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Abstract 
 

As life expectancy increases and fertility rates decrease, the growing ageing 

population poses a significant challenge to the healthcare systems of developed 

countries. Ageing as the major risk factor for chronic diseases constitutes the primary 

target to reduce the burden of diseases and improve human health. However, ageing 

is a complex process and predicting potential interventions into it requires system-

level approaches. In this thesis, I present the development of two computational 

methods using biological data to predict novel genetic and pharmacological 

interventions to ameliorate ageing.  

 

My first study focused on identifying repurposable drugs to delay human ageing. 

Several computational drug-repurposing studies have been developed, but most of 

them focus on predicting geroprotectors using animal models data, even though 

certain aspects of ageing may be human-specific. Using drug-protein interaction 

information, I searched for drugs targeting a significant proportion of human ageing-

related genes and pathways. The top-ranked drugs included a significant number of 

known geroprotectors, validating the capability of the method to discover drugs to 

modulate ageing. On the top of the list was tanespimycin, a heat shock protein 

inhibitor, whose geroprotective properties we validated experimentally.  

 

My second study centres on determining the molecular mechanisms associated with 

healthy lifespan, and how to use this information to find new genetic interventions to 

delay ageing. In recent years, the number of transcriptomic studies of mouse models 

of ageing has increased dramatically, providing the opportunity to compare gene 

expression changes of long- and short-lived strains. I showed that differences in 

healthy lifespan are associated with expression changes in genes regulating 

mitochondrial metabolism. Using these gene sets as biomarkers of lifespan, I 

compared the mouse models of ageing against 51 genetically engineered mice and 

predicted candidate genetic and pharmacological interventions with the potential to 

delay ageing.  

 

Through computational studies I predicted a narrowed down list of candidate genetic 

and pharmacological interventions to delay mouse and human ageing and validated 
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several predictions made by other researchers using different methods, confirming the 

robustness of computational methods to identify new anti-ageing interventions. With 

the discovery of tanespimycin as a new geroprotector, I revealed that a little 

proteostatic stress is good for longevity and that we can trigger this hormetic response 

pharmacologically. I exposed the complexity of ageing as I found multiple mechanisms 

to delay ageing, most of which were tissue-specific, and found evidence for new 

candidate hallmarks of ageing and novel biomarkers of lifespan.  
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Impact Statement 
 

The rising ageing population is expected to become a major healthcare challenge of 

this century. As people live longer but not healthier lives, age-related diseases become 

increasingly prevalent in the elderly, causing multimorbidity and polypharmacy. The 

research I present in this thesis has the potential not only to contribute to our basic 

understanding of the ageing process, but also to show how to use this knowledge to 

identify new interventions to ameliorate it. Using different computational approaches, 

I identified candidate genetic and pharmacological interventions to delay ageing. I 

develop a method able to prioritise drugs with increased likelihood to affect human 

ageing, some of which are already approved for human use and with validated 

geroprotective properties in animal models. This study significantly reduces the 

number of drugs needed to be tested by proposing a narrowed down list of primary 

candidates. Among the candidate drugs, we experimentally validated the lifespan-

extending properties of tanespimycin, a drug a mild side effects, currently in clinical 

trials for the treatment of cancer. I also made significant progress in deciphering the 

molecular basis of healthy lifespan by analysing transcriptomic data from well-

established mouse models of ageing. Focusing on these molecular changes, I 

proposed gene knockouts likely to delay mouse ageing and potentially applicable to 

humans through pharmacological interventions.  

