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Abstract

In this paper we present a connection between systems of differential equations for
the recurrence coefficients of polynomials orthogonal with respect to the generalized
Meixner and the deformed Laguerre weights. It is well-known that the recurrence
coefficients of both generalized Meixner and deformed Laguerre orthogonal polynomials
can be expressed in terms of solutions of the fifth Painlevé equation but no explicit
relation between systems of differential equations for the recurrence coefficients was
known. We also present certain limits in which the recurrence coefficients can be
expressed in terms of solutions of the Painlevé XXXIV equation, which in the deformed
Laguerre case extends previous studies and in the generalized Meixner case is a new
result.

1 Introduction

Orthogonal polynomials appear in a wide range of applications [Chi78, Ism05, Sze67]. One
of the most important properties of a sequence of orthogonal polynomials is the so-called
three-term recurrence relation. For orthonormal polynomials pn(x), this relation takes the
following form:

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).

For the corresponding monic polynomials Pn(x) the recurrence relation is given by

xPn(x) = Pn+1(x) + bnPn(x) + a2nPn−1(x).
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The recurrence coefficients of orthogonal polynomials for semi-classical weights are often
related to Painlevé type equations (see, for instance, [VA18] and the numerous references
therein). In [FVA11] it was shown that the coefficients of the three-term recurrence rela-
tion for the orthogonal polynomials with the generalized Meixner weight are related to the
solutions of the fifth Painlevé equation. This weight is given by

wM(x) =
Γ(β)Γ(γ + x)cx

Γ(γ)Γ(β + x)Γ(x+ 1)
,

with c, β, γ > 0, for which the orthogonal polynomials are considered on the lattice N. In
[SVA12] it was shown that the quantities un, vn, defined in terms of the recurrence coefficients
an, bn by

a2n = nc− (γ − 1)un, bn = n+ γ − β + c− (γ − 1)vn/c,

satisfy the following system of difference equations:

(un + vn)(un+1 + vn) =
γ − 1

c2
vn(vn − c)

(
vn − c

γ − β
γ − 1

)
, (1.1)

(un + vn)(un + vn−1) =
un

un − cn/(γ − 1)
(un + c)

(
un + c

γ − β
γ − 1

)
,

with initial conditions at n = 0 expressed in terms of the confluent hypergeometric function.
In the case of orthogonal polynomials on a shifted lattice (or a bi-lattice), the parameters in
the weight must be modified, but the discrete system for the recurrence coefficients (1.1) is
the same, though with different initial conditions.

To derive a differential system for the recurrence coefficients, see [FVA11], one needs to
combine the discrete system (1.1) with a Toda-type differential-difference system. The Toda
system, where differentiation is with respect to parameter c, is given by

(a2n)′ = a2n
c

(bn − bn−1), (1.2)

b′n = 1
c
(a2n+1 − a2n).

Solving the first equation from the discrete system (1.1), we may express un+1 in terms of un
and vn. Similarly, we can find an expression for vn−1 in terms of un and vn from the second
equation of (1.1). Substituting these expressions into (1.2), we obtain the following system
of first order differential equations:

c2(un + vn)u′n = cnv2n + u2n((n− β + 2γ)c− 2(γ − 1)vn) + (1.3)

+un((γ − β)c2 + (2n+ 1)cvn − (γ − 1)v2n),

c2(un + vn) v′n = −c2u2n + (1− 2c)cunvn + vn
(
(γ − β)c2+

+c(2− c+ β − 2γ)vn + (γ − 1)v2n
)
.

It was shown in [FVA11] that this system can be further reduced to the fifth Painlevé
equation.
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A deformed Laguerre weight was considered in [MC19]. For this weight, the recurrence
coefficients, as functions of the variable t, are also related to solutions of the fifth Painlevé
equation. For this case, the weight is given by

wL(x) = xαe−x|x− t|δ(A+Bθ(x− t)), (1.4)

where A, A + B, x, t ≥ 0, α, δ > 0 and θ is the Heaviside step function. The auxiliary
functions Rn(t) and rn(t), defined by

Rn(t) =
δ

hn

∫ ∞
0

P 2
n(y)

y − t
w(y) dy,

rn(t) =
δ

hn−1

∫ ∞
0

Pn(y)Pn−1(y)

y − t
w(y) dy,

where hn(t) =
∫∞
0
P 2
n(x)w(x) dx, are related to the recurrence coefficients as follows:

bn = 2n+ 1 + α + δ + tRn,

a2n =
r2n − δrn
RnRn−1

=
n−1∑
j=0

bj + trn.

