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Abstract 

Advances in digital health and particularly in artificial intelligence (AI) have led us very 

close to the true implementation of personalised medicine. The year 2020 has brought 

an exponential increase of studies using various forms of artificial intelligence, from 

supervised machine learning to unsupervised deep learning, with applications across 

all domains of Cardiovascular Medicine. AI is now moving from research to 

implementation, affecting all aspects of clinical Cardiology. The studies bringing AI 

close to clinical practice span from fast clinical and biochemical data analysis and 

interpretation of results, to image analysis, ECG interpretation, arrhythmia detection, 

or even the use of face recognition to diagnose cardiovascular diseases. We review 

some of the most exciting development if the field of AI in Cardiology, published from 

fall of 2019 up until now. The studies highlighted in this article give only a small glimpse 

into this booming field, creating more anticipation for what will come to clinical practice 

in the coming years. 
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Preamble 

Digital Health and particularly Artificial intelligence (AI), are getting fast ground during 

the last few years in cardiovascular diagnostics and therapeutics. Indeed, the number 

of publications using various AI techniques has been increased by >20 fold from 2010 

to 2020. Since last year’s ESC congress, the role of artificial intelligence in 

Cardiovascular Medicine had been highlighted as the next frontier in cardiovascular 

diagnostics, paving the way to the implementation of personalised strategies in 

cardiovascular therapeutics.1 In a similar line, the last American Heart Association 

2020 meeting, also had a session entitled “Hype or Hope? Artificial Intelligence and 

Machine Learning in Imaging, reminding us the importance paid by the major clinical 

cardiovascular medicine societies in this field. Indeed, issues like algorithm 

transparency, data open access transparency, were key issues introduced. The 

concept of using digital innovation and particularly AI and Big Data to optimise 

treatments in clinical trials and eventually in clinical practice was brought up as a 

fundamental aspect of digital health of the future.      

     The introduction of AI in research but also in clinical practice, is mainly driven by 

the technological advances in the handling and analysis of big data. AI is referred to 

the ability of a machine to execute tasks characteristic of human intelligence, such as 

problem-solving or pattern recognition, and it is typically characterised by the element 

of positive or negative reinforcement as part of the learning process, similar to what 

typically happens with human learning. Indeed, machine learning refers to the ability 

of computers to improve their knowledge without being explicitly programmed to do 

so; so the machines can identify patterns in digital data, and make generalizations, 

learning from their observations.2 Unsupervised deep learning is used to build 

convolutional Neuronal Networks (CNNs) that recognise features in digital data, not 
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visible to the human eye. These data can be clinical information, images, ECGs or 

even standard “selfies” taken using smartphone cameras.   

AI As a tool for arrhythmias prediction and management 

Management of arrhythmias has always been a challenge, especially when we have 

to deal with subclinical conditions such as paroxysmal atrial fibrillation, who often 

have stroke as their first presentation. Indeed, including clinical risk factors into a 

machine learning algorithm was recently found to identify patients at risk for atrial 

fibrillation in a primary care population of >600k individuals in the DISCOVER 

registry in the UK.3 That algorithm could achieve negative predictive value of 96.7% 

and sensitivity to detect atrial fibrillation of 91.8%. In another landmark study 

published by the Mayo Clinic last year,4 it seems now possible that by using a 

convolutional neural network (CNN) to screen standard 12 lead ECGs for 

characteristics not visible to the eye of the clinician, we can detect subclinical 

paroxysmal atrial fibrillation from sinus rhythm ECGs, achieving AUC as high as 0.9. 

