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Abstract— A dynamic model of a soft fibre-reinforced flu-
idic elastomer is presented and experimentally verified, which
can be used for model-based controller design. Due to the
inherent visco-(hyper)elastic characteristics and nonlinear time-
dependent behaviour of soft fluidic elastomer robots, analytic
dynamic modelling is challenging. The fibre reinforced non-
inflatable soft fluidic elastomer robot used in this paper can pro-
duce both planar and spatial movements. Dynamic equations
are developed for both cases. Parameters, related to the visco-
elastic behaviour of the robot during elongation and bending
motion, are identified experimentally and incorporated into
our model. The modified dynamic model is then validated in
experiments comparing the time responses of the physical robot
with the corresponding outputs of the simulation model. The
results validate the accuracy of the proposed dynamic model.

I. INTRODUCTION

Continuum robotic manipulators have been inspired by

octopus arms [1], elephant trunks [2]–[4], eels [5], and

snakes [6] able to bend and navigate around obstacles. As

most continuum robots are extrinsically actuated, studies

on modelling continuum robots have mainly focussed on

kinematic and dynamic modelling of tendon-driven contin-

uum robots [2], [7]. Such models have been very important

in developing control systems for continuum robots [8].

Gravagne and Walker conducted one of the earliest studies

on the dynamic behaviour of continuum robots [3] deriving

equations for 2-dimensional planar motion. In [9], Kapadia

and Walker advanced this work and presented a model-based

dynamic controller in the task-space. This dynamic model

is obtained using the Euler-Lagrange approach. Experimen-

tal validation indicates that an inverse dynamics-based PD

control system converges despite uncertainties in the model

parameters. Again, this model and controller is based on 2D

planar motion. In [10], [11], the Lagrange approach was also

used for dynamic modelling of a tendon-driven robot. The

theoretical model considers planar dynamic behaviour of a

continuum manipulator validated using simulation only.

Soft material robotics has become an important research

topic [12], [13] aiming at a wide range of applications [14]–

[16]. Many fluidic-driven soft robots are made of elastomer

materials, which exhibit visco-elastic behaviour, which needs
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to be incorporated in the model. A number of develop-

ments have resulted in the field of soft robotics including

advancements in modelling soft continuum robots [17]–[19].

In [20], a machine learning-based method is introduced

for modelling the dynamics of a tendon-driven soft robot.

Further research focussed on using a recurrent neural net-

work to obtain a dynamic model and develop a closed-loop

predictive controller based on a learning algorithm [21]. The

model is limited to tendon-driven soft robots and it is based

on learning algorithms (model-free techniques) rather than

model-based dynamics. Focussing on fluidic-driven bellow

robots, dynamic equations for the Bionic Handling Assistant

Robot, a 3-section continuum robot, have been derived and

validated for 3D motion [22], [23]. A dynamic model-based

controller was subsequently developed, specifically, for the

bellow robot [24], [25].

Research on dynamic modelling and real-time control of

reinforced soft fluidic elastomer robots is limited [26]–

[28]. Marchese et al. derived a dynamic model of a soft

manipulator with four segments made of elastomer with

fluidically actuated chambers. They developed a locally

optimal open-loop controller to grasp objects and perform

dynamic manoeuvres [26]. Santina, Katzschmann and co-

workers worked on the same soft fluidic elastomer robot.

Their formulation relates the dynamic response of the soft

robot to a rigid-body manipulator and experiments validate

the performance of control of bending [29], [30]. In both

research studies, the dynamic equations for each section were

obtained considering one Degree-of-Freedom (DoF), i.e., one

variable of planar bending is considered and elongation and

spatial bending is neglected in the modelling and control

algorithms. Onal and Rus presented dynamic equations and

control design of an undulatory soft robot. The dynamic

modelling and control of this robot includes the control of

planar bending only for each of the four segments [31].

