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Abstract

Cycling is a promising sustainable mode for commuting and leisure in cities. However, the
perception of cycling as a risky activity reduces its wide expansion as a commuting mode. A
novel method called CyclingNet has been introduced here for detecting cycling near misses
from video streams generated by a mounted frontal camera on a bike regardless of the cam-
era position, the conditions of the built environment, the visual conditions and without any
restrictions on the riding behaviour. CyclingNet is a deep computer vision model based
on a convolutional structure embedded with self-attention bidirectional long-short term
memory (LSTM) blocks that aim to understand near misses from both sequential images
of scenes and their optical flows. The model is trained on scenes of both safe rides and
near misses. After 42 hours of training on a single GPU, the model shows high accuracy
on the training, testing and validation sets. The model is intended to be used for generating
information that can draw significant conclusions regarding cycling behaviour in cities and
elsewhere, which could help planners and policy-makers to better understand the require-
ment of safety measures when designing infrastructure or drawing policies. As for future
work, the model can be pipelined with other state-of-the-art classifiers and object detec-
tors simultaneously to understand the causality of near misses based on factors related to
interactions of road users, the built and the natural environments.
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1 INTRODUCTION

Cycling for commuting or leisure is a growing transport mode
across the globe. Its benefits to health and the natural environ-
ment have driven different policies to promote it and build more
infrastructure for cycling in cities [1, 2]. However, the modal
share of cycling remains low in comparison to other transport
modes in part because it is perceived as a dangerous activity,
regardless of its benefits [3]. It has been found that in the UK,
for instance, this fear of falling or being in a collision with other
road users limits the wide expansion of cycling as a transport
mode [4–6]. Unfortunately, in many countries, quantitative anal-
ysis of cycling safety is difficult because the low mode share of
cycling results in few recorded incidents. To address this data
gap, scholars have analysed the occurrence of near misses as a
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proxy for incidents due to their higher frequency, which some
studies estimate is as high as 0.172 incidents per mile [4].

Quantitative data on near misses is usually collected in one of
three ways; self-reported surveys or questionnaires, site obser-
vation (e.g. at an intersection) and naturalistic studies [7]. Of
these, naturalistic studies can provide the richest data through
bike-mounted sensors such as video cameras, GPS, range sen-
sors and accelerometers. This type of data is also routinely col-
lected by many cyclists, who use action cameras for safety in the
same way car drivers use dashcams, reporting incidents to the
police. However, analysis of these data, particularly video scenes,
is usually done manually, which is a labour-intensive process that
limits the broader applicability of the method. Accordingly, find-
ing a method that could automatically detect near misses and
their risk factors from naturalistic cycling data would transform
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its applicability from small-scale studies to mass applications
to crowdsourced video streams and real-time operation. Such
a system would be of significant interest to bike riders, planners
and policy-makers alike.

The field of artificial intelligence (AI), specifically, the
domain of deep learning and computer vision, has the potential
to address this gap [8, 9]. Various models have been developed
to recognise a wide spectrum of human actions, activities,
or body poses in complex settings from untrimmed video
streams. Near misses result from unsafe interaction between a
number of road-users or obstacles that cause a risky situation
for the person on a bike and subsequently an instant action
or a group of actions (e.g. swerving, stopping, turning left or
right, etc.) needed to be taken to avoid a crash. Therefore, a
computer vision system that can detect this type of interac-
tion will need to not only detect actions but understand how
the actions of individuals within a scene interact to produce
risk.

In this article, we introduce a new method called CyclingNet
to detect cycling near misses from untrimmed video streams in
complex urban scenes. The model is trained on video streams
of a frontal camera on a moving bicycle, either mounted on
the helmet of the cyclist or the bicycle handlebar, without
any restrictions towards the camera angle, the physical or
the visual conditions of the built environment. Our goal is
to provide a fast algorithm that can be deployed on a cam-
era to be used in a real-time or near-real-time setting for
detecting and evaluating near misses. Our main contributions
are:

∙ Automating the detection of cycling near misses in near real-
time.

∙ A novel end-to-end deep model for recognising cycling near
misses from untrimmed video streams in complex urban set-
tings.

∙ A human-labelled large-scale dataset for classifying video
streams of moving bicycles - at a frame level - of near miss
and non-near miss.

∙ A comprehensive set of experiments to evaluate the different
architectures of deep models that can be used as a baseline
for future research in this study domain.

At this point, it should be noted that the detection of risk
factors associated with near miss events is not the topic of this
paper, but the task can also be accomplished using computer
vision algorithms (see, e.g. [10, 11]).

After the introduction, the paper is structured into six sec-
tions. The second section reviews relevant work on current near
misses methodologies and the advances of computer vision in
action recognition. In Section 3, we explain our method and the
materials used. In Section 4, we present our model results, base-
line analysis, and evaluation metrics. Afterwards, in Section 5,
we discuss our results in the context of the current literature.
We also highlight the state-of-the-art of CyclingNet and its limi-
tations. Last, in Section 6, we conclude and give our remarks for
future work.