This study was conducted in a population of >180k individuals with >450k ECGs 

included in the training set, >64k ECGs in the internal validation dataset and >130k 

in the testing dataset. Algorithms like this could completely transform population 

screening for atrial fibrillation, and will most likely enable timely administration of 

anticoagulant treatment to prevent cardioembolic stroke. The astonishing size of this 

dataset, gives a clear example of how deep learning should be performed, to yield 

reproducible, practice-changing tools. Algorithms like this, will soon be available on 

our portable ECGs in the clinic. One of the major problems of deep learning 

algorithms used for ECG interpretation, is their susceptibility to adversarial 

examples, leading to consistently wrong classification of the test by detecting false 
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patterns undetectable to the human eye. An elegant study by Hat et al5 has provided 

recently the tools needed to study the impact of these adversarial patterns in 

automated ECG classification, and provides new opportunities to develop 

appropriate mitigation measures. 

 The recent release of large, publically available ECG databases such as the PTB-

XL (that includes ~21k records from ~19k patients)6 or the one from the Shaoxing 

Hospital Zhejiang University School of Medicine (~10k patients)7 brings further 

optimism that by increasing the variability and ethnic diversity of the training and 

validation datasets, these ECG applications are not far from clinical implementation. 

Further to the use of AI to detect atrial fibrillation, a recent study built a deep neural 

network to classify various types of ECGs using >2.3m ECGs from >1.6m patients, 

demonstrating a remarkable ability of these networks to provide accurate 

interpretation of these tests.8 Finally, in the Apple Heart Study9 the use of 

smartphones was demonstrated to be a very effective way to detect patients with 

subclinical paroxysmal atrial fibrillation. That was a large study that included ~420k 

participants followed up for a median of 117 days through their smartphones. The 

technology developed by apple, identified 0.5% with potentially irregular pulse (34% 

of which were proven to have atrial fibrillation confirmed by ECG). Although the exact 

nature of the technology used in the smartphone is not available, this study 

demonstrates that large volumes of data can be collected even using standard 

smartphones or portable devices like apple watches, opening new opportunities for 

big data research and development of AI algorithms for timely detection of cardiac 

arrhythmias in asymptomatic individuals.  

  AI for the management of heart failure 
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Risk stratification plays a key role in designing the therapeutic strategies in heart 

failure, given that the expected survival inevitably affects the decision for device 

implantation.10 Currently, decision of implanting a defibrillator and/or applying 

resynchronization therapy (CRT) in patients with heart failure, relies on well-defined 

clinical, electrophysiological and imaging characteristics.10, 11 However, a recent study 

published in EHJ earlier this year,12 came to remind us that the prediction of 

responsiveness to CRT focused on mid- or long- term outcomes should be a key driver 

in decision making. Indeed, Tokodi et al12 used machine learning to help them build a 

risk score for prediction of mortality following CRT. The score used information from 

medical history, physical examination, medication records, ECG, echocardiographic 

and laboratory data commonly obtained as part of routine hospital visits of patients 

with heart failure, and after it was trained in 1510 patients using a random forest 

algorithm, it has achieved a remarkable prognostic value for all-cause mortality, with 

AUC in ROC analysis ranging from 0.77 (in 1 year prediction) to 0.8 (in 5 year 

prediction). The risk calculator is now available for use (SEMMELWEIS-CRT Score, 

https://arguscognitive.com/crt, Figure 1).12 As the authors mention, this score could 

facilitate the prompt recognition of high-risk patients, guiding deployment of the 

appropriate prophylactic measures.13 It could also assist the patients and the families 

in making advance care decisions,13 while it could assist clinicians in deciding which 

patients are most suitable for CRT.   

The results of that study were in line with another recent study showing that the use 

of machine learning to integrate clinical data together with imaging characteristics can 

provide meaningful information about the future responsiveness of heart failure 

patients to CRT in a population of >1.1k patients from the MADIT-CRT study.14 
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CRT would have meaningful impact in patient’s prognosis. Before we reach at that 

stage though, it seems important to understand how to manage the high-risk 

individuals identified through such algorithms, given that most of the factors included 

into these models are non-modifiable.15  Randomised clinical trials are needed, to 

evaluate the clinical benefit and cost-effectiveness of applying such algorithms in 

clinical practice.  

