Journal of Software Engineering Research and Development, 2021, 9:4, doi: 10.5753/jserd.2021.816

© This work is licensed under a Creative Commons Attribution 4.0 International License..

An Approach for the Generation of Multi-Objective Algorithms

Applied to the Integration and Test Order Problem

Giovani Guizzo [University College London | g.guizzo@ucl.ac.uk)

Thaina Mariani [Federal University of Parana
Silvia Regina Vergilio [Federal University of Parana

marianithaina@gmail.com)
silvia@inf.ufpr.br)

Aurora Pozo [Federal University of Parana | aurora@inf-ufpr.br)

Abstract

Multi-Objective Evolutionary Algorithms (MOEAs) have been successfully applied to solve hard real software
engineering problems. However, to choose and design a MOEA is considered a difficult task, since there are several
parameters and components to be configured. These aspects directly impact the generated solutions and the perfor-
mance of MOEAs. In this sense, this paper proposes an approach for the automatic generation of MOEAs applied to
the Integration and Test Order (ITO) problem. Such a problem refers to the generation of optimal sequences of units
for integration testing. The approach includes a set of parameters and components of different MOEAS, and is imple-
mented with two design algorithms: Grammatical Evolution (GE) and Iterated Racing (irace). Evaluation results
are presented, comparing the MOEAs generated by both design algorithms. Furthermore, the generated MOEAs
are compared to two well-known MOEAs used in the literature to solve the ITO problem. Results show that the
MOEAs generated with GE and irace perform similarly, and both outperform traditional MOEAs. The approach
can reduce efforts spent to design and configure MOEAsS, and serves as basis for implementing solutions to other

software engineering problems.

Keywords: Multi-Objective Evolutionary Optimization, Grammatical Evolution, Iterated Racing, Software Testing

1 Introduction

The testing activity is usually performed in different phases.
In the unit testing phase, each module (unit) is individually
tested. After this, in the integration phase, the units are com-
bined and tested in order to identify software design faults
related to the interaction of units. In many cases, there are de-
pendency relations between the units, that is, to test a unit A,
another unit B is required. When dependency cycles among
units exist it is necessary to break the cycle and to construct a
stub for B, if B is not available. The stubbing process may be
an expensive and error prone task. Hence, to reduce stubbing
costs, it is very important to determine the best sequence of
units to be tested and integrated. Additionally, there are some
factors to take into consideration, such as the number of re-
quired methods, attributes, and parameters to be emulated in
the stub, besides other ones associated with the software de-
velopment (Assuncdo et al., 2014), making this task a multi-
objective problem that cannot be easily solved by the tester
in a short time. Such problem is known in the literature as In-
tegration and Testing Order problem (ITO) and appears in
different contexts such as, component based development,
object-oriented development, aspect-oriented development,
and software product line engineering.

The ITO problem has been investigated in the SBSE
(Search-Based Software Engineering) field (Harman et all,
2012) by using different search-based algorithms (Wang
et all, 2011)). The most promising ones are the Multi-
Objective Evolutionary Algorithms (MOEAs) (Assuncio
et all, 2014; |Vergilio et al), 2012a), as they can solve hard
real-world problems impacted by many conflicting objec-
tives. Moreover, MOEAs are widely used for software engi-
neering problems in general. Surveys of the SBSE field (Har-

man et al), 2012; Colanzi et al!, 2019) report that evolutionary
algorithms are the preferred and most used ones.

In spite of this preference and large use, the design of a
MOEA is not always easy. MOEAs are distinguished by dif-
ferent components, which directly affect the generated solu-
tions. Furthermore, they have a wide range of parameters to
be configured (Eiben and Smif, 2011)). For example, MOEAs
have as components the search operators, the replacement
and archiving procedures. They also have as parameters: pop-
ulation size, crossover and mutation probabilities. In this
work, the word design refers to the choice and implementa-
tion of the best components and parameters configuration. In
this way, the great number of alternatives makes the MOEA
design a hard task. The best combination of components and
parameters may depend on the problem being solved.

Moreover, it is not always possible to know a priori what
is the best choice among existing MOEAs. In the SBSE liter-
ature, the best MOEA for a problem is usually determined
by conducting evaluation experiments, which requires ef-
fort and increases costs. Regarding the ITO problem, AsA
suncao et al) (2014) conducted experiments with three dif-
ferent MOEAs - NSGA-II, SPEA and PAES - and no one of
them proved to be the best to solve the problem considering
all instances and contexts.

To reduce such difficulties faced by software engineers, in
this paper, we propose an approach for the automatic gener-
ation of MOEAs applied to the ITO problem. The approach
includes an offline training process, performed by a design
algorithm that receives as input an instance of the ITO prob-
lem reported in the literature (Assuncdo et all, 2014). The
output is a MOEA that can be used by the tester on other
instances. To allow the use of different design algorithms
the approach encompasses a set of MOEA parameters and

mailto:g.guizzo@ucl.ac.uk
mailto:marianithaina@gmail.com
mailto:silvia@inf.ufpr.br
mailto:aurora@inf.ufpr.br

components to be combined. It is implemented with irace
(from Iterated Racing algorithms) (Lopez-Ibaiiez et al), 2011))
and Grammatical Evolution (GE) (Ryan et al., 1998). irace
defines a “parameter space” in which the parameters, their
types, ranges and constraints are defined. GE is a type of Ge-
netic Programming (GP) (Koza, 1992) that uses a grammar
containing a set of rules and values to guide the evolutionary
process in the generation of programs. In this sense, by us-
ing the grammar of GE or the parameter space of irace, it
is possible to map the components and parameters to be used
in the automatic design.

The approach is evaluated with seven systems and pro-
duces results statistically better (in terms of hypervolume)
than MOEAs commonly used to solve the ITO problem in
the literature. A comparison between both design algorithms
shows that they present similar results. These results provide
some evidence for the benefits of automating the design and
configuration of algorithms in SBSE. Furthermore, our re-
sults can be seen as evidence for the effectiveness of GE
and the competitive results between GE and irace, which are
ongoing matters of discussion in the community (Whigham
et all, 2017b; Ryan, 2017; Whigham et al., 20174; O’Neill
and Nicolau, 2017).

An empirical evaluation of our approach was conducted
using seven testing instances of the ITO problem in order to
answer the following research questions:

* RQI1 — How are the results of the MOEASs generated by
our approach in comparison to the MOEAs used in the
literature? and,

* RQ2 — How are the results of the MOEAs generated
using GE in comparison to the results of the MOEAs
generated using irace?

RQI concerns comparing MOEAs generated by our ap-
proach with the algorithms NSGA-II and SPEA, used in
the ITO problem literature. RQ2 concerns comparing the de-
sign algorithms GE and irace. As a result, we observe that
both design algorithms have similar performance and our ap-
proach generates MOEAs that are better or similar than the
traditional ones, considering some statistical tests and hyper-
volume, the main quality indicator used in the optimization
field to compare MOEAs (Zitzler et al, 2003, 2007).

Some works on automatic design of Evolutionary Algo-
rithms (EAs) are based on GE (Lourenco et al., 2012, 2013,
2015) and irace (Bezerra et al), 2014, 2015). These papers
use different parameters and components, which are success-
fully combined to evolve better algorithms. One of these pa-
pers addresses the automatic design of MOEAs specialized
in some benchmark instances using irace (Bezerra et al.,
2014, 2015). With respect to the use of such algorithms in
SBSE, the work of Mariani et al. (2016) proposes a GE-based
hyper-heuristic, named GEMOITO, for generating MOEAs
to solve the ITO problem. The encouraging results of all the
aforementioned works motivated the work herein described.
In this sense, our work has the following main contributions:

» Use of a set of components and parameters for MOEAs
design that includes elements not used in related work;
* Introduction of an approach that can be used to solve
software engineering problems formulated as permuta-

Guizzo et al. 2020

tion problems. The main idea is to ease the design of
MOEAs, reducing efforts; and

* Application and evaluation of the approach to the ITO
problem. Such an evaluation reports results comparing
two design algorithms: GE and irace. We have not
found works comparing them.

This paper is organized as follows. Section P reviews sub-
jects related to this work: the ITO problem, automatic design
of algorithms, and MOEAs. Section J introduces the pro-
posed approach, describing its main elements. Section H re-
ports the conducted empirical evaluation and the discussion
of the results. Section [contains related work. And finally,
Section [presents the conclusion and describes some future
work.

2 Background

This section introduces the ITO problem and reviews back-
ground on automatic design of algorithms and MOEAs.

2.1 Integration and Testing Order problem

A testing strategy usually includes a set of phases with dis-
tinct goals. First of all, the unit testing focuses on each unit,
the smallest part of a system to be tested. After this, an in-
tegration testing phase is performed to find problems in the
interaction among the units. In this phase, the units are com-
bined and tested according to the testing plans. During such
integration it is necessary to determine an order to integrate
and test the units. Such an order impacts the sequence in
which units are developed; the design and execution of test
cases; the order in which integration faults are revealed; and
the number of required stubs for the units that possibly are
not available, but from which the unit being tested depends
on.

The stubbing process can be expensive and error-prone.
The cost can be impacted by many factors such as number of
attributes and parameters to be emulated, number of return
types and so on. When there is a cyclic dependency between
two classes, such a dependency needs to be broken and a stub
needs to be built. In this sense, it is important that the class
associated with the smaller cost, given for instance by the
number of attributes and operations, appears first in the in-
tegration order. Due to this, we find in the literature many
strategies to solve the Integration and Testing Order Prob-
lem (ITO) (Wang et al., 201 1j; Briand et alJ, 2002a). The most
promising works are based on Multi-Objective Evolutionary
Algorithms (MOEAs) (Vergilio et al), 20124; |Assuncéo et al.,
2014). The proposed strategies are generally based on graphs
that represent the dependencies among the units. A depen-
dency cycle in the graph, which needs to be broken, corre-
sponds to a required stub. The problem is to determine the
best sequence of units associated with minimal stubbing cost.

In this work, we use the formulation of the ITO problem
proposed by Assuncdo et al| (2014), as well as the same
benchmark. A static model representing the dependencies
among the units and costs (associated with the number of pub-
lic classes attributes and methods to be emulated) is provided

to the algorithm by using matrices. These matrices are gener-
ated previously and reused during the optimization process.
If the tester wants to use a new program, this program static
model must be generated and given as input (as described
in Assuncdo et al| (2014)).

Since the ITO problem is related to permutations of units,
which form testing orders, the chromosome is represented by
a vector of integers where each vector position corresponds
to a class. The size of the chromosome is equal to the number
of units of each system. Thus, let each unit be represented
by a number, an example of a valid solution for a problem
with five units is {2, 4, 3, 1, 5}. In this example, the first unit
to be tested and integrated would be the unit represented by
number 2. The second, the unit represented by number 4, and
so on. Each unit can appear only once.

We use two objective functions to evaluate the solu-
tions (Assuncao et al), 2014), which measure the dependen-
cies between server and client units. Hence, considering that:
(1) a unit is a module to be tested that can be either classes
or aspects; (ii) m; and m; are two coupled modules; and (iii)
the operation term represents class methods, aspect methods
and/or aspect advice, the used coupling measures are defined
as follows:

* Number of attributes (A) = The number of attributes lo-
cally declared in m; when references or pointers to in-
stances of m; appear in the argument list of some oper-
ations in m;, as the type of their return value, in the list
of attributes (data members) of m;, or as local param-
eters of operations of m; (adapted from [Vergilio et al|
(2012a); Briand et al) (2002a)). This complexity mea-
sure counts the (maximum) number of public attributes
that would have to be handled in the stub if the depen-
dency were broken.

* Number of methods (O) = The number of opera-
tions/methods (including constructors) locally declared
in m; that are invoked by operations of m; (adapted
from Briand et all (2002a)). This complexity measure
counts the number of public operations that would have
to be emulated if the dependency were broken.