  



 

 7 

Table of contents 
 
Chapter 1 General Introduction ......................................................................... 13 

1.1 Changes in life expectancy throughout human history ............................... 13 
1.2 Living longer but less healthy lives ............................................................. 16 
1.3 Ageing is the major risk factor for chronic diseases ................................... 18 
1.4 Theories of ageing ...................................................................................... 19 

1.4.1 Evolutionary theories of ageing ........................................................... 20 
1.4.2 Mechanistic theories of ageing ............................................................ 21 

1.5 The ageing process is malleable ................................................................ 24 
1.5.1 Dietary interventions ............................................................................ 24 
1.5.2 Genetic interventions ........................................................................... 25 
1.5.3 Pharmacological interventions ............................................................. 27 

1.6 Omics studies of interventions into ageing ................................................. 30 
1.6.1 Transcriptomics ................................................................................... 31 
1.6.2 Proteomics ........................................................................................... 31 
1.6.3 Epigenomics ........................................................................................ 32 
1.6.4 Metabolomics ....................................................................................... 32 

1.7 In silico prediction of interventions to target ageing .................................... 33 
1.7.1 Computational drug repurposing for ageing ........................................ 33 
1.7.2 Identification of ageing-related genes .................................................. 36 

1.8 Thesis objectives ........................................................................................ 38 
Chapter 2 Identification of geroprotectors for humans ................................... 40 

2.1 Introduction ................................................................................................. 40 
2.2 Results ........................................................................................................ 41 

2.2.1 Defining a dataset of drug-protein interactions and ageing-related 
genes 41 
2.2.2 Gene-based inference of drug-ageing associations ............................ 43 
2.2.3 Drug-ageing association based on pathways and ontologies ............. 44 
2.2.4 The HSP-90 inhibitor tanespimycin as a novel geroprotector ............. 47 
2.2.5 Comparing the results with eleven in silico drug-repurposing studies . 50 

2.3 Discussion ................................................................................................... 55 
2.3.1 Limitations ............................................................................................ 56 

2.4 Methods ...................................................................................................... 57 
2.4.1 Data sources ........................................................................................ 57 
2.4.2 Statistical analysis to rank the drugs ................................................... 59 
2.4.3 Measuring the impact of research bias ................................................ 59 



 

 8 

2.4.4 Enrichment for pro- and anti-longevity drugs ....................................... 60 
2.4.5 Experimental procedure ...................................................................... 60 
2.4.6 Lifespan assays ................................................................................... 61 
2.4.7 Real-time quantitative PCR in C. elegans ........................................... 61 

Chapter 3 Prediction of genetic interventions to prolong healthy lifespan ... 63 
3.1 Introduction ................................................................................................. 63 
3.2 Results ........................................................................................................ 64 

3.2.1 Comparison of the transcriptome of long- and short-lived mutant mice
 64 
3.2.2 Functional analysis of the transcriptional changes in the mouse models 
of ageing ............................................................................................................ 68 
3.2.3 Interventions that shorten lifespan resemble the ageing transcriptome
 72 
3.2.4 Identification of genetic interventions affecting lifespan ...................... 74 

3.3 Discussion ................................................................................................... 77 
3.3.1 Limitations ............................................................................................ 78 

3.4 Methods ...................................................................................................... 78 
3.4.1 Transcriptomic dataset collection ........................................................ 78 
3.4.2 Differential expression analysis ........................................................... 79 
3.4.3 Transcriptome-wide correlation analysis ............................................. 80 
3.4.4 Functional enrichment and consistency analysis ................................ 81 

Chapter 4 General discussion and concluding remarks ................................. 82 
4.1 Future perspectives .................................................................................... 86 

Appendix - Supplementary material ...................................................................... 89 
References 105 
 
  



 

 9 

List of figures 
 

Figure 1.1. Life expectancy in each continent, the world and the United Kingdom. . 15 

Figure 1.2. Percentage of life in poor health in the US and the UK since 1990. ...... 16 

Figure 1.3. Increase in multimorbidity with age. ....................................................... 17 

Figure 1.4. Changes in the causes of death worldwide since 1990. ........................ 18 

Figure 1.5. Increase in the risk of death with age for the top 10 killer diseases in the 

UK. ............................................................................................................................ 19 

Figure 1.6. Hallmarks of ageing. .............................................................................. 24 

Figure 2.1. Overview of the methods used in this study to prioritise compounds likely 

to ameliorate ageing in humans. ............................................................................... 42 

Figure 2.2. Comparison of the results using different data sources. ........................ 47 

Figure 2.3. Pro-longevity effect of tanespimycin in C. elegans. ............................... 49 

Figure 2.4. Drugs, human genes and KEGG pathways discovered in the 12 studies.