 The last year brought also new advances in the use of artificial intelligence for the 

diagnosis of heart failure. Indeed, a CNN was trained based on paired ECGs and 

transthoracic echocardiograms from ~45k patients and validated in an independent 

cohort of >52k patients.16 The ROC for detection of systolic dysfunction using this AI-

enhanced ECG interpretation reached an AUC of 0.93. This impressive result confirms 

the notion that AI could extract invaluable information even from simple, low-cost tests 

like ECG, which could even be used as screening tests for detection of subclinical 

heart failure in the community.     

AI in cardiac imaging  

This year has been extraordinary for medical imaging, as a wide range of AI-powered 

algorithms have been introduced in clinical care by the hardware vendors and software 

manufacturers. These algorithms range from image reconstruction, to automated 

segmentation and improvement of workflows, or even to detection of imaging 

characteristics not visible to the human eye assisting diagnosis.17, 18 2020 is 

considered by many as the year of cardiac computed tomography angiography (CTA), 

as this has just been incorporated into the recent ESC guidelines as a first line 

investigation for the management of chest pain.19 This approach came a few years 

after a similar recommendation was published in the UK NICE guidelines, but it is still 
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more advanced compared to the US standard of care.20 Given the standardised way 

by which CT images are captured, the modality is particularly attractive to machine-

learning methods to improve segmentation and interpretation. Indeed, in a study by 

Al’Aref et al21 from the CONFIRM registry, a population of >13k patients undergoing 

coronary calcium score measurements (CCS) was used to examine whether including 

CCS in a machine learning model together with clinical risk factors, could improve risk 

stratification. Indeed, adding CCS in a baseline model that included clinical risk factors, 

resulted in ~9% improvement in the ability to estimate the pretest probability of 

obstructive coronary artery disease, with remarkable diagnostic accuracy. Particularly 

in the young patients (<65 years old), the algorithm improved the ability to detect 

coronary artery disease by ~17%. However, it remains to be proven that machine 

learning performs better than simple statistical regression models, when risk factors 

are combined with results from tests like CCS.22 Further to the use of machine learning 

to integrate imaging with other datasets, the practical value of AI lies with the 

improvement of image analysis workflows.18 Automated segmentation of coronary 

atherosclerotic plaques, coronary calcification or even epicardial fat in CT, makes 

image interpretation faster, more accurate and eliminates user-dependent variability.23   

    The true power of AI though comes from its ability to “see the invisible”. The field of 

radiomics allows extraction of thousands of different pieces of information from 

images, which provide information on the texture and composition of the tissue 

visualised (Figure 2). Indeed, further to the analysis of the composition and volume of 

coronary atherosclerotic plaques, it is now widely accepted that vascular inflammation 

causes changes in the composition and texture of perivascular fat, which activates 

lipolysis and increases its hydrophilic content around inflamed vascular structures.24 

Visualising perivascular fat using standard CTA, allows the calculation of a metric of 
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these changes, driven by the 3D changes of perivascular fat attenuation. An AI-derived 

biomarker that captures that biology, the fat attenuation index (FAI), has striking 

prognostic value25 that goes beyond atherosclerotic plaque characteristics,26 as 

demonstrated in ~4,000 patients from the CRISP-CT outcomes study. In a recent 

paper published by Oikonomou et al published in EHJ27 the same principle, i.e. the 

ability of perivascular fat to change its texture and composition in response to 

inflammatory signals coming from the vascular wall, was transferred in the field of 

radiomics. The concept of radiotranscriptomics has been introduced in the 

cardiovascular dictionary, as by using the gene expression profile of adipose tissue in 

fat biopsies obtained from 167 patients undergoing cardiac surgery, they created 

molecular classifiers for inflammation, fibrosis and angiogenesis, all features 

characterising perivascular fat after prolonged exposure to vascular inflammation. 