Mustaza et al. developed a nonlinear dynamic model for a

soft fluidic elastomer robot based on a composite material

model [28], [32]. Dynamic modelling of a reinforced soft flu-

idic elastomer robot is investigated and a visco-hyperelastic

material based continuum approach is considered. The con-

tribution focuses on the derivation of the energy term relating

to the elasticity and viscosity of the manipulator. Important

details of the kinetic energy in the Lagrange equation, which

describes the motion of the manipulator, are omitted.

Overall, extensive work has been conducted on kine-

matic and dynamic modelling for (tendon-driven) continuum

robotic manipulators. Investigating both model-free [21] and

model-based dynamics [26] for soft fluidic elastomer robots



has been less explored. In particular, one of the benefits

of model-based dynamics is their transferability across dif-

ferent designs by adjusting geometrical, inertial and other

parameters associated with the material such as visco-elastic

parameters. Whereas geometrical and inertial parameters

can be easily measured, identifying visco-elastic parameters

using an analytical approach can be challenging [28].

The contribution of this paper lies in the system identi-

fication for a soft robotic dynamical model that describes

spatial/planar movements. In particular, we introduce (longi-

tudinal/bending damping, planar bending stiffness/damping,

spatial bending stiffness/damping) visco-elastic coefficients

resulting from the response of the soft material when de-

formed, e.g., through fluidic actuation. A modified version

of the STIFF-FLOP manipulator is created [33], allowing for

individual actuation of each of the six reinforced chambers

(Fig. 2), for system identification and validation.

The design and manufacturing process for the modified

version of the fibre-reinforced non-inflatable soft fluidic

elastomer robot is presented in Section II. In Section III, the

prerequisite kinematics needed for the dynamical modelling

is described. In Section IV, the nonlinear dynamic equations

of the soft robot are presented for two general cases: (1)

spatial motion with three pneumatic inputs and (2) planar

motion with two pneumatic inputs. These dynamic equations

are extended in Section IV to include the response of the

fluidic elastomer. The corresponding visco-elastic parameters

associated with this specific class of soft fluidic elastomer

robot are identified in Section V. The dynamic model is

validated by comparing the time response of the robot to

different actuation inputs in experiments and simulation.

II. FABRICATION PROCESS OF OUR SOFT FLUIDIC

ELASTOMER MANIPULATOR

The soft fluidic elastomer manipulator used in this re-

search study is a modified version of the STIFF-FLOP

manipulator [33] (see Fig. 1). One of the most important

design elements of this soft robot lie in the fabrication

process which results in individually reinforced actuation

chambers producing elongation only when pressurised. The

original STIFF-FLOP manipulator is modified by extending

the length to 110mm and allowing each chamber to be

individually actuated. (Note: The original length is 55mm.

Two actuation chambers were connected resulting in three

chamber pairs.) The new design provides an opportunity

to change the arrangement of pneumatic input patterns and

produce different planar or spatial motions.

The fabrication process is shown in Fig. 1. Each chamber

is individually reinforced by a helical thread wrapped around

a rod to constrain radial inflation of the chamber when pres-

surised and, hence, to allow longitudinal expansion only (see

Fig. 1(a)). Six braided rods are embedded into a cylindrical

mould filled in with EcoflexTM 00-50. Once the rods are

removed and the fibre threads remain inside the silicone

material, rods with a smaller diameter are inserted (see

Fig. 1 (b)). EcoflexTM 00-30 material is used to fill the gap

between these smaller rods and the threads. In a final step,

the bottom and top cap are moulded using Dragon SkinTM 20

elastomer (see Fig. 1 (c)). Six pipes are connected to the six

chambers to supply pressurised air actuation. The chamber

arrangements and dimensions of the soft manipulator are

summarised in Fig. 2(a). As all chambers are symmetrically

arranged and equally distributed along the central axis, it is

possible to apply pneumatic pressure in different ways to

achieve planar and spatial motion as illustrated in Fig. 2(b).