 .................................................................................................................................. 52 

Figure 2.5. Candidate drugs and genes from the druggable genome proposed by 

multiple studies. ........................................................................................................ 54 

Figure 3.1. Pathways and processes modulated by the mouse models of ageing with 

transcriptomic data available. .................................................................................... 65 

Figure 3.2. Correlation analysis between the mouse models of ageing. .................. 67 

Figure 3.3. Gene expression trends conserved in the mouse models of ageing. .... 72 

Figure 3.4. Gene and pathway-based correlations between the transcriptome of 

ageing-related interventions and that induced by ageing. ......................................... 73 

Figure 3.5. Correlation between the transcriptomes of long- and short-lived mice and 

that induced by 51 different gene knockouts. ............................................................ 75 

 

List of tables 
 

Table 2.1. Drugs significantly enriched for ageing-related targets. ........................... 44 

Table 2.2. Top-ranked compounds using multiple levels of biological action. .......... 48 

Table 3.1. Drugs targeting the genes involved in the candidate genetic interventions 

affecting lifespan. ...................................................................................................... 76 

 



 

 10 

Publications arising from this thesis 
 

• Fuentealba, M., Dönertaş, H. M., Williams, R., Labbadia, J., Thornton, J. M., & 

Partridge, L. (2019). Using the drug-protein interactome to identify anti-ageing 

compounds for humans. PLoS Computational Biology, 15(1), e1006639.  

Available at: https://doi.org/10.1371/journal.pcbi.1006639 

 

• Dönertaş, H. M.(*), Fuentealba, M.(*), Partridge, L., & Thornton, J. M. (2019). 

Identifying Potential Ageing-Modulating Drugs In Silico. In Trends in 

Endocrinology and Metabolism (Vol. 30, Issue 2, pp. 118–131). Elsevier Inc.  

(*) denotes equal contribution 

Available at: https://doi.org/10.1016/j.tem.2018.11.005 

 

• Partridge, L., Fuentealba, M., & Kennedy, B. K. (2020). The quest to slow 

ageing through drug discovery. Nature Reviews Drug Discovery, 19(8), 513–

532. 

Available at: https://doi.org/10.1038/s41573-020-0067-7 

 

• Fuentealba, M., Fabian, D. K., Dönertaş, H. M., Thornton, J. M., & Partridge, 

L. (2021). Transcriptomic profiling of long- and short-lived mutant mice 

implicates mitochondrial metabolism in ageing and shows signatures of normal 

ageing in progeroid mice. Mechanisms of Ageing and Development, 194, 

111437.  

Available at: https://doi.org/10.1016/j.mad.2021.111437 

 

 

 

 

 

 

 

 
 
 



 

 11 

Abbreviations 
 
Akt1 Akt serine/threonine kinase 1 
AMP Adenosine monophosphate 
AMPK Amp-activated protein kinase 
ANOVA Analysis of variance 
ATP Adenosine triphosphate 
AUC Area under the curve 
BP Biological processes 
C57BL/6 C57 black 6 
C57BL/6J C57 black 6 from the Jackson laboratory 
CC Cellular components 
CR Caloric restriction 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
DR Dietary restriction 
ECGC Epigallocatechin gallate 
ER Endoplasmic reticulum 
Ercc1 Excision repair cross-complementing group 1 
Ercc6 Excision repair cross-complementing group 6 
FDA Food and drug administration 
Fgf21 Fibroblast growth factor 21 
Ghr Growth hormone receptor 
GO Gene ontology 
GSEA Gene set enrichment analysis 
GTEx Genotype-tissue expression 
HGNC Hugo gene nomenclature committee 
HSF-1 Heat shock factor 1 
HSP-90 Heat shock protein 90 
IGF-1 Insulin-like growth factor 1 
Igf1r Insulin-like growth factor 1 receptor 
IHME Institute for health metrics and evaluation 
Insr Insulin receptor 
IPTG Isopropyl β-d-1-thiogalactopyranoside 
Irs1 Insulin receptor substrate 1 
ITP Interventions testing program 
KEGG Kyoto encyclopedia of genes and genomes 
LB Lysogeny broth 
Lmna Lamin a/c 
MANOVA Multivariate analysis of variance 
MF Molecular functions 
mRNA Messenger ribonucleuc acid 
mtDNA Mitochondrial deoxyribonucleic acid 