2 RELATED WORK

2.1 Limits of the current methods for
analysing cycling near misses

The term cycling near miss is subjective and an individual’s per-
ception of an event as a near miss may differ based on their
experience level, personal characteristics, and perception of risk.
‘Near collision’ [12], ‘perceived crash risk’ [13, 14], ‘perceived
traffic risk’ [15], or ‘near miss’ [4, 16] are all terms often used
to describe and address near misses in the literature. In this
research, we use the definition from Ibrahim et al. [7, p. 4],
which describes a near miss as ‘a situation in which a person
on a bike was required to act to avoid a crash, such as braking,
speeding, swerving or stopping. In some cases, the definition
may be extended to include those events that caused the person
on the bike to feel unstable or unsafe, such as a close pass or tail-
gating’. This broader definition is used because it encompasses
the range of near-miss events that have been identified in the lit-
erature, including (1) close pass, (2) a near left or right hook, (3)
someone pulling in or out, (4) a near-dooring, (5) swerve around
an obstruction, (6) pedestrian steps out, (7) someone approach-
ing head-on, or (8) tailgating [17], while also allowing for other
unforeseen events that involve action to avoid a crash.

2.2 Current methods for analysing cycling
near misses

In the literature, near misses have been analysed using different
types of observational studies, which can be categorised accord-
ing to Ibrahim et al. [7] as (1) self-report studies using surveys
or questionnaires [4, , 18]; (2) video analyses at specific sites
such as intersections [19, 20], and 3) naturalistic studies where
video stream data is collected as people cycle [12, 21, 22]. In
general, the naturalistic approach has shown the most progress
in analysing road conflicts, near misses, and crashes due to the
nature of the data collected [23–25]. In this approach, a group of
participants carry out their daily activities using bikes equipped
with cameras and sensors. Rich data related to the environment,
riding behaviour and interaction with other road users can be
collected. However, due to the need to manually label video
data, current naturalistic studies are labour intensive and are lim-
ited in both transferability from one location to another, and
scaling up to cover a wider region or larger number of partici-
pants. Thus, it is difficult to draw objective conclusions that can
allow either a change in cities’ policies or road users’ behaviours
to provide a safer and more inclusive environment.

In summary, the literature on near misses to date focuses
on analysing events that have been manually identified as near
misses, whether by self-reporting or manual annotation based
on a rider’s or analyst’s inputs. There is currently no method that
automates the detection of cycling near misses from routinely
collected data such as video streams. To address this gap, the
method introduced in this article aims to automate the detec-
tion of cycling near misses from video streams in a naturalistic
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study. For further information regarding the different methods
and their challenges related to detecting cycling near misses, see
[7].

2.3 Action recognition from video streams

While the issue of detecting cycling near misses from moving
bicycles in real-world settings has not been addressed in the lit-
erature, there is a well-established body of knowledge on action
recognition from video streams. Action recognition using CV
typically involves two steps: (1) extracting and encoding features
and (2) classifying features into action classes [26]. In recent
years, convolutional neural networks (CNNs) have been applied
to the task with great success. State-of-the-art models are tested
on benchmark datasets, with UCF-101 [27] and HMDB-51 [28]
being popular for human motion and action recognition tasks
and MPII dataset for human activity and pose recognition [29].
UCF-101 is a dataset of 13,320 YouTube videos broken down
into 101 action categories and a further 25 groups. HMDB-51 is
similar, with 51 actions in 6849 clips, whereas the MPII dataset
comprises over 25,000 images that contain over 40,000 humans
with labelled body joints for 410 daily human activities.

Different strategies have been adopted in designing the mod-
els’ architecture to extract features that could enhance the train-
ing and inference of the model. Some models, for instance, rely
on spatial features to classify actions [26, 30], whereas others
include both temporal and spatial aspects of the scene to classify
and localise multiple actions [31–34]. For example, Simonyan
and Zisserman [30] introduced an action recognition model
relying on a two-stream convolution structure, exploiting both
RGB data and optical flow1. The model is evaluated on UCF-
101 and HMDB-51, achieving a top-performance of 87.9% on
the UCF-101 dataset. Wang et al. [36] introduced deep con-
volutional descriptors based on trajectory pooling. The model
is structured and trained as a two-stream convolutional struc-
ture in which features are extracted based on the RGB image
and the tracked trajectories in the sequential frames. The model
achieved the best accuracy of 65.9% and 91.5% on UCF-101
and HMDB-51 datasets respectively. Ng et al. [37] introduced
a hybrid model of the convolutional structure and long-short
term memory (LSTM) blocks to classify actions based on their
temporal structure, achieving a result of 88.6% and 82.6% on
the UCF-101 dataset, with and without optical flow data, respec-
tively. Most significantly, Wu et al. [38] introduced a spatiotem-
poral model relying on the two-streams network, utilising both
RGB frames and optical flows. The model architecture is based
on integrating LSTM on top of the convolution structures for
the two streams. The model achieved a top score of 91.3% on
the UCF-101 dataset.