Then they extracted the radiomic features from the CT images of the same adipose 

tissue, and by using machine learning they built a radiomic signature to detect chronic 

vascular inflammation (capturing perivascular fibrosis, angiogenesis and 

inflammation). The new radiotranscriptomic metric generated, the Fat Radiomic Profile 

(FRP) index (Figure 3), was then tested for its performance in 1575 patients from the 

SCOTHEART trial, who were followed up for 5 years after their CTA.26, 28 Indeed, FRP 

had a remarkable prognostic value, as those people with abnormal FRP had >10 times 

higher risk for a fatal or non-fatal cardiac event, with an AUC to detect those who will 

have the event, of 0.88. When abnormal FRP was combined with the presence of high 

risk plaque, the patient’s relative risk for cardiac event was >43 times higher than the 

reference group (Figure 3). As it was discussed in the associated editorial,29 this 

technology could guide therapeutic interventions; this could be done in the future either 

in the form of a companion diagnostic to allow targeted deployment of expensive 
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treatments, or as an enrichment tool for clinical trials. Other papers published this 

year30 seem to confirm the validity of this approach, while the strategies for Imaging 

residual inflammatory risk have been presented in a recent state of the art review 

published in EHJ.31 This method needs further validation in non-Caucasian ethnic 

groups, while it’s translation into a clinically applicable tool is challenging due to the 

complexity of the analysis which makes it difficult to perform on standard clinical 

workstations onsite.  

   From an ultrasound point of view, 2020 has been a year for consolidation of earlier 

technical developments in how to train neural networks to handle raw images and 

video loops from echocardiograms to segment and extract useful metrics such as 

ejection fraction and myocardial strain.32 The study by Ouyang is probably the most 

significant advancement in the field, driven by AI in 2020.33 In that study, they took 

echocardiography analysis from still frame segmentation to a video-based deep 

learning approach through development of a specific EchoNet-Dynamic algorithm that 

combines temporal and spatial information within the neural network. Training 

networks for evaluation of segmentation and quantification, achieves an acceptable 

accuracy for estimation of ejection fraction on a beat to beat basis that can help in 

identification of heart failure. The next interesting phase is going to be the application 

of these approaches to larger scale datasets to improve accuracy of disease 

prediction, in large databases like the UK Biobank.34 This approach could open new 

horizons in applying deep learning in image interpretation for risk prediction. Indeed, 

this year the outputs of the UK-Biobank confirmed its potential to drive innovation for 

years to come. In a study just published35, more that 26k cardiac MRI scans were used 

in machine learning algorithms to allow detection of >2k interactions between imaging 

phenotypes and non-imaging phenotypes in the UK-Biobank, providing new insights 



EURHEARTJ-D-20-04454-R2 

11 
  

into the influence of early-life factors and diabetes on cardiac and aortic structure and 

function, linking them also with cognitive phenotypes.  

AI and COVID-19 

Above all, 2020 will be remembered as the year when COVID-19 brought the world 

upside down.36 As our knowledge accumulates about the disease, it becomes clear 

that COVID-19 is, in the end, a vascular endothelial disease37, 38 The need for rapid 

integration of large volumes of data collected from around the world to facilitate the 

urgent development of treatments to combat the disease, brought to the surface the 

power of AI to give solutions fast and accurately.39 Indeed, fast and accurate data 

collection has been in the centre of the efforts to combat the disease. European 

registries like the CAPACITY-COVID,40 are actively collecting data around the 

disease, working together with international efforts from the International Severe Acute 