In the literature, the ITO problem is usually defined in
terms of the testing process cost (Assuncao et al), 2014; As-
suncao et al,, 2013). By reducing the number of attributes and
operations to be emulated, the tester can reduce the overall
cost of the integration testing activity, i.e., these metrics serve
as surrogates for the cyanstubbing process cost. It is hard to
estimate the actual human effort for emulating such items,
but using metrics in such granularity, number of attributes
and number of operation/methods, as opposed to number of
stubs can provide the tester a better way of estimating the
cost. Moreover, the ITO problem formulation, commonly
found in the literature, does not address the fault revealing
capability of the testing process, just the cost of stubbing.

The input data of the MOEAs consist of matrices that are
read from a text file. They are matrices associated to (i) de-
pendencies between units; (ii) measure A; and (iii) measure
O. Then it is necessary to establish a trade-off between these
values. The dependency matrix is used to define precedence
constraints and the others to calculate the fitness of each so-
lution, where the sum of dependencies between the classes

Guizzo et al. 2020

for each measure corresponds to an objective. It is impor-
tant to highlight that there are classes with a great number
of operators and few attributes, and vice-versa; the goal is to
minimize both objectives.

2.2 Automatic Design of Algorithms

The design of an algorithm is related to all decisions
taken during its definition and considering a specific prob-
lem (Eiben and Smit, 2011)). Algorithms used for solving
hard optimization problems commonly have several parame-
ters and components to be defined by the user (Lopez-Ibaiiez
et al), 2011)). The chosen values have a great influence on
the algorithm performance, but there is no generic set of
values, since the optimal set depends on the problem being
solved (Eiben and Smit, 2011)). These values are then usually
chosen based on common wisdom of the community(Lopez-
[baiiez et all, 2011)), since finding the appropriate values for
the parameters and components is one of the greatest chal-
lenges in the evolutionary computation field (Eiben and Smit,
2011)).

In the EAs’ context, examples of parameters can be the
population size, crossover and mutation probabilities. Exam-
ples of components are the search operators, such as selec-
tion, crossover and mutation ones. In this sense, the auto-
matic design of algorithms can be very useful, since there is a
great number of alternatives for these parameters and compo-
nents. To this end, we find in the literature different methods
for the automatic design of EAs. More details about existing
methods can be found in the surveys of Eiben and Smif (2011,
2012).

Our approach works with irace and GE. We chose such
algorithms because they are widely used in the literature of
automatic configuration of meta-heuristics (Eiben and Smit,
2011, 2012). The GE algorithm has already been used for
generating EAs (Lourenco et al), 2012, 2013, 2015) and pre-
sented encouraging results. This is one of the main motiva-
tions for its usage. Another advantage of GE is that it allows
a flexible and context-free definition of programs to be gen-
erated by using a grammar. On the other hand, irace uses a
very interesting mechanism based on statistical tests that has
shown good results for multi-objective algorithms (Lopez-
[baiez and Stiitzle, 2012; Bezerra et all, 2014, 2015). Both
algorithms are described in the following.

2.2.1 irace

The Iterated Race algorithm (here called irace) works by
sequentially evaluating the candidate configurations and ex-
cluding the statistically worse. It consists of three main steps,
repeated until a stopping criterion is satisfied, according to
Lopez-Ibafiez et al, (2011)):

1. sampling new configurations according to a particular
distribution;

2. selecting the best configurations from the newly sam-
pled ones by means of racing; and

3. updating the sampling distribution in order to bias the
sampling towards the best configurations.

To sample new configurations (Stepl), the irace algo-
rithm considers two types of parameters: numerical and cat-
egorical, and the sampling distribution of each parameter de-
pends on the parameter type. Numerical parameters have a
normal distribution and categorical parameters have a dis-
crete distribution. The update (Step 3) changes the sampling
by updating the mean and standard deviation for normal dis-
tributions, and the probabilities for the discrete distributions.
This update process guides the distribution in order to in-
crease the probability of selecting the parameters used in
the best configurations when generating new ones (Lopez-
[bafiez et al., 2011)).

In order to select the best configurations (Step 2), the can-
didate ones are evaluated at each step on a single instance.
After each step, the candidates that are significantly worse
than at least another one are excluded. The race is repeated
with the surviving configurations, and continues until a stop-
ping criterion is met. This criterion is generally related to
a number of surviving configurations, a number of used in-
stances or a predefined computational budget (Lopez-Ibafiez
et all, 2011).

In this work we use the irace package[ﬂ of the R Proj ectd,
the same one used in Bezerra et al, (2014, 2015). In order
to be executed, the irace package requires three inputs: a
configuration file, the set of instances to be used and the
parameter space. The parameter space is where the param-
eters used in the automatic configuration, their types, ranges
and constraints should be defined (Lopez-Ibaiiez et all, 201 1)).
Moreover, the statistical analysis is performed using the non-
parametric Friedman statistical test (Derrac et al., 2011).

Figure [l| presents an example of a parameter space defined
in a parameter file for the irace package. This example is
for the automatic configuration of an Ant Colony Optimiza-
tion (ACO) algorithm, and is included in the irace package
along with other configuration files as a usage sample.

PARAMETER FILE FOR THE ACOTSP SOFTWARE

name switch type values [conditions (using R syntax)]

algorithm -- c (as,mmas,eas,ras,acs)

localsearch "--localsearch " ¢ (0, 1, 2, 3)

alpha "--alpha " r (0.00, 5.00)

beta "--beta " r (0.00, 10.00)

rho "--rho " r (.01, 1.00)

ants "--ants " i (5, 100)

nnls "--nnls i (5, 50) | localsearch %in% c(1, 2, 3)
qe "--q0 " r (0.0, 1.8) | algorithm %in% c("acs")
dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)
rasrank "--rasranks " i (1, 1e0) | algorithm %in% c("ras")
elitistants "--elitistants " i (1, 750) | algorithm %in% c("eas")

Figure 1. Example of parameter space defined for the irace package

Each parameter has a name, a switch value, a type, values
and conditions (optional). The name of the parameter is an
identifier for later usage in the definition of the conditions.
A condition (after the “||” delimiter) is used to define con-
straints among the parameters. For instance, in the example,
the parameter “nnls” is only used when a local search (pa-
rameter “localsearch”) has received a value between 1 and 3.
The type identifier “c” represents the categorical parameters,
whereas “r” (real) and “i” (int) represent numerical parame-
ters. While categorical parameters can only receive as value
what is given in the “value” field, a numerical parameter can

"https://cran.r-project.org/web/packages/irace/index.
html
2https://wuw.r-project.org/

Guizzo et al. 2020

receive any value in the specified ranges in its value field.
The “switch” field of a parameter is what the algorithm actu-
ally gives as argument to execute.

What the irace package does is to build a sequence of ar-
guments and values. Each argument sequence is what forms
the algorithm configuration. In this sense, a script is defined
in the package configuration file to receive this argument se-
quence and execute the algorithm using such arguments. In
the end, the irace algorithm reads the result printed by the
generated algorithm and updates its state.

Because a statistical test is used to compare the algorithms
of each irace run, at the end of its execution, irace returns
a set of algorithms statistically equal. However, in this pa-
per, we only use the one with the best hypervolume and ex-
ecute the designed algorithm several times instead. We only
choose the best algorithm because the procedure of gener-
ating MOEAs in our approach needs an output of only one
algorithm.

2.2.2 Grammatical Evolution

A GE algorithm can be considered a type of GP, since it is
similarly used to evolve programs (Ryan et al., 1998). How-
ever, while a conventional GP algorithm typically uses a tree
as representation for an individual and applies search opera-
tors to those trees (Koza, [1992), a GE algorithm uses an array
of integers or bits and evolves the solutions similarly to a con-
ventional EA (Ryan et al., 1998). Moreover, aside from the
usual parameters of an EA (e.g. population size, maximum
number of fitness evaluations and others), a GE receives a
grammar file, usually in BNF, to map each solution into a
program. This mapping is called genotype-phenotype map-
ping (GPM) (Barros et al!, 2013).

The evolution is applied to the chromosome (genotype
level), but only the program (phenotype level) can be ex-
ecuted and evaluated by a fitness function. Therefore, the
GPM procedure is needed by the GE algorithm to transform
each chromosome into an executable program. One of the
advantages of GPM is that the genotype space can be freely
explored, maintaining the validity of the phenotype (Barros
et all, 2013). Furthermore, this allows a design of pheno-
type neutral crossover and mutation operators, where differ-
ent genotypes can be mapped to the same phenotype. Next,
we present more details of how this is done, and the default
structure of a GE algorithm.

The common solution representation used by the GE al-
gorithms is an array of integers or bits. If the array of bits
is used, it is first mapped to an array of integers and, then,
this array of integers is mapped to a program. It is possible
to skip this step and use an array of integers directly. Never-
theless, the algorithm reads the grammar file, interprets the
grammatical rules and then uses the integer values of the ar-
ray to decide which values are assigned to each rule. If the
algorithm reaches the end of the integer array, but still needs
more genes to map into production rules, then the wrapping
process is applied. Wrapping consists in consuming genes
(when needed) starting from the beginning of the array when
the end of the array is reached. To illustrate the GPM process,
the following BNF grammar (Figure [) is given for evolving
simple mathematical expressions:

https://cran.r-project.org/web/packages/irace/index.html
https://cran.r-project.org/web/packages/irace/index.html
https://www.r-project.org/

(expr) == (var) | {expr) {op) (expr)
(var) == x|y

(op) = * |/ |+ -

Figure 2. Example of grammar for mathematical expressions

The items between (and) are non-terminal rules, || rep-
resents the logical operator OR, ::= means that the rule can
take any of the next options and the remaining items are ter-
minal nodes. For instance, the rule (var) can take either the
value = or y when mapped to a program. On the other hand,
(expr) can take the value of a single (var) or a composition
of {expr) {(op) {expr). The choice between each option is
given by the genes of the chromosome array of each individ-
ual.

In this work we use an integer array of variable size as
representation for the solutions. This is actually an existing
strategy (Ryan et all, 1998) that might help the algorithm to
eliminate useless genes or reinsert new genes into the chro-
mosomes as the evolution proceeds. For this end, the GE
algorithm employs two distinguishable search operators: 1)
gene duplication operator; and ii) gene pruning/deletion op-
erator. The duplication operator selects a random subarray of
the chromosome and copies it to the end of the chromosome.
The prune operator, on the other hand, selects an index to
truncate the array. These operators are usually applied with
the same probability as the mutation operator and as addi-
tional steps in the evolution.

Summarizing, Algorithm [l| presents the pseudocode of a
conventional GE algorithm. As the algorithm shows, it is
very similar to an EA, aside from the evaluation of the pop-
ulation (GE has the GPM procedure) and the application of
the duplication and prune operators.

Algorithm 1: Pseudocode of a GE algorithm

1 Input: GF — Grammar File;

2 begin
3 population < Initialize the population;
4 programs < Map population to programs using GF’;
5 Execute programs;
6 Assign a fitness value to the solutions of population
according to the output of their respective programs;
7 while stop condition is not achieved do
8 matingPopulation < Select parents;
9 of fspring < Recombine mating Population;
10 Apply gene prune operator to the solutions of
of fspring;
11 Apply gene duplication operator to the solutions of
of fspring;
12 Apply mutation operator to the solutions of of fspring;
13 programs < Map of fspring to programs using G F';
14 Execute programs;
15 Assign a fitness value to the solutions of of fspring
according to the output of their respective programs;
16 population < Perform replacement;
17 end
18 return Best program of population,;
19 end

Guizzo et al. 2020

2.3 Multi-Objective Evolutionary Algorithms

Multi-objective optimization problems have more than one
objective to be optimized Coello et all (2007). In this kind
of problem, usually two or more objectives are in conflict
and cannot be optimized at the same time, i.e., by optimizing
one objective, the value of the other is degraded. Many real
world problems are multi-objective. For example, a car driver
might assume two objectives when taking the best route be-
tween two points: time needed to complete the route and
travel cost.