Recently, approaches have been introduced to tackle actions
in video streams besides the 2D convolution structure and
LSTM units. For example, relying on a 3D convolutional struc-
ture (where time is the third dimension), Diba et al. [32] intro-

1 Optical flow refers to the perceived motion of objects in a given scene with respect to the
relative motion of the observer and the objects in the scene [35].

duced a new temporal 3D CNN model relying on a Temporal
Transition Layer to recognise human actions in video streams.
This spatiotemporal model aimed to capture the variations in
the dynamics of video representation. The model achieved a
top-score of 93.2% and 63.5% in UCF-101 and HMDB-51
datasets, respectively. Girdhar and Ramanan [39] introduced a
new attentional pooling structure that has improved the accu-
racy of action recognition on various benchmark datasets with-
out any cost in computation intensity or time of inference. For
instance, the model achieved better performance on the MPII
dataset than the previous methods with a 12.5% relative overall
improvement [29].

There are variants of action recognition models that focus
mainly on understanding human activities rather than the over-
all perception of the interaction between different agents or the
clue of the scene in the case of the stated issue of near misses
([26]. In summary, not only do the architecture of action recog-
nition models vary, but also the training process and the data
fusion approach. Some models have been trained in an end-to-
end network, whereas others are designed and trained in a two-
stream network with an early or late-stage fusion of data types
(RGB frames, optical flow data, etc.). While complex model
structures have yielded higher accuracies in given tasks, specif-
ically, the two-streams network, these differences have conse-
quences on the trade-off between model accuracy, complex-
ity, and time needed for inference. All these factors influence
whether the model could function in real-time. Video recogni-
tion, however, remains a challenging task due to the high vari-
ance between the sequential images and inter-classes and the
low-resolution of videos [40].

3 METHODS

3.1 Model requirements

As stated in section 2.1, we define a near miss as ‘a situation in
which a person on a bike was required to act to avoid a crash,
such as braking, speeding, swerving or stopping. In some cases,
the definition may be extended to include those events that
caused the person on the bike to feel unstable or unsafe, such
as a close pass or tailgating’ [7, p. 4]. To identify these events,
a computer vision algorithm must be capable of distinguish-
ing such a set of instant actions from normal riding behaviour,
which may also include actions similar to those taken during a
near miss.

Near misses can be seen as instant actions that take place by
other objects in the scene. Accordingly, there are three main ele-
ments that the model needs to learn in order to recognise near
misses: (1) The relative motions of the elements in the scene, (2)
the spatial structure of the scene, and (3) memory to recognise
what happened in the past.

Subjectively, understanding the change in motion could lead
to a better way of understanding the actions related to both safe
and unsafe rides since each object conserves its motion between
consecutive frames and neighbouring pixels are more likely to
conserve similar motion. Accordingly, combining street-level
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FIGURE 1 The architecture for the proposed CyclingNet

frame images with their optical flow for a number of consec-
utive frames may lead to a better approach to recognise near
misses from video streams.

3.2 Model architecture

In order to respond to the aforementioned requirements, we
propose the CyclingNet model. The CyclingNet is a novel
single-stream spatiotemporal deep model that is trained in
an end-to-end fashion. It aims to include the features of
two-streams networks by including the spatial and temporal
aspects of the video stream while providing an inference in near
real-time similar to the single-stream networks. Its algorithms
comprise four main sections; data structure, feature extraction,
self-awareness, and integration and prediction. Figure 1 shows
the order of the main algorithms and how the model is struc-
tured. It is worth mentioning that the proposed architecture
is built incrementally based on trial and error, where a given
structure of the architecture has shown enhancement of the
overall performance and stability of the trained model. In the
upcoming section (Section 4.2), we show a comparison with
the outcomes of the different architectures that were built
before we reached this architecture and now serve as base
models.

3.2.1 Data structure

As inputs, the model takes two types of data, which are both
are resized into 240 × 320 × 3 tensors of single-frame images.
The first input comprises video streams typically produced by
cameras mounted on a moving bike, which may have varying
angles, fields of view, rider speeds and filtering processes (e.g. for
stabilisation or extraction of a region of interest). The second
input comprises a computed dense optical flow for each pixel in
two consecutive frames. It is computed as follows: For a given

pixel P(x,y,t )that moves a (d) distance of (dx, dy), the change in P,
assuming that P does not change its intensity, can be calculated
as:

P(x,y,t ) = p (x + dx, y + dy, t + dt ) (1)

By dividing the right side with dt and using the Taylor series
approximation, we estimate the optical flow as:

fxu + fyv + ft = 0 (2)

given that: fx =
𝜕 f

𝜕x
, fy =

𝜕 f

𝜕y
, u =

dx

dt
, v =

dy

dt
where ( fx ) and ( fy )

are the image gradients, ( ft ) is the gradient over time and (u) and
(v) are unknown.