 

 12 

mTOR Mammalian target of rapamycin 
Myc Myc proto-oncogene 
NAD Nicotinamide adenine dinucleotide 
NADH Nicotinamide adenine dinucleotide hydride 
NGM Nematode growth media 
NMR Nuclear magnetic resonance 
OR Odds ratio 
PCR Polymerase chain reaction 
PI3K Phosphoinositide 3-kinases 
Polg Dna polymerase subunit gamma 
Pou1f1 Pou domain, class 1, transcription factor 1 
PPI Protein-protein interaction 
Prop1 Prop paired-like homeobox 1 
RNA Ribonucleic acid 
RNAi Ribonucleic acid interference 
ROS Reactive oxygen species 
Rps6kb1 Ribosomal protein s6 kinase b1 
Sirt6 Sirtuin 6 
TAME The targeting ageing with metformin 
Terc Telomerase rna component 
Tert Telomerase reverse transcriptase 
UK United Kingdom 
UPR Unfolded protein response 
US United States 
WHO World health organization 
Xpa Xeroderma pigmentosum group a-complementing protein 

 
 
 
 



Chapter 1 - General Introduction 

 13 

Chapter 1 General Introduction 
 

1.1 Changes in life expectancy throughout human history  
 

Anatomically modern humans have been living on earth for around 200 thousand 

years (Hammond et al., 2017), yet only recently in the span of human evolution, we 

started to live longer. Transitions from hunter-gatherer tribes to sedentary agricultural 

communities and then to urban societies shaped our lifestyle and set the basis for 

today’s civilization, where humans are expected to live much longer and healthier 

lives. 

 

In the upper Palaeolithic (50000 - 10000 BC), dying young was not as uncommon as 

nowadays. Based on human remains, it has been estimated that around 20% of infants 

died during the first year and that over 50% of all children did not survive puberty 

(Johnston & Snow, 1961). The high infant mortality limited life expectancy to around 

35 years for males and 30 years for females (Dennell et al., 1986). As in the 

Palaeolithic, deaths due to violence were also common during the Mesolithic (10000 - 

6000 BC), however, as populations became less nomadic, diseases like dysentery 

and malaria were common causes of death (Dennell et al., 1986). During the Neolithic 

(6000 - 2000 BC), the development of agriculture and domestication of animals caused 

a decrease in life expectancy, mainly because the new diet based on grains and 

vegetables lead to malnutrition (Dennell et al., 1986) and living in proximity to animals 

promoted zoonotic diseases (Fournié et al., 2017).  

 

During the Bronze and Iron age (2000 - 500 BC) overcrowding was common in urban 

cities, water was usually contaminated, and diet was seasonal and unbalanced. Life 

expectancy was around 39 years for males and 32 years for females, but usually 

higher in the rulers, who were taller and rarely malnourished (Dennell et al., 1986). 

During classical Greece and Rome (500 BC - 500 AD), life expectancy remained at 

around 35 years, and diseases like tuberculosis, typhoid fever, smallpox and measles 

proliferated among dense urban populations (Cunha, 2004; Eddy, 2015; 

Papagrigorakis et al., 2006). At the start of the medieval period, life expectancy 
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increased. A prime example was Byzantine Constantinople with a life expectancy of 

46 years for males and 37 years for females (Dennell et al., 1986). Unfortunately, this 

increase did not last, as poor weather during several years caused crop failure and 

consequent famine, and the bubonic plague killed an estimate of 30 to 50 million 

people (Durand, 1977).  

 

The United Kingdom (UK) is the only country in the world with well-documented 

mortality data since the 16th century. However, before the 1800s there was no clear 

trend, as life expectancy usually fluctuated between 30 and 40 years (Figure 1.1). Life 

expectancy did not increase because cities were overcrowded and dirty with no 

sewage system, making the perfect environment for the spread of infectious diseases. 