In this context, Pareto dominance concept is em-
ployed (Coello et al., 2007). In a minimization problem, a
solution x is said to dominate (<) a solution y if Vz € Z :
z(z) < z(y) and if 3z € Z : z(x) < z(y), where z is an
objective in the set of considered objectives Z. If these con-
ditions are not satisfied for both x and y, then such solutions
are said to be non-dominated. The set of all possible non-
dominated solutions in the search space of the problem be-
ing optimized is called the Pareto front (PF’). In most cases
it is not possible to determine the (P F’) for a given problem.
Hence, the algorithms try to find an approximation of this
front, here called best-known Pareto front (P Fyown). Dif-
ferently from a mono-objective EA that yields a single so-
lution at the end of its execution, the result of a MOEA is a
set of non-dominated solutions. Thus, engineers usually have
to decide which solution better fits their needs and/or prefer-
ences.

To evaluate the performance of a MOEA the most used
quality indicator is the hypervolume (Zitzler et al., 2003).
The hypervolume of a PF' is the area dominated by this front
with respect to a reference point. Considering a two objec-
tive optimization problem, each point of the Pareto Front de-
fines a rectangle in the search space. The hypervolume cor-
responds to the area formed by the sum of all rectangles.

In mono-objective EAs the engineer can easily decide
which solutions are the best ones according to their fitness
values in any given moment. However, MOEAs cannot do
this in a straightforward way, because they have several ob-
jectives to evaluate and potentially a great number of non-
dominated solutions. Therefore, some strategies may be ap-
plied to help the decisions that MOEAs take during the evo-
lution process. Usually a fitness calculation is applied to the
cyansolutions so that the comparison between them becomes
possible. For instance, the SPEA2 algorithm (Zitzler et al.,
2001)) uses the concepts of Combined Dominance Strength
(how many solutions a solution dominates and how many
solutions dominate it) and K-th Nearest Neighbour (the dis-
tance to the k-th nearest neighbour) to assign a fitness value
for each solution, whereas NSGA-II (Deb et al), 2002) uses
the concepts of Dominance Depth (rank of the sub-front) and
Crowding Distance (density estimation).

Notice that the fitness evaluation in both examples uses
two kinds of evaluations: 1) a convergence assessment (Com-
bined Dominance Strength and Dominance Depth); and ii) a
diversity assessment (K -th Nearest Neighbour and Crowd-
ing Distance). The convergence regards how close the solu-
tions of a front are to a reference front (usually optimal or
best-known). A good convergence in the search process can
guide the algorithm on finding solutions closer to the refer-

ence Pareto front and can improve the overall performance
of the algorithm. On the other hand, a good search diversity
can prevent the algorithm from falling into a local optimum
and provide a better exploration of the search space. The idea
is to balance both factors during the optimization process in
order to optimize the resulting output. However, this might
be a difficult task and may come along with some drawbacks
(e.g. computational cost).

In addition, there are other parameters and components
that must be taken into account when designing a MOEA.
Some of the most distinguishable parameters are: population
size, archiving size, and mutation and crossover probabili-
ties. The archiving size regards to the size of the archive
used by some MOEAs (Coello et al., 2007) as an external
population to support the evolution process. Furthermore,
the MOEAs components can have different implementations.
For instance, the replacement strategy can be generational or
ranking based. All these details contribute to increment the al-
gorithm complexity, and require a lot of effort from a novice
and non-expert engineer in the optimization field.

Unfortunately, these details largely influence the perfor-
mance of the algorithms, and their design and tuning are
an optimization problem itself (Eiben and Smit, 2011]). This
serves as the main motivation for our approach proposed in
the next section.

3 Proposed Approach

The proposed approach uses offline training to automatically
design a MOEA specialized in the ITO problem. The training
can be performed by using two different algorithms. Figure
shows how the proposed approach works8.

Proposed Approach

Design Algorithm
Components

and Parameters i .
Grammatical Evolution

w Provides

Training
Instance

. irace
Yields

Figure 3. Proposed Approach

Two inputs are used by the approach: the training instance
and the set of components and parameters, which are de-
scribed in detail, respectively in Sections B.2 and B.3. The
instance of the problem is provided by the user, who also
chooses a design algorithm that can be either GE or irace.
Another input is the set of components and parameters, which
are defined in a representation compatible with the selected
design algorithm (grammar or parameter space). This set is
pre-defined, but can be modified or extended if desired. Then,
the design algorithm is executed with the training instance,
and at the end the best MOEA is returned. This MOEA is
used by the tester to solve other ITO instances.

The design algorithms work with a population where each
individual is a MOEA. The fitness is given by some indica-
tor calculated by using the corresponding fronts obtained by

3Source code of our approach at https://github.com/
GiovaniGuizzo/jMetalGrammaticalEvolution.

Guizzo et al. 2020

each individual to the ITO problem. In this work we use hy-
pervolume indicator (Zitzler et al., 2003)).

It is important to emphasise that the GE and irace algo-
rithms work on a higher level of the search. Instead of trying
to find the solution for the problem directly, these two algo-
rithms try to generate the best MOEA that can in turn solve
the problem. Hence, these two algorithms search for MOEAs
in the “MOEA space” using conventional search methods
with which they were proposed (Lopez-Ibanez et all, 2011];
Ryan et al., 1998). Next, we describe the structure of the gen-
erated MOEAS by detailing their main components and the
representation used by each design algorithm.

3.1 MOEA

Algorithm P} shows the structure of a standard MOEA ma-
nipulated and returned by the approach. The components of
each step and their respective parameters are selected by the
design algorithm. These steps are: initialization of the popu-
lation (Line 2), evaluation of the population (Lines 3 and 9),
selection of parents (Line 6), crossover operator (Line 7), mu-
tation operator (Line 8), replacement (Line 10) and archiving
of the individuals (Lines 4 and 11).

Algorithm 2: Template of a designed MOEA

1 begin

2 population < Initialize the population;
3 Evaluate (population);

4 Archive (population);
5

6

7

while stop condition is not achieved do

mating Population < Selection (population);
of fspringPopulation < Crossover
(mating Population);
8 of fspringPopulation < Mutation
(of fspringPopulation);
9 Evaluate (of fspringPopulation);
10 Replacement (of f spring Population, population),
11 Archive (of fspringPopulation);
12 end
13 end

We divide the fitness assignment into three independent
components, one for selection, another for replacement and
one for archiving. By changing these assignments separately,
the design algorithms can find better MOEAs by focusing
on one kind of search at each step. For instance, a selection
component can focus on mating more diversified parents,
whereas a replacement component can focus on making the
most converged solutions to survive.

3.2 Training Instance

A training instance of the ITO problem must be given by the
user, so that the design algorithms can execute the generated
MOEAs. This instance must contain the matrices mentioned
in Section P. This information is later used to formulate a per-
mutation problem, where each unit is represented by its ID.
During the problem solving, the order in which the units ap-
pear in the chromosome determines the order in which they
are integrated and tested. Because ITO is a permutation prob-
lem, the MOEA components and parameters used in the pro-

https://github.com/GiovaniGuizzo/jMetalGrammaticalEvolution
https://github.com/GiovaniGuizzo/jMetalGrammaticalEvolution

posed approach are focused on the permutation representa-
tion.

3.3 Components and Parameters

We chose the parameters and components based on experi-
ments and tuning conducted in related work (Assuncdo et all,
2014; Guizzo et al), 2015; Briand et al., 20024). For instance,
in Guizzo et al! (2015) the authors used three permutation
crossover operators in their online operator selection, which
are also included here.

The parameters and components are categorized regarding
the following MOEA steps: population initialization, selec-
tion, mating, replacement and archiving. Moreover, some fit-
ness assignment strategies are used in the selection, replace-
ment and archiving to guide the evolution. In this sense, the
Fitness Assignment component is defined as a mechanism to
identify which solution is the best one according to all ob-
jectives, but its three usages are completely independent and
can vary according to the best outcome.

Most components and parameters are generic enough to
be used for any problem and by any algorithm (e.g. crossover
and selection operator, type of population initialisation), but
a few components are more specific and were extracted
from existing algorithms (e.g. replacement strategy, archiv-
ing of solutions, fitness evaluation mechanism). We have
extracted and implemented the components and parame-
ters from the following algorithms: NSGA-II (Deb et all,
2002), SPEA (Zitzler et al|, 2001), SPEA2 (Zitzler et al.,
2001)), Multi Objective Genetic Algorithm (MOGA) (Fon-
seca and Fleming, 1993), Pareto Achieved Evolution Strat-
egy (PAES) (Knowles and Corne, 2000), and Indicator Based
Evolutionary Algorithm (IBEA) with hypervolume (Zitzler
et all, 2003). Hence, our approach is able (although unlikely)
to generate each of those algorithms by joining their compo-
nents together during the evolutionary process. If the tester
wants to adapt our approach, for instance by including the
components of the their own algorithm, they just need to im-
plement the components and add them to the grammar (ex-
plained in more details in Section B.4). Next, we present all
these elements in detail.

3.3.1 Population

This element is composed by a Population Size and an Initial-
ization procedure. Population Size specifies the number of
individuals in the population. Initialization defines how the
first population is initialized. It can be done by using Random
or Parallel Diversification ([Talbi, 2009). The latter aims at
generating diversified solutions by initializing the individu-
als in a way that an integer number cannot be repeated at the
same position in another individual of the population.

3.3.2 Selection

The Selection element is related to the selection of parents to
be recombined and defines the Source and Selection Opera-
tor components. Source specifies from where the parents are
extracted. That way, the parents can be selected only from

Guizzo et al. 2020

the current population, or from the archive and population
combined. Selection Operator specifies the strategy used to
select the parents. Random randomly selects two solutions
to be recombined. K-Tournament performs k number of bi-
nary tournaments (comparisons) between random solutions
and chooses the best two to be recombined. In such a case,
the parameter £ is also selected. Roulette Wheel gives a prob-
ability based on the fitness value of a parent, and performs
a selection complying with the probabilities of each parent.
Ranking classifies the solutions based on the fitness value
and selects the best ones to be recombined.

The K-Tournament, Roulette Wheel and Ranking selection
operators use the fitness of each solution to aid the selection.
That way, they use the Fitness Assignment component.

3.3.3 Fitness Assignment

The Fitness Assignment element encompasses the Conver-
gence Strategy component to assess the quality regarding the
convergence of the solutions, and the Diversity Strategy com-
ponent for the tie-breaking of solutions with the same conver-
gence value. Another possibility is the usage of only one kind
of strategy, either convergence or diversity for the evaluation.
If no Convergence Strategy component is selected, then the
Diversity Strategy component becomes the primary metric
for fitness assignment.

There are four possible components for the Convergence
Strategy. Dominance Depth (NSGA-II) (Deb et all, 2002) as-
sesses the convergence quality of the solutions using Pareto
fronts. The first Pareto front has all the non-dominated solu-
tions of the population. The second Pareto has all the non-
dominated solutions excluding the ones in the first Pareto
front. Such process is performed until there are no more solu-
tions. The Dominance Depth of a solution is the Pareto front
number in which it is present, thus the lower the Dominance
Depth value, the better. Dominance Strength (SPEA) (Zitzley
et all, 2001)) computes the number of solutions that a solu-
tion dominates. If a solution dominates many others (greater
strength), then it may indicate that this solution dominates a
great area of the objective space. Raw Fitness (SPEA2) (it
zler et all, 2001)) assesses the convergence quality by com-
puting the sum of the strength values of all the solutions that
dominate a solution. Thus, the lower this value, the less likely
a solution is to be on an easily dominated area of the objec-
tive space. Dominance Rank (MOGA) (Fonseca and Flem-
ing, [1993) computes the number of solutions that dominates
a solution, thus the lower this value, the better.