In order to solve this equation, with several unknown gradi-
ents, we used Gunner Farneback’s algorithm [41], in which he
approximates each neighbourhood by a quadratic polynomial.
Consequently, a new signal can be constructed based on a global
displacement, which can be computed based on equating the
coefficients of the yields of the quadratic polynomials.

The output optical flow vectors (u, v) are an array of two
channels, which can be visualised in a colour image, with a mag-
nitude as the value plane, and direction as the hue value.

After computing the optical flow ( fo′ (t ) ) for a given time (t ),
the data of the RGB images ( frgb) are truncated for each video
file to start with the 4th frame in the frame sequence and
wrapped with the four timestamps of the frames of optical flows
[ti, ti-1, ti-2, ti-3] in a proportion of 0.5 to 0.5 respectively. The
input (x(t 0) ) is defined as:

x(ti ) =
frgb′ (ti )

2
+

fo′ (ti ) + fo′ (ti−1 )+ fo′ (ti−2 ) + fo′ (ti−3 )

8
(3)

There are two reasons for selecting and optimising these hyper-
parameters: First, to add the time dimension to the spatial struc-
ture of each street-level image, and second, to control and
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reduce the information and the number of features and textures
that are not useful for detecting near misses (i.e. the textures of
people, cars, buildings, etc.). We experimented with the values
of the combined ratio, based on trial and error to optimise the
overall fitness and performance of the model when detecting
near misses.

The output data is structured and reshaped into four-
dimensional tensors (timestamps, width, height, channels), in
addition to embedding the four optical flow steps with the
single-frame images. Such an approach means the dimension of
time can be utilised and seen either in the spatial structure of
the image (fusion with four previous steps of the optical flows)
or in the series of the data (the length of timestamps). Both
approaches will be utilised and discussed thoroughly in the algo-
rithms of CyclingNet in the two upcoming sections.

3.2.2 Extracting features

The goal of this part of the model is to extract mainly spatial
features from the single-frame images, bearing in mind the fused
data of the optical flows of the previous four steps. The architec-
ture of this section comprises three consecutive blocks of con-
volutional structure, each having different sets of structure and
hyperparameters and initialised by the ‘He normal’ initialisation
technique to provide more efficient and faster gradient descent
[42]. Generally, the choices of the presented hyperparameters
are made based on trials and errors, and the most common
practice for training convolutional models. Nevertheless, differ-
ent models with different hyperparameters will be trained and
presented as base models for further evaluating the introduced
methods, in the results section (Section 4.2).

Block one consists of two 2D convolution layers of a kernel
size of (24 × 5 × 5), (36 × 5 × 5) respectively, and a subsampling
size of (2 × 2). They are activated based on a Rectified Linear
Unit. These two CNN layers are followed by a 2D Max-Pooling
layer of pool size of (2 × 2) and a Batch-normalization layers
of the momentum of 0.99 and epsilon of 0.001. It is feed with
single-frame images with the embedded optical flow steps.

Similar to block one, block two consists of two 2D Convo-
lution layers, however, a kernel size of (48 × 5 × 5), (64 × 3 ×
3) respectively, and a subsampling size of (2 × 2). They are acti-
vated based on a Rectified Linear Unit. They are also followed
by a 2D Max-Pooling layer of pool size of (2 × 2) and batch-
normalization layers of the momentum of 0.99 and epsilon of
0.001.

Block three consists of a single convolution layer of a kernel
size (128 × 3 × 3) subsampled with (2 × 2) and activated by a
ReLU function. It is also followed by a 2D Max-Pooling layer
of pool size of (2 × 2) and a batch-normalization layer of the
momentum of 0.99 and epsilon of 0.001.

3.2.3 Spatial and temporal awareness

If the algorithms for detecting near misses rely only on the fea-
tures of the previous section (the convolution structure), based

on experiments, the results will be sensitive to the changes in
the spatial structure of the local context. In other words, the
model would not have taken into account the global context of
the inputted features that ensure stability and accuracy for train-
ing and inference. For this reason, designing the architecture of
CyclingNet further to be aware of both local and global spatial
and temporal structure is important.

This part of the model comprises one bidirectional LSTM
block, followed by a regulated self-attention layer. The LSTM
block consists of 128 units, and a dropout regulation of a size of
0.3 to avoid over the fitness of the model. However, the goal is
not only to consider the sequence of the defined timestamps but
also consider the context for each timestamp. Therefore, a self-
attention mechanism is essential to ensure the balance between
global and local context when describing a given scene.