III. DERIVING THE KINEMATIC MODEL

A well-known and widely used method for kinematic mod-

elling of continuum robots is the Piecewise Constant Curva-

ture approach and this is applied here [7]. The actuator space

(length of the tendons/cables, i.e., [l1, l2, l3]), configuration

space (arc parameters, i.e., [L,θ , φ ]) and task space (position

and orientation) have been defined to describe the overall

pose. The kinematic calculations are in the configuration

space, i.e., returning [L, θ , φ ]. For the kinematic analysis,

the variables shown in Fig. 2 are used. Frame Xw, Yw, Zw is

the base reference frame. Frame Xh, Yh, Zh is located at the

tip of the robot. The matrix in Equation (1) describes the

transformation between these frames.

wTh =













cos2 φ(cosθ −1)+1 sinφ cosφ(cosθ −1)

sinφ cosφ(cosθ −1) cos2 φ(1− cosθ)+ cosθ

−cosφ sinθ −sinφ sinθ

0 0

cosφ sinθ Lcosφ
(1−cosθ)

θ

cosφ sinθ Lsinφ
(1−cosθ)

θ

cosθ L sinθ
θ

0 1













(1)

Fig. 1. Fabrication process: (a) First moulding stage: (a-1) A rod sliced
into three parts is used for each of the six actuation chambers. (a-2) A
fabric thread is wrapped around each rod for axial reinforcement. (a-3) Six
rods are prepared and (a-4) equally distributed around the central axis inside
the mould, filled with EcoflexTM 00-50. (b) Second moulding stage: After
removing initial rods, smaller rods are inserted into actuation chambers,
filled with EcoflexTM 00-30. (c) Third moulding stage: The top and bottom
(green colour) is moulded using Dragon SkinTM 20 elastomer. A pipe is
connected for each of the six actuation chambers. (d) The final configuration
of the soft fluidic elastomer robot and a cross-sectional view.



The variables θ and φ are the planar and spatial bending

angles and are shown in Fig. 2(a). Variable L is the default

length of the manipulator plus the elongation due to the

applied pressure L = L0 + d. The subscript h refers to the

frame located at the tip of the robot and superscript w

to the base reference frame. The displacement XT of the

manipulator’s tip is represented by the last column of matrix
wTh in Equation (2).

XT = L

[

cosφ
(1− cosθ)

θ
, sinφ

(1− cosθ)

θ
,

sinθ

θ

]T

(2)

The constant curvature assumption can cause singularities in

the kinematic model and resulting dynamics. Godage solved

this problem suggesting a new shape function [34]. The

Taylor expansion method is used here to avoid singularities

when θ = 0 resulting in Equation (2). It is important to note

that the first five terms of the Taylor expansion is used in

this paper.

XT = L
[

cosφ
∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!
,sinφ

∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!
,

∞

∑
n=0

(−1)nθ 2n

(2n+1)!

]T

(3)

Considering ẊT = Jq̇, where XT = [xT ,yT ,zT ]
T is the task

space vector, q = [L,θ ,φ ]T and J is the Jacobian. Computing

the first derivative of the transformation matrix in Equa-

tion (1) with respect to time, the velocity of the manipulator’s

tip is described in the last column of matrix wṪh resulting in:

ẋT = (L̇cosφ −Lφ̇ sinφ)
∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!
+Lθ̇ cosφ

∞

∑
n=1

((−1)n+1θ 2n−2)

(2n)(2n−2)!

ẏT = (L̇sinφ +Lφ̇ cosφ)
∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!
+Lθ̇ sinφ

∞

∑
n=1

(−1)n+1θ 2n−2

(2n)(2n−2)!

żT = L̇
∞

∑
n=0

(−1)nθ 2n

(2n)!
+Lθ̇

∞

∑
n=0

(−1)nθ 2n−1

(2n+1)(2n−1)!
(4)

IV. DYNAMIC MODELLING

In this section, the dynamic equations are obtained using

the Lagrange approach:

d

dt
(

∂L

∂ q̇i
)−

∂L

∂qi
= Qi, i = 1, ..,N (5)

where L is the Lagrangian, equal K −U . Variables K,

U , qi, Qi, and N refer to the kinetic and potential energy,

generalised coordinates and force, as well as the number of

coordinates. Computing linear and angular velocity vectors,

the total kinetic energy of the system is acquired as KTotal =
1
2
mẊT

T
ẊT + 1

2
IωT ω . As the kinetic term relating to the

angular velocity is neglectable [24], the kinetic energy yields:

K =
1

2
mL̇2





(

∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!