The functions Rn(t) and rn(t) satisfy the following system of differential equations (see
[MC19, Eqs. (4.6), (4.7)]):

tR′n = tR2
n + (2n+ α + δ − t)Rn + 2rn − δ, (1.5)

tr′n =
r2n − δrn
Rn

− r2n − δrn + (n(n+ α) + (2n+ α + δ)rn)Rn

1−Rn

.

A connection to the Painlevé XXXIV equation was also identified in [MC19]. The authors
introduced a change of independent variables from t to s according to t = 4n + 24/3n1/3s =
4n + 42/3n1/3s and considered the scaled functions R̃n(s) = Rn(4n + 24/3n1/3s) and r̃n(s) =
rn(4n+24/3n1/3s). It was shown that in the large n limit with t and s fixed, if these functions
admit expansions of the form

R̃n(s) = u(s)n−2/3 + w(s)n−1 +O(n−4/3),

r̃n(s) = u(s)n1/3 + 2−1/3u′(s) + w(s) + δ/2 +O(n−1/3),

then u(s) and w(s) satisfy certain differential equations (see [MC19, Eqs. (5.12), (5.13)]).
We shall present only the equation for the function u:

uu′′ − 2−1(u′)2 + 28/3u3 − 2su2 + 2−7/3δ2 = 0.

By taking ũ = −22/3u, the equation above is reduced to

ũ′′ =
(ũ′)2

2ũ
+ 4ũ2 + 2sũ− δ2

2ũ
,
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which is the Painlevé XXXIV equation. Moreover, a similar approach was used in [LC17]
for the weight with δ = 0, where the authors also distinguish the cases when the parameters
of the differential system are of order O(n), and the second Painlevé equation was obtained
in the limit.

In what follows, we first recall and extend results of [MC19] on double scaling limits of
the differential equations (1.5) from the deformed Laguerre case. We then present a new
relation between this system (1.5) and the equations (1.3) from the case of the generalized
Meixner weight. This leads us to ask whether similar results hold for this system, so we
carry out a systematic study of the same kind of double scaling here. The relation between
the differential systems was obtained using tools from the Okamoto-Sakai theory of Painlevé
equations in terms of the geometry of certain rational surfaces, and will be explained in
detail in a forthcoming paper [DFS]. The present paper serves to illustrate the kind of
results of that can be obtained using this approach, without introducing the full machinery.
We emphasize that in what follows we work with the differential systems only, without
reference to the orthogonal polynomials themselves.

2 Main results

2.1 Double scaling limits in the deformed Laguerre case

Let us study the system (1.5) in detail. Our aim, building on the results of [MC19], is to
make the change of variables t = 4n + 42/3n1/3s and identify the cases such that in the
expansion

R̃n(s) = a0(s) +
a−1(s)

n1/3
+
a−2(s)

n2/3
+
a−3(s)

n
+ . . . , (2.1)

one of the first non-zero coefficients aj(s), j = 0,−1,−2,−3, satisfies a second order differ-
ential equation and determine whether it can be reduced to one of the Painlevé equations.
As we see below, in all cases we see reductions to the Painlevé XXXIV equation. We keep
δ 6= 0, since the system in the case δ = 0 is known to be fundamentally different [LC17]. We
shall also allow scalings of parameters to be of order O(n). Clearly from the connection to
orthogonal polynomials parameters should be real.

So that our approach is as systematic as possible, we proceed according to the following
procedure for each scaling: We first consider a0, and isolate conditions for the asymptotic
expansions to balance, which may be algebraic constraints that determine a0 as a function of
s, or that a0 is some constant, or that a0 satisfies some differential equation. We discard cases
where the leading behaviour is governed by a complicated algebraic expression, and for other
cases when differential equations do not appear, we proceed to the next coefficient. This will
then either be forced to take some constant value, be subject to an algebraic constraint, or
satisfy a differential equation. Again discarding behaviours governed by algebraic functions,
if we have no differential equation we proceed to the next coefficient, repeating this process.
If a case does not yield a differential equation after considering a−3 we discard it, but this
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does not rule out the possibility that some differential equation might govern some higher
order behaviour, but we limit ourselves to these first four coefficients for conciseness.

