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Abstract 

Damage incurred in low-ductility reinforced concrete (RC) buildings during recent earth-

quakes continues to underline their structural vulnerability under seismic shaking. Among the 

viable seismic retrofitting procedures, passive control systems such as buckling-restrained 

braces (BRBs) have emerged as an efficient strategy for structural damage mitigation through 

stable energy dissipation while providing additional strength and stiffness to low-ductility 

buildings. Although quantifying the beneficial effects of BRBs for vulnerability reduction 

through seismic fragility curves has been suitably investigated in literature, almost all such 

studies consider a deterministic description of the BRB device. This study illustrates a meta-

modeling framework rooted in statistical learning techniques for efficient seismic vulnerability 

assessment of BRB-retrofitted low-ductility RC frames. The framework develops multidimen-

sional probabilistic seismic demand models for response prediction of a case study retrofitted 

frames as a function of ground motion characteristics as well as the design parameters of the 

BRB device. These demand models when compared against damage states capacity estimates 

subsequently yields vector-based seismic fragility functions that provide notable advantages 

over unidimensional fragility curves in terms of efficiency as well as generality. Additionally, 

uncertainties stemming from a multitude of sources can also be conveniently captured and 

propagated through the different stages of statistical model development. The proposed study 

aims to help researchers, stakeholders, and even device manufactures by providing a conven-

ient tool for vulnerability evaluation of retrofitted structures with reasonable accuracy and 

enhanced efficiency of computation. 
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1 INTRODUCTION 

Many recent earthquakes worldwide have continued to underline the substantial seismic vul-

nerability of existing reinforced concrete (RC) buildings (e.g., [1][2]) and the urgent need for 

reliable retrofit strategies to effectively increase their seismic safety and resilience. 

Among the many retrofit strategies available, the use of passive control systems [3] such as 

buckling-restrained braces (BRBs) have emerged as an efficient strategy for structural damage 

mitigation through stable energy dissipation while providing additional strength and stiffness 

to low-ductility buildings (e.g., [4][5][7][6][8][9][10]). BRBs are a type of yielding device 

where a sleeve provides buckling resistance to an unbonded core that resists the axial stress. As 

buckling is prevented, the BRB’s core can develop axial yielding in both tension as well as 

compression, with an almost symmetric hysteretic behaviour and the development of large and 

stable hysteretic loops, providing significant energy dissipation capacity [11]. 

The use of BRBs for seismic retrofitting has been widely investigated in the last few years, 

however, while the effect of some uncertain parameters, such as the ground motion record-to-

record variability, is often investigated (e.g., [7][8][10]), only a deterministic description of the 

dampers’ properties is usually considered. 

The seismic reliability assessment of a structural system should consider all the uncertainties 

related to the seismic input, the geometry, the mechanical properties of the structure, as well as 

the dissipative devices contributing to the lateral load resisting system. Previous studies have 

shown that, in conventional structures, the effect of model parameter uncertainty is usually 

negligible with respect to the record-to-record variability [12]; however, this is not the case for 

structures equipped with dampers since their seismic response heavily depends on the proper-

ties of a few numbers of devices (e.g., [13][14][15][16]). 

Dampers are produced by the manufacturer in order to meet the design values of some pa-

rameters and successively assessed by quality-control tests considering tolerance limits estab-

lished by seismic and qualification codes (e.g., [17][18][19]). Codes worldwide provide varying 

tolerance limits for different types of devices, considering different device properties and the 

influence of multiple factors, such as, imperfections related to the manufacturing process, tem-

perature variation, and aging. For example, the EN 15129 [17] requires the control of the de-

vices’ variation with respect to the nominal values introducing upper and lower limits of the 

devices’ properties, defined by a tolerance. For ‘displacement dependent devices’, such as 

BRBs, the EN 15129 [17] requires performing qualification tests to show that the effective (i.e., 

secant) stiffness Keff,b, and effective damping eff,b evaluated in correspondence to the design 

displacement are in good agreement with the prescribed nominal design values. Tolerances are 

set to ±15% to account for variation during the manufacturing process. These two control pa-

rameters (Keff,b and eff,b) exhaustively identify the primary characteristics of the device behav-

iour. Therefore, the code-based tolerance limits are also implicitly applied to other related 

parameters, such as the associated device forces and displacement capacity values. Similar rec-

ommendations exist within the ASCE/SEI 7-16 [18] and other seismic codes worldwide. In 

particular, the ASCE/SEI 7-16 [18] allows for tolerances that could go up to ±20% from nom-

inal design values and controlling the variation in terms of device’s force Fb and area of the 

hysteretic loop Eloop,b measured during the tests wherein the latter parameter allows the control 

dissipation capacity variation of the devices. 