Beyond alcohol, medicine was mostly herbal, and surgery was performed with no 

anaesthetics, causing patients to often die from infections or septic shock. Even so, 

major health advances were made during this era, like the discovery of the first vaccine 

by Edward Jenner, an English physician who found that inoculating people with the 

mild cowpox virus conferred immunity to the smallpox virus (Jenson et al., 2016). Also, 

the link between poor health and living cramped was recognised, forcing industrialised 

countries to promote laws to improve the living and working conditions, including water 

supplies, sewers, streets and other sanitary matters (Fee & Brown, 2005). It was 

proven that diseases like cholera spread through water and that microorganisms lead 

to diseases (Pasteur, 1878). Based on Pasteur’s germ theory of diseases, Robert 

Kohn could identify the bacteria responsible for diseases such as cholera and 

tuberculosis, leading to the development of several vaccines and saving millions of 

lives (Blevins & Bronze, 2010). All these health reforms and discoveries increased life 

expectancy in the UK to 45 years by the end of the 19th century and set the basis for 

much greater increases in the upcoming years. 

 

Despite the increased life expectancy in developed countries, worldwide life 

expectancy remained at 32 years in 1900, reflecting the high inequality of health 

across the globe. However, improvements in health care, sanitation and living 

conditions in many countries and the discovery of antibiotics by Alexander Fleming 

(Flemming, 1929), boosted worldwide life expectancy to 66 years by the end of the 

20th century. During the last decade, life expectancy has continued increasing in many 

countries despite all predictions. Only this time it is caused by a decrease in late-life 
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mortality instead of early-life mortality, mainly attributed to a reduction in tobacco use 

and deaths from cardiovascular diseases (Mathers et al., 2015). Nowadays, global life 

expectancy is around 72 years, but the inequalities remain. Countries like Central 

African Republic have a life expectancy of 53 years, whereas people living in Japan 

are expected to live on average 30 years more. Future projections show that there is 

a 50% chance that life expectancy will break the 90-year barrier in some developed 

countries by 2030 (Kontis et al., 2017).  

 

Figure 1.1. Life expectancy in each continent, the world and the United Kingdom. Data 

obtained from Achey (2016). 

Co-occurring with the increase in life expectancy there has been a decrease in fertility 

rate, measured as the average number of children per women. Over the last 50 years, 

fertility rates halved, decreasing from an average of 5 children per woman to below 

2.5 (Robbins, 2014). The increase in life expectancy and the decrease in fertility rates 

is causing an increase in the ageing population, a phenomenon sometimes, 

pejoratively, called “the silver tsunami”. The global median age in 1970 was 21 years, 

whereas nowadays is 30 years (Gliwicz, 1983). Now in the UK, 57% of the people are 

part of the non-working population (under the age of 15 and aged 65 and over) and 

this percentage is increasing rapidly. It is predicted that by the end of the century only 

20% of the population will be working-age adults (15 to 64 years old). A high 

dependency ratio such as this is expected to cause serious problems to the economy 
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of the country as a higher proportion of the government expenditure will be on 

education for the youngest and healthcare for the oldest.  

 

1.2 Living longer but less healthy lives  
 

The increase in life expectancy is worth celebrating as a triumph of civilisation. 

However, the idea of interventions to increase human lifespan is unattractive for many 

people. One reason is that they think that living longer just means an extension of the 

moribund period at the end of life. This view may seem negative, but it is also at least 

partially true. An increase in life expectancy does not mean that those additional years 

would be in good health. Considering years lived in poor health as a combination of 

the prevalence of the conditions multiplied by the disability weight for each condition 

(obtained from surveys), we observed that the percentage of life lived in poor health 

is increasing in countries like the United States (US) and the UK (Figure 1.2). Thus, 

while every day more people reach old ages, we also live more years with poor health 

and diseases. 

