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A B S T R A C T 

We propose a new method for fitting the full-shape of the L yman- α (L y α) forest 3D correlation function in order to measure the 
Alcock-Paczynski (AP) effect. Our method preserves the robustness of baryon acoustic oscillations (BAO) analyses, while also 

pro viding e xtra cosmological information from a broader range of scales. We compute idealized forecasts for the Dark Energy 

Spectroscopic Instrument (DESI) using the Ly α autocorrelation and its cross-correlation with quasars, and show how this type 
of analysis impro v es cosmological constraints. The DESI L y α BA O analysis is expected to measure H ( z eff ) r d and D M 

( z eff )/ r d 
with a precision of ∼ 0 . 9 per cent , where H is the Hubble parameter, r d is the comoving BAO scale, D M 

is the comoving angular 
diameter distance, and the ef fecti ve redshift of the measurement is z eff � 2.3. By fitting the AP parameter from the full shape 
of the two correlations, we show that we can obtain a precision of ∼ 0 . 5 − 0 . 6 per cent on each of H ( z eff ) r d and D M 

( z eff )/ r d . 
Furthermore, we show that a joint full-shape analysis of the Ly α auto and cross-correlation with quasars can measure the linear 
growth rate times the amplitude of matter fluctuations in spheres of 8 h 

−1 Mpc, f σ 8 ( z eff ). Such an analysis could provide the first 
ever measurement of f σ 8 ( z eff ) at redshift z eff > 2. By combining this with the quasar autocorrelation in a joint analysis of the 
three high-redshift two-point correlation functions, we show that DESI could be able to measure f σ 8 ( z eff � 2.3) with a precision 

of 5 − 12 per cent , depending on the smallest scale fitted. 

Key words: methods: data analysis – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he vast amount of cosmological data from spectroscopic surv e ys is
sually compressed into summary statistics such as the correlation 
unction or power spectrum. These statistics can be directly used to 
easure cosmological parameters; ho we ver, it is common to split

he inference into two steps (e.g. Beutler et al. 2011 ; Ross et al.
015 ; Alam et al. 2017 ; eBOSS Collaboration 2020 ). A template is
rst used to model the power spectrum or correlation function in 
rder to measure a fe w rele v ant quantities that contain most of the
osmological information. These measurements are then used to fit 
osmological parameters for some model, for example flat � Cold 
ark Matter ( � CDM), in combination with other probes, usually 

he cosmic microwave background (e.g. from Planck Collaboration 
020 ). This approach is used because it contains minimal assump-
ions, and the full two-point statistic is compressed into a few well
nderstood physical quantities. 
Measuring the scale of the acoustic peak from the baryon acoustic 

scillation (BAO) signal is one of the most widely used compression 
ethods. This is usually done by splitting the template into a peak

nd a smooth component for the correlation function, or wiggles and 
o-wiggles components for the power spectrum. The coordinates 
f the peak (or wiggles) component are then re-scaled in order to
t the BAO scale from the data. This method has been used to
easure the BAO scale using the galaxy distribution at redshifts 
 E-mail: andrei.cuceu.14@ucl.ac.uk 

C  

t  

r

2021 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
 � 1 (e.g. Eisenstein et al. 2005 ; Cole et al. 2005 ), the quasar
QSO) distribution at redshifts 0.8 < z < 2.2 (e.g. Ata et al. 2018 ),
nd the L yman- α (L y α) forest at redshifts 2 < z < 3 (e.g. Busca
t al. 2013 ; Slosar et al. 2013 ; Kirkby et al. 2013 ; Font-Ribera et al.
014 ). 
The Ly α forest consists of a series of absorption lines bluewards

f the Ly α emission peak in spectra of high-redshift quasars (e.g.
ynds 1971 ; Rauch 1998 ). The forest appears due to absorption by
eutral hydrogen between the quasar and us, which means it traces
he intergalactic medium. This makes it a great tool for cosmology
s it probes the distribution of matter at redshifts ( z � 2) that are
enerally hard to access with other probes (see e.g. Croft et al. 1999 ;
cDonald et al. 2000 ; Croft et al. 2002 ; Viel, Haehnelt & Springel

004 , for early cosmological applications). 
A common way to extract more information from the two- 

oint statistics of discrete tracers is to fit the full shape (instead
f just the peak component) in order to measure the growth rate
f structure through redshift space distortions (RSD; e.g. Blake 
t al. 2011 ; Beutler et al. 2012 ; Reid et al. 2012 ; Samushia et al.
014 ). This approach is not possible for the Ly α forest because
e have to marginalize over an unknown velocity gradient bias 
hich is degenerate with the growth rate. This bias appears because
e work with the two-point statistics of flux, which has a non-

inear mapping to the directly distorted field of optical depth (see
cDonald 2003 ; e.g. Slosar et al. 2011 ; Gi v ans & Hirata 2020 ;
hen, Vlah & White 2021 ). Therefore, an RSD analysis using

he Ly α forest 3D correlation function has so far been out of

each. 
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The analysis of the Ly α 3D autocorrelation function (Ly α × Ly α)
nd its cross-correlation with the quasar distribution (Ly α ×QSO)
as evolved considerably since they were first used to measure the
AO peak from Baryon Oscillation Spectroscopic Surv e y (BOSS)
ata (Busca et al. 2013 ; Kirkby et al. 2013 ; Slosar et al. 2013 ;
ont-Ribera et al. 2014 ). A physical model for the correlations was

ntroduced by Bautista et al. ( 2017 ) and du Mas des Bourboux et al.
 2017 ). This model includes the effect of metal line contamination
nd that of high column density (HCD) systems. With the extended
OSS (eBOSS) analyses, the Ly α signal from the Ly β section of

he forest was also used, first through its correlation with Ly α signal
n the Ly α section (de Sainte Agathe et al. 2019 ), and then through
ts correlation with the QSO distribution (Blomqvist et al. 2019 ; du

as des Bourboux et al. 2020 ). Even though major advancements
ave been made in modelling and understanding the 3D Ly α × Ly α
nd Ly α ×QSO statistics, so far they have only been used to measure
AO. 
In this work, we investigate the potential for extracting more

osmological information from the 3D distribution of the Ly α forest
hrough the Alcock–Paczynski (AP) effect (Alcock & Paczynski
979 ; Hui, Stebbins & Burles 1999 ; McDonald & Miralda-Escud ́e
999 ; McDonald 2003 ). This appears due to the choice of fiducial
osmology which is used to transform the measured angles and
edshifts into comoving coordinates. If this fiducial cosmology is
ifferent from the true cosmology, the measured correlation will have
n extra anisotropy. Thus isolating this anisotropic AP contribution
llows us to determine the true background cosmological model.
ome of this AP signal is measured through anisotropic BAO
nalyses, by measuring two distinct scales along versus across the
ine of sight. Ho we ver, this distortion affects the whole correlation
unction. Therefore, the first objective of this article is to complement
tandard L y α BA O analyses with AP constraints from a broader
ange of scales. 