Regarding the Diversity Strategy, there are four possibil-
ities. Crowding Distance (NSGA-II) (Deb et al), 2002) is
based on the distance between the neighbours solutions in
the objective space. A low crowding distance value means
that the solution is in a crowded area of the objective space,
and possibly brings low diversity to the search (e.g. if used
as a parent for recombination). K-th Nearest Neighbour
(SPEA2) (Zitzler et al., 2001|) assesses the distance from a
solution to its k;j, nearest neighbour solution in the objective
space. The parameter k is defined as in (Zitzler et al), 2001)):

k= +/N + N, where N is the population size and N is the
archive size. Similar to Crowding Distance, it is necessary

to maximize the value the K-th Nearest Neighbour diversity
strategy. Adaptive Grid (PAES) (Knowles and Corne, 2000)
divides the objective space into grids to trace the crowding
degree of different regions. It is possible to diversify the
non-dominated solutions and help to remove excessive non-
dominated solutions located in the crowded grids. The adap-
tive grid value of a solution is the number of solutions in its
grid, thus the lower the value, the more isolated the solution
is. Hypervolume Contribution (Zitzler et al), 2003)) is based
on the hypervolume quality indicator. Briefly, the hypervol-
ume contribution of a solution measures how much a solution
strictly contributes to the hypervolume of the front in which
it is contained. Therefore, the greater the hypervolume con-
tribution of a solution, the bigger the space dominated only
by this solution.

3.3.4 Mating

Mating Strategy (Talbi, 2009) defines the way and how many
off-springs are created in each generation. Generational One
Child and Generational Two Children generate N children at
each generation. The former generates one in each recombi-
nation and the latter generates two. Steady State generates
only one offspring at each generation. Even though Steady
State is usually defined as a replacement strategy (Eiben and
Smith, 2003), here it is defined as a reproduction strategy and
the replacement component is responsible to insert the gener-
ated solution in the population according to the replacement
strategy.

Mating Operators are composed by the Crossover Oper-
ator, Mutation Operator (Eiben and Smith, 2003) and their
probabilities. Since in this paper we are addressing a permu-
tation problem, all the crossover and mutation operators used
here are for permutation representations.

The Crossover Operator creates one or more off-springs
by combining the genes of two parents. In this approach, no
crossover or one of four crossover operators can be selected.
Single Point Crossover selects a random point and cuts the
parents in this point. One half of each parent is merged into
different children. Two Points Crossover has a similar strat-
egy, but two random points are chosen to cut the parents. The
sub-array inside each cutting point of a parent is copied to a
solution, and the remaining genes are selected from the other
parent. Partially Mapped Crossover (PMX) also cuts the par-
ents in two points, but it uses a more complex cyclic proce-
dure to select the genes of the sub-arrays. Cycle Crossover
works by dividing the elements into cycles. A cycle is a sub-
set of elements where each element always occurs paired
with another element of the same cycle when two parents are
aligned. The off-springs are created by selecting alternate cy-
cles from each parent.

A Mutation Operator applies some kind of transformation
in the individual. In this approach, cyanthe alternatives to that
component are no mutation or one of the four following mu-
tation operators: Swap Mutation randomly selects two genes
and swaps their values. Insert Mutation randomly selects a
random value and moves it to a random position in the chro-
mosome. Scramble Mutation randomly selects two genes and
shuffles the values between them. Inversion Mutation ran-

Guizzo et al. 2020

domly selects two genes and inverts the order of the values
appearing between such genes.

3.3.5 Replacement

Replacement represents the strategy to define which individ-
uals survive and compose the next generation. The Genera-
tional strategy defines that the parents are always replaced by
the off-springs in the next generation. This replacement takes
into account the idea of elitism. Briefly, the elitism forces
the survival of a predetermined number of best parents for
the next generation. The Elitism Size is also selected by the
algorithm. If the elitism is indeed selected, then the Fitness
Assignment component is used to determine the best parents
for survival. The Ranking replacement creates a ranking of
the solutions, based on the fitness values that are measured
by the Fitness Assignment component. That way, the best so-
lutions are selected to survive, regardless of being parents or
children.

3.3.6 Archiving

The Archiving element is related to the archiving proce-
dure used to store the solutions. This is employed by
some algorithms such as SPEA2 (Zitzler et al), 2001]) and
PAES (Knowles and Corne, 2000). Sometimes the archive is
called external population, but the purpose is the same: to aid
the search process with another source of solutions for repro-
duction, or simply to store the best solutions found so far. At
each generation, the archive is updated with the newly gener-
ated solutions. In this work the Ranking component is always
used to rank the solutions using the Fitness Assignment com-
ponent, and the best solutions are kept in the archive. It is able
to store dominated and non-dominated solutions. Moreover,
the Archive Size parameter is used to define how many solu-
tions are stored in the archive. In this work, a set of popula-
tion size percentages is used. If such value is zero, no archive
is used by the MOEA.

3.4 Design Algorithms

For the generation, execution, evaluation and selection of
MOEAs the tester can choose between GE and irace. These
algorithms have the same purpose: to generate MOEAs based
on several trials. However, they require different representa-
tions for the elements and components presented in previous
section and specialized for the ITO (permutation) problems.
The GE algorithm generates each MOEA using the following
grammar.

(GA) == (populationSize) (initialization) (selection) (mating)
(replacement) (archive)

(populationSize) ::= 50 | 100 | 150 | 200 | 250 | 300
(initialization) ::= Random | Parallel Diversification
(selection) ::= (selectionOperator) (source) {fitnessAssignment)

(selectionOperator) ::= K Tournament (tournamentSize) | Random |
Roulette Wheel | Ranking

(tournamentSize) == 2 | 4 | 6 | 8 | 10

(source) ::= Population | Archive and Population

(fitnessAssignment) ::= (convergenceStrategy) (diversityStrategy)

(convergenceStrategy) = X |Dominance Rank | Dominance Strength |
Dominance Depth | Raw Fitness

(diversityStrategy) ::= X |Crowding Distance |
K-th Nearest Neighbour | Adaptive Grid |
Hypervolume Contribution

(mating) == (matingOperators) (matingStrategy)

(matingOperators) ::= (crossoverOperator) (crossoverProbability)
(mutationOperator) (mutationProbability)

(crossoverOperator) ::= X | Two Points Crossover |
Single Point Crossover | PMX Crossover | Cycle Crossover

(crossoverProbability) = 1.0 | 0.95 | 0.9 | 0.8 | 0.5

(mutationOperator) ::= X |Swap Mutation | Insert Mutation |
Scramble Mutation | Inversion Mutation

(mutationProbability) ::= 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 0.7
| 0.810.9]1.0

matingStrate, ;= Steady State | Generational Two Children
8 8 Yy
Generational One Child

(replacement) ::= Generational (elitismSize) (fitnessAssignment) |
Ranking (fitnessAssignment)

(elitismSize) == 0 | N* 0.01 | N*0.05 | N*x0.1 | N*0.5
(archive) ::= Ranking (fitnessAssignment) (archiveSize)

(archiveSize) ;= O | N | N*x 1.5 | N * 2

Based on this grammar, the symbol A means empty com-
ponent. If an alternative for a component is not wanted by the
tester, then it can be removed from the grammar and it will
not be used by the GE algorithm. Similarly, if the tester al-
ready has a MOEA and only wants to configure some parame-
ters, then it is necessary to set the components of the MOEA
in the grammar without other alternatives. For instance, to
apply the NSGA-II algorithm and automatically configure it,
the tester must set the replacement rule with only the “Rank-
ing” alternative, the fitness assignment component with only
“Dominance Depth” and “Crowding Distance”, and any other
element that must not change.

Similarly, the parameter space of irace is defined with
all the parameters and components, and can be changed if
desired. The parameter space used by our approach is struc-
tured as follows.

populationSize "--populationSize "
c(50,100,150,200,250,300)
initialization "--initialization "

c("Random","Parallel Diversified Initialization")
selectionOperator "--selectionOperator "

c("K Tournament","Random","Roulette Wheel","Ranking")

tournamentSize "--tournamentSize
c(2,4,6,8,10) | selectionOperator == "K Tournament"
selectionSource "--selectionSource "
c("Population","Archive and Population")
selectionRankingStrategy "--selectionRanking "

c(" ","Dominance Rank", "Dominance Strength", "Dominance
Depth", "Raw Fitness") | selectionOperator != "Random"
selectionDiversityStrategy "--selectionDiversity "

c(" ","Crowding Distance", "K-th Nearest Neighbour",
"Adaptive Grid", "Hypervolume Contribution") |

selectionOperator != "Random"

crossoverOperator
c(" ","Two Points Crossover", "Single Point Crossover",
"PMX Crossover", "Cycle Crossover")

crossoverProbability "--crossoverProbability
c(1.0,0.95,0.9,0.8,0.5) | crossoverOperator != " "

--crossoverOperator

mutationOperator "

c(" ","Syap Mutation","Insert Mutation","Scramble
Mutation", "Inversion Mutation")
mutationProbability "--mutationProbability
¢(0.01,0.02,0.05,0.1,0.2,0.5,0.7,0.8,0.9,1.0) |
mutationOperator != " "reproduction "--reproduction "

--mutationOperator

Guizzo et al. 2020

c("Steady State","Generational Two Children","Generational
One Child")

replacement "--replacement "

c("Generational","Ranking")

elitismSize "--elitismSize "

c(0,0.01,0.05,0.1,0.5) | replacement == "Generational"
replacementRankingStrategy "--replacementRanking "

c(" ","Dominance Rank","Dominance Strength", "Dominance
Depth", "Raw Fitness") | replacement == "Ranking" ||

(replacement == "Generational" && elitismSize != "0O")

replacementDiversityStrategy
c(" ","Crowding Distance","K-th Nearest
Neighbour","Adaptive Grid",

"Hypervolume Contribution") | replacement == "Ranking" ||
(replacement == "Generational" && elitismSize != "0")
archiveSize "--archiveSize "

c(0,1.0,1.5,2.0)

archiveRankingStrategy "--archiveRanking "

c(" ","Dominance Rank","Dominance Strength", "Dominance
Depth", "Raw Fitness") | archiveSize != "0"
archiveDiversityStrategy "--archiveDiversity "

c(" ","Crowding Distance","K-th Nearest Neighbour",
"Adaptive Grid", "Hypervolume Contribution") | archiveSize
t="o"

--replacementDiversity

The grammar used by GE, as well as the parameter space
of irace, were created to ensure the generation of only valid
combinations. This is one of the advantages of using GE al-
gorithms: they can only generate what the grammar allows,
making the resulting solutions always syntactically correct.

4 Empirical Evaluation

As mentioned before, the evaluation of our experimental
evaluation was guided by two research questions. RQ1 com-
pares the MOEAs generated using our approach with the tra-
ditional MOEAs used in the ITO literature. RQ2 compares
both design algorithms GE and irace.

To answer the questions, we use eight real world systems,
also explored in related work (Assuncao et all, 2014; Guizzg
et all, 2015). One was used for training and seven for testing.
They are implemented in Java and Aspect]. Table [l shows
the number of units, dependencies and LOC of each system.
The number of dependencies directly impacts the number of
existing solutions for the problem. AJHSQLDB (first row) is
used only for the training.