Generally, a unidirectional LSTM has shown great progress
in extracting features related to sequential data to predict future
states [43, 44]. Unlike a traditional recurrent layer, LSTM can
learn long-term dependencies without suffering from issues
related to vanishing gradient. This internal recurrence, the
so-called self-loop, enabled the previous vectors to create
paths, in which the gradient can move forward for a long
duration without vanishing issues. Nevertheless, most recently,
it has also been shown to improve the overall performance
of the model when predicting even a given state without
timestamps by learning not only the spatial structure of a given
vector but also the short-term dependences among the input
given vector as the time constants are output by the LSTM
itself. Accordingly, this allows the time scale to change based
on the input sequence, even if the LSTM units have fixed
parameters.

To extract long-term dependences, the self-loops of the
LSTM units can be controlled by three gated units: forget gate
( f

(t )
i ), external input gate (g

(t )
i ), and an output gate (q

(t )
i ).

First, ( f
(t )

i ) can be explained for a given cell (i) and time (t),
whereas it is fitted to a scaled value in the interval [0,1] and a
sigmoid activation unit (𝜎) as:

f
(t )

i = 𝜎

(
b

f

i +
∑

j

U
f

i, j x
(t )
j +

∑
j

W
f

i, j h
(t−1)
j

)
(4)

given that h(t )represents a vector that contains the outputs of all
the LSTM cells for the current hidden layer, x (t )represents the
current input vector, W f represents the recurrent weights for
the forget gates, U f represents the input weights and last, b f

represents the biases of the forget gates.
Second, to update the LSTM internal state, a conditioned

weight of the self-loop ( f
(t )

i ) is computed as:

s
(t )
i = f

(t )
i s

(t−1)
i + g

(t )
i 𝜎

(
bi +

∑
j

Ui, j x
(t )
j +

∑
j

Wi, j h
(t−1)
j )

)
(5)

given that U is the input weights, b is the bias vector, W repre-
sents the current weights into the LSTM cell. Similar, to ( f

(t )
i ),
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the external input gate (g
(t )
i ) is computed, however with it is a

parameter:

g
(t )
i = 𝜎

(
b

g

i +
∑

j

U
g

i, j x
(t )
j +

∑
j

W
g

i, j h
(t−1)
j

)
(6)

Last, the output gate (q
(t )
i ) is used to control and shut off the

LSTM cell output (h
(t )
i ) with a sigmoid unit, in which the h

(t )
i is

defined as:

h
(t )
i = tanh(s

(t )
i )q

(t )
i (7)

q
(t )
i = 𝜎

(
bo

i +
∑

j

U o
i, j x

(t )
j +

∑
j

W o
i, j h

(t−1)
j

)
(8)

where bo is the model biases, U o is the input weights, W ois the
current weight.

Unlike unidirectional LSTM units, a bidirectional LSTM layer
allows the current hidden state to rely on two independent hid-
den states, one computed in a forward direction, named a for-
ward LSTM, and the latter in the opposite direction, named a
backward LSTM. This allows the retention of historical and cur-
rent information simultaneously. This has a direct implication
when detecting near misses, in which the predicted output for
a given state is smoothed when compared to the previous ones
without any post-prediction smoothing techniques.

Moreover, adding a self-attention mechanism to the bi-
directional LSTM units allows the model to learn not only from
the extracted features – whether spatial or temporal ones- but
also to learn from the relations between the input sequences of
the RGB image and optical flow ones by allowing the model to
relate the position of each sequence and accordingly, learn the
representation of its input [43, 45]. Nevertheless, the model can
learn which context to consider for a given scene to output the
prediction [46]. The context (lt ) can be computed as:

lt =
∑

t ′

at ,t ′xt ′ (9)

given that:

ht ,t ′ = tanh(xT
t Wt + xT

t ′
Wx + bt ) (10)

et ,t ′ = 𝜎
(
Waht ,t ′ + ba

)
(11)

at = so ftmax (et ) (12)

where (ht ,t ′ ) represents the hidden state of the previous step
– in a given direction of the bidirectional LSTM- that is fitted
to a simple forward neural model (et ,t ′ ), (at ) is the amount of
attention that the output at a given state should consider for the
previous activation (𝜎).