The two Ly α forest correlation functions (L y α × L y α and
y α ×QSO) are some of our best probes of the Universe at redshifts
.8 < z < 4. Ho we ver, there is big potential for a third correlation
unction in this redshift range: the quasar autocorrelation (QSO ×
SO). As mentioned abo v e, this has already been used to measure
oth BAO and the growth rate of structure at effective redshifts z eff 

 1.6. With the start of the Dark Energy Spectroscopic Instrument
DESI) surv e y, we will hav e new quasar catalogues with about 0.7
illion expected to be at redshifts z > 2.1 (DESI Collaboration 2016 ).
his opens up the potential of performing a joint analysis of the three
orrelation functions (Ly α × Ly α, Ly α × QSO, and QSO × QSO)
or the first time. Jointly fitting the full shape of all three correlations
ould allow us to take full advantage of the synergies between them,

nd lead to more precise and robust constraints. Our second goal
n this work is to investigate how such an analysis could be per-
ormed and study its benefits, including the potential for measuring
SD. 
We start by introducing our methodology for template-fitting the

ull shape of the Ly α forest correlation function in Section 2. We
lso compare our approach with that used in past analyses of discrete
racers. After that, in Section 3 we perform a forecast analysis to
emonstrate how the AP effect can be measured from the full shape
f the correlation while preserving the robust BAO measurement.
e also demonstrate the usefulness of such a measurement in con-

training cosmological parameters in a flat � CDM model. Finally, in
ection 4 we forecast a joint analysis of the three high-redshift two-
oint (high −z 3 × 2pt) correlation functions (L y α × L y α, L y α ×
SO, and QSO × QSO) in order to study their synergies and

howcase the potential benefits of such an analysis. 
NRAS 506, 5439–5450 (2021) 
 M E T H O D  

ur model of the 3D correlation function is based on the framework
ntroduced by Kirkby et al. ( 2013 ) and used in all Ly α forest BAO
nalyses. Our approach is meant to extend these analyses to also
nclude information from the broadband. We use a template power
pectrum and introduce parameters that re-scale its coordinates.
 fit to the data allows us to place constraints on these scale
arameters. The resulting measurements can be transformed into
onstraints on cosmological parameters. We start by introducing
hese scale parameters in Section 2.1. After that, we introduce the
omponents of the template in Section 2.2, and compare our approach
o BAO analyses and previous full-shape analyses. In Section 2.3, we
ntroduce our models for the Ly α forest autocorrelation, its cross-
orrelation with quasars, and the quasar autocorrelation. Finally, in
ection 2.4 we showcase the effects of our scale parameters on the
y α forest correlation function. 

.1 Scale parameters 

hen computing the 3D correlation function, we transform the
bserved redshift and angular separations ( �z, �θ ) into comoving
oordinates ( r || , r ⊥ 

). For positions i and j , at redshifts z i and z j and
eparated by an angle �θ , we define the radial coordinates as (du

as des Bourboux et al. 2020 ) 

r || = [ D C , fid ( z i ) − D C , fid ( z j )] cos 
�θ

2 
, 

 ⊥ 

= [ D M , fid ( z i ) + D M , fid ( z j )] sin 
�θ

2 
, (1) 

here D M 

( z) is the comoving angular diameter distance and D C ( z) =
 

∫ z 
0 d z /H ( z ) is the radial comoving distance, with c as the speed of

ight and H ( z) as the Hubble parameter. The fid term indicates that
e use a fiducial cosmology to compute these distances. If the true

osmology is different from the fiducial one, the ratio between the
nferred line of sight and transverse distances will be different from
he true ratio. This means we will observe an apparent anisotropy
n the measured correlation, which is the Alcock–Paczynski effect
e wish to measure (Alcock & Paczynski 1979 ). Note ho we ver,

hat there are other sources of anisotropy, such as RSD. In order to
easure the AP effect, we have to correctly model and marginalize
 v er all other anisotropies. 
When building a model for the correlation function, we follow

ast Ly α forest BAO analyses and use a template power spectrum
omputed using a fixed cosmology. Following Kirkby et al. ( 2013 ),
e allow for small differences between the template and measured

osmologies by using general coordinate transformations of the form
 || −→ r ′ || ( r || , r ⊥ 

, z) and r ⊥ 

−→ r ′ ⊥ 

( r || , r ⊥ 

, z). 
The most commonly used parametrization for anisotropic re-

calings is given by: 

 

′ 
|| = q || r || , r ′ ⊥ 

= q ⊥ 

r ⊥ 

, (2) 

here ( q || , q ⊥ 

) re-scale the coordinates along and across the line of
ight, respecti vely. Ho we ver, we wish to isolate the AP effect which
hanges the ratio r ⊥ 

/ r || . Therefore, we define the parameters: 

( z ) ≡ q ⊥ 

( z ) 

q || ( z ) 
and α( z ) ≡ √ 

q ⊥ 

( z ) q || ( z ) , (3) 

here φ( z) re-scales the ratio: r ′ ⊥ 

/r ′ || = φ r ⊥ 

/r || , and is meant to
easure the AP effect. On the other hand, α( z) re-scales the product

 

′ 
⊥ 

r ′ || = α2 r ⊥ 

r || , which translates into an isotropic re-scaling of ξ .
he effect of these parameters becomes clearer when we consider
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heir impact on the radial and transverse coordinates through small 
eviations around φ = 1, α = 1: 

r ′ || = αr || − φ − 1 

2 
r || + O[( φ − 1) 2 , ( α − 1) 2 ] , 

 

′ 
⊥ 

= αr ⊥ 

+ 

φ − 1 

2 
r ⊥ 

+ O[( φ − 1) 2 , ( α − 1) 2 ] . (4) 

he α parameter produces the same effect on both r || and r ⊥ 

,
hich corresponds to isotropic re-scaling. On the other hand, φ
roduces small changes that are directly opposite in r || versus r ⊥ 

,
hich corresponds to anisotropy in ξ . We study the effect of these
arameters on the correlation function in 2.4. 
These quantities are an intermediate step between fitting the cor- 

elation function and constraining cosmological parameters. Having 
efined the scale parameters we will use, we turn our attention to the
emplate and the application of these parameters. 

.2 Two-component full-shape parametrization 

e construct our model based on the separation of the BAO feature
rom the rest of the correlation. This is achieved by starting with
 template isotropic linear power spectrum for an assumed fiducial 
osmology, computed using CAMB (Lewis, Challinor & Lasenby 
000 ). This template power spectrum is decomposed into a peak 
or wiggles) component, P peak ( k , z eff ), and a smooth (or no-wiggles)
omponent, P smooth ( k , z eff ), using the method described in Kirkby
t al. ( 2013 ). The reason for this separation is that BAO is a clear
eature that can be used as a standard ruler; it has been studied
 xtensiv ely and we know that for the Ly α forest it is very robust
hen it comes to contaminants (e.g. Cuceu, Font-Ribera & Joachimi 
020 ). Therefore we consider it advantageous to separate this feature, 
ecause it will make it easier to study and understand the information
ontained in the rest of the correlation (i.e. in the broadband), 
nd how it is affected by contaminants (e.g. HCDs and continuum 

tting). 
The full transformed correlation in the original coordinates ( r || , 

 ⊥ 

, z) is given by: 

full ( r || , r ⊥ 

, z) = ξpeak ( r 
′ 
|| , r 

′ 
⊥ 

, z) + ξsmooth ( r 
′′ 
|| , r 

′′ 
⊥ 

, z) , (5) 

here the transformed coordinates of the peak component ( r ′ || , r 
′ 
⊥ 

)
re allowed to be different from the transformed coordinates of 
he smooth component ( r ′′ || , r 

′′ 
⊥ 

). For comparison, in BAO analyses
e would fix the smooth component: ( r ′′ || , r 

′′ 
⊥ 

) = ( r || , r ⊥ 

), whereas
ast full-shape analyses did not use the peak-smooth decomposition, 
hich would be equi v alent to fixing the two sets of transformations

o be the same: ( r ′′ || , r 
′′ 
⊥ 

) = ( r ′ || , r 
′ 
⊥ 

). 
As we have two sets of coordinate transformations, we will need 

wo sets of ( φ, α) parameters. The AP effect distorts the entire
orrelation, and φ is meant to measure this anisotropy. Therefore, 
oth the smooth and peak components are affected by φ in the same
ay. This means that we would ideally sample only one φ parameter 

hat re-scales both components. Ho we ver, as we wish to understand
he cosmological value added by re-scaling the broadband, and also 
tudy how each parameter is affected by contaminants, we will 
eep them separate. Going forward we will use the notation φs 

or the smooth component and φp for the BAO peak component. 
 measurement of φ corresponds to a measurement of: 