Case 1. Let us assume that we scale both parameters α = p1n and δ = p2n. Then the
first coefficient a0(s) in (2.1) satisfies a complicated algebraic equation (the procedure to
obtain such an expansion will be described in detail in Case 2 below). So according to our
approach outlined above, we discard this case.

Case 2. Let us scale the parameter α = p1n while keeping δ fixed with respect to n, and
change variables t = 4n + 24/3n1/3s. System (1.5) then becomes the following system for
functions R̃n = R̃n(s) = Rn(4n+ 24/3n1/3s) and r̃n = r̃n(s) = rn(4n+ 24/3n1/3s):

2−1/3(2n2/3 + 21/3s)R̃′n = ((p1 − 2)n− 2 · 21/3n1/3s+ δ)R̃n − δ + 2r̃n

+2(2n+ 21/3n1/3s)R̃2
n, (2.2)

2−1/3(2n2/3 + 21/3s)(R̃n − 1)R̃nr̃
′
n = r̃n(δ − 2δR̃n + ((p1 + 2)n+ δ)R̃2

n) + (p1 + 1)n2R̃2
n

+r̃2n(2R̃n − 1).

The first equation from the above system can be solved for r̃n(s). Substituting the resulting
expression into the second equation, we find a second order differential equation for R̃n(s),
which we omit due to its cumbersome expression. Assuming that the expansion (2.1) holds,
we find several further subcases.

When a0(s) = 0, we have the following subcases:
Subcase 2.1. Here a−1(s) = 0 and further we have (p1 − 8)p1a−2(s) = 0. When p1 = 0

or p1 = 8, this leads to the subcases below. When a−2(s) = 0 and p1 6= 0; 8, a−3(s) =
±δ/

√
p1(p1 − 8), and there is no differential equation for the first few coefficients in expansion

(2.1). If we assume that a−2(s) = 0 and p1 = 0; 8, then necessarily we have δ = 0, so this
subcase is discarded.

Subcase 2.2. When p1 = 8, we have

R̃n(s) =
u(s)

n2/3
+
a−3(s)

n
+O(n−4/3),

r̃n(s) = −3u(s)n1/3 + v(s) +O(n−1/3).

Here the function v satisfies
v = δ/2− 3a−3 + 2−1/3u′,

and the function a−2(s) = u(s) satisfies

4 · 21/3uu′′ − 2 · 21/3u′2 − 96u3 + 24 · 21/3su2 + δ2 = 0.

Scaling u(s) = ũ(−31/3s)/(22/3 · 31/3), we obtain the Painlevé XXXIV equation for the
function ũ. When we substitute expansions for R̃n and r̃n back into the system, use expression
of u′ in terms of v and a−3 from above, and let n → ∞, we see that the first equation is
satisfied identically, and from the second we have

21/3(δ − v − 3a−3)(v + 2a−3) + 2u(3 · 21/3(21/3s− 4u)u+ v′ + 2a′−3) = 0.
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Making the change of variables y = 2v + 6a−3, we find a system of first order differential
equations in s:

22/3u′ = y − δ,
2 · 22/3uy′ = y2 + 24u2(4u− 21/3)− 2δy.

This system is equivalent to the second order differential equation for u above.
Subcase 2.3. When p1 = 0, we have similar expressions:

R̃n(s) =
u(s)

n2/3
+
a−3(s)

n
+O(n−4/3),

r̃n(s) = u(s)n1/3 + v(s) +O(n−1/3),

where in this case the differential equation is

4 · 21/3uu′′ − 2 · 21/3u′2 + 32u3 − 8 · 21/3su2 + δ2 = 0,

and v = a−3 + (δ + 22/3u′)/2. If we define y = 2(v − a−3), we find

22/3u′ = y − δ,
2 · 22/3uy′ = y2 + 8(21/3s− 4u)u2 − 2δy,

which is equivalent to the above second order differential equation. Scaling the variable
u(s) = −2−2/3ũ(s) we obtain the Painlevé XXXIV equation.