TABLE 1 The structure of CyclingNet and its hyperparameters

Block Layer Output shape

Number of

parameters

Input x(ti ) (Noneb, 240, 320, 3) 0

Block 1 conv2d_1 (Conv2D) (None, 118, 158, 24) 1824

conv2d_2 (Conv2D) (None, 57, 77, 36) 21,636

max_pooling2d_1
(MaxPooling2)

(None, 28, 38, 36) 0

batch_normalization_1
(BatchNorm)

(None, 28, 38, 36) 144

Block 2 conv2d_3 (Conv2D) (None, 12, 17, 48) 43,248

conv2d_4 (Conv2D) (None, 10, 15, 64) 27,712

max_pooling2d_2
(MaxPooling2)

(None, 5, 7, 64) 0

batch_normalization_2
(BatchNorm)

(None, 5, 7, 64) 256

Block 3 conv2d_5 (Conv2D) (None, 3, 5, 128) 73,856

max_pooling2d_3
(MaxPooling2)

(None, 1, 2, 128) 0

batch_normalization_3
(BatchNorm)

(None, 1, 2, 128) 512

Reshape (None, 2, 128) 0

Block 4 Attention
(SeqSelfAttention-
LSTM)

(None, 2, 1024) 10,48,577

bidirectional_1
(Bidirection-LSTM)

(None, 2, 1024) 26,25,536

dropout_1 (Dropout) (None, 2, 1024) 0

Flatten (None, 2048) 0

Block 5 dense_1 (Dense) (None, 256) 5,24,544

dropout_2 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 64) 16,448

dropout_3 (Dropout) (None, 64) 0

Output dense_3 (Dense) (None, 1) 65

aThe total trainable parameters: 43,83,902 and the non-trainable parameters: 456.
bNone values represent the total number of samples in 64 batches in training and validation
sets.

3.2.4 Model initialization and training

After the LSTM block, the output is flattened and fed forward
to two fully connected layers of 180 and 64 neurons respectively.
Both layers are activated by a ReLU function, in which a dropout
mechanism is applied for both layers with a size of 0.3. The final
output layers consist of a single neuron and are activated with a
sigmoid function.

The model is compiled with stochastic gradient descent, rely-
ing on the ‘adam’ optimiser, with a momentum of 0.9, and an
initial learning rate of 0.001. The model is set to be trained for a
maximum training cycle (epochs) of 100, with an early stopping
technique, monitoring the change in loss with a patience value
of 20 epochs.

Table 1 summarises the different layers of the CyclingNet
model. It shows the transition of their input shapes and the
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number of hyperparameters for each layer. Overall, the model
has 4,383,902 trainable parameters.

3.3 Evaluation metrics

The model is penalised during training, testing and validation
based on a cost function of cross-entropy of error. It is defined
as:

E = −

n∑
i

ti log (yi ) (13)

given that ti represents the target vector, yi represents the pre-
dicted vector, and n represents the binary classes.

For further assessing the model performance, we computed
accuracy, precision, recall, false-positive rate, and F1-score:

Accuracy = (TP + TN ) ∕ (TP + TN + FP + FN ) (14)

Precision = TP∕ (TP + FP ) (15)

Recall = TP∕ (TP + FN ) (16)

False−positive rate = FP∕ (FP + TN ) (17)

F 1−score = 2 ×
Precision × Recall

Precision + Recall
(18)

where FP represents the predicted false-positive values, TP rep-
resents the predicted true-positive values, FN represents the
predicted false-negative values, and TN represents the predicted
true-negative values.

Last, it remains a challenge to compare our results with other
models due to the absence of other models for detecting near
misses for a moving cyclist from a street level. We created, how-
ever, different architecture to draw a baseline for the perfor-
mance of the proposed method and to show how the differ-
ent architectures and hyperparameters could yield different out-
comes for a given task with the same material types.

3.4 Materials and data pre-processing

To the best of our knowledge, there is no benchmark data set
of video streams that focus on the different types of cycling
near misses that is open-sourced to conduct computer vision
research. Therefore, collecting our own dataset becomes the
only way to train the model to detect near misses in complex
environments. We collected video clips that were made avail-
able online by people on bikes on two websites: YouTube, and
road.cc. In these clips, near misses are labelled manually in
the embedded frames by the sharers. Two aspects make this
data a significant one for understanding near misses: First, the

variation in the perceptions of near misses as defined by the clips
sharers. This could allow the model to extract features related to
the common trends instead of being heavily directed or biased
by a small group of participants or self-labelling. Second, the
variation of equipment, camera position, context, visual, and
weather conditions along with the different behaviours and rid-
ing styles in these scenes are crucial for the learning process of
the model, generalisation, and deployment.

After qualitatively inspecting the quality and ground truth
of the embedded information of the selected clips, we col-
lected a dataset of 74,477 sequential frames and we computed
their equivalents to optical flow frames (74,469). Of these 8567
sequential frames belong to near miss cases (11.5% of the total
sequential frames) which occur at sparse intervals. They repre-
sent 209 unique near misses of an average duration of 1.3 s (40.9
sequential frames). We also used an additional dataset of 12,812
sequential frames for further testing, after training and valida-
tion. This dataset comprises 81 unique near miss events.

