredrickson and Kahneman, 1993; Kahneman et al., 1993). A 1086 

potential limitation of our fMRI study, however, is that participants made judgments 1087 

about single items. Nevertheless, a reasonable conservative hypothesis is that the 1088 

same mechanism supports both retrieval-supported choice behavior and the retrieval of 1089 

value memory associations for single items. 1090 

Memory sampling models of decision making have been supported by recent 1091 

experimental evidence in humans in the reward domain (Gluth et al., 2015; Murty et al., 1092 

2016; Wimmer and Buchel, 2016; Bornstein et al., 2017; Bornstein and Norman, 2017; 1093 

Enkavi et al., 2017; Bakkour et al., 2019), which our results extend to aversive 1094 

valuations. Notably, to our knowledge, only the current study and our recent study in the 1095 

reward domain (Wimmer and Buchel, 2016) examined the influence of episodes in the 1096 

absence of explicit – and often extensive – participant instructions to remember the 1097 

features of unique episodes. We focused on incidental encoding, as our goal was to 1098 

understand the neural mechanisms that may support behavior in non-laboratory 1099 

environments, where memory formation is often incidental. 1100 

From a learning perspective, episodic or single-shot learning of value is not 1101 

easily accounted for by reinforcement learning models (Sutton and Barto, 1998), even 1102 

though it is a well-known phenomenon in contextual fear conditioning (e.g. Blanchard et 1103 

al., 1968) and taste aversion learning (Welzl et al., 2001). Rapid learning can be 1104 

accomplished in reinforcement learning models with a very high learning rate for 1105 

positive and negative events, but this leads to memories being erased upon any 1106 

repetition. One solution involves dynamically decreasing the learning rate based on the 1107 

number of exposures to a similar situation (e.g. Schiller et al., 2008), which presents a 1108 

potential convergence with memory sampling accounts. Memory sampling models can 1109 

naturally implement a decreasing influence of newer experiences: as related episodes 1110 
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accumulate, each new experience added to memory storage will have a lower chance 1111 

of being sampled and a weaker effect on choice.  1112 

Finally, our results provide a novel demonstration that negative emotion-related 1113 

neural patterns expressed within the same participants during encoding are re-activated 1114 

at retrieval. Previous studies on memory for negative events (where otherwise neutral 1115 

stimuli were initially paired with negative content) have either found group-level 1116 

univariate activation of the same regions across encoding and retrieval or used reverse 1117 

inference to attribute activation at retrieval to emotion (Maratos et al., 2001; Smith et al., 1118 

2004; Erk et al., 2005; Smith et al., 2006; Albanese et al., 2007; Tsukiura and Cabeza, 1119 

2008; Kuhl et al., 2010; Fairhurst et al., 2012; Forkmann et al., 2015; Bowen and 1120 

Kensinger, 2017). In contrast to these univariate approaches, multivariate analyses are 1121 

more sensitive and directly yield metrics of information content (Poldrack, 2011), while 1122 

decoding across experiences within-participants removes the need for reverse 1123 

inference. 1124 

We did not find evidence of reactivation of affect-related patterns in value-1125 

correlated regions outside of the hippocampus, in contrast to our previous study 1126 

(Wimmer and Buchel, 2016). Specifically, we found no evidence for the reactivation of 1127 

pain-related patterns or even univariate activation at test in traditional pain-related 1128 

regions such as the insula. One potential reason for this null finding could be that in the 1129 

current design, pain was largely predicted by a preceding cue, resulting in minimal 1130 

surprise (or prediction error) when heat was administered in conjunction with the 1131 

incidental object stimuli. This decoupling of the prediction error learning signal from heat 1132 

onset may have contributed to the relatively lower value memory performance as 1133 

compared to our previous study using monetary reward (Wimmer and Buchel, 2016). It 1134 

is possible that in a design in which aversive stimuli are more unexpected, pain-1135 

responsive regions may also show reactivation at test. Overall, similarities and 1136 

differences between memory for positive and negative episode valence are an 1137 

interesting target for future research. 1138 

 1139 

Conclusion 1140 
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Our results demonstrate a mechanism by which memory can support adaptive behavior: 1141 

patterns of value-related neural activity in the hippocampus from original experiences 1142 

can be reactivated to guide later decision making. While much is known about how 1143 

repeated experiences can build simple associations between stimuli and values, the 1144 

encoding of single episodes has remained relatively unexplored. From everyday 1145 

experience, it is clear that decisions can be based on single episodes. Given the 1146 

considerable capacity of episodic memory in humans, memory represents a rich cache 1147 

of information that can support future decision making. Remembering the value of 1148 

negative episodes may be particularly important, as avoiding the repetition of highly 1149 

aversive experiences, such as those involving bodily harm, can help ensure a longer 1150 

life. Translationally, understanding overactive or underactive reactivation of negative 1151 

experiences may inform the understanding and treatment of post-traumatic stress 1152 

disorder, depression, and other mood disorders (Hamilton and Gotlib, 2008; Brewin et 1153 

al., 2010; Shin and Liberzon, 2010). 1154 

 1155 
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Extended Data 1392 
 1393 
Figure 3-1. Neural correlates of pain ratings during pain administration in the incidental 1394 
learning phase, relating to Fig. 3a. Initial uncorrected threshold set at p < 0.00001 for 1395 
interpretable clusters. All p-values are whole-brain FWE-corrected; see also: 1396 
https://neurovault.org/images/306227/. 1397 
 1398 
 1399 

Figure 5-1. Neural correlates of learning phase subsequent value memory success and 1400 
subsequent recognition memory strength, related to Fig. 5. All p-values are whole-brain 1401 
FWE-corrected. For value memory, see: https://neurovault.org/images/504941/; for 1402 
recognition, see: https://neurovault.org/images/504942/. 1403 
 1404 
 1405 
Figure 5-2. Neural correlates of test phase value memory success and recognition 1406 
memory strength, relating to Fig. 5. All p-values are whole-brain FWE-corrected. For 1407 
value memory, see: https://neurovault.org/images/504943/; for recognition, see: 1408 
https://neurovault.org/images/504944/. 1409 
 1410 
 1411 