P : φ( z ) = 

F AP ( z ) 

F 

fid 
AP ( z ) 

= 

D M 

( z ) H ( z ) 

[ D M 

( z ) H ( z )] fid 
, (6) 

here the AP parameter is defined as the ratio of two distances
 AP ( z) = D M 

( z)/ D H ( z), with D H ( z) = c / H ( z). 
On the other hand, the α parameter has different interpretations 
or the peak and smooth components. We not only need to account
or the different expansion histories between the template and the 
ata, but also for the features that set the scale we measure. We
enote the parameter that isotropically re-scales the peak as αp and 
he equi v alent parameter for the smooth component as αs . In the case
f the BAO peak, the rele v ant scale is the size of the sound horizon
t the end of the drag epoch, r d . The isotropic scale of the peak
omponent, αp , corresponds to a measurement of: 

AO : αp ( z) = 

√ 

D M 

( z) D H ( z) /r 2 d 

[ D M 

( z) D H ( z) /r 2 d ] fid 
. (7) 

On the other hand, αs is harder to identify with one clear
eature. The scale of matter–radiation equality ( k eq ) is a feature
hat contributes to αs , and has successfully been used to constrain
osmology from the power spectrum (Baxter & Sherwin 2021 ; 
hilcox et al. 2021 ). Ho we ver, it is not clear that it is the only feature

hat contributes to the isotropic scale of the broadband. Furthermore, 
he effect produced by αs is very similar to that of the Ly α flux bias,
hich could lead to the two parameters being hard to disentangle.
herefore, we will not focus on the cosmological interpretation of 
s in this work, and leave it to future studies to determine if this
arameter could be useful. 
In past galaxy full-shape analyses there was no smooth/peak 

ecomposition, and the isotropic scale parameter was interpreted 
sing r d (e.g. Beutler et al. 2017 ). This is based on the approximation
hat most of the signal comes from the BAO peak. This means we
an measure αp very precisely, but not αs , so the measurement of
 parameter α = αp = αs would be dominated by signal from the
eak. By fitting two different parameters we will be able to test this
ssumption. 

Finally, for clarity we sho w ho w our new set of parameters ( φs ,
s , φp , αp ) would be treated in BAO and galaxy full-shape analyses: 

Standard BAO analyses: ( φs , αs ) fixed to (1 , 1) , 

Galaxy full-shape: ( φs , αs ) fixed to ( φp , αp ) , 

Two-component Ly α

full-shape (this work): ( φs , αs , φp , αp ) all free . 

(8) 

In the rest of this work, we show the effects of φs and αs on the
orrelation function, study the potential for measuring them using 
he Ly α forest and its cross-correlation with quasars, and show their
sefulness for constraining cosmology. Ho we v er, we leav e it to future
ork to investigate how they interact with contaminants and potential 

ystematic errors that may affect them. 

.3 Correlation function model 

ur models for the Ly α forest autocorrelation and its cross- 
orrelation with quasars follow du Mas des Bourboux et al. ( 2020 ),
o we ver we use simplified versions with no contaminants or distor-
ion due to the effect of continuum fitting. The Ly α forest analyses
f the auto and cross-correlation have so far only been done using
odels with linear-order perturbations. For L y α × L y α, a small

cale non-linear correction term is also used, with the parameter 
alues calibrated using simulations (Arinyo-i-Prats et al. 2015 ). 
n the other hand, full-shape analyses of QSO × QSO typically 
se higher order perturbation theory (e.g. Taruya, Nishimichi & 

aito 2010 ). In this work, we restrict ourselves to linear order
erturbation theory. Therefore, the full anisotropic power spectra of 
 y α × L y α ( P Ly α), L y α × QSO ( P ×) and QSO × QSO ( P QSO ) are
MNRAS 506, 5439–5450 (2021) 
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iven by: 

 Ly α( k, μk , z) = b 2 Ly α(1 + βLy αμ2 
k ) 

2 F 

2 
nl,Ly αP fid ( k, z) , (9) 

 ×( k, μk , z) = b Ly α(1 + βLy αμ
2 
k ) 

× ( b QSO + f ( z) μ2 
k ) F nl,QSO P fid ( k, z) , (10) 

 QSO ( k, μk , z) = ( b QSO + f ( z) μ2 
k ) 

2 F 

2 
nl,QSO P fid ( k, z) , (11) 

here b Ly α and b QSO are the linear biases of the Ly α forest and
uasars, respectively, f ( z) is the logarithmic growth rate, and μk =
 || / k , with the wavenumber k , and its projection along the line of
ight, k || . 

The RSD parameter of the Ly α forest is given by: 

Ly α = 

b η, Ly αf ( z) 

b Ly α
, (12) 

here b η, Ly α is the velocity divergence bias. As b η, Ly α and f ( z)
l w ays appear together in the Ly α forest RSD term, they are
ompletely degenerate. Therefore, we use the parameter βLy α to
efine the RSD term of the Ly α forest, and we marginalize o v er
t instead of b η, Ly α . This is meant to separate the degeneracies
f different parameter combinations, and to clearly differentiate
etween nuisance parameters ( b Ly α , b QSO , βLy α) and the parameters
f interest ( φ, f ). We also note that the symmetries of equation (10)
ean that when fitting only the cross-correlation, b Ly α is fully

egenerate with b QSO , and similarly βLy α with f ( z)/ b QSO . 
The small-scale non-linear correction for Ly α, F 

2 
nl,Ly α , is given by

he model introduced by Arinyo-i-Prats et al. ( 2015 ). Ho we ver, this
as only been tested and applied to the Ly α forest autocorrelation,
nd not for the cross-correlation. Therefore, we only apply this term
or Ly α × Ly α. On the other hand, the term F nl, QSO , which models
he quasar non-linear velocities, is used for both the cross-correlation
nd the quasar autocorrelation. Following Percival & White ( 2009 ),
his is given by: 

 nl,QSO ( k || ) = 

√ 

1 

1 + ( k || σv ) 2 
, (13) 

here σ v is a free parameter representing the rms velocity dispersion.
We also model the non-linear broadening of the BAO peak by

pplying the term P nl, peak to the peak component of the power
pectrum, P peak ( k , z eff ), following Eisenstein, Seo & White ( 2007 ).
his term is given by: 

 nl,peak = exp [ −k 2 || � 

2 
|| / 2 − k 2 ⊥ 

� 

2 
⊥ 

/ 2] , (14) 

here k ⊥ 

is the projection of the wavenumber k across the line of
ight, and the smoothing scales ( � || , � ⊥ 

) are fixed to the values
6.42, 3.26) h −1 Mpc (Kirkby et al. 2013 ). 

We use the VEGA library 1 to compute model correlation functions
sing the same template power spectrum (and fiducial cosmology)
s in du Mas des Bourboux et al. ( 2020 ). VEGA is a new, impro v ed
ersion of the BAO fitter in the PICCA 2 library that was used in eBOSS
 y α BA O analyses. 