These clips include complex urban settings of different visual
and weather conditions and a variety of scene components. For
example, 81.9% of the scenes in the dataset are during the day-
time, 15.7% at night, and 2.4% at dawn/dusk time. Also, the
dataset includes around 93.6% of scenes of clear weather, 5.9%
rainy weather, and 0.5 % of snowy weather. Around 2.5% of
the dataset includes foggy scenes, 7.9% with glare, and 37.5%
are scenes that include a cycling lane. 93.7% of scenes include
other humans, 46% include scenes that comprise other cyclists,
67.9 % of scenes include at least one car, 23% with one bus or
more, and 12.6% with one truck or more. It is worth mentioning
that these data statistics are generated based on visual inspec-
tions after using other deep models for extracting labels such
as URBAN-i for object detection [10], WeatherNet for weather
and visual detections [11].

The clips also consist of variations of near miss types of dif-
ferent temporal scale (the duration of near miss) and various
interactions with different road users. The clips, for instance,
include near misses such as a close pass, a near left or right
hook, someone pulling in or out, swerving around an obstruc-
tion, a pedestrian stepping out, and someone approaching head-
on. However, there is a lack of clips that include near-dooring
and tailgating events. Figure 2 shows a sample of the sequential
frames and their corresponding optical flows.

Data augmentation for deep learning has been shown as a
strong indicator for enhancing the training process and accuracy
of the model [47]. Accordingly, we augmented the collected data
by applying several techniques such as normalisation, scaling,
and horizontal flipping.

4 RESULTS

4.1 CyclingNet evaluation

Figures 3a,b show the losses and accuracies of the training
and testing sets respectively for the self-attention bidirectional
CNN-LSTM architecture. After 35 training cycles (epochs) of
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FIGURE 2 A sample of the dataset for the RGB frames and their optical flows

TABLE 2 Classification metrics for CyclingNet

Self-attention

Bi

CNN-LSTM Precision Recall

False-positive

rate F1-score

Validation set 0.994 0.995 0.041 0.994

Test set 0.842 0.927 0.418 0.883

100 epochs, the model has converged and the training has
stopped to avoid over-fitness after no significant change in the
validation loss. In table 2, we expand further on evaluating the
classification of CyclingNet. The table shows high validation in
terms of precision, recall, and an F1-score, with minimum false-
positive rates. The model shows high validation in terms of the
true positive of the area under the curve of 0.99 and 0.84 for val-
idation and testing sets, respectively. However, the gap between
the values of the validation and testing sets can be explained due
to the variations in near miss events, or the limitations of similar

events that the model can learn and extract features from for
future inference.

4.2 Baseline evaluation

We experimented with adjusting optical flow to images fusion
ratio, model architecture, an optimisation technique, and post-
prediction with the classification thresholds aiming to maximise
temporal smoothing while reducing the global loss. We found
that the global loss can be reduced even by a simple CNN archi-
tecture, however, the predicted values are prone to temporal
instability. On the contrary, after applying a CNN-LSTM archi-
tecture the temporal dependences improved whereas the model
outputs a smoothed prediction throughout the clip. We also
found that by including bidirectional and self-attention mech-
anisms in the architecture of the CNN-LSTM model, the losses
at the local and global levels of the training and testing datasets
have improved in comparison to a CNN-LSTM model. Table 3
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FIGURE 3 Training and evaluation of CyclingNet
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TABLE 3 Baseline assessment of CyclingNet

Architecture comparison

Validation

Accuracy

Validation

Loss

CNN (Block 1-3) 86.5 % 0.73

CNN-LSTM 97% 0.15

Self-attention CNN-LSTM 96 % 0.20

Self-attention Bi CNN-LSTM 98.9 % 0.06

summarises the outcomes of the different studied architectures
on the validation set, with a constant fusion ratio of 50% of the
single images and optical flows.

4.3 Scenes prediction

In figure 4, we show different clips of near misses predicted
by CyclingNet. The model shows high accuracy in predicting a
wide range of complex urban scenes at different times of the
day and in different weather conditions. The model shows high
accuracy in predicting near misses including different types of
near misses, such as close passes, pedestrian step in, or any risky
situation with different road users, including other people on
bikes. Similarly, figure 5 shows a variation of urban scenes that
has been detected as a safe ride.

5 DISCUSSION

5.1 CyclingNet as the state-of-the-art
method for detecting cycling near misses

Understanding safety as a clue from the overall scene and the
interaction of different road users remains a challenge. In this
paper, we introduced CyclingNet as a novel method for detect-
ing cycling near misses from video streams of moving bicycles
in a complex urban setting. The model has shown strong per-
formance in detecting near misses, regardless of the complex-
ity of the scene, time of the day, weather, visual conditions, or
the placement of the camera on the bike. Due to the absence
of other models or benchmark datasets for the stated purpose,
it remains a challenge to compare our results to other models,
besides the ones we developed as base models. This, however,
makes the CyclingNet model a vital and indispensable model for
the field of road safety and more specifically, for detecting near
misses. Accordingly, this makes it good practice for generalisa-
tion, deployment, and transfer learning to detect near misses for
other road users or other safety-related domains.