Table 1. Systems used in the empirical evaluation

Name Units Dependencies LOC Language
Training

AJHSQLDB 301 1338 68550 Aspect]
Testing

AJHotDraw 321 1592 18586 Aspect]

HealthWatcher 117 399 5479 Aspect]

TollSystems 77 188 2496 Aspect]

BCEL 45 289 2999 Java

JBoss 150 367 8434 Java

JHotDraw 197 809 20273 Java

MyBatis 331 1271 23535 Java

The empirical evaluation is performed in two phases. In
the training phase, the proposed approach is executed in the
training instance ATHSQLDB to automatically generate a set
of MOEAs. Then, in the testing phase, the generated MOEAs
are executed in all testing instances of the problem and are
evaluated.

To answer RQ1, we execute two MOEAs, successfully
used in related work to solve the ITO problem (Assuncio
et all, 2014): i) NSGA-II (Deb et all, 2002); and ii)
SPEA2 (Zitzler et al), 2001}). In order to perform a fair com-
parison, we use the proposed approach with GE to tune these
algorithms. This is another advantage of this approach: it can
also be used to tune algorithms and not only to design new
ones. For this tuning, we adapted a grammar for each algo-
rithm, fixing some key components and parameters of the al-
gorithms, and only letting the other ones vary. We fixed the
replacement as Ranking with Dominance Depth and Crowd-
ing Distance for the NSGA-II grammar, whereas for the
SPEA2 grammar we fixed this component as Generational
with no elitism. If we let the GE tune all elements of NSGA-
IT and SPEA2, then they could lose their main features and
become totally different algorithm implementations. All the
components were implemented with jMetal (Durillo and Ne-
bro, 2011)). The approach was executed once for each algo-
rithm and for the same amount of evaluations (10,000). In
the end, the best configuration was selected and then used in
the testing phase for 60,000 fitness evaluations, as well as the
generated MOEAs. Table 2 shows the configuration of each
algorithm chosen by the approach.

Table 2. Parameters of NSGA-II and SPEA2

Parameter NSGA-II SPEA2
Population Size 50 50
Maximum Fitness Evaluations 60,000 60,000
Crossover Operator PMX PMX
Crossover Probability 100% 95%
Mutation Operator Swap Swap
Mutation Probability 1% 5%
Archive Size - 50

4.1 Training Phase

The system AJHSQLDB was chosen as the training instance
of our approach, because it is the biggest instance. In prelim-
inary experiments, we observed that using an easily solvable
instance usually results in a weak training. Furthermore, we
use only one instance of the problem for the training because
otherwise it would increase the cost of such a phase. We ac-
knowledge that the use of several instances would increase
the training quality, but this is a subject for a future work only
focused on this trade-off.

We execute each design algorithm (GE and irace) 10
times. That way, each run returns one MOEA, for a total of
20 MOEAs. For the GE configuration, we define the param-
eters based on the literature (Lourenco et all, 2013). Table
presents such configuration.

The irace algorithm requires as parameter only a training
budget (number of MOEA evaluations), for which we use the
same amount given to GE: 10,000. In addition, each gener-
ated MOEA is executed by the algorithms for 2,000 fitness
evaluations. We use few fitness evaluations for the training
due to the great computational time needed for this task. Sum-
marizing, each design algorithm is executed 10 times with
10,000 evaluations in each independent run, and each gener-
ated MOEA receives a budget of 2,000 fitness evaluations

Guizzo et al. 2020

Table 3. GE parameters

Parameter Value
Population Size 100
Number of MOEA Evaluations 10,000
Number of Fitness Evaluations by MOEA 2,000
Crossover Operator Single Point Crossover
Crossover Probability 90%
Mutation Operator Integer Mutation
Mutation Probability 1%
Selection Operator Binary Tournament
Pruning Operator Probability 1%
Duplication Operator Probability 1%
Minimum of Genes in the Initial Population 10
Maximum of Genes in the Initial Population 20
Replacement Strategy Ranking

during the training phase.

We analyse the parameters values and the components of
the MOEAs returned in all runs. Based on the 20 obtained
MOEAs, we compute the frequencies that the values appear.
Table [shows, for each parameter and component and for
each design algorithm, the values that appear more often in
the MOEAs.

As seen in Table H, some components and parameters are
clearly dominant, since they appear in the design of the best
MOEAs very often, regardless of which design algorithm is
being used. For example, Steady State mating, Ranking se-
lection operator and Dominance Strength for the selection
procedure are used for all the 20 MOEAs. Other compo-
nents and parameters such as Parallel Diversified initializa-
tion, 100% mutation probability, Archive and Population se-
lection source and Ranking archiving are used for almost ev-
ery obtained MOEA.

Even though the design algorithms obtain similar MOEAs,
some differences can be noted by analysing these frequen-
cies. For instance, using GE, the best MOEAs always use
Inversion Mutation, whereas using irace the best MOEAs
always use Swap Mutation. In addition, irace presents
greater crossover probabilities and a convergence strategy
for the archiving procedure, while the GE algorithm gener-
ates MOEAs with the lowest crossover probability 50% of
the time and it does not use a convergence strategy for archiv-
ing more than half of the time.

4.2 Testing Phase

In order to answer the research questions, the 20 MOEAs
generated by our approach in the training phase, and the tra-
ditional algorithms NSGA-II and SPEA?2 are executed using
all the seven testing instances of the problem.

For each instance and MOEA, 30 independent runs are ex-
ecuted for 60,000 fitness evaluations. In the comparison, we
use the hypervolume indicator (Zitzler et al), 2003)) to assess
the quality of each front obtained after each execution. We
do not know the real Pareto fronts of the problems, thus this
indicator can be used because it does not require such front.
Furthermore, if the hypervolume value of a front A is greater
than the value of a front B, then A is not worse than B. These
characteristics make hypervolume suitable for the context of
this experimentation.

In order to compare the algorithms, we calculate the hy-
pervolume value of the 30 runs of each algorithm in each

Guizzo et al. 2020

Table 4. Frequency of most used parameters values and components. Some frequencies are not multiples of 10 because in some executions
the corresponding components/parameters were not applicable, since they depended on other components that were not selected.

Category Parameter/Component trace
Value Frequency | Value Frequency
. Population Size 50 50% 50 50%
Population
Initialization Parallel Diversified 80% Parallel Diversified 80%
Mating Strategy Steady State 100% Steady State 100%
Single Point 40% Single Point 50%
Crossover Operator
None 40% - -
Matin 0.5 50% 0.8 33.33%
& Crossover Probability ’ °
- - 0.95 33.33%
Mutation Operator Inversion Mutation 100% Swap Mutation 100%
Mutation Probability 1.0 80% 1.0 90%
Source Archive and Population 80% Archive and Population 70%
Selection Operator Ranking 100% Ranking 100%
Selection Convergence Strategy Dominance Strength 100% Dominance Strength 100%
. . Hypervolume Contribution ~ 40% K-th Nearest Neighbour 30%
Diversity Strategy
- - Hypervolume Contribution ~ 30%
Convergence Strategy Dominance Rank 40% Dominance Strength 50%
Replacement . Hypervolume Contribution ~ 50% K-Th Nearest Neighbour 40%
Diversity Strategy
- - None 40%
Type Ranking 70% Ranking 60%
Archive Size N*2 42.85% N*15 50%
. Convergence Strategy None 57.14% Dominance Rank 33.33%
Archiving
K-th Nearest Neighbour 28.57% Adaptive Grid 50%
Diversity Strategy Hypervolume Contribution 28.57% -
None 28.57% -

instance, and used the Kruskal-Wallis statistical test at 95%
of confidence (Derrac et al), 2011)) to address statistical dif-
ferences on the hypervolume values. Moreover, for each in-
stance, we calculate the rank of the algorithms based on their
mean hypervolume. In this ranking process, algorithms with-
out statistical difference are considered tied. In the end, we
calculate the mean hypervolume and mean rank for each algo-
rithm across all instances. We also compute the Friedman sta-
tistical test at 95% of confidence over the seven mean hyper-
volume values of each algorithm to determine if there is any
overall statistical difference between their results. Finally,
we compute the Vargha-Delaney’s Ay effect size (Vargha
and Delaney, 2000).

We use multiple group p-value analysis (Kruskal-Wallis
and Friedman) based on multiple groups (algorithms) due to
the number of algorithms used in the experimentation. Using
Mann-Whitney U instead would result in a large amount of
pair p-values. While Kruskal-Wallis is used to compute dif-
ferences in a given experimental subject, Friedman is used on
the means of the algorithms to give an overall statistical anal-
ysis across multiple systems. Furthermore, for the post-hoc
test we use the suggestion of Siegel and Castellan (1988). It
is also the default post-hoc technique used for such statistical
tests in R.

For the sake of succinctness, we select and report only
some of the generated algorithms. In the next paragraphs
we present the results for the best, median and worst algo-

rithms of each method according to their mean rank in terms
of hypervolume. The best, median, and worst algorithms ob-
tained by the GE algorithm are named GE_Best, GE Median,
and GE_Worst respectively. Similarly, the best, median, and
worst algorithms obtained by irace are I Best, | Median,
and I Worst respectively.

Table [presents the mean hypervolume for each instance
and algorithm, and its mean rank in parenthesesﬂ. The last
row presents the overall mean hypervolume and mean rank.
The last column presents the p-value obtained using the
Kruskal-Wallis test, except in the last row where the Fried-
man test result is shown. The best values (greatest for hyper-
volume and lowest for ranks) and the statistically equivalent
values to the best ones are highlighted in bold.

In general, the results obtained by the best and median gen-
erated algorithms are better than the ones obtained by the
conventional ones. GE Bestand I Best are able to obtain the
best or equivalent to the best results according to the Kruskal-
Wallis test in almost every instance of the problem. Even
the worst generated algorithms (GE_Worst and I Worst) per-
form better than NSGA-II and obtain competitive results to
SPEAZ2 in overall.

I Best performs better in general, which results in the
best mean rank (3.14). GE_Best obtains the second best re-

“Data as used for the test can be downloaded at https:
//github.com/GiovaniGuizzo/jMetalGrammaticalEvolution/
blob/master/results.7z.

https://github.com/GiovaniGuizzo/jMetalGrammaticalEvolution/blob/master/results.7z
https://github.com/GiovaniGuizzo/jMetalGrammaticalEvolution/blob/master/results.7z
https://github.com/GiovaniGuizzo/jMetalGrammaticalEvolution/blob/master/results.7z

Table 5. Hypervolume means and ranks

Guizzo et al. 2020

System GE GI? GE IRACE IRA_CE IRACE NSGA-II SPEA2 p-value
Best Median Worst Best Median Worst
AJHotDraw 0.88 (2.00) 0.87 (2.00) 0.55(5.50) 0.79 (2.50) 0.64(5.00) 0.56(5.50) 0.27(7.50) 0.51 (6.00) 2.2E-16
HealthWatcher ~ 1.00 (4.00) 1.00 (4.00) 0.98 (4.00) 0.99 (4.00) 0.99 (4.00) 0.94 (4.50) 0.92(7.50) 0.99 (4.00) 1.1E-09
TollSystems ~ 0.90(5.00) 1.00 (2.50) 0.95(4.00) 0.93 (4.00) 0.90(5.00) 0.88(5.00) 0.77(6.50) 0.94 (4.00) 1.4E-08
BCEL 0.76 (2.00) 0.67 (6.00) 0.46 (7.50) 0.74 (2.50) 0.74 2.50) 0.63 (6.50) 0.72(3.50) 0.69 (5.50) 2.2E-16
JBoss 0.96 (4.50) 1.00 (4.50) 0.97 (4.50) 0.96 (4.50) 0.98 (4.50) 0.91 (4.50) 0.90 (4.50) 0.96 (4.50) 0.008
JHotDraw 0.69 3.00) 0.73 (2.00) 0.52(6.00) 0.72(2.50) 0.55(5.50) 0.51 (6.00) 0.45(6.50) 0.60 (4.50) 1.2E-14
MyBatis 0.70 2.00) 0.61 (5.00) 0.45(7.50) 0.75(2.00) 0.69 (2.00) 0.49 (7.00) 0.61 (5.00) 0.59(5.50) 2.2E-16
Mean 0.84 321) 0.84(3.71) 0.70(5.57) 0.84(3.14) 0.78(4.07) 0.71(5.57) 0.66 (5.86) 0.75(4.86) 3.606E-4
sults with a mean rank difference of only 0.07 to I_Best and 3” o T
with no statistical difference according to the Friedman and 0 e
Kruskal-Wallis tests. The only system (TollSystem) in which 1 st o
GE _Best is statistically worse than the other algorithms is in £ ’ ‘ s
fact the smallest one. The best known solution for this sys- % . : . o
tem is always found by GE Median. Furthermore, the me- £, X &
dian and worst algorithms obtained by the GE algorithm per- .
form better than the median and worst algorithms of irace
respectively. ’

The Friedman test presents differences only between
GE Best and NSGA-II, GE Median and NSGA-II, and
GE _Best and I Worst. Even though I _Best obtains the best
results (equal hypervolume to GE_Best and GE_Median, but
better rank), the Friedman test result shows no statistical dif-
ferences between I Best and any other algorithm. Perhaps
with more systems in the experiment, the statistical power
would be higher and we could see more differences between
the algorithms. With only seven systems, the more conser-
vative statistical assessment of the non-parametric Friedman
test takes place, preventing us from assuming and report
other differences.