In a recent study, Freddi et al. [16] investigated the influence of the BRBs’ uncertainty re-

lated to tolerance limits used in device qualification control tests by considering a three-story 

three-bay RC moment-resisting frame (MRF) as case study. BRBs’ uncertainty was imple-

mented through a two-level factorial design strategy and Latin-Hypercube Sampling technique. 

Cloud analysis and probabilistic seismic demand models were used to develop fragility 
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functions for the bare and retrofitted frame for four damage states while also accounting for the 

uncertainty in the property of BRBs. Risk estimates were successively evaluated for three case-

study regions. The results showed that, for the considered case-study structure, these uncertain-

ties could lead to an increase of fragility up to 21% and a variation in seismic risk estimates up 

to 56%. The obtained results underlined the impact of the BRBs' uncertainty and the need for 

appropriate safety coefficients for their design as functions of the tolerance limits adopted. Also, 

additional studies are required to investigate the influence of BRB device variability on differ-

ent case study structures, considering different retrofit levels (i.e., different proportions of the 

base shear between the MRF and the BRBs) and the influence of different tolerance limits. This 

would require modelling a large number of case study structures and performing a large number 

of numerical analysis while considering the influence of all the above-mentioned parameters. 

However, advanced probabilistic tools allow the study of the influence several parameters 

in a simplified and efficient way. In this direction, the present study investigates the use of a 

metamodeling framework rooted in statistical learning techniques for efficient seismic vulner-

ability assessment of BRB-retrofitted low-ductility RC frames accounting for different toler-

ance limits adopted during qualification tests of BRB devices. The framework develops 

multidimensional probabilistic seismic demand models for response prediction of a case study 

retrofitted frames as a function of: a) ground motion characteristics, and b) design parameters 

of the BRB device. These demand models when compared against damage states capacity esti-

mates subsequently yields vector-based seismic fragility functions that provide notable ad-

vantages over unidimensional fragility curves in terms of efficiency as well as generality. The 

present study demonstrates the adequacy of such advanced probabilistic tool for vulnerability 

evaluation of retrofitted structures with reasonable accuracy and enhanced efficiency of com-

putation and establishes a framework for the inclusion of uncertainties stemming from addi-

tional sources. 

2 CASE-STUDY RETROFITTED LOW-DUCTILITY FRAME 

2.1 Frame Description 

The present study selects a benchmark three-story three-bays RC MRF, representative of 

non-seismically designed (low-ductility) low-rise RC buildings. This structure is representative 

of typical constructions designed before the introduction of modern seismic design codes in 

several areas of the mid-west of the USA, many countries in Europe, and several regions in 

Asia. Moreover, the availability of laboratory experimental test results from a 1:3 reduced scale 

model of the case-study frame [20], as well as frame-subassemblages [21], makes the selected 

reference structure as an ideal choice for this study. FE model validation against experimental 

results helps in gaining confidence in the numerical approach as well as predicted building 

response at both the global- and local-level. 

Figure 1 shows the frame layout including the placement of the BRBs. The dissipative braces 

(BRBs) employed in RC MRFs are typically made by a series arrangement the BRB device and 

an elastic steel brace exhibiting adequate over-strength (see Figure 1). The case-study frame 

has an inter-story height of 3.66 m, a total building height of 10.75 m, and constant bay width 

of 5.49 m. The building is designed for gravity loads only, without any seismic detailing provi-

sions following the pre-seismic design rules of the ACI 318-89 [22]. Furthermore, negligible 

wind loads for low-rise structures, such as the case-study frame, leads to a complete lack of 

accounting for lateral loads in the frame design. The building columns are constant square sec-

tions of 300 mm × 300 mm, while beams dimensions are 230 mm × 460 mm at each floor. The 

concrete compressive cube strength is fc = 24 MPa, and the reinforcing bars are Grade 40 steel 

with a yield strength of fy = 276 MPa. Further details on the case-study structure and 
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reinforcement configurations within beams, columns, and beam-column joints can be found in 

Bracci et al. [20] and Aycardi et al. [21]. 