.4 Impact on the correlation function 

e investigate how the parameters we introduced ( φs , αs , φp , αp )
hange the Ly α forest autocorrelation function using the model
 https://github.com/andreicuceu/vega 
 https:// github.com/igmhub/ picca 

q  
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resented abo v e. We sho w the ef fect produced by these parameters in
ig. 1 , using contour plots of the correlation function. For each plot,
e show a model correlation computed using a 20 per cent smaller
alue of a given parameter on the left and 20 per cent higher value
n the right, while the other parameters are kept fixed to one (scale
arameters) or their best fit (nuisance parameters) from du Mas des
ourboux et al. ( 2020 ). Note that such changes are extreme, and
hosen only to clearly showcase the effect of varying the parameters.
he coordinate re-scalings we use are only approximations that
ork for values close to the template cosmology (parameter values

round 1). 
The first two rows of Fig. 1 show the effect of the four parameters

e introduced, with the φ parameters on the left-hand side and the
sotropic scale parameters on the right-hand side. The top row shows
he parameters that only affect the BAO peak, φp and αp , while
eaving the broad-band component mostly unchanged. The former
roduces an anisotropy in the BAO scale (top left-hand panel),
eading to a different position of the peak along versus across the
ine of sight. The latter isotropically re-scales the BAO peak (top
ight-hand panel). On the other hand, the two plots in the middle
o w sho w the parameters that only affect the smooth component,
s and αs , while leaving the BAO peak unchanged. φs changes

he anisotropy of the smooth component (middle left-hand panel).
ote that ξ is anisotropic even for φs = 1 due to RSD. We will
eed to marginalize o v er this effect if we want to measure φs . The
s parameter isotropically re-scales the smooth component (middle

ight-hand panel) without affecting the position of the BAO peak. 
Finally, the bottom row of Fig. 1 shows the effect of re-scaling the

mooth and peak components at the same time by fixing φs = φp 

bottom left-hand panel) and αs = αp (bottom right-hand panel).
his means that the peak and broadband are entangled, leaving
 measurement of α harder to interpret. This is what past full-
hape analyses of discrete tracers have measured, but using different
arametrizations. 

 A P  FORECASTS  F O R  T H E  LY  α FOREST  

e start our investigation of a potential full-shape analysis from
he Ly α forest by analysing simulated correlation functions. We use
hese mock correlations to test our proposed two-component full-
hape analysis, and forecast how well DESI will be able to measure
he four scale parameters we introduced. 

.1 Mock data 

e compute model correlation functions for L y α × L y α and
y α ×QSO as described in Section 2.3. The models are com-
uted using the best-fitting parameter values from eBOSS DR16
 b Ly α = −0.117, βLy α = 1.669, b QSO = 3.73, f = 0.97,
v = 6.86 h −1 Mpc), except for the scale parameters, which are all

et to equal one. We use these models as our simulated data. For the
urposes of this work, we wish to perform a forecast analysis, and
herefore we do not add noise to the fiducial data vector. 

We use covariance matrices computed from mock data sets by Farr
t al. ( 2020 ). These mocks where created using the LyaCoLoRe
ackage, 3 which uses an initial Gaussian random field to simulate
y α forest transmitted flux skewers and adds the relevant small-
cale power and RSD. The mocks were used to create full sky
uasar catalogues containing ∼3.7 million QSOs abo v e redshift
 https:// github.com/igmhub/ LyaCoLoRe 

https://github.com/andreicuceu/vega
https://github.com/igmhub/picca
https://github.com/igmhub/LyaCoLoRe
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Figure 1. Contour plots of the Ly α forest autocorrelation function ( r 2 ξ ) in terms of the radial coordinates along and across the line of sight ( r || , r ⊥ ). Each plot 
shows the correlation function computed using a smaller value of the given parameter on the left-hand column and a higher value on the right-hand column. The 
left-hand column shows the effect of the φ parameters which change the anisotropy of the correlation (the AP effect). The right-hand column shows the effect of 
the α parameters which change the isotropic scale of the correlation. The top row shows the scale parameters for the peak component ( φp and αp ). This is what 
BAO analyses measure. The middle row shows the parameters that re-scale the smooth component ( φs and αs ). We aim to measure both the BAO parameters 
and the broad-band parameters. Finally, the bottom row shows the effect of changing the parameters for the peak and smooth components at the same time ( φs = 

φp and αs = αp ). This is what past spectroscopic galaxy clustering analyses (e.g. BOSS and eBOSS) measure when fitting the full shape of the correlation. 
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Figure 2. Forecast constraints on the four scale parameters in our two-component full-shape analysis from Ly α × Ly α and Ly α × QSO. In the left-hand 
panel, we compare the posterior distributions of the BAO peak parameters αp and φp obtained using a BAO only analysis and our full-shape method. The very 
good agreement between the two shows that we can isolate the robust BAO information when performing a full-shape analysis. In the right-hand panel we show 

posterior distributions of the broad-band scale parameters φs and αs for different minimum separations used for the fits. This shows that we can obtain much 
better constraints on the Alcock–Paczynski parameter ( φ) from the smooth component compared to those from the BAO peak. 
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 = 1.8. These simulated data products were used to compute the Ly α
orest autocorrelation function, its cross-correlations with QSOs,
he QSO autocorrelation, and the rele v ant cov ariance matrices. In
rder to compute a covariance matrix rele v ant for DESI, we use the
 xpected DESI surv e y area of 14 000 square deg 2 , and assume it will
easure roughly ∼1.1 million QSOs abo v e redshift z = 1.8 (DESI
ollaboration 2016 ). We then compute a factor that re-scales the
ovariance matrix ( f cov ) to match the expected DESI number density
 n DESI ) and area ( A DESI ): 

 cov = 

(
n Mock 

n DESI 

)2 
A Mock 

A DESI 
, (15) 

here n Mock and A Mock are the number density and area of the
ock correlation computed by Farr et al. ( 2020 ), and the factor
e compute is f cov � 4. This factor is based on the fact that Ly α

orest measurements are still limited by shot noise, and therefore the
umber density needs to be accounted for alongside the area, which
ccounts for cosmic variance. We also validate it by comparing our
osmological constraints with the forecasts from DESI Collaboration
 2016 ) in Section 3.3. The DESI simulated covariance matrix is
hen given by C DESI = f cov C Mock , based on the mock covariance,
 Mock . 
We assume that there is no cross-covariance between Ly α ×

 y α and L y α ×QSO (du Mas des Bourboux et al. 2017 ), as has
een standard with L y α BA O analyses so far . We use a Gaussian
ikelihood, and compute posterior distributions using the Nested
ampler PolyChord 4 (Handley, Hobson & Lasenby 2015a , b ).
e use the recommended setup (live points = 25 × number of

arameters, num repeats = 3 × number of parameters) when
unning PolyChord . When fitting each correlation independently,
e sample the parameters: { φp , αp , φs , αs , b Ly α , βLy α} for the

utocorrelation, while the cross-correlation has one extra parameter
 σ v ). For the cross we do not sample the QSO bias and RSD
arameters due to the degeneracies with the Ly α parameters (see
ection 2.3). When performing joint fits, we also sample b QSO and
 https://github.com/PolyChord/PolyChordLite 
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 ( z); ho we ver, we treat f ( z) as a nuisance parameter in this section,
nd only focus on measuring φs . 

.2 Scale parameters from a two-component full-shape analysis

hen creating our method for a two-component full-shape analysis,
ur first goal was to preserve the robust BAO information that we
ormally measure by re-scaling only the peak component. In order
o check if our method succeeded in isolating this information,
e fit the mock data using a BAO type model where we fix the

mooth component, and only re-scale the peak. We then compare the
osterior distributions of the BAO peak scale parameters ( φp and αp )
o the posteriors obtained from the full-shape analysis. The results
re shown in the left-hand panel of Fig. 2 . We show the constraints
or a joint analysis of Ly α × Ly α and Ly α × QSO. We find that our
ethod arrives at BAO measurements in very good agreement with

lassic BAO analyses, which means that by re-scaling the smooth
omponent we do not influence the measurement of the position of
he acoustic peak. 