Figures §-d show the fronts obtained by the algorithms. We
present only the fronts of the three more complex systems
based on the number of dependencies presented on Table [Il.
The other instances are omitted because the algorithms found
similar solutions for them.

GE Best +
GE_Median
GE_Worst
_Best
. I_Median
25 _Worst O
NSGAIl @
2 o . SPEA2 A
2 o
2 o A .
5 20 - S .
g o] A
£ o A
E * o A
* o
15 B¢
* o
*
10

30 40 50 60 70 80 90 100 10
Number of Attributes

Figure 4. Fronts found by the algorithms for 4/HotDraw

Based on the presented fronts, for the AJHotDraw in-
stance, the solutions found by NSGA-II and SPEA?2 are dom-
inated by the ones found using the other algorithms. More-
over, the GE algorithms obtain better solutions. For the My-
Batis instance, the best solutions are obtained by I Best
and GE_Best. For the JHotDraw instance, I Best found two
non-dominated solutions, and one of them is also found by
GE Best and GE Worst. In general, with exception of JHot-

26 28 30 32 34
Number of Attributes

Figure 5. Fronts found by the algorithms for JHotDraw

200

GE_Best +
GE_Median
180 GE_Worst
% _Best
o I_Median
160 G |_Worst ©
5 NSGAIl @
g M0 . SPEA2 A
2 2 9aC Oo
2 0 % M%\‘ L @
5 % %
5 10 e, 2 ®o
£ et RN %OQD
g e N 0 %
Z 80 #—A+!+J:#b$§£‘A "
(98¢ g 00
s - 9<q~..ﬂ a
2
20

0 200 400 600 800 1000
Number of Attributes

1200 1400 1600 1800

Figure 6. Fronts found by the algorithms for MyBatis

Draw, the algorithms are able to find diversified solutions in
the fronts.

In order to provide another way to analyse the differences
between the algorithms, we present the Vargha-Delaney’s
12112 effect size (Vargha and Delaney, 2000; Arcuri and
Briand, 2014). The Ay test measures the probability of an
effect magnitude regarding the difference between a group
X and another group Y, where an Alg value of 1.0 means
that X always outperforms Y, 0.0 means that Y always out-
performs X, and 0.5 means that X and Y are equally good.
According to Vargha and Delaney| (2000), the Aq5 values can
be read as follows:

Large if0.71 < A12 < 1.0
Medium if0.64 < A5 <0.71
Small if 0.56 < Ay < 0.64

Ay magnitude = { Negligible if0.44 < A5 < 0.56
Small if0.36 < A1 < 0.44
Medium if0.29 < A5 < 0.36
Large if A1z < 0.29

This statistical test is computed over the 30 hypervolume
values of each algorithm and compared to the other ones
in each instance. Because this is a binary comparison, there

would be 196 effect size values to report: 28 values for each
of the seven instances. In this sense, for a cleaner view of
such data, we summarize these results in Figures [] and R,
and in Table . The figures present respectively the box plot
for the A5 effect size values obtained in the comparisons be-
tween I Best and the other algorithms, and between GE_Best
and the other algorithms in all instances. We chose these two
algorithms because they were the best obtained algorithms
by each generation algorithm. Any value above 0.5 is a bet-
ter 12112 in favour of the main algorithm.

Lr T
0.9
0.8 |
0.7 +

Q

3
§0.67

Ros|
wn

§0.4,

o3|

0.2 L

—

0.1

SPEA2 |

I_Worst |
NSGA-II |

GE_Best |

I_Median |

GE_Worst |

GE_Median |

Algorithms to which I_Best was compared

Figure 7. Box plot of the effect size values for I Best

ffect Size Value
© © o o o ©
A U1 OO N 0 W K
T T T T T T ,

E
o o o
=N W

o

I_Best |
I_Median
I_Worst |
NSGA-II |
SPEA2 |

GE_Worst |

GE_Median |

Algorithms to which GE_Best was compared

Figure 8. Box plot of the effect size values for GE_Best

I Best performs similarly to GE Best and, as expected,
both perform better than NSGA-II and SPEA2. Furthermore,
the differences between the best, median and worst algo-
rithms become clearer. For example, in Figure] we can
see that GE Best obtained closer results to I Best, then
GE Median and then GE Worst. This “ladder” is also vis-
ible in Figure f regarding I Best, I Median and I_Worst.

Table [d presents the number of non-negligible favourable
effect size values minus the number of non-negligible un-
favourable effect size values for each algorithm in a given
row when compared to another algorithm in the respec-
tive column. For example, GE Best (first row) obtained 5
favourable, 1 negligible, 1 unfavourable effect size values
when compared to GE_W (fourth column), hence the differ-

Guizzo et al. 2020

ence is 4 (5 favourable minus 1 unfavourable). For each cell,
the maximum value is 7 and the minimum is -7, representing,
respectively, that the row algorithm was significantly better
or worse than the column algorithm in all systems. The last
column shows the sum of the differences.

Table 6. Non-negligible effect size counts per algorithm.

Alg. GE BGE MGE WI B I M I W NSGASPEAZo-
tal
GE B — 0 4 0 5 6 7 4 26
GE M 0 — 6 2 3 7 4 5 27
GE W -4 6 — -3 -3 1 3 2 -4
1B 0 -2 2 — 2 5 6 4 17
I M -5 -3 3 2 — 6 7 1 7
I W -6 -7 -1 -5 -6 — 2 -4 27
SGA-II -7 -4 -3 -6 -7 -2 — 3 32
SPEA2 -4 -5 2 -4 -1 4 3 — -5

We could observe some ties in the number of effect
size counts between some of the algorithms. GE Best
tied with GE Median and I Best, whereas 1 Best only
tied with GE Best and not with GE_Median. Furthermore,
GE_ Median also obtained the best total sum of count dif-
ferences, even though its hypervolume average is the same
and the ranking is lower than GE Best and I Best. This in-
dicates that these algorithms performed very similarly in the
testing set used in this work, which can also be observed in
the proximity between their Pareto fronts shown in Figures H-
B. NSGA-II shows the worst results in the effect size com-
parisons, whereas SPEA2 is more competitive to the other
algorithms by overcoming the worst generated algorithms.

Comparing the generated algorithms and the traditional
ones, we observe that all generated MOEAs are able to out-
perform NSGA-II and obtain competitive results to SPEA2.
Additionally, some algorithms performed significantly bet-
ter than the traditional ones, specially I Best, GE Best and
GE Median. In this sense, we can answer RQ1 by asserting
that the proposed approach is capable of generating MOEAs
that are better than conventional ones in the literature.

Regarding RQ?2, it is not possible to conclude which de-
sign algorithm is better for this problem. irace obtains the
best overall MOEA, but GE generates a better set of al-
gorithms considering the median and worst generated algo-
rithms. In other words, both best and median algorithms of
GE are able to statistically outperform NSGA-II and some-
times SPEA2, which occurs less often for the MOEAs gen-
erated by irace. However, irace generated the best algo-
rithm considering hypervolume values, rankings, and statis-
tical differences across all systems.

4.3 Further Discussion

An advantage of GE is that its grammar provides a flexi-
ble way of design algorithms. By using such a grammar, the
tester can create complex structures by changing the arrange-
ment of the grammar rules. This enables not only the gener-
ation of MOEAs with a common template, but also MOEAs
using different procedures (e.g. multiple crossover and muta-
tion). On the other hand, GE needs more configuration (num-
ber of parameters) than irace.

Considering the structure of the generated MOEAs, proba-
bly a tester would not think about designing such uncommon

algorithms, since they are quite different from well-known
MOEAs presented in the literature. Table], presents the com-
ponents and parameters used by the best and worst algo-
rithms generated by GE and IRACE. For instance, GE Best
uses a mutation operator with 100% of probability and no
crossover operator. Of course, these characteristics are de-
pendent on the training instance we used, but they are contra-
dictory to the “common wisdom” of low mutation and great
crossover probabilities. Different training scenarios could
provide a more human-like designed algorithm, but yet the
manual design of MOEAs may not be so powerful when com-
pared to automated mechanisms such as the approach herein
proposed. In fact, as stated by Eiben and Smit (2011)), the de-
sign and configuration of an EA is an optimization problem
itself, hence optimization algorithms may be successfully ap-
plied in this context.

Beyond the promising results of the proposed approach, it
also requires reduced effort to design and configure a multi-
objective algorithm. In a conventional scenario, the tester
might avoid the boring tasks of configuring or tuning the
MOEA, and may simply use acommon MOEA with arbitrary
parameters and components, which can yield not so good re-
sults. The proposed approach can solve this problem by au-
tomatically generating MOEAs that present the best results.

The downside of the approach is the great amount of com-
putational resources used in the training phase. In this paper
we executed the design algorithms for 10,000 evaluations,
and assigned 2,000 training evaluations for each MOEA, re-
sulting in 20 million total fitness evaluations each training
run. Each training run took 113 hours on average to execute
due to the great number of fitness evaluations during the train-
ing. A more cheaper strategy could be adopted by reducing
from 10,000 to 5,000 fitness evaluations, and from 2,000 to
1,000 training budget for each MOEA, however, we would
still be using 5 million fitness evaluations for the training
(around 28 hours for training time). This elevated cost is not
something exclusive of our approach, but rather something
that is inevitably inherent to offline design algorithms (Bez-
erra et al), 2014; Guizzo et al., 2015; Burke et all, 2012).

However, one should bear in mind that the 20 million fit-
ness evaluations were also assigned to the tuning of NSGA-
IT and SPEA2. Even when we assign the same amount of
resources, automatically tuning an existing algorithm results
in suboptimal results. If we consider the manual effort of de-
signing a MOEA or tuning an existing one, then this effort
must be added to the computational resources spent in the tun-
ing process. In such case, the tester would have to perform
experiments and compare the algorithms manually, which is
already done automatically by our approach. All in all, letting
our approach design and configure a new algorithm seems
like the best option, despite its cost.

Although a great number of MOEAs evaluations were
used for the training, we discovered that the best algorithm is
found, on average for the 30 training executions, around the
7,120t" evaluation out of 10,000. In some executions the best
algorithm was found as early as the first 3,000 evaluations,
but sometimes it was not found until the last 100 evaluations.
This data will be important for future work, where we are go-
ing to investigate a better stopping criterion for the training
in order to reduce the cost of this phase.