Respiratory and Emerging Infection Consortium (ISARIC) and World Health 

Organization (WHO). The use of AI to interrogate these datasets is expected to 

improve our understanding on the incidence and pattern of cardiovascular 

complications in patients with COVID-19 and evaluate the vulnerability and clinical 

course of patients with underlying cardiovascular diseases. In addition, AI algorithms 

have been used to integrate chest CT findings with clinical symptoms, laboratory 

testing and exposure history to rapidly diagnose COVID-19. In a very recent study41 

that included 905 patients tested with (419 of which tested positive for SARS-CoV-2), 

the AI system achieved an area under the curve of 0.92 to diagnose the disease 

without the need of a PCR method, having sensitivity comparable to a senior thoracic 

radiologist.41 The use of computational learning methods to integrate biomarkers of 

inflammation and myocardial injury (e.g. C-reactive protein (CRP), N-terminus pro B 

type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), 
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creatine kinase-myocardial band (CK-MB) and cardiac troponin I (cTnI)) in COVID-19, 

was recently found to predict mortality with AUC 0.94.42 These initial models could 

lead to point-of-care Severity Score systems, and could have major impact in clinical 

decision making, in the coming months. In the post-COVID-19 period, the expertise 

gained in applying machine learning to integrate multi-omic and clinical data,43 is 

expected to revolutionise cardiac diagnostics. 

AI: From pattern recognition to analysis of “selfies”! 

  AI and particular convolutional neural networks are being accused as “black boxes”, 

that combine features which are individually meaningless, into algorithms that give 

meaningful predictions. Indeed, in a landmark study just published in the EHJ,44 a 

Chinese group of scientist has developed a deep convolutional neural network that 

detects coronary artery disease (with stenosis >50% documented by angiography), by 

analysing the patient’s facial photos (Figure 4). They included >5k patients in their 

training dataset and 580 in the test dataset. The algorithm had sensitivity 80% and 

specificity 54% to detect significant coronary artery disease from the faces of the 

patients, with an AUC 0.73. Could this be demonstrating genetic predisposition to 

atherosclerosis? Could it demonstrate secondary effects on the skin and structure of 

the face due to risk factors or the disease itself? Or is it just the result of training the 

algorithm in an ethnically homogenous population, that will not survive the test of 

time?45 If the concept behind this study is confirmed, then medical confidentiality may 

be at risk; walking into a train station or walking through the doors of an insurance 

company (where CCTV is in operation), may already give away health problems that 

you would like to keep private (breaching individual confidentiality), or inform you about 

health issues you are not aware of (saving your life). These issues will definitely spark 

extensive debates in the coming years.  
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Challenges of AI application in clinical practice  

Further to the great opportunities presented by AI, these technologies generate also 

significant scepticism. The results generated by most machine learning algorithms 

often fail to generalise in different populations. Since these algorithms are often in 

the form of a “black box”, it is hard to understand (and therefore criticise and edit) 

their content, and this generates unavoidable bias. Such bias could lead to results 

applicable only to specific populations, specific technical equipment or specific 

clinical practices included into the training datasets. Many deep learning algorithms 

are also susceptible to adversarial examples, leading to consistently wrong 

classification of the measured parameter(s) by detecting false patterns undetectable 

to the human eye.  

The limited generalisability in machine learning (i.e. the poor adaptability of these 

models to previously unseen data), comes to limit the applicability of these 

algorithms to clinical practice. This issue is mitigated by applying beyond training and 

internal validation (which inevitably leads to overestimation of the model’s 

performance), also independent testing. For the proper generalisability assessment, 

independent test dataset should represent the population of interest, but in a dataset 

totally independent of the training dataset (typically from independent institutions 

and/or geographically distant populations). The training part should be used for 

dimension reduction, development of the model and for hyperparameter tuning (and 

can use methods like cross-validation, random sampling or nested cross-validation). 

To prevent bias in performance evaluation, the model should be locked before the 

independent testing. The lack of transparency on the true links between the training 

and the independent validation dataset often makes it hard to evaluate the quality of 

the published literature. Transparent reporting can be ensured by following specific 
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principles,46 while open data sharing would allow independent reproducibility tests, 

securing high standards in publishing in the field. 