Our next goal for these forecasts is to understand the constraining
ower we have on the smooth component scale parameters, φs and
s . To this end, we consider a few different fitting strategies. As
iscussed abo v e, before an actual measurement of these parameters,
 full analysis of potential systematic errors needs to be performed.
his study would inform the different analysis choices that need to be
ade in order to obtain robust measurements. One of these choices

s the smallest scale that we fit. For past Ly α forest BAO analyses,
his has been chosen to be r min = 10 h −1 Mpc. This choice is not as
mportant for BAO analyses because the BAO peak is a large-scale
eature, and so, is not affected by small-scale contaminants. Ho we ver,
hen attempting to measure scale parameters using the broad-band

omponent, these small scales have the potential to provide a lot of
nformation. This is both because of the extra data points, and also
ecause these data points at small separations have higher signal-to-
oise. Therefore, we test a fe w dif ferent v alues of r min that represent
he range of possible options. We showcase the best-case scenario
here we are not affected by systematic errors all the way down to
0 h −1 Mpc, a worst case scenario where we have to cut the small

art/stab1999_f2.eps
https://github.com/PolyChord/PolyChordLite
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Figure 3. Forecast posterior distributions on cosmological parameters in 
flat � CDM using different scale parameter measurements from the Ly α
forest correlation function. Measurements of the AP parameter ( φ) only 
constrain the matter fraction m 

, while the isotropic BAO scale measures 
m 

and the combination H 0 r d . The AP measurement from the broadband 
( φs ) is significantly better compared to the one from the BAO peak ( φp ). 
Therefore, the impro v ed m 

measurement leads to much tighter constraints 
when combined with the BAO measurement. 
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cales and r min = 50 h −1 Mpc, and an intermediate case where we cut
o r min = 30 h −1 Mpc. The lower value was chosen based on the value
sed by L y α BA O analyses, ho we ver, it might be too optimistic
iven current understanding of the Ly α correlation functions (see 
ection 5 for discussion). On the other hand, the choice of the upper
alue was made because we might start to lose BAO information 
hen removing scales above 50 h −1 Mpc (Kirkby et al. 2013 ). 
The forecast broad-band scale parameter results (again for Ly α ×

 y α and L y α ×QSO) are shown in the right-hand panel of Fig. 2
or different r min . Fig. 2 also highlights the difference in constraining
ower between the AP parameter and the isotropic scale parameter. 
t shows that, using the BAO peak, we can obtain very good
easurements of the isotropic scale parameter, αp (the 68 per cent 

onfidence region is at a precision of ∼ 0 . 5 per cent ). Ho we ver, we
o not hav e v ery good constraining power when it comes to the
P parameter, φp , for which the 68 per cent confidence region is at a
recision of ∼ 1 . 6 per cent . This is in contrast to the AP measurement
rom the smooth component, where even in the worst case scenario 
he 68 per cent confidence region is at a precision of ∼ 0 . 9 per cent ,
nd in the best case scenario it is at ∼ 0 . 3 per cent . This shows the
arge potential gain in cosmological information from adding this 
P measurement from the broadband. 

.3 Cosmological forecasts 

e show the benefits of extracting more information from the Ly α
orest 3D correlation functions by performing a simple cosmological 
nalysis using the forecast measurements obtained abo v e. We use 
 flat � CDM model, and we first model each of the measured
arameters individually, in order to understand how each of them 

onstrains cosmology. The cosmological interpretations of the scale 
arameters in terms of distances are given by equations (6) and 
7). Therefore, in order to complete our model, we just need the
xpressions for D M 

and H ( z) in a flat � CDM cosmology. The
omoving angular diameter distance is given by: 

 M 

( z) = c 

∫ z 

0 

d z ′ 

H ( z ′ ) 
, (16) 

nd the Hubble parameter is given by the Friedmann equation: 

H ( z) 2 

H 

2 
0 

= m 

(1 + z) 3 + � 

+ r (1 + z) 4 . (17) 

n flat � CDM, the dark energy fraction can be computed from
he matter and radiation fractional densities: � 

= 1 − m 

− r . 
e also model the radiation fraction assuming a CMB temperature 
 CMB = 2.7255 K (Fixsen et al. 1996 ; Fixsen 2009 ), and a fixed
eutrino sector. 5 This means the only free parameters in H ( z) are H 0 

nd m 

. 
For the AP parameter, we have a ratio of distances: D M 

/ D H (equa-
ion 6), which means the Hubble constant cancels out. Therefore, in 
at � CDM, φ corresponds to a measurement of m 

. On the other
and, for αp we have a product of distances divided by the scale of the
ounds horizon squared: D M 

D H /r 
2 
d . As each of the two distances has

 factor of 1/ H 0 , we are left with the product H 

2 
0 r 

2 
d , which means the

wo parameters are fully degenerate. Therefore, with αp we measure 
 combination of m 

and the product H 0 r d . 
We use the αp , φp , and φs measurements presented abo v e to

onstrain the rele v ant cosmological parameters. For φs we use 
 We use N eff = 3.046, with 2 massless species and one massive with m ν = 

.06 eV that contributes to m 

. 

6

t
c

he result from the fit with r min = 30 h −1 Mpc, and we again use
olyChord to compute the posterior distributions. The constraints 
n αp , φp , and φs translate into measuring H ( z eff ) r d and D M 

( z eff )/ r d 
ith a precision of ∼ 0 . 5 − 0 . 6 per cent each. In contrast, the DESI
 y α BA O analysis is expected to measure H ( z eff ) r d and D M 

( z eff )/ r d 
ith a precision of ∼ 0 . 9 per cent 6 (DESI Collaboration 2016 ). The

osmological parameter results using the individual measurements 
nd their combinations are shown in Fig. 3 . 

The constraint from the isotropic BAO measurement ( αp ) leads 
o an elongated posterior with a strong de generac y in the m 

−
 0 r d space. This de generac y is broken when combining with the m 

onstraint from φp to obtain the usual anisotropic BAO measurement. 
o we ver, as noted above, the AP measurement from the broadband

s much better than the one measured from the peak. Therefore, by
dding the φs measurement to the BAO constraint, we can break 
he long correlation and obtain much better joint constraints. While 
he BAO measurements constrain m 

and H 0 r d with a precision of
 . 9 per cent and 3 . 3 per cent (68 per cent credible regions), respec-
ively, adding the AP measurement from the broadband improves 
hese constraints to 2 . 5 per cent and 1 . 0 per cent . 

 A  J O I N T  ANALYSI S  O F  T H E  H I G H -  z 3 × 2 PT  

n Sections 2 and 3, we focused on extracting more information
rom the full shapes of Ly α × Ly α and Ly α × QSO through the
P parameter. We now turn our attention to the other source of

osmological information commonly used in full-shape analyses: 
 We reco v er this precision by translating the measurements of αp and φp 

o H ( z eff ) r d and D M 

( z eff )/ r d , which validates our approach of re-scaling the 
ovariance matrix presented in Section 3.1 

MNRAS 506, 5439–5450 (2021) 

art/stab1999_f3.eps


5446 A. Cuceu et al. 

r  

j  

m  

o  

f

4

A  

w  

n  

a  

m
L

 

m  

(  

S  

a  

h
 

i  

o  

e  

2  

s  

f  

m  

c  

(  

3  

c  

b  

b  

2
 

w  

l  

t  

c  

g  

a  

L

4

W  

w
a  

a  

a  

w  

t
 

c  

L  

d  

a  

e  

d  

i  

p  

w
 

α  

c  

t

4

I  

f  

c  

b  

fi  

f  

B  

c
 

p  

f  

t  

a  

e  

(  

t
a  

o
d
L  

w  

w  

t
1

 

b  

o  

w  

s
f  

(  

t  

F
 

t  

f  

t  

m  

L  

A  

L  

c  

T
 

p  

i  

t  

c  

l  

s  

i
 

3  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/4/5439/6324588 by U
C

L, London user on 26 M
ay 2022
edshift space distortions. In particular, we focus on the ability of
oint analyses of the two Ly α correlations to obtain meaningful

easurements from RSD, and on the potential of a joint analysis
f the three high redshift two point (high- z 3 × 2pt) correlation
unctions: Ly α × Ly α, Ly α × QSO and QSO × QSO. 