)2

+

(

∞

∑
n=0

(−1)nθ 2n

(2n)!

)2


+

1

2
mL2φ̇ 2

(

∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!

)2

+

1

2
mL2θ̇ 2





(

∞

∑
n=1

(−1)n+1θ 2n−2

(2n)(2n−2)!

)2

+

(

∞

∑
n=0

(−1)nθ 2n−1

(2n+1)(2n−1)!

)2


+

mLL̇θ̇

(

∞

∑
n=1

(−1)n+1θ 2n−2

(2n)(2n−2)!

)(

∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!

)

+

mLL̇θ̇

(

∞

∑
n=0

(−1)nθ 2n

(2n)!

)(

∞

∑
n=0

(−1)nθ 2n−1

(2n)(2n−1)!

)

(6)

(a)

(b)

Fig. 2. (a) Geometric notation, parameters, and chamber arrangement of the
robotic manipulator. (b) Chamber air pressure inputs: Case I: Three inputs
results in elongation [L], planar bending [θ ], spatial bending [φ ]. Case II:
Two different, symmetrical pressure inputs results in planar bending [θ ],
elongation [L]. Case III: A symmetrical pressure input results in elongation
[L]. Case IV: Pressure input into a semicircle results in planar bending [θ ].

where m is the nominal mass of the robot. Using Taylor

expansion, the gravitational potential energy is obtained

UG = mgL
∞

∑
n=0

(−1)nθ 2n

(2n)!
(7)

where g denote the acceleration of gravity.

A. Dynamic equations for spatial motion

Employing equations (5)-(7), the dynamic equations for

spatial behaviour can be obtained as







ζL LηL 0

ζθ Lηθ 0

0 0 Lηφ













L̈

θ̈

φ̈






+













−
1
2

g

(

1− θ 2

6
+ θ 4

120

)

−
1
2

gL

(

−
θ
3
+ θ 3

30

)

0













+







2λL 0 0 LνL −LαL

2λθ 0 0 Lνθ −Lαθ

0 2λφ 2Lνφ 0 0























L̇θ̇

L̇φ̇

φ̇ θ̇

θ̇ 2

φ̇ 2

















=
1

m







QL

Qθ

Qφ







(8)

where,

ζL = A
2 +B

2,ηL = A C +BD ,λL = A C +BD ,νL = A E −BH ,

αL = A
2,ζθ = A C +BD ,ηθ = C

2 +D
2,λθ = C

2 +D
2,

νθ = C Q+DH ,αθ = A C ,ηφ = A
2,λφ = A

2,νφ = A C



and

A =
∞

∑
n=1

(−1)n+1θ 2n−1

(2n)!
,B =

∞

∑
n=0

(−1)nθ 2n

(2n+1)!
,C =

∞

∑
n=1

(−1)n+1θ 2n−2

2n(2n−2)!

D =
∞

∑
n=1

(−1)nθ 2n−1

(2n+1)(2n−1)!
,E =

∞

∑
n=2

(−1)n+1θ 2n−3

2n(2n−3)!

H =
∞

∑
n=1

(−1)nθ 2n−2

(2n+1)(2n−2)!
,N =

∞

∑
n=0

(−1)nθ 2n+1

(2n+3)!

B. Deriving generalised forces for spatial motion

Fig. 2(b) (Case I) illustrates the pattern for spatial actua-

tion including elongation [L], planar bending [θ ] and spatial

bending [φ ]. The generalised force Q j for spatial motion is

given by Equation (9).

Q j =
3

∑
i=1

wFi
∂ wri

∂q j
, j = 1,2,3 (9)

where q j = [L,θ ,φ ], and wFi (i= 1,2,3) are the three external

forces in the world reference frame when wFi =
w Th

hFi.
hFi

(i= 1,2,3) are the external forces in the body reference frame

for hFi =
[

0 0 FBi

]

(i = 1,2,3).