 

Figure 1: Case-study bare-frame layout (adapted from Bracci et al. [20]), placement and arrangement of BRBs. 

The design of the BRBs is based on the methodology described in Freddi et al. [8]. The BRB 

design procedure is based on the displacement distribution of the first vibration mode and uses 

non-linear static analysis of the bare frame and a Single-Degree-of-Freedom (SDoF) simplifi-

cation for the definition of some design parameters which are related to the retrofit objectives, 

such as the design displacement (du); the target ductility of the dissipative braces (d) and the 

base shear capacity of the dissipative system (Vd,1). 

As shown in Figure 1, the retrofitting is performed by introducing the BRBs in the central 

bay at each story of the case-study frame. The base shear and the design displacement of the 

bare frame, defined based on the pushover analysis, are respectively Vf,1 = 180.72 kN and du = 

0.308 m where du, is selected as the maximum lateral displacement capacity of the bare frame 

corresponding to the Complete Damage State. 

In the present study, the retrofitted configuration investigated is the one where the base shear 

of the dissipative system (Vd,1) is selected equal to the base shear of the bare frame (Vf,1), or in 

other words, the strength proportion coefficient α =Vd,1/Vf,1 is assumed equal to 1 [10], hence 

doubling the base shear resistance of the retrofitted frame. The ductility of the dissipative braces, 

i.e., dissipative device plus elastic brace (d) is assumed equal to 15. The design method pro-

vides properties such as strength Fd,i and stiffness Kd,i of the dissipative braces at each story. 

Assuming the ductility of the BRB devices (µBRB = 20), the yielding resistance of the materials 

for BRB devices (fy,BRB = 250 MPa) and elastic braces (fy,eb = 355 MPa), and based on strength 

Fd,i, and stiffness Kd,i of the dissipative braces, the properties of the components can be easily 

derived. 

2.2 Modelling Strategy 

The FE package OpenSees [23] is used to develop a state-of-the-art two-dimensional model 

of the case-study frame. The non-linear flexural hysteretic response of beams and columns is 

simulated using the ‘beamWithHinges’ element that consists of a central elastic element and 

two plastic hinge regions at the elements ends defined by fiber sections [24]. The effective 

flexural stiffness of the elastic portion of the element is evaluated by the ratio of the moment 

and the curvature corresponding to the yielding of the first rebar of the section. The plastic 

hinge lengths for both beams and columns are evaluated based on Panagiotakos and Fardis [25]. 
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In these regions, fiber sections are defined that consider the spread of plasticity within uncon-

fined (cover) concrete, confined (core) concrete, and layers of longitudinal reinforcement. 

While the core and cover concrete within the fiber sections are modelled using the non-linear 

degrading ‘Concrete02’ material model, the ‘Hysteretic’ material model is used to model the 

longitudinal reinforcements. For this material, the parameters controlling pinching, damage, 

and degraded unloading stiffness are calibrated such that close agreements are attained between 

the numerical and experimental results for model validation. The slab is modelled using uncon-

fined concrete material model with an effective width equal to four times the beam's width, as 

recommended in the ACI 318-89 [22]. The rigid-floor diaphragm is modelled by assigning high 

axial stiffness to the beams. Gravity loads are distributed on the beams while masses are con-

centrated at the beam-column intersections. 

‘ZeroLength’ shear and axial springs are introduced at the top of each column, by assigning 

them the ‘LimitState’ uniaxial material accounting for possible brittle failure mechanisms typ-

ical of low-ductility RC MRFs. Moreover, a two-node ‘zeroLength’ rotational joint spring and 

four rigid offsets are used to model the joint behaviour, including the influence of short embed-

ment lengths of bottom reinforcements of beams within the beam-column joints as done in Jeon 

et al. [26]. In this model, beams and columns are continuous, while the joint model controls 

their relative rotation. The ‘Pinching4’ material model is used to define the beam-column joint 

response. 