.1 Context 

s the Ly α forest v elocity div ergence bias, b η, Ly α , is fully degenerate
ith the logarithmic growth rate, f ( z), we have so far treated RSD as a
uisance that we need to marginalize o v er. In practice, RSD analyses
re sensitive to the combination f σ 8 , where σ 8 is the amplitude of
atter perturbations in spheres of 8 Mpc h −1 . This means that Ly α ×
y α ef fecti vely measures the combinations b Ly ασ 8 and b η, Ly αf σ 8 . 
The Ly α-QSO cross-correlation could in theory be used to
easure f σ 8 . Ho we ver, on its o wn it cannot constrain all the biases

 b Ly α , b η, Ly α , b QSO ) even for BAO analyses where we fix f σ 8 (see
ection 2.3 and du Mas des Bourboux et al. 2020 ). On the other hand,
 joint full-shape analysis of Ly α × QSO and Ly α × Ly α could
elp break these degeneracies and produce an f σ 8 constraint. 
Another option for measuring f σ 8 at high redshift (1.8 < z < 4)

s to use the quasar autocorrelation, QSO × QSO. The growth rate
f structure was first measured from the quasar distribution by the
BOSS collaboration using the SDSS DR14 data (Gil-Mar ́ın et al.
018 ; Hou et al. 2018 ; Zarrouk et al. 2018 ). They performed full-
hape analyses on both the 3D power spectrum and the 3D correlation
unction. With the last eBOSS analysis using SDSS DR16, these
easurements have been updated and now provide a ∼ 10 per cent

onstraint on the growth rate at an effective redshift z eff = 1.48
Hou et al. 2020 ; Neveux et al. 2020 ). The QSO sample contained
43 708 quasars and spanned a redshift range of 0.8 < z < 2.2. For
omparison, DESI will measure about 1.7 million QSOs at z < 2.1 to
e used as tracers only, and another 0.7 million at z > 2.1 to be used
oth as tracers and to measure the Ly α forest (DESI Collaboration
016 ). 
The high redshift QSO × QSO measurement could be combined

ith the two Ly α forest correlations in a joint analysis. This could
ead to impro v ed f σ 8 constraints because of the information from
he cross-correlation, and also due to the potential of the three
orrelations helping break parameter degeneracies. Therefore, our
oal in this section is to study the potential of a high-redshift joint
nalysis of the three two-point (high- z 3 × 2pt) correlation functions:
 y α × L y α, L y α × QSO and QSO × QSO. 

.2 Methods 

e use a template linear power spectrum with a fixed normalization,
hich is proportional to σ 8 . The logarithmic growth rate, f ( z), and σ 8 

re completely degenerate in linear theory (Perci v al & White 2009 ),
nd therefore we are sensitive to the product f ( z ) σ 8 ( z ) for quasars
nd b η, Ly αf ( z ) σ 8 ( z ) for the Ly α forest. As b η, Ly α is unknown, we
ill continue sampling o v er the βLy α parameter, ef fecti vely treating

he Ly α forest RSD term as a nuisance to be marginalized o v er. 
We perform our analysis of the high- z 3 × 2pt using the two-

omponent full-shape method we introduced in Section 2. For the
y α forest auto and cross-correlation we use the same simulated
ata and covariance matrices as described in Section 3. For the QSO
utocorrelation, we also use a covariance matrix computed by Farr
t al. ( 2020 ), re-scaled to the DESI area and number density as
escribed in 3.1. The QSO × QSO simulated correlation function
s given by a fiducial model (no noise) following the best-fitting
NRAS 506, 5439–5450 (2021) 
arameter values from du Mas des Bourboux et al. ( 2020 ), again
ith the scale parameters set to unity. 
Our ef fecti v e parameter v ector for joint fits is given by: { φp ,

p , φs , αs , f σ 8 , b Ly ασ 8 , b QSO σ 8 , βLy α , σ v } . When fitting individual
orrelations we follow the approach we took in Section 3, of fixing
he QSO bias and RSD terms for the cross-correlation. 

.3 Breaking parameter degeneracies 

n our parametrization, the BAO parameters ( φp , αp ) are decoupled
rom the rest of the analysis. Therefore, as long as there is negligible
ross-covariance between the different correlations, there is no
enefit to ( φp , αp ) constraints from performing a joint analysis (i.e.
tting the correlations as one data vector). This has been the case so
ar with L y α × L y α and L y α × QSO in BOSS and eBOSS (e.g.
autista et al. 2017 ; du Mas des Bourboux et al. 2017 , 2020 ), but the
ross-covariance for DESI remains to be studied. 

The benefits of performing the joint analysis should be most
ronounced when it comes to the parameters we measure from the
ull-shape analysis: φs , αs , and f σ 8 . This is first due to the fact that
hese parameters are correlated with some of the nuisance parameters,
nd therefore, a joint analysis would allow us to disentangle their
ffects and lead to impro v ed constraints. This is illustrated in Fig. 4
where we use a minimum separation r min = 30 h −1 Mpc). The top
wo ro ws sho w parameters that are only measured by the Ly α
utocorrelation, while the bottom two rows show parameters that are
nly measured by the QSO autocorrelation. Note that the fact that φs 

oes not seem to be correlated with b η, Ly αf σ 8 in Fig. 4 for Ly α ×
y α is just due to the scale of the axes which is set to display the
eak QSO × QSO constraint. AP and RSD are correlated, ho we ver,
e do not expect these correlations to be the same for galaxies and

he forest because the two tracers cluster differently (e.g. βLy α ∼
.67 while βQSO ≡ f / b QSO ∼ 0.26). 
The cross-correlation requires all four parameters: ( b Ly ασ 8 ,

 η, Ly αf σ 8 , b QSO σ 8 , f σ 8 ), ho we ver, the system is degenerate. On the
ther hand, when we run a joint analysis of the cross-correlation
ith the Ly α autocorrelation (blue) we are able to constrain this

ystem, because of the tight measurements of b Ly ασ 8 and b η, Ly αf σ 8 

rom Ly α × Ly α. This leads to a constraint on f σ 8 of 12 . 8 per cent
68 per cent confidence region), which is tighter than the one from
he QSO autocorrelation of 15 . 4 per cent (bottom left-hand panel of
ig. 4 ). 
The second benefit of performing this joint analysis is due to

he correlation between RSD and the AP effect. When measuring
 σ 8 , we have to marginalize o v er the AP parameter. If we knew
he true background cosmology, i.e. for fixed AP, we would obtain
uch better measurements of the growth rate. Even though the
y α auto cannot directly measure the growth rate, it constrains the
P parameters (especially φs ) very precisely. Therefore, including
 y α × L y α in a joint analysis with QSO × QSO can help break the
orrelation between RSD and AP, and impro v e the f σ 8 constraint.
his is illustrated in the bottom left-hand panel of Fig. 4 . 
The joint high- z 3 × 2pt analysis appears to work well in breaking

arameter correlations when it comes to f σ 8 and φs . Ho we ver, that
s not the case with αs . While performing a joint analysis does lead
o better constraints on this parameter, the posterior remains very
orrelated with all three biases (right-hand column of Fig. 4 ). This
eaves a measurement of αs prone to systematic errors, and therefore
upports our decision from Section 2 not to focus on its cosmological
nterpretation. 