Conclusions 

There is no doubt that 2020 has been an extraordinary year, dominated by the 

COVID-19 pandemic. Under these difficult circumstances for humanity, and with 

most areas of Cardiovascular research compromised due to national lockdowns, the 

data science endured. The ability of artificial intelligence to extract and analyse large 

volumes of data remotely, allowed this field of Cardiovascular Medicine to continue 

its evolution, and we have seen major discoveries transforming many aspects of 

clinical care. From workflow improvements to automated image segmentation, 

accurate cardiovascular risk prediction or event facial recognition to screen for 

cardiac diseases, artificial intelligence is now major part of Cardiovascular Medicine. 

The studies highlighted in this article give only a small glimpse into this booming 

field, creating more anticipation for what will come to clinical practice in the coming 

years.    

The European Society of Cardiology has early recognised the importance of the fast 

evolving field of digital health technologies and has prioritized it as a strategic domain 

of cardiovascular medicine. The European Heart Journal family is at the forefront of 

the international effort to set high standards in publishing AI studies, actively promoting 

translation of AI technologies into clinical applications. A new section on digital health 

has recently been included in the EHJ, aiming to cultivate the culture of digitization in 

the full spectrum of cardiovascular medicine.  In addition, a new journal (EHJ Digital 

health) has been added into the EHJ family. Finally, the European Union has recently 

launched an effort to regulate the use of AI algorithms as medical devices, especially 
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for risk prediction. AI algorithms will need to receive CE mark as medical devices from 

May next year,47 This approach is being adopted by both, FDA and EMA, and will have 

direct implications on the clinical implementation of newly developed AI cardiovascular 

risk calculators that will be included in the clinical guidelines in the future. 
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Figure 1 

 

The 12 most important predictors of all-cause mortality as assessed by the 

SEMMELWEIS-CRT score. The importance of each feature was quantified by 

calculating the decrease in the model’s performance (area under the receiver 

operating characteristic curve) after permuting its values (permutation feature 

importance method). The higher its value, the more important the feature is. As the 

values of feature importance were spread over a wide range (more orders of 

magnitude), base-10 logarithmic transformation was performed to facilitate plotting. 

CRT, cardiac resynchronization therapy; LVEF, left ventricular ejection fraction; 

NYHA, New York Heart Failure Association functional class (From: Tokodi et al Eur 

Heart J 202012). 
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Figure 2.  

 

Artificial intelligence can be used to combine different types of information, from clinical 

and laboratory data, to imaging or any other type of information, to assist clinical 

diagnosis and decision making. (from Oikonomou et al Cardiovasc Res 202018).  
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Figure 3 

  

(A) Coronary inflammation first drives changes in peri-coronary adipocyte size, while 

at a later stage it leads to perivascular fibrosis and angiogenesis. (B) These changes 

can be visualised in standard coronary CT angiography (CCTA) by a method called 

Fat Attenuation Indexing. By using a radiotranscriptomic approach, oikonomou et al 

(Eur Heart J 2019) have built an imaging signature that captures these changes (Fat 

Radiomic Profile or FRP). (C) That signature has striking prognostic value over and 

above risk factors including coronary calcium score (CCS), as it was validated in the 

SCOTHEART population. MACE: Majod Adverse Cardiac Events; FAI: Fat attenuation 

index; BMI: body mass index; CAD: coronary artery disease (from Bartelt et al; Eur 

Heart J 201929).  
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Figure 4 

 

Areas in the face with information useful in face pattern recognition, involved in 

prediction of coronary artery disease. In tests occluding facial regions (A), mAUC was 

defined as the decrease in algorithm performance after occluding a specific facial 

region. In tests occluding regions of 11x11 pixels (B), the green regions were 

highlighted by the algorithm as important for detecting CAD. In the dose–response 

relationship test (C), the positive facial areas were judged based on the change in 

algorithm performance after occlusion. Having 7-9 positive areas was related with 

presence of coronary artery disease in 84% of the cases, while there was >1 vessel 

disease in ~42% of the cases (C) ( From: Lin S et al, Eur Heart J 202045). This 

technology can be used for screening in the community (D) (from Kotanidis C et al; 

Eur Heart J 202045). 
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