The dissipative braces are modelled by two elements in series representing respectively the 

BRB device and the elastic brace. The ‘steelBRB’ material model [11] is used to describes the 

hysteretic behaviour of the BRBs while capturing the kinematic and isotropic hardening, along 

with the tension-compression asymmetry that typically characterizes these devices. 

The model both at component- and at global-level has been validated against the experi-

mental results provided by Aycardi et al. [21] and Bracci et al. [20]. For the BRB devices a 

calibration has been conducted based on the results of the experimental qualification tests per-

formed by a manufacturer. For additional details on the modelling and validation please refer 

to Freddi et al. [8][16][27]. 

2.3 Uncertain Parameters 

The present paper investigates the influence of the uncertainty stemming from device-to-

device variation by the definition of story- and system-level fragility curves. As previously 

discussed, for ‘Displacement-dependent devices’, such as BRBs, the EN 15129 [17] requires 

quality-control tests to show that the effective (secant) stiffness Keff,b, and effective damping 

eff,b are in good agreement with the prescribed nominal design values and within prescribed 

tolerance limits. Alternatively, the ASCE/SEI 7-16 [18] controls the variation in terms of de-

vice’s force Fb and area of the hysteretic loop Eloop,b measured during the tests. In both ap-

proaches, the two control parameters exhaustively identify the main characteristics of the device 

behaviour. Therefore, the code-based tolerance limits are implicitly applied to other related 

parameters. 

In the present study, stiffness, force and dissipation capacity variations are numerically re-

flected within the model by accounting for variations in the area of the BRB devices (ABRB) 

while keeping the material yield strength (fy,BRB) as constant. Variation in the BRB device area 

(ABRB) has been chosen as opposed to the material yield strength (fy,BRB) as it induces the highest 

variation in the device response since alteration of the BRB area affects both stiffness, strength 

and the hysteretic energy dissipated. Device-to-device variation is assumed within the limits set 

by the codes (i.e., ±15% in accordance with the EN 15129 [17] and ASCE/SEI 7-16 [18]) and 

applied independently among the devices at the different stories. The study considers different 
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values of the tolerance limits assumed and investigates their influence in terms of fragility es-

timates. 

3 SURROGATE MODELLING AND PARAMETERIZED FRAGILITY 

DEVELOPMENT 

This section of the paper focuses on the development of parameterized seismic fragility func-

tions for the retrofitted frame that are conditioned on the ground motion intensity measure (IM), 

and the BRB areas across the different stories. The following subsections outline the fragility 

development procedure that comprises of first constructing an experimental design matrix with 

uncertain model parameters, metamodel fitting to the response parameter, and eventual param-

eterized model development using logistic regression. 

3.1 Modelling design of experiments  

This study adopts a Latin Hypercube Design of experiments that initiates with discretizing 

the domain of each of the input variables ABRB1, ABRB2, and ABRB3 to k intervals, where k is the 

number of Latin Hypercube samples to be selected for each variable and eventually resulting in 

an experimental design matrix of n × k. Following the discretization, the set of all possible 

Cartesian products of these discretized intervals constitutes the partitioning of the n-dimen-

sional sample space to kn cells. Consequently, a set of k cells are chosen of the possible kn cells 

such that the projection of the center of each cell on the respective axes of each parameter 

generates k unique points. Consequently, choosing a random point within each selected cell 

generates a Latin Hypercube Design. 