So far in this section, we used a minimum separation of r min =
0 h −1 Mpc to sho w ho w joint analyses help us break parameter
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Figure 4. Posterior distributions of the Ly α forest autocorrelation (green), 
the Ly α auto + cross (blue), the QSO autocorrelation (grey), and the joint 
high- z 3 × 2pt analysis of: Ly α × Ly α, Ly α × QSO and QSO × QSO (red). 
We use a minimum separation r min = 30 h −1 Mpc. The first two rows show 

the parameters measured only by the Ly α forest, while the bottom two rows 
show parameters constrained only by the quasar distribution. L y α × L y α and 
Ly α × QSO cannot constrain RSD indi vidually, ho we ver, a joint full-shape 
analysis of both gives us an fσ8 ( z eff � 2 . 3) constraint that ri v als the one from 

the quasar autocorrelation. 
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Figure 5. Forecast fractional constraints of the growth rate times the 
amplitude of fluctuations ( fσ8 ), as a function of the minimum separation 
( r min ) used for the fits. The black line shows the precision for the quasar 
autocorrelation, while the blue line shows the precision for a joint full-shape 
analysis of Ly α × Ly α and Ly α × QSO. The most precise and robust 
fσ8 ( z eff � 2 . 3) measurement is obtained by jointly fitting all three correlation 
functions (red line). 
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egeneracies. Ho we ver, we also want to test how these potential
 σ 8 measurements would be affected if we could go to smaller scales
e.g. by having better models for non-linearities), or we had to cut
ven more data due to systematic effects on these scales. We show
his in Fig. 5 , where we plot the marginalized fractional 68 per cent
redible regions on f σ 8 from the QSO auto, the Ly α auto + cross, and
he joint analysis of all three correlations. We find that when we can
nclude data at small scales ( r min � 35 h −1 Mpc), the Ly α auto + cross
ombination (blue line) gives us better constraints compared to the 
SO auto (black line). On the other hand, if we have to cut the small

cales ( r min � 35 h −1 Mpc), the Ly α measurement degrades very
ast, and the QSO auto becomes comparable and even slightly better 
t constraining f σ 8 . This gives another advantage for performing a 
oint high- z 3 × 2pt analysis, because it leads to much more stable
nd robust measurements (red line). While the quasar autocorrelation 
an constrain f σ 8 ( z eff � 2.3) with a precision of 12 − 20 per cent de-
ending on r min , the high- z 3 × 2pt analysis can achieve a precision of
 − 12 per cent . 
We have also checked how the two-component full-shape approach 
ffects our results by comparing it with the approach usually taken
n galaxy full-shape analyses of fitting the full correlation as one
omponent (no peak/smooth decomposition). The f σ 8 constraints 
re larger when sampling four parameters (our two-component 
pproach) versus two parameters (the one-component approach used 
n galaxy full-shape analyses). This is to be expected as the model
as more degrees of freedom. Ho we ver, the ef fect is very small when
t comes to the high- z 3 × 2pt constraints. We found that using a
alue of r min = 30 h −1 Mpc, we obtain a precision of 7 . 9 per cent
n f σ 8 with the two-component approach, while with the one- 
omponent approach we obtain a precision of 7 . 6 per cent . This
oes not significantly affect our conclusions in this work, but the
wo-component approach might be more advantageous when the 
ffects of contaminants are studied, as it decouples the peak from the
roadband (see Section 5). 
Finally, in Fig. 6 we emphasize how useful a full-shape high-

 3 × 2pt analysis would be. We show in blue some of the current
 σ 8 measurements from different surv e ys (Beutler et al. 2011 ; Blake
t al. 2012 ; Ross et al. 2015 ; Okumura et al. 2016 ; Alam et al.
017 ; Pezzotta et al. 2017 ; eBOSS Collaboration 2020 ). All of these
easurements are at redshifts z < 2, with most of them at z < 1.
he three points on the right show our DESI forecasts of f σ 8 ( z eff )
t an ef fecti ve redshift z eff � 2.3. We use a conserv ati ve r min =
0 h −1 Mpc. This analysis would allow us to study the growth rate of
osmic structures at higher redshifts than ever before. 

The results in this section show the potential of a joint full-shape
nalysis of the three correlation functions: Ly α × Ly α, Ly α × QSO,
nd QSO × QSO, when it comes to measuring RSD and the AP effect.
he next steps required for such an analysis are to impro v e the model
y adding contaminants and better non-linear models, and to study 
he potential systematic errors that would affect this measurement, 
specially on the Ly α forest side where a full-shape analysis of the
D correlation function has never been done. We discuss these in
ore detail in the next section. 

 DI SCUSSI ON  A N D  N E X T  STEPS  

n this work, we have shown the potential for extracting more
osmological information from the Ly α forest 3D autocorrelation 
MNRAS 506, 5439–5450 (2021) 
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Figure 6. The growth rate times the amplitude of fluctuations ( fσ8 ) as a function of redshift. The grey line is the best-fit of CMB measurements from Planck. 
The blue points are some of the existing fσ8 measurements. All of these measurements are at redshifts z < 2, with most of them at z < 1. The three points at high 
redshift are forecast constraints from DESI for the (high redshift) quasar autocorrelation, Ly α auto and cross-correlations, and the joint high- z 3 × 2pt analysis. 
Note that all three measurements are at the same ef fecti ve redshift (given by the middle point), but are plotted at slightly different redshifts for visualization 
purposes. 
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unction and its cross-correlation with quasars. We took the template
tting approach where we use a template power spectrum to measure
 few physically meaningful quantities that are easy to interpret and
ranslate to cosmological constraints given some model. In our case,
hese quantities are the anisotropic scale parameter ( φ), the isotropic
cale of the BAO peak ( αp ) and the growth rate times the amplitude
f fluctuations in spheres of 8 h −1 Mpc ( f σ 8 ). This approach should
implify the study of the impact of contaminants because we only
ave to deal with a few parameters whose effect we understand
ery well. 7 Such a study is required before a full-shape analysis
f the Ly α forest correlation functions is performed on real data,
o we ver, it is outside the scope of this work. Here we wish to briefly
o o v er the most important contaminants, and mention what we
an do to minimize their impact. In particular, the most rele v ant
ontaminants for the measurement of AP and RSD are those that
ntroduce anisotropies. 

High column density (HCD) systems are a significant contaminant
or the Ly α forest due to their broad absorption profile and long
amping wings (Font-Ribera & Miralda-Escud ́e 2012 ; Rogers et al.
018 ). Ho we v er, the y also trace the underlying density field, which
eans they can add extra signal if modelled correctly. In past BOSS

nd eBOSS analyses, large damped Ly α systems (DLA) that could
e identified were masked (e.g. Bautista et al. 2017 ; du Mas des
ourboux et al. 2020 ). Ho we ver, clustering measurements could
otentially be biased by masking part of the spectrum as the mask
s correlated to the density field. This was not a problem for BAO
nalyses, but its impact on a full-shape analysis needs to be tested.
n the other hand, the small HCDs were left in the data and had to be

ncluded in the model. Rogers et al. ( 2018 ) showed that HCDs can be
uccessfully modelled down to the smallest scale considered in this
ork ( ∼10 h −1 Mpc), by using a simple model in linear theory, with
 separate bias and RSD parameter , con volved with Voigt profiles for
he damping wings. 