Guizzo et al. 2020

4.4 Threats to Validity

The experimentation test was only performed using seven
systems. In order to minimise this external threat, we ex-
tracted systems of different sizes and characteristics from
related work (Assuncdo et all, 2014; Mariani et all, 2016;
Guizzo et all, 2015). It is worth mentioning that the systems
are implemented with two different paradigms: object and as-
pect oriented. All of these details help mitigate the threat and
improve the generalisation of our results.

We only used AJHSQLDB as the training instance on both
GE and irace. Even though in an earlier and preliminary
experimentation we observed similar results using MyBatis
as training instance, this may affect the final output. We ex-
pect a degradation on the results when using smaller training
instances, thus this is something we intend to test in future
work.

The results are susceptible to the components and param-
eters used in the training phase. In this sense, a greater num-
ber of components and parameters would result in different
MOEAs and, probably, better algorithms. In order to min-
imise this threat and improve generalisation, we used a com-
prehensive set of components from multiple different algo-
rithms in the literature.

Another possible threat is that due to the execution costs,
in the training phase we execute each design algorithm (GE
and irace) 10 times. This number was chosen based on other
works in the literature of automatic design algorithms (??).
We think it is enough to show the behaviour of our approach
and offer a preliminary evaluation.

During the testing phase we used only the hypervolume
indicator due to its compatibility to our scenario and because
it is considered the only Pareto-dominance compliant indica-
tor (Zitzler et all, 2007). We tried to mitigate this threat by
also presenting the Pareto fronts found during the evaluation
and making our experimental results available.

5 Related Work

This section reviews studies addressing the ITO problem and
after related work on automatic design of algorithms.

5.1 Studies addressing the ITO problem

In the literature the ITO problem has been addressed by many
studies and different contexts. The work of Hewett and Ki-
jsanayothin (2009) is focused on the integration order of com-
ponents that can be a subsystem, module, or object-oriented
class. The authors use a graph-based algorithm to solve the
problem and reduce the number of required stubs. The heuris-
tics were applied in test dependency graphs and the results
showed an improvement of the results when compared to
other approaches. The authors also stated that their algorithm
was faster to be executed than these approaches. Other works
such as Abdurazik and Offut{ (2009) and the ones reviewed
by Briand et all (2003)) also use graph-based algorithms and
other similar heuristics to solve this problem in the Object
Oriented (OO) context. The approach of Jiang et al| (2019) in-
troduces a strategy to consider the control coupling complex-
ity estimated by using the concept of transitive relationship

Guizzo et al. 2020

Table 7. Components and parameters of the best and worst algorithms generated by GE and IRACE

Component/Parameter ~ GE_Best GE_Worst IRACE_Best IRACE_Worst

Population size 50 100 50 50

Initialization Random Random Parallel Diversified Parallel Diversified

Selection Ranking Ranking Ranking Ranking

— Converg. Strategy Dominance Strength Raw Fitness Dominance Strength Dominance Strength

— Divers. Strategy K-th Nearest Neighbour - Adaptive Grid K-th Nearest Neighbor

— Source Archive and Population Population Population Archive and Population
Mating Strategy Steady State Steady State Steady State Steady State

Crossover Operator PMX Crossover (80%) Single Point Crossover (80%) Single Point Crossover (90%)

Mutation Operator

Swap Mutation (100%)

Swap Mutation (100%)

Swap Mutation (100%)

Swap Mutation (100%)

Replacement Generational Generational Ranking Generational

— Elitism Size 5 10 0 1

— Converg. Strategy Raw Fitness Dominance Strength Raw Fitness Dominance Strength
— Divers. Strategy K-th Nearest Neighbour Crowding Distance K-th Nearest Neighbour -

Archive Ranking - - Ranking

— Converg. Strategy Raw Fitness - - Dominance Strength
— Divers. Strategy Hypervolume Contribution ~— — - Adaptive Grid

— Archive Size 75 - - 75

between classes. Other works such as Bansal et al| (2009) pro-
pose hybrid algorithms combining graph-based and genetic
algorithms also in OO context. The work of Ré¢ et al| (2007)
proposed an extension to encompass Aspect-Oriented (AO)
programs.

Even though the mentioned works can solve the integra-
tion and testing order problem, sometimes they may only
find sub-optimal solutions (Assuncdo et al!, 2014; Briand
et all, 2002b). To overcome this situation, some works such
as Assuncao et all (2013)); Briand et al) (2002b); Vergilio
et all (2012b) use search-based approaches. In Briand et al.
(2002b) the author proposed a way to optimally solve this
problem by using GAs. However, the authors used an aggre-
gation of coupling measures as fitness function, in contrast
to Assuncdo et al. (2013)) and [Vergilio et al} (2012b)), where
multi-objective approaches were used and good results were
obtained. Cabral et al, (2010) also used a multi-objective
search-based algorithm, more specifically Ant Colony Opti-
mization (ACO), and obtained better results than an approach
with aggregation of objectives.

We can observe that MOEAs obtained the best results to
solve the ITO problem, and this means that it a suitable prob-
lem for applying our MOEA design approach. From all exist-
ing works addressing the ITO problem, the work of Assuncao
et al) (2014) introduced an approach that can be applied in dif-
ferent contexts of the problem, such as AO and OO programs,
because of this we used such a formulation in our work.

5.2 Works on automatic design of algorithms

In the literature we find works on automatic design and con-
figuration of meta-heuristics that use different techniques
(Bezerra et al), 2014, 2015; Lopez-Ibaiiez and Stiitzle, 2012;
Smit et al., 2010; Dréa, 2009). Some of them are focused
only on the automatic configuration of parameters of mono-
objective algorithms (Smit et al., 2010; Drég, 2009). Related
work are the ones that use GE and irace.

We can find in the literature some works that use
GE for the automatic design and configuration of heuris-
tics (Lourenco et al., 2012, 2013, 2015; Burke et all, 2012;

Mascia et al., 2014; Marshall et al., 2014b,a; Hutter et all,
2007). They focus on simple heuristics (Marshall et al.,
2014b,a) and meta-heuristics, such as local search algo-
rithms (Burke et al), 2012; Mascia et all, 2014; Hutter et all,
2007) and EAs (Lourengo et all, 2012, 2013, 2015). We
would like to mention the works of Lourenco et al| (2012,
2013, 2015) that propose a GE approach to automatically
design and configure mono-objectives EAs. Their grammar
encompasses the main components and parameters of EAs,
such as population size, crossover and mutation operators.
The EAs returned by the approach obtained better results
when compared to traditional ones on the Royal Roads prob-
lem. However, we did not find works applying GE in the
context of MOEAs, or even for other types of multi-objective
algorithms.

Regarding the use of irace, relate work (Bezerra et al.,
2014, 2015; Lopez-Ibafiez and Stiitzle, 2012) also consider
EAs and a set of components and parameters. The studies
of Bezerra et al! (2014, 2015) are the only ones addressing
the context of MOEAs. They use many MOEAs components
and parameters, such as replacement, archiving and fitness
assignment. As result, the automatically generated MOEAs
could outperform traditional ones in instances of combinato-
rial and continuous problems.

Our work is mainly inspired by Bezerra et al! (2014, 2015)
and Lourenco et al| (2012), because the idea of using GE and
irace for the automatic design of EAs seems very promis-
ing. Furthermore, in the automatic design of MOEAs, there
are many parameters and components that can be explored.
However, our approach differs from them by using a differ-
ent set of components and parameters, such as initialization
procedures, source of parents selection, replacements proce-
dures and the possibility of elitism. The set herein proposed
is broader and more suitable for the MOEAs context.

Another difference is the application of automatic design
of MOEAs in the SBSE area. None of the works mentioned
above generate algorithms specialized for solving software
engineering problems, such as ITO.

Regarding the ITO problem, a great number of approaches
found in the literature use search-based algorithms (Wang

et alf, 2011; Briand et al), 20024). The most promising are
based on MOEAs (Assuncdo et all, 2014; Vergilio et al.,
2012a; Guizzo et all, 2015). However, to implement and con-
figure a MOEA solution can be very difficult for the tester,
who is not usually an expert on the optimization field. To
ease such a task, the work of Mariani et al| (2016) introduces
a hyper-heuristic based on GE to derive MOEAs for solv-
ing the ITO problem. Such a hyperheuristic was also used
to select products for the Sofware Product Line (SPL) test-
ing (Jakubovski Filho et al., 2017). These works found good
results and serve as motivation to propose our approach, that
now encompasses a set of elements and components that al-
low the use of GE and irace and comparison of both design
algorithms. As far as we know, there is no work in the litera-
ture that applies and compares both.

6 Concluding Remarks

This paper presented an approach for the automatic design
of MOEAs applied to the ITO problem. For this purpose, the
main components and parameters of MOEAs were identified
and a set of alternatives were assigned for them. They were
formally mapped in a grammar (GE) and in a parameter space
(irace) to be used by the design algorithms.

An empirical evaluation was conducted in two phases. The
first was the training phase, where the GE and irace al-
gorithms were executed using one instance of ITO, gener-
ating ten MOEAs each. In the testing phase, the twenty ob-
tained MOEAs were executed using all seven instances of
the problem. Furthermore, the traditional MOEAs NSGA-II
and SPEA2 were also executed using such instances. Their
parameters were tuned using the proposed approach.

The MOEAs generated by the approach with both design
algorithms were compared using the hypervolume quality in-
dicator and three statistical tests: Vargha-Delaney’s Aqy Ef-
fect Size, Kruskal-Wallis and Friedman. They obtained sim-
ilar results and also some similarities regarding the most se-
lected components. In addition, the generated MOEAs are
able to outperform the traditional ones with statistical differ-
ence.

In short, the introduced approach can successfully gener-
ate MOEAs to better solve the ITO problem, improving the
performance of the traditional algorithms and reducing ef-
fort, freeing the tester from tasks like: choice among existing
MOEAs, implementation and configuration.

We intend to apply the approach for other ITO instances,
testing contexts and problems. Some mentioned limitations
should be addressed, for example, to use other training in-
stances and quality indicators in the fitness evaluation.

In addition to this, the approach serves as a basis for future
works that can extend the proposed set of elements to cover
other desired characteristics of the MOEAs and to be used
in other domains, contributing to the SBSE practitioners to
implement solutions for other SE problems. Ideally, the gen-
erated MOEAs could be generalized to other SE problems
without the need of retraining.

Guizzo et al. 2020

Acknowledgement

This work is supported by the Brazilian funding agencies Co-
ordenacao de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES) and Conselho Nacional de Desenvolvimento Cien-
tifico e Tecnoldgico (CNPq) under the grant: 305968/2018-1.

We would like to thank Gian M. Fritsche for his help on
the setup of irace.

References

Abdurazik, A. and Offutt, J. (2009). Using coupling-based
weights for the class integration and test order problem.
Computer Journal, 52(5):557-570.

Arcuri, A. and Briand, L. (2014). A hitchhiker’s guide to sta-
tistical tests for assessing randomized algorithms in soft-
ware engineering. Software Testing, Verification and Reli-
ability, 24(3):219-250.

Assuncdo, W. K. G., Colanzi, T. E., Vergilio, S. R., and Pozo,
A. T. R. (2013). Generating integration test orders for
aspect oriented software with multi-objective algorithms.
Revista de Informatica Teorica e Aplicada, 20(2):301—
327.

Assuncdo, W. K. G., Colanzi, T. E., Vergilio, S. R., and Pozo,
A.(2014). A multi-objective optimization approach for the
integration and test order problem. Information Sciences,
267(0):119-139.

Bansal, P., Sabharwal, S., and Sidhu, P. (2009). An investiga-
tion of strategies for finding test order during integration
testing of object oriented applications. In Proceedings of
the ICM2CS, pages 1-8.

Barros, R. C., Basgalupp, M. P., Cerri, R., da Silva, T. S.,
and de Carvalho, A. C. (2013). A Grammatical Evolution
Approach for Software Effort Estimation. In Genetic and
Evolutionary Computation Conference, pages 1413—-1420.