It is noted that the above procedure to generate sample points may still not guarantee an 

efficient exploration of the sample space. This study adopts a maximin based Latin Hypercube 

Design which selects design points after maximizing the minimum distance between the sample 

points ensuring that two points are not located too close together. For instance, if l is a measure 

of distance (based on the L1 or L2 norm), and   is a k-point design, the smallest distance be-

tween any two points ABRBi and ABRBj may be given by: 

 
, ,
min ( , )

BRBi BRBj
BRBi BRBj

A A i j
l A A

 
 (1) 

Consequently, a maximin distance design maximizes the minimum distance given in Equa-

tion (1) to generate another k-point design M such that the minimum distance between the 

points ABRBi and ABRBj now becomes: 

 
, , , ,
min ( , ) max min ( , )

BRBi BRBj M BRBi BRBj
BRBi BRBj BRBi BRBj

A A i j A A i j
l A A l A A

   

 
=

  
 (2) 

where,   constitutes the n-dimensional design sample space. In addition to the maximin based 

Latin Hypercube design, this study also considers experimental design based on quasi-random 

sampling. A typical experimental design D  of size k × n generate by the Latin Hypercube De-

sign can be represented as shown in Equation (3): 

 

1,1 2,1 3,1

1,2 2,2 3,2

1, 2, 3,

BRB BRB BRB

BRB BRB BRB
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where each row of the design matrix provides a unique combination of BRB areas within the 

tolerance limits. In addition to these parameters, a critical parameter of interest is the ground 

motion intensity IM. Due to the inherent randomness in ground motion time-histories, IM is 

treated as an uncontrollable parameter in the experimental design. The uncertainty associated 

with ground motions is propagated in this study by pairing each row of the design matrix with 

a random time-history record and conducting nonlinear dynamic analysis of k-statistically sim-

ilar but characteristically different retrofitted building samples. The peak interstory drift ratios 

for the overall frame are used next to fit multivariate probabilistic seismic demand models and 

fragility functions as described in the next step.  

In the present study, the uncertainty affecting the seismic input in terms of variability in 

duration, frequency content, and other characteristics of the input expected to act on the system, 

is taken into account by considering the set of 240 natural records selected by Baker et al. [28]. 

3.2 Metamodel fitting to storey level response 

Among the various metamodeling strategies, this study adopts the polynomial response sur-

face models to approximate the maximum story and system level response as a function of the 

ground motion intensity measure and BRB areas. Polynomial response surface models were 

first developed by Box and Wilson [29] and have been widely adopted for predicting the re-

sponse of complex engineering systems, such as buildings and bridges. The most widely used 

response surface models consist of low order polynomial functions. Simpson et al. [30] recom-

mended that first order polynomials shall suffice for responses characterized by low curvatures: 

an assumption that is valid for the present case at hand. Consequently, first order response sur-

face polynomials of the form shown in Equation (4) are adopted because of enhanced goodness-

of-fit measures in comparison to first order polynomial models. 

 
3

0

1

ˆ
IM i BRBi

i

y A  
=

= + +   (4) 

In this equation, ŷ  represents the predicted value of the maximum interstory drift ratio (story 

level: IDRmax,i or system level: IDRmax), and β0, βIM, and βi are the regression coefficients ob-

tained using least square principles after fitting the response surface to the response data from 

nonlinear time history analyses of the retrofitted frame. Table 1 shows the regression coeffi-

cients for the polynomial response surface model for each of the three stories as well as the 

overall frame along with the R2 goodness of fit measure indicative of the satisfactory response 

prediction at the story as well as system level. 

 
 Story 1 Story 2 Story 3 Whole Frame 

β0 0.802 0.800 0.343 0.951 

βIM 1.023 0.978 0.877 1.005 

β1 -0.079 0.021 0.040 -0.001 

β2 -0.039 -0.099 -0.013 -0.091 

β3 0.075 -0.001 -0.192 0.012 

R2 0.831 0.891 0.895 0.860 

 

Table 1: Regression coefficients and R2 estimates corresponding to the polynomial response surface model for 

the three stories and the overall frame. 

The polynomial response surface model utilized in this study also aids in the identification 

of the critical variables other than IM that most affect the interstory drift ratios. These are shown 

in Figure 2(a) through (b) using Pareto charts corresponding to maximum interstory drift ratios 
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for the individual stories as well as for the overall frame. The left vertical axis of the Pareto 

charts represents the absolute t-statistic ratios for the parameters arranged in decreasing order 

of importance. This statistic is computed as the ratio between the parameter estimate and the 

corresponding standard error. The right vertical axis represents the cumulative sum of the ab-

solute values of the t-ratio (in percentage) and elucidates the aggregated explanatory power of 

variables when jointly considered in succession. As Figure 2 reveals, while IM emerges as the 

most critical variable across all stories, the story-level BRB areas affect the response of specific 

individual stories. In other words, among the three different BRB areas, ABRBi most affects the 

response of the ith story. This finding is intuitive and also aligns with the seismic design strategy 

used for the BRBs. For the overall frame, the maximum interstory drift ratio (IDRmax) is most 

dependent on ABRB2 at the second story as shown in Figure 2(d). 