The Ly α forest auto- and cross-correlation functions are contam-
nated by metal transitions with rest-frame wavelength close to that
f the Ly α transition, that add correlations between themselves and
 This is in contrast to a direct fit of cosmological parameters where a study 
f contaminants would be much harder. This is due to the larger parameter 
pace, but also because it is harder to identify and separate the effects of these 
arameters on the correlation function. 
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t  

NRAS 506, 5439–5450 (2021) 
he Ly α forest or quasars. They are also contaminated by metal lines
hat are further away in rest-frame wavelength through their own
utocorrelation. These metal lines have been successfully modelled
or BOSS and eBOSS (Bautista et al. 2017 ; du Mas des Bourboux
t al. 2017 ; Blomqvist et al. 2019 ; de Sainte Agathe et al. 2019 ; du
as des Bourboux et al. 2020 ) by adding extra correlations with

he same form as Ly α × Ly α and Ly α × QSO, and with their own
ias and RSD parameters. Ho we ver, these still need to be tested at
ESI-level precision, and for the full-shape analysis we also have to

est how the metal lines affect the measurement of the AP parameter
nd RSD. 

Another important source of contamination are QSO redshift
rrors, which could introduce a systematic bias if not modelled
orrectly. Non-linear peculiar velocities also have big impact on
he anisotropy because they create fingers of god. For Ly α forest
nalyses (and in this work), these two effects have been modelled
sing simple damping terms with a Lorentzian or Gaussian profile
ased on Perci v al & White ( 2009 ). For a full-shape analysis, we
ight need to use more complex models as was done for past quasar

uto analyses (e.g. Hou et al. 2020 ; Neveux et al. 2020 ). Quasar
adiation effects (also known as the transverse proximity effect)
re also an important source of contamination for the Ly α-quasar
ross-correlation. This is because the quasar radiation increases the
onization fraction in the surrounding gas, leading to less Ly α forest
bsorption (Font-Ribera et al. 2013 ). This effect has been modelled
nalytically and was shown to not have a significant impact on BAO
nalyses (du Mas des Bourboux et al. 2017 , 2020 ); ho we ver this
eeds to be tested for a full-shape analysis as well. 

The final effect we consider is the fitting of the quasar continuum,
hich remo v es power on scales larger than the size of the forest. This
roduces a distortion in the measured correlations along the line of
ight, and therefore introduces another source of anisotropy. This
as been successfully modelled through a distortion matrix (Bautista
t al. 2017 ) for BOSS and eBOSS. A similar approach could be
ufficient for a full-shape analysis using DESI, but this needs to be
ested. 

All of the contaminants presented here have been studied before
nd are modelled in existing L y α BA O analyses. Ho we ver, what
till needs to be understood is how they interact with the new
arameters we wish to study ( φs and f σ 8 ). Additionally, du Mas des
ourboux et al. ( 2020 ) found that adding broad-band polynomials to

he model can impro v e the fit of the correlations, which could point

art/stab1999_f6.eps
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o contaminants that are not modelled well enough, or new effects 
hat have not been considered. The addition of these polynomials 
as shown not to have a significant impact on BAO measurements, 
ut they cannot be used for full-shape analyses because we want to
xtract broad-band information, not marginalize over it. Therefore, 
 careful analysis on the impact of contaminants on AP and RSD
easurements needs to be performed in order to determine if and 

n what scales current models are appropriate for a full-shape 
nalysis of the Ly α forest correlations. Furthermore, an analysis 
f potential systematic errors would inform the decisions related 
o which scale-parameters to sample (e.g. whether to have two 
eparate φ parameters). We also mention that even in the worst- 
ase scenario where we have to cut the small scales due to some
ignificant systematic bias, we have shown that a full-shape analysis 
f the high- z 3 × 2pt could still lead to state-of-the-art cosmological
easurements at redshifts 1.8 < z < 4. 

 C O N C L U S I O N S  

he L yman- α (L y α) forest 3D autocorrelation function (Ly α ×
y α) and its cross-correlation with the quasar (QSO) distribution 
Ly α × QSO) are currently some of the best cosmological probes of
he Universe at redshifts 1.8 < z < 4. However, so far they have only
een used to measure the BAO scale. In this work, we proposed to
xpand the cosmological information extracted from these statistics 
y fitting the full shape of these correlations in order to measure the
lcock–Paczynski (AP) parameter. 
In Section 2, we introduced our model for fitting the correlation 

unction using a two-component approach, where we decomposed 
he template power spectrum into a peak component which contains 
he BAO information, and a smooth component. We then re-scaled the 
wo components independently in order to decouple the measurement 
f the BAO peak from the rest of the analysis. In Section 3, we studied
he potential for measuring the AP effect from the broadband of the
y α forest correlations. We used simulated correlation functions and 
ock DESI covariance matrices within a simple linear model with no 

ontaminants. We showed that our two-component full-shape method 
uccessfully isolates the measurement of the BAO peak by comparing 
t to a BAO only analysis. Furthermore, we showed that using this
dealized approach, a joint full-shape analysis of Ly α × Ly α and 
y α × QSO from DESI could measure the AP parameter at an effec-

ive redshift z eff � 2.3 with a precision of 0 . 3 per cent − 0 . 9 per cent
68 per cent credible regions). Compared to the expected DESI Ly α
AO constraint on AP, which is ∼ 1 . 6 per cent , we were able to
btain roughly two to four times better precision. In Section 3.3, we
ho wed ho w this measurement would help constrain cosmological 
arameters in a flat � CDM model. In the conserv ati ve case where
e fit to a smallest scale of 30 h −1 Mpc, the inclusion of the AP
easurement from the broadband gives us roughly three times better 

recision on the rele v ant cosmological parameters compared to the 
AO measurement. 
In Section 4, we studied the potential for measuring the logarith- 
ic growth rate times the amplitude of fluctuations in regions of
 h −1 Mpc ( f σ 8 ) at high redshift (1.8 < z < 4) using the DESI Ly α
orest and quasar position measurements. An f σ 8 measurement at 
edshifts z � 1.6 is unprecedented. Neither the Ly α autocorrelation 
r the Ly α-QSO cross-correlation can constrain f σ 8 independently, 
ue to a degenerate system of parameters. Ho we ver, in Section 4.3 we
howed that their combination (Ly α × Ly α + Ly α × QSO) is able 
o break these parameter degeneracies and obtain a measurement of 
 σ 8 ( z eff ) at an ef fecti ve redshift z eff � 2.3. This joint analysis was
ble to obtain constraints of 7 per cent − 22 per cent (68 per cent 
redible regions) depending on the minimum separation used. For 
omparison, with the high redshift quasar autocorrelation (QSO ×
SO) from DESI, we were able to obtain a precision of 12 per cent −
0 per cent . Furthermore, we showed that combining the two Ly α
orrelations with the quasar autocorrelation in a joint analysis of the
hree high-redshift two-point correlation functions (high- z 3 × 2pt) 
ould give us the most precise and robust measurement of f σ 8 at

hese redshifts. We found that a high- z 3 × 2pt analysis of the full
ESI data could be able to measure f σ 8 ( z eff � 2.3) with a precision
f 5 per cent − 12 per cent , depending on the minimum separation 
sed. 
In this work, we have shown how to extract more information from

he 3D distribution of the Ly α forest through the AP parameter. We
ave also shown it is possible to measure f σ 8 through a joint full-
hape analysis of Ly α × Ly α and Ly α × QSO. While the DESI
 y α BA O analysis is expected to measure H ( z eff ) r d and D M 

( z eff )/ r d 
ith a precision of ∼ 0 . 9 per cent , adding the AP measurement from

he broadband could give us constraints of ∼ 0 . 5 per cent . On the
ther hand, performing a high- z 3 × 2pt analysis would allow us for
he first time to measure f σ 8 at high redshift. 
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