FBi = PiAi, i = 1,2,3 (10)

Equation (10) is utilised to identify the forces produced by

the air pressures Pi in each chamber on the corresponding

cross-sectional areas Ai. The parameters wri in Equation (9)

are the positions of the forces wFi in the world reference

frame for wri =
w Th

hri,(i= 1,2,3), where hr1 =
[

rc 0 0
]T

,

hr2 =
[

−
1
2
rc

√

3
2

rc 0

]T

, and hr3 =
[

−
1
2
rc −

√

3
2

rc 0

]T

.

Using ∂ wri/∂q j in Table I, Equation 9, and utilizing

the Taylor expansion sinθ
θ = ∑

∞
n=0

(−1)nθ 2n

(2n+1)! and θ−sinθ
θ 2 =

∑
∞
n=0

(−1)nθ 2n+1

(2n+3)! to avoid singularity, the generalised forces

for the spatial soft fluidic elastomer robot are obtained as:

Q1 =B(FB1 +FB2 +FB3)

Q2 =

(

− cosφrc +LN

)

FB1 +

(

rc

2
cosφ −

√

3

2
rc sinφ +LN

)

FB2+

(

rc

2
cosφ +

√

3

2
rc sinφ +LN

)

FB3

Q3 =

(

rc sinφ sinθ

)

FB1 +

(

−

rc

2
sinφ sinθ −

√

3

2
rc cosφ sinθ

)

FB2+

(

−

rc

2
sinφ sinθ +

√

3

2
rc cosφ sinθ

)

FB3

(11)

The visco-elastic property of the material results in forces

and momenta described by

FviscoelasticL
=−FelasticL

−FviscousL

Mviscoelasticθ
=−Melasticθ

−Mviscousθ

Mviscoelasticφ
=−Melasticφ

−Mviscousφ

where FelasticL
= kLeqd, FviscousL

= bLeq ḋ, Melasticθ
= kθeq

θ ,

Mviscousθ
= bθeq

θ̇ , Melasticφ
= kφeqφ , and Mviscousφ

= bφeq φ̇
and parameters kLeq , bLeq , kθeq

, bθeq
, kφeq , and bφeq denote

the equivalent longitudinal stiffness, longitudinal damping

coefficient, planar bending stiffness, planar bending damping

coefficient, spatial bending stiffness, and spatial bending

damping coefficient. d is the elongation (d = L− L0) and

TABLE I

GENERALISED FORCES

∂ wri/∂q j j=1 j=2 j=3

i=1 sinθ
θ rc sinφ sinθ −rc cosφ +L θ−sinθ

θ 2

i=2 sinθ
θ

−rc
2

sinφ sinθ - rc
2

cosφ −

√

3
2

rc sinφ+
√

3
2

rc cosφ sinθ L θ−sinθ
θ 2

i=3 sinθ
θ

−rc
2

sinφ sinθ+ rc
2

cosφ +
√

3
2

rc sinφ+
√

3
2

rc cosφ sinθ L θ−sinθ
θ 2

ḋ = L̇. kLeq , bLeq , kθeq
, bθeq

will be identified in Section V.

Thus, QL, Qθ , Qφ in Equation (8) are obtained as follows.

QL = Q1 +FviscoelasticL

Qθ = Q2 +Mviscoelasticθ

Qφ = Q3 +Mviscoelasticφ

C. Dynamic equations for planar motion

Fig. 2(b) (Case II) shows the actuation pattern for planar

motion which includes planar bending [θ ] and elongation

[L] when two different air pressure values are applied to

symmetrical chambers. The dynamic equations for planar

motion are derived by omitting φ , φ̇ , φ̈ from Equation (8).

The planar dynamical equations are shown below.