  
(a) (b) 

  
(c) (d) 

Figure 2: Pareto Charts depicting the contribution of the ground motion intensity measure and BRB areas on the 

maximum interstory drift ratios for a) Story 1, b) Story 2, c) Story 3, and d) Overall frame. 

3.3 Parameterized fragility function development 

The multidimensional story and system level seismic demand models developed in the previous 

section are utilized in this stage to develop parameterized seismic fragility functions after com-

paring with the capacity estimates. The capacity distributions for the individual stories as well 

as the overall frame are obtained using nonlinear static pushover analysis and are directly 

adopted from Freddi et al. [16]. Comparison between large number of seismic demand and 



Jayadipta Ghosh and Fabio Freddi 

 

capacity samples help generate binary survive-failure vectors. These binary vectors are then 

used to develop time-evolving seismic fragility functions by using the logistic regression ap-

proach. Note that other techniques such as naïve Bayes classifier, Probit model, Support vector 

machines, among others may be also utilized for fragility development. A brief description of 

the steps involved to develop fragility functions using logistic regression is provided herein 

[31][32]: 

Step 1: For a particular building story or the overall frame, sample a large number (NMC) of 

demand estimates from the probabilistic seismic demand models of the maximum interstory 

drift ratios as elaborated in the previous step. These samples should ideally reflect substantially 

distinct combinations of the ground motion IM and the BRB areas (ABRB1, ABRB2, and ABRB3). 

Step 2: Generate NMC capacity estimates from the capacity distribution of individual stories or 

the overall frame for the four considered damage states (i.e., Slight, Moderate, Extensive and 

Complete). 

Step 3: Compare the demand estimates against the capacity samples and generate a binary vec-

tor {bin} consisting of 1’s and 0’s, where, 1’s represent a story or system-level failure (demand 

greater than capacity) and 0’s represent a story or system-level survival (demand less than ca-

pacity). 

Step 4: Conduct logistic regression using the binary survival–failure vector to determine the 

story or system-level failure probability for particular damage state ds as: 

 

( )

( )

3

0
1

31 2 3

0
1

ln

| , , ,
ln

1

IM BRBi BRBi
i

BRB BRB BRB

IM BRBi BRBi
i

IM A

ds IM A A A
IM A

e
Pf

e

  

  

=

=

+ +

+ +



=


+

 (5) 

where, θ0, θIM, and θBRBi (i = 1 to 3) are the story or system-level logistic regression coefficients 

for damage state ds. Table 2 below enlists the logistic regression coefficients that are utilized 

in the next section of the paper to derive seismic fragility curves for nominal BRB areas as well 

as quantify the effect of uncertainty on fragility estimates. 

 
 Story 1 Story 2 Story 3 Whole Frame 

θ0 8.140 2.071 0.405 -3.013 

θIM 6.102 6.014 6.739 11.942 

θBRBi -0.023 -0.062 -0.010 0.038 

θBRBi -0.582 -0.526 -0.595 -0.538 

θBRBi 0.072 0.187 0.133 0.052 

 

Table 2: Logistic regression coefficients at story and system level for seismic fragility development. 