Bezerra, L., Lopez-Ibaiiez, M., and Stiitzle, T. (2015). Au-
tomatic component-wise design of multi-objective evolu-
tionary algorithms. [EEE Transactions on Evolutionary
Computation, 20:1-1.

Bezerra, L. C. T., Lopez-Ibafiez, M., and Stiitzle, T. (2014).
Automatic Design of Evolutionary Algorithms for Multi-
Objective Combinatorial Optimization. In Parallel Prob-
lem Solving from Nature, volume 8672 of Lecture Notes in
Computer Science, pages 508—517. Springer International
Publishing.

Briand, L., Labiche, Y., and Wang, Y. (2003). An investiga-
tion of graph-based class integration test order strategies.
Software Engineering, IEEE Transactions on, 29(7):594—
607.

Briand, L. C., Feng, J., and Labiche, Y. (2002a). Using ge-
netic algorithms and coupling measures to devise optimal
integration test orders. In International Conference on
Software Engineering and Knowledge Engineering, pages
43-50.

Briand, L. C., Feng, J., and Labiche, Y. (2002b). Using ge-
netic algorithms and coupling measures to devise optimal
integration test orders. In Proceedings of the 14th SEKE,
pages 43-50. ACM.

Burke, E. K., Hyde, M. R., and Kendall, G. (2012). Gram-
matical Evolution of Local Search Heuristics. I[EEE Trans-
actions on Evolutionary Computation, 16(3):406-417.

Cabral, R. d. V., Pozo, A., and Vergilio, S. R. (2010). A
pareto ant colony algorithm applied to the class integra-
tion and test order problem. In Petrenko, A., SimA£o, A.,
and Maldonado, J. C., editors, Testing Software and Sys-
tems, volume 6435 of Lecture Notes in Computer Science,
pages 16-29. Springer Berlin Heidelberg.

Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V.
(2007). Evolutionary Algorithms for Solving Multi-
Objective Problems Second Edition. Springer Science, 2™
edition.

Colanzi, T., Assuncdo, W., Farah, P., Vergilio, S., and
Guizzo, G. (2019). A review of ten years of the sympo-
sium on search-based software engineering. In Nejati, S.
and Gay, G., editors, Search-Based Software Engineering,
pages 42—57, Cham. Springer International Publishing.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm: NSGA-
1. IEEE Transactions on Evolutionary Computation,
6(2):182-197.

Derrac, J., Garcia, S., Molina, D., and Herrera, F. (2011). A
practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary
Computation, 1(1):3—18.

Dréo, J. (2009). Using Performance Fronts for Parameter
Setting of Stochastic Metaheuristics. In Genetic and Evo-
lutionary Computation Conference, pages 2197-2200.

Durillo, J. J. and Nebro, A. J. (2011). jMetal: A Java frame-
work for multi-objective optimization. Advances in Engi-
neering Software, 42(10):760-771.

Eiben, A. and Smit, S. (2011). Parameter tuning for config-
uring and analyzing evolutionary algorithms. Swarm and
Evolutionary Computation, 1(1):19-31.

Eiben, A. and Smit, S. (2012). Evolutionary Algorithm Pa-
rameters and Methods to Tune Them. In Autonomous
Search, pages 15-36. Springer Berlin Heidelberg.

Eiben, A. E. and Smith, J. E. (2003). Introduction to evolu-
tionary computing. Springer Science & Business Media.
Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algo-
rithms for Multiobjective Optimization: Formulation Dis-
cussion and Generalization. In International Conference

on Genetic Algorithms, pages 416-423.

Guizzo, G., Fritsche, G. M., Vergilio, S. R., and Pozo, A. T.R.
(2015). A Hyper-Heuristic for the Multi-Objective Integra-
tion and Test Order Problem. In Genetic and Evolutionary
Computation Conference, pages 1343—1350.

Harman, M., Mansouri, S. A., and Zhang, Y. (2012). Search-
based Software Engineering: Trends, Techniques and Ap-
plications. ACM Computing Surveys, 45(1):1-61.

Hewett, R. and Kijsanayothin, P. (2009). Automated test or-
der generation for software component integration testing.
In Proceedings of the 24th ASE, pages 211-220.

Hutter, F., Hoos, H. H., and Stiitzle, T. (2007). Automatic
Algorithm Configuration Based on Local Search. In 4447
Conference on Artificial Intelligence, pages 1152—1157.

Jakubovski Filho, H. L., Lima, J. A. P., and Vergilio, S. R.

Guizzo et al. 2020

(2017). Automatic generation of search-based algorithms
applied to the feature testing of software product lines. In
Proceedings of the 31st Brazilian Symposium on Software
Engineering, SBES’17, pages 114-123, New York, NY,
USA. ACM.

Jiang, S., Zhang, M., Zhang, Y., Wang, R., Yu, Q., and Ke-
ung, J. W. (2019). An integration test order strategy to
consider control coupling. /EEE Transactions on Sofiware
Engineering, pages 1-1.

Knowles, J. D. and Corne, D. W. (2000). Approximating the
Nondominated Front Using the Pareto Archived Evolution
Strategy. Evolutionary Computation, 8(2):149—-172.

Koza, J. R. (1992). Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press.

Loépez-Ibafiez, M., Dubois-Lacoste, J., Stiitzle, T., and Bi-
rattari, M. (2011). The IRACE package, Iterated Race
for Automatic Algorithm Configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Brux-
elles, Belgium.

Lopez-Ibafiez, M. and Stiitzle, T. (2012). The Automatic
Design of Multiobjective Ant Colony Optimization Algo-
rithms. IEEE Transactions on Evolutionary Computation,
16(6):861-875.

Lourengo, N., Pereira, F. B., and Costa, E. (2012). Evolv-
ing evolutionary algorithms. In Genetic and Evolutionary
Computation Conference, pages 51-58.

Lourengo, N., Pereira, F. B., and Costa, E. (2013). The Im-
portance of the Learning Conditions in Hyper-heuristics.
In Genetic and Evolutionary Computation Conference,
pages 1525-1532.

Lourengo, N., Pereira, F. B., and Costa, E. (2015). The Op-
timization Ability of Evolved Strategies. In Progress in
Artificial Intelligence, volume 9273 of Lecture Notes in
Computer Science, pages 226-237. Springer International
Publishing.

Mariani, T., Guizzo, G., Vergilio, S., and Pozo, A. (2016).
Grammatical evolution for the multi-objective integration
and test order problem. In Genetic and Evolutionary Com-
putation Conference, pages 1069—1076.

Marshall, R. J., Johnston, M., and Zhang, M. (2014a). De-
veloping a Hyper-Heuristic Using Grammatical Evolution
and the Capacitated Vehicle Routing Problem. In Sim-
ulated Evolution and Learning, volume 8886 of Lecture
Notes in Computer Science, pages 668—679. Springer In-
ternational Publishing.

Marshall, R. J., Johnston, M., and Zhang, M. (2014b). Hyper-
heuristics, Grammatical Evolution and the Capacitated Ve-
hicle Routing Problem. In Genetic and Evolutionary Com-
putation Conference, GECCO Comp ’14, pages 71-72.

Mascia, F., nez, M. L.-I., Dubois-Lacoste, J., and Stiitzle,
T. (2014). Grammar-based generation of stochastic local
search heuristics through automatic algorithm configura-
tion tools. Computers & Operations Research, 51:190—
199.

O’Neill, M. and Nicolau, M. (2017). Distilling the salient
features of natural systems: Commentary on “On the map-
ping of genotype to phenotype in evolutionary algorithms”
by Whigham, Dick and Maclaurin. Genetic Programming

and Evolvable Machines, 18(3):379-383.

Ré,R., Lemos, O. A. L., and Masiero, P. C. (2007). Minimiz-
ing stub creation during integration test of aspect-oriented
programs. In Proceedings of the 3rd Workshop on Testing
Aspect-oriented Programs, WTAOP °07, pages 1-6, New
York, NY, USA. ACM.

Ryan, C. (2017). A rebuttal to Whigham, Dick, and Maclau-
rin by one of the inventors of Grammatical Evolution:
Commentary on “On the Mapping of Genotype to Pheno-
type in Evolutionary Algorithms” by Peter A. Whigham,
Grant Dick, and James Maclaurin. Genetic Programming
and Evolvable Machines, 18(3):385-389.

Ryan, C., Collins, J. J., and Neill, M. (1998). Grammatical
evolution: Evolving programs for an arbitrary language. In
Genetic Programming, volume 1391 of Lecture Notes in
Computer Science, pages 83-96. Springer Berlin Heidel-
berg.

Siegel, S. and Castellan, N. J. (1988). Nonparametric Statis-
tics for the Behavioral Sciences. McGraw-Hill interna-
tional editions. Statistics series. McGraw-Hill.

Smit, S. K., Eiben, A. E., and Szlavik, Z. (2010). An MOEA-
based Method to Tune EA Parameters on Multiple Objec-
tive Functions. In International Joint Conference on Com-
putational Intelligence, pages 261-268.

Talbi, E.-G. (2009). Metaheuristics: From Design to Imple-
mentation. Wiley Publishing.

Vargha, A. and Delaney, H. D. (2000). A Critique and Im-
provement of the "CL” Common Language Effect Size
Statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101-132.

Vergilio, S., Pozo, A., Arias, J., Cabral, R., and Nobre, T.
(2012a). Multi-objective Optimization Algorithms Ap-
plied to the Class Integration and Test Order Problem.
International Journal on Software Tools for Technology
Transfer, 14(4):461-475.

Vergilio, S. R., Pozo, A., Arias, J. a. C. G., da Veiga Cabral,
R., and Nobre, T. (2012b). Multi-objective optimization
algorithms applied to the class integration and test order
problem. International Journal on Software Tools for
Technology Transfer, 14(4):461-475.

Wang, Z., Li, B., Wang, L., and Li, Q. (2011). A Brief Survey
on Automatic Integration Test Order Generation. In Inter-
national Conference on Software Engineering and Knowl-
edge Engineering, pages 254-257.

Whigham, P. A., Dick, G., and Maclaurin, J. (2017a). Just
because it works: a response to comments on “On the
Mapping of Genotype to Phenotype in Evolutionary Algo-
rithms”. Genetic Programming and Evolvable Machines,
18(3):399-405.

Whigham, P. A., Dick, G., and Maclaurin, J. (2017b). On
the mapping of genotype to phenotype in evolutionary al-
gorithms. Genetic Programming and Evolvable Machines,
18(3):353-361.

Zitzler, E., Brockhoff, D., and Thiele, L. (2007). The hy-
pervolume indicator revisited: On the design of pareto-
compliant indicators via weighted integration. In
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., and Mu-
rata, T., editors, Evolutionary Multi-Criterion Optimiza-
tion, pages 862—876, Berlin, Heidelberg. Springer Berlin

Guizzo et al. 2020

Heidelberg.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: im-
proving the strength Pareto evolutionary algorithm. Tech-
nical report, Department of Electrical Engineering, Swiss
Federal Institute of Technology.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and
da Fonseca, V. G. (2003). Performance assessment of
multiobjective optimizers: an analysis and review. [EEE

Transactions on Evolutionary Computation, 7(2):117—
132.

	Introduction
	Background
	Integration and Testing Order problem
	Automatic Design of Algorithms
	irace
	Grammatical Evolution

	Multi-Objective Evolutionary Algorithms

	Proposed Approach
	MOEA
	Training Instance
	Components and Parameters
	Population
	Selection
	Fitness Assignment
	Mating
	Replacement
	Archiving

	Design Algorithms

	Empirical Evaluation
	Training Phase
	Testing Phase
	Further Discussion
	Threats to Validity

	Related Work
	Studies addressing the ITO problem
	Works on automatic design of algorithms

	Concluding Remarks