5.2 Training and inference time

In table 4, we show the training and inference time required to
run the introduced model. Training the model on street-level
images of both safe rides and near misses took almost 2 days
(42 h) on a single GPU (Titan V), but the model can detect
cycling near misses at a rate of 15.1 frames per second (FPS),

TABLE 4 Training and inference time for introduced methods

Method GPU Training time Inference time

CyclingNet 1 (Titan v) 42 hours 15.1 FPS

1 (RTX 2080 Ti) - 10.4 FPS

showing a near real-time detection without any post-training
quantization. This demonstrates the potential of the method in
real-time safety operations such as early warning systems.

5.3 Covid-19 pandemic and the increase in
the number of people on bikes

Whether temporarily or permanently, it has been debated that
there is an increase in the numbers of people on bikes with
different profiles and social characteristics due to the Covid-19
pandemic [48]. There is no doubt that this increase in cycling
would have direct benefits for health and the environment.
With this increase, however, cycling infrastructure needs further
preparation to support the increased numbers and more safety-
related measures need to be considered. Accordingly, automat-
ing the detection of near misses could lead to drawing more
significant safety policies for cycling in cities. Nevertheless, we
need to understand the capacity of the current cycling infras-
tructure for a safe ride, and the tipping point for the increase in
the number of near misses based on the interaction with other
people on bikes or other road users.

5.4 Risk factors, and their causal inference

Improving transport safety studies, especially for the most vul-
nerable road users, through automation is still a new domain of
research. While detecting cycling near misses is vital for evalu-
ating risky situations and better understanding the experiences
of people on bikes, it is still one task towards understanding in
depth the reasons for near misses, and their risk factors, and
how to avoid them in the future. Accordingly, an AI-embedded
system can be developed to capture not only near misses but
also to understand the dynamics of the built and natural envi-
ronments, in addition to detecting and localising either the var-
ious road users or the objects that could cause a risky situation
for people on bikes. To do so, a pipeline of deep models can
be utilised to sense, detect, and extract information of the dif-
ferent layers of the cities (the built environment, natural envi-
ronment, transport, and infrastructure) to draw significant con-
clusions [9]. Different models have been proposed that could
be utilised for the stated issue such as detecting the state of the
environment and counting different road users [10] and recog-
nising weather and visual conditions [11]. After integrating these
different deep models, a Bayesian approach for causal inference
can be added to understand the effect and influence of each risk
factor. We can also understand how such near miss experiences
vary with the individual characteristics of the person who cycles
such as their age, gender and even modifiable variables such as
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FIGURE 4 Examples of predicted cycling near misses by our model
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FIGURE 5 Examples of predicted cycling safe ride by our model
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the level of training. In this respect, such models represent an
efficient way to collect data. Accordingly, new transport safety
policies can be taken into consideration, or a guideline for alter-
ing individual behaviours while riding bicycles or driving cars
can be considered.

5.5 Model limitations and future work

The model shows high validation for generalisation. However,
there are still some limitations that need to be addressed in
future work. First, instrumented bikes and groups of volun-
teered cyclists can be utilised for collecting new datasets which
could offer a further verification of the introduced model. Sec-
ond, introducing a new model to classify the different types of
near misses after detection would allow a better understanding
of the frequency of the different types of near misses. Third,
developing the model to accurately extract the start and end of
an event is another domain that needs further research. Finally,
applying similar models to detect safety measures and near
misses for other road users such as pedestrians and car drivers
would allow tailored-made policies or guidelines for the interac-
tion of the different road-users according to the specific type of
near misses for a given road-user.

6 REMARKS

The problem of detecting cycling near misses from video
streams of moving bicycles in real-world settings has not been
addressed in the current literature. In this paper, we utilised the
advances in computer vision and deep learning to detect such
events in a near real-time fashion. We introduced the CyclingNet
model, a new deep computer vision for detecting cycling near
misses from video streams of moving bicycles in complex urban
environments. The model is structured as a single stream and
trained in an end-to-end fashion, exploiting both single RGB
frames, and optical flow data. After training the model with data
from both near misses and safe rides, the results show high per-
formance on both training and validation data sets.

The model is intended to be used for generating informa-
tion that can draw significant conclusions regarding cycling
behaviour in cities and elsewhere, which could help planners
and policy-makers to better understand the requirement of
safety measures when designing infrastructure or drawing poli-
cies. As for future work, the model can be pipelined with other
state-of-the-art classifiers and object detectors simultaneously
to understand the causality of near misses based on factors
related to interactions of road users, the built and the natural
environments.
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