4 RESULTS AND DISCUSSIONS 

Unlike unidimensional seismic fragility functions as typically adopted for seismic vulner-

ability assessment of retrofitted frames, the parameterized fragility models developed in the 

earlier section offers several advantages. Firstly, for the nominal BRB areas, these fragility 

functions provide prompt estimates of individual story and system-level fragilities. For instance, 

Figure 3(a) depicts the individual story fragilities, as well for the whole frame corresponding to 

the design BRB areas. As expected, the fragility curve for the overall frame emerges 
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predominantly more fragile than the individual stories. Additionally, among the different stories, 

the second story emerge as the most fragile and lies in close proximity to the system-level vul-

nerability curve. Secondly, without the need of additional computationally expensive finite el-

ement model runs, the parameterized fragility functions help investigate the influence of BRBs’ 

property variation on retrofitted frame fragility. While Section 3 earlier showed that ABRB2 

emerge as a critical parameter affecting the system-level frame response (IDRmax), Figure 3(b) 

depicts the variation of retrofitted frame fragility as a function of ABRB2 variation within ±20% 

of design estimates for moderate damage state, while holding other BRB areas (ABRB1 and ABRB3) 

constant at nominal values. As expected, the figure shows that higher ABRB2 areas tend to reduce 

the retrofitted frame fragility, however high BRB areas may not be optimal from the design 

perspective. 

 
 

(a) (b) 

 
(c) 

Figure 3: a) Seismic fragility curves for different stories as well as the retrofitted frame corresponding to the 

moderate damage state for nominal BRB areas, b) variation of retrofitted frame vulnerability with ±20% varia-

tion of ABRB2, and c) fragility bands depicting the uncertainty in retrofitted frame fragility for the slight and com-

plete damage states due to variations in ABRB1, ABRB2, and ABRB3 within ±20% of design limits. 

The parameterized seismic fragility functions also help estimate the bounds of fragility es-

timates corresponding to independent variation of the BRB areas across the three stories. Figure 

3(c) shows the departures from the “mean” fragility estimates of the retrofitted frame for the 

slight and complete damage states due to variations in ABRB1, ABRB2, and ABRB3 within ±20% of 

design estimates. These fragility bounds also underline the wide variability in retrofitted frame 

fragilities as a consequence of potential randomness in the BRB areas within the prescribed 
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code limits. The upper and lower values of the median estimates are observed to range from 

0.45 g to 0.62 g for the slight, 1.10 g to 1.51 g for moderate, 1.41 g to 1.91 g for extensive, and 

1.53 g to 2.10 g for the complete damage states respectively. 

5 CONCLUSIONS 

Seismic fragility assessment of retrofitted structures typically uses conventional techniques for 

vulnerability evaluation that may often emerge as tedious in terms of computer run-time. More-

over, to ascertain the influence of parameter variation on building fragility one may need to 

resort to costly re-analysis under dynamic loads. This study focuses on a computationally effi-

cient technique to assess the impact of variation in BRB device parameters on story level as 

well as overall retrofitted frame fragility. 

To achieve the above objective, first an experimental design matrix is constructed that pro-

vides an optimum combination of BRB device areas (chosen as the parameter of interest) within 

±20% of nominal estimates while offering an efficient exploration of the sample space. Next 

through the results obtained from the nonlinear dynamic analysis of statistically different yet 

nominally identical frame models polynomial response relationships are developed between the 

story and system level maximum interstory drift ratios. Comparison of t-statistic ratios indicate 

than other than the ground motion intensity measure, individual story level BRB device areas 

emerge most critical for response prediction for that specific story. For the overall frame, the 

device area at the second story has the most controlling effect. Next, the developed polynomial 

demand models are compared with capacity estimates to derive parameterized fragility func-

tions using logistic regression techniques. These functions offer significant advantages over 

traditional intensity-measure-only dependent fragility curves and helps prompt assessment of a) 

individual and overall frame fragility for nominal BRB area estimates, b) influence of parameter 

variation on story and system level fragility, and c) development of uncertainty bands to esti-

mate the departures from “average” fragility estimates when variations in device areas are taken 

into consideration. For the retrofitted case-study frame, the upper and lower values of the me-

dian estimates are observed to range from 0.45 g to 0.62 g for the slight, 1.10 g to 1.51 g for 

moderate, 1.41 g to 1.91 g for extensive, and 1.53 g to 2.10 g for the complete damage states 

respectively. 

Future work on this topic will investigate the influence of BRB device variability on differ-

ent case study structures and will consider different retrofit levels (i.e., different proportions of 

the base shear between the MRF and the BRBs). In these cases, due to the variation of the 

structural vibration period, an alternative intensity measure needs to be evaluated, this repre-

senting one of the main challenges for the extension of the proposed methodology. 
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