ζL LηL

ζθ Lηθ









L̈

θ̈



+





2λL LνL

2λθ Lνθ









L̇θ̇

θ̇ 2



+









−
1
2

g

(

1− θ2

6
+ θ4

120

)

−
1
2

gL

(

−
θ
3
+ θ3

30

)









=
1

m





QL

Qθ





(12)

where

ζL = A
2 +B

2,ηL = A C +BD ,λL = A C +BD ,νL = A E −BH ,

ζθ = A C +BD ,ηθ = C
2 +D

2,λθ = C
2 +D

2,νθ = C Q+DH

D. Generalised forces for planar motion

The generalised forces for planar motion cannot be ob-

tained directly from omitting a single force from Equation (9)

since the location, where the forces are applied, is different

when compared to the spatial model. The generalised forces

Q j for planar movement are instead obtained using Q j =

∑
2
i=1

wFi
∂ wri

∂q j
( j = 1,2), where q j = [L,θ ] and wFi (i = 1,2)

are the two external forces in the world reference frame.

Parameters wr1 and wr2 are obtained for wri =
w Th

hri,(i =

1,2), where hr1 =
[

rc 0 0
]T

and hr2 =
[

−rc 0 0
]T

.

Thus, the generalised forces for planar motion are given by:

Q1 = B(FB1 +FB2)

Q2 = (−rc +LN )FB1 +(rc +LN )FB2

(13)

V. EXPERIMENTAL SETUP, VISCO-ELASTIC PARAMETER

IDENTIFICATION AND VALIDATION

A. Experimental setup

The schematic of the experimental setup is shown in

Fig. 3. Pressurised air is provided by a compressor (BAMBI

MD Range Model 150/500). Three pressure regulators

(Camozzi K8P) are used to pressurise a single (or dual/triple)

chamber(s) of the manipulator. The pressure regulators re-

ceive control commands from a PC via a DAQ board (NI



Fig. 3. Setup of the experimental platform.

USB-6341). The tip position of the manipulator is recorded

by an NDI Aurora electromagnetic sensor.

B. Experiment 1: Longitudinal stiffness identification

Three symmetrical chambers are actuated simultaneously

with the same pressure (see Fig. 2(b), column 3, row 2)

resulting in elongation. The results are shown in Fig. 4

where pressure is plotted versus tip displacement. Values

for the calculated external forces using Equation (10) and

the robot tip displacements describe the longitudinal stiffness

using a Hookean stiffness assumption FelasticL
= kLeqd. The

longitudinal stiffness kLeq is approximately 246 N
m

.

C. Experiment 2: Bending stiffness identification

To measure the bending stiffness, three chambers on one

side of the manipulator were actuated simultaneously with

pressure values in the range of [0−1.5] bar. Figs. 5(a) and (b)

show θ and Rcurvature, obtained from Equation (14). θ is in

the range of [0,140] degrees while the pressure is in the range

of [0,1.5] bar. Fig. 5(b) shows that the radius of curvature

is [inf,50] mm while pressure is in the range of [0,1.5] bar.

θ = sin−1(
2xT zT

x2
T + z2

T

),Rcurvature =
x2

T + z2
T

2xT

(14)

Using the bending moment caused by air pressure Q2 for

instance in Equation (13), kθeq
can be obtained (see Fig.5

Fig. 4. Experiment 1 results: Tip displacement versus chamber pressures.

(a)

(b)

(c)

Fig. 5. Experiment 2 results: (a) The soft robot is actuated with pressure
values [0,1.5] bar. The bending angles are measured. (b) Radius of curvature
of the soft robot while actuated with the pressure values [0,1.5] bar. (c)
Bending stiffness coefficient (kθ ) versus bending angle (θ).

(c)). kθeq
is a nonlinear function and can be approximated to

be in the range of [0.2,0.06] Nm
rad

for a bending angle θ in

the range of [0,140] degrees.