Case 3. Scaling δ = p2n while keeping α fixed with respect to n, we obtain subcases very
similar to those from Case 2. The only difference is that this time p2 satisfies p22+8p2+32 = 0,
with complex roots. This case might be interesting from the point of view of differential
equations (see the last section, where we discuss open problems), but clearly it is not relevant
for the applied problem at hand.

Case 4. We do not scale α or δ with respect to n, in which case the procedure described
in Case 2 gives the following result. The subcase a0(s) = 1 is not interesting since we do not
obtain a differential equation for any of the first few coefficients as outlined at the beginning
of the section, namely, up to a−3(s). When a0(s) = 0, we obtain a−1(s) = 0, a−2(s) = u(s),
where the function u satisfies the second order nonlinear differential equation

4 · 21/3uu′′ − 2 · 21/3(u′)2 + 32u3 − 8 · 21/3su2 + δ2 = 0,

which can be transformed to the Painlevé XXXIV equation by u(s) = −22/3ũ(s). The
functions R̃n(s) and r̃n(s) are given by

R̃n(s) =
u(s)

n2/3
+
a−3(s)

n
+O(n−4/3),

r̃n(s) = u(s)n1/3 + v(s) +O(n−1/3).
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Taking v = a−3 + (δ + 22/3u′)/2, and denoting y = 2(a−3 − v), we obtain the following
system of first order differential equations, which is equivalent to the second order differential
equation for u above:

22/3u′ = −(y + δ),

2 · 22/3uy′ = −(2δy + y2 + 8(21/3s− 4u)u2).

Hence, we recover the result in [MC19], which we described in the Introduction.

2.2 Relation between differential systems

Another important result of this paper is the following theorem. As remarked in the In-
troduction, we plan to give a geometric explanation of this transformation in terms of the
Okamoto-Sakai theory of Painlevé equations in a forthcoming paper [DFS]. Let us make the
following change of variables (this change is used in [LC17] for the case δ = 0, and in [DFS]):

xn = 1− 1

Rn−1
, yn = −rn,

or, equivalently,

rn = −yn, Rn =
xnyn(δ + yn)

yn(2n+ α− yn + xn(δ + yn))− n(n+ α)
.

With this change of variables the differential system (1.5) becomes

tx′n = −(2n+ α− 2yn − x2n(δ + 2yn) + xn(t− 2n− α + δ + 4yn)), (2.3)

txny
′
n = n(n+ α)− (2n+ α + δx2n)yn − (x2n − 1)y2n.

Theorem 1. Let c = t. Then the differential systems (1.3) and (2.3) are related by the
following birational transformations:

un =
tyn
δ
, vn = −tyn(n− yn + xn(δ + yn))

δ(n− yn)
, (2.4)

xn = −nt+ un − γun(un + vn)

(γ − 1)un(t+ un)
, yn =

(γ − 1)un
t

, (2.5)

and the parameters are related by

α = −n+ β − γ, δ = γ − 1, (2.6)

β = 1 + n+ α + δ, γ = 1 + δ.

The change of variables in Theorem 1 follows from the Okamoto-Sakai geometric theory
of Painlevé equations and it will be explained in detail in the forthcoming paper [DFS]. For
the purposes of the present paper we only remark that this change of variables can also be
verified by direct computation.
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2.3 Double scaling limits in the generalized Meixner case

Here we exploit the transformation above to derive new double scaling limits for the differ-
ential system (1.3) in which the Painlevé XXXIV equation appears. Since t = c, and

xn(t) =
(rn(t) + n)(α + n+ rn(t))Rn(t)

rn(t)(rn(t)− δ)(Rn(t)− 1)
, yn(t) = −rn(t),

we may obtain expressions of un and vn in terms of rn and Rn directly:

un = −−trn
δ

, vn = −t(rn + (n+ α)Rn)

δ(Rn − 1)
.

Therefore, for the Subcases 2.2, 2.3 and Case 4 above we can immediately recalculate the
corresponding expansions for un and vn. Taking t = 4n+24/3n1/3s and defining new functions
ũn = ũn(s) = un(4n+24/3n1/3s), and ṽn = ṽn(s) = vn(4n+24/3n1/3s), we obtain the following
results.

Subcase 2.2. Here α = p1n and p1 = 8. Hence, the corresponding generalized Meixner
parameters are β = 1 + 9n+ δ and γ = 1 + δ. The corresponding expansions are

ũn(s) = 12δ−1u(s)n4/3 − 4δ−1v(s)n+O(n2/3),

ṽn(s) = 24δ−1u(s)n4/3 + 4δ−1(v(s) + a−3(s))n+O(n2/3).

Subcase 2.3. Here α = p1n and p1 = 0. Hence, the corresponding generalized Meixner
parameters are β = 1 + n+ δ and γ = 1 + δ. The corresponding expansions are

ũn(s) = −4δ−1u(s)n4/3 − 4δ−1v(s)n+O(n2/3),

ṽn(s) = 8δ−1u(s)n4/3 + 4δ−1(v(s) + a−3(s))n+O(n2/3).

Case 4. Here parameters α and δ are not scaled. Hence, the corresponding generalized
Meixner parameters are as in (2.6). The corresponding expansions are

ũn(s) = −4δ−1u(s)n4/3 − 4δ−1v(s)n+O(n2/3),

ṽn(s) = 8δ−1u(s)n4/3 + 4δ−1(v(s) + a−3(s))n+O(n2/3).

We may also study system (1.3) without any reference to system (1.5), as in the Case
2 above for the deformed Laguerre system, but we will arrive at the same expansions as
outlined in the cases here.

3 Conclusions and open problems

In this paper we have identified the cases when in the large n limit, solutions of the system
of differential equations (1.5) are approximated by solutions of differential equations, and
identified these as cases of the Painlevé XXXIV equation (Subcases 2.2, 2.3 and Case 4).
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This extends the results in [MC19]. Moreover, finding a connection between systems (1.5)
and (1.3), we obtained similar results for the system (1.3).
This leads to several important open problems. There exists a well-known degeneration
scheme for the Painlevé equations, encoded in the so-called coalescence diagram. This con-
sists of changes of variables, where in limits as certain parameters go to zero, the Painlevé
equations degenerate from the sixth to the first one (see, for instance, [IKSY]). The geo-
metric interpretation of this standard degeneration is well-known [KNY]. The degeneration
presented in this paper is not straightforward and in particular one needs to introduce aux-
iliary functions (u, v, y) to obtain the Painlevé XXXIV equation from the fifth Painlevé
equation. Therefore it is not immediately clear whether this degeneration is equivalent to
the standard one or not. Further, the degeneration presented in this paper might hold only
for special values of the parameters from the fifth Painlevé equation due to the connection
to orthogonal polynomials and the presence of n in the parameters and, hence, might not be
seen for arbitrary parameters. Case 3 suggests that there are more cases when the degen-
eration to the Painlevé XXXIV holds. This is an interesting question and warrants further
investigation. We also note that a similar limit to the Painlevé XXXIV equation was recently
obtained from the fourth Painlevé equation [CH20].

As remarked earlier, in the generalized Meixner case we have used the same scaling of the
independent variable and ansatz for the expansions as in [MC19], motivated by the relation
given in Theorem 1. Another interesting question is that of which scalings of independent
variables with which assumed forms of asymptotic expansions will lead to other Painlevé
equations appearing. Through this, we may identify cases when double scaling limits will
lead to degenerations between Painlevé equations for other systems appearing in similar
ways in the theory of orthogonal polynomials. We hope that the geometric approach taken
in [DFS] might shed some light on these questions through a connection to the geometric
picture of degenerations between Painlevé equations.

Acknowledgements

AD acknowledges the support of the MIMUW grant to visit Warsaw in January 2020; AS is
supported by a University College London Graduate Research Scholarship and Overseas Re-
search Scholarship. AS also acknowledges the support of the MIMUW grant to visit Warsaw
in February 2020; this visit was essential for the success of the project. GF acknowledges the
support of the National Science Center (Poland) via grant OPUS 2017/25/B/BST1/00931.

References

[CH20] Y. Chen, P. Han, A degenerate Gaussian weight with Fisher-Hartwig singularities,
preprint 2020 (available on ResearchGate).

9



[Chi78] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach
Science Publishers, New York-London-Paris, 1978, Mathematics and its Applica-
tions, Vol. 13.

[DFS] A. Dzhamay, G. Filipuk, A. Stokes, Discrete Painlevé equations on the A
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