D. Experiment 3: Longitudinal Damping Identification

To determine this coefficient, the chambers are simulta-

neously actuated resulting in longitudinal displacement (see

Fig. 6). As the response is overdamped, an exponential

curve Z(t) = AeBt +CeDt , A = −0.003397, B = 0.007356,

C = 0.01782, D = −2.833 is fitted to the time response

to assess the damping ratio. The constants B and D are

B =−ωnL
ξL+ωnL

√

ξ 2
L −1 and D =−ωnL

ξL−ωnL

√

ξ 2
L −1,

where ξL =
bLeq

2mωnL
is the damping ratio and ωnL

=

√

kLeq

m

the natural longitudinal frequency. The longitudinal damping

coefficient bLeq is approximately 119 N.sec
m

.



Fig. 6. Experiment 3 results: Example of the soft fluidic elastomer robot’s
time response to an initial longitudinal displacement.

E. Experiment 4: Bending damping identification

To calculate the bending damping coefficient, a number of

initial planar bending angles are applied to the manipulator

and the corresponding time response measured (Fig. 7). The

logarithmic decrement δθ is defined as follows:

δθ =
1

n
ln

θ(t)

θ(t +nT )
(15)

where θ(t) is the amplitude at time t and θ(t + nT ) is

the amplitude n periods away. The damping ratio of the

corresponding bending is obtained as ξθ = δθ√

4π2+δθ
2
, and

the damping coefficient as bθeq
= 2ξθ

√

kθeq
Jθ , where Jθ is

the rotational mass moment of inertia of the robot around

the θ rotational axis.

F. Experimental validation

The dynamic model derived in Section IV is validated

in experiments comparing the time response of the physical

robot with the output of the simulation model based on the

experimentally identified parameters. The identified parame-

ters used in the simulation are kLeq = 246 N
m

, bLeq = 119 Ns
m

,

kθeq
= 0.06 Nm

rad
, and bθeq

= 0.02 Nms
rad

.

The results of two set of experiments are shown in Figs. 8

and 9. Pressure measurements were recorded with 0.1ms

and positions were recorded with 25ms sampling time.

In the first set of experiments, six pressure inputs in the

Fig. 7. Experiment 4 results: Soft fluidic elastomer robot time response to
an initial bending angle.

Fig. 8. Time response of the open loop dynamical simulation and real
experiment and the corresponding input pressures Pressure is applied to
Chambers 1,3, and 5 (Fig. 2, Case III, row 2).

range of [0.1 − 1.3] bar were applied to Chambers 1, 3

and 5 simultaneously (see Fig. 2, Case III, row 2). The

pressure inputs applied to the simulated model were the

same as the actual step inputs applied to the physical robot.

Pure elongation was produced and the corresponding time

response (vertical tip displacement) is plotted for both the

physical experiments and simulation in Fig. 8. The results

validate the accuracy of the identified longitudinal visco-

elastic parameters, i.e., kLeq and bLeq . In the second set of

experiments, six pressure inputs in the range of [0.1− 1.3]
bar were applied to Chambers 1, 2 and 3 simultaneously (see

Fig. 2, Case IV, row 3). The pressures inputs were the same

Fig. 9. Time response of the open loop dynamical simulation versus real
experiment and the corresponding input pressures. Pressure is applied to
Chambers 1,2, and 3 (Fig. 2, Case IV, row 3).



for both the simulation and physical experiments as shown

in Fig. 9. The time response of the system is plotted for the

physical experiments and simulation in Fig. 9 validating the

bending visco-elastic parameters, i.e., kθeq
and bθeq

.

VI. CONCLUSION AND FUTURE WORK

A dynamic model of a fibre-reinforced soft fluidic elas-

tomer manipulator has been developed and experimentally

verified. The fibre reinforced non-inflatable fluidic soft robot

used in this research can produce both planar and spatial

movement and consequently the dynamic equations are de-

veloped for both cases. The parameters of the visco-elastic

behaviour of the robot have been experimentally determined.

The resulting model is validated by comparing the real-time

response of the robot with simulation results.

In future work, we will focus on determining the visco-

elastic parameters related to spatial bending and spatial

dynamic equations. Furthermore, the dynamic equations ob-

tained in this paper will be used to design a nonlinear model-

based closed-loop controller.
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