 

Figure 1.2. Percentage of life in poor health in the US and the UK since 1990. Data 

obtained from the Institute for Health Metrics and Evaluation (IHME, 2017). 
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Unfortunately, studies suggest that the manifestation of the symptoms of a disease 

often indicates that the tissue damage started long ago and that it has reached an 

irreversible state (Fries, 2005). Thus, it is often not possible to completely cure 

diseases with current treatments. The lack of cures for many diseases is causing an 

even more dangerous phenomenon, which is the accumulation of 2 or more chronic 

diseases, also known as multimorbidity. People with multimorbidity represent a 

healthcare cost 5 times higher (Bähler et al., 2015) and die up to 20 years younger 

(Barnett et al., 2012) than patients with none or one chronic condition. Epidemiological 

studies show that by the age of 50 we have a 50% chance to have at least one chronic 

condition, whereas 15 years later we have the same chances to be multimorbid 

(Figure 1.3).  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Increase in multimorbidity with age. Figure extracted from Barnett et al. 

(2012). 

Moreover, given that people take medication for each disease diagnosed, it is not 

unexpected to observe that 20% of the general adult population (Guthrie et al., 2015) 

and 30% of the elderly (Bushardt et al., 2008) have concurrent use of five or more 

medications, or what it is known as polypharmacy. Polypharmacy also holds a 

substantial risk to health because it is well documented that drugs interact, causing 

severe side-effects. In fact, 12% of all hospital admissions of older patients are 

because of adverse drug reactions caused by commonly used nonsteroidal anti-
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inflammatory drugs, antiplatelet agents, anticoagulants, hypoglycaemic and blood 

pressure-lowering drugs (Howard et al., 2007). Altogether, one of the primary 

objectives of biogerontology today is to develop treatments that can preventively allow 

people to live healthier for longer by reducing multimorbidity and polypharmacy. 

 

1.3 Ageing is the major risk factor for chronic diseases 
 

Along with the increase in life expectancy, the scientific discoveries and public health 

reforms during the 19th century contributed to changing the major causes of death from 

communicable diseases to non-communicable disease (Figure 1.4). Whereas in 1990 

the leading cause of death worldwide was respiratory infections, by 2000 it was 

cardiovascular diseases. In the future, the proportion of deaths due to non-

communicable diseases will continue increasing from 71% in 2016 to 77% in 2030 

(WHO Health statistics and information systems, 2018). Ischemic heart disease will 

remain as the main cause of death worldwide, accounting for 17% of all deaths, while 

Alzheimer’s disease and other dementias will rise to become the 4th and 3rd most 

common cause of death in males and females, respectively.  
 

Figure 1.4. Changes in the causes of death worldwide since 1990. Data obtained from 

the Institute for Health Metrics and Evaluation (IHME, 2017). 
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Nowadays, 9 of the top 10 killer diseases in the UK are non-communicable and age-

related. Thus, ageing constitutes a major risk factor for the deadliest diseases. For 

example, the risk of dying from ischemic heart disease, the leading cause of death 

worldwide, increases by 917-fold by the age of 80 (Figure 1.5).  

 
Figure 1.5. Increase in the risk of death with age for the top 10 killer diseases in the 

UK. Data obtained from the Institute for Health Metrics and Evaluation (IHME, 2017). 

Ageing is the major risk factor for chronic diseases because it is the major driver of 
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ageing overlap with the mechanisms of diseases. Thus, if we target the underlying 

mechanisms of ageing, we should also modulate the mechanisms of multiple diseases 

simultaneously. Supporting this concept, it has been found that genes associated with 

age-related diseases are involved in processes of ageing such as inflammation, cell 

cycle regulation and cholesterol/apolipoprotein metabolism (Johnson et al., 2015). 

More recently, in a study that I contributed, we showed that mutations that increase 

the predisposition for age-related diseases are enriched in genes associated with 

ageing (Dönertaş et al., 2020).  

 

1.4 Theories of ageing 
 
Although delaying ageing seems to be a promising and efficient strategy to reduce 

multimorbidity, to find new interventions to modulate ageing, we first need to 
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understand what ageing is. Over the years, dozens of theories of ageing have 

emerged. Following, I review some of the most popular divided in two groups: 

evolutionary and mechanistic theories of ageing.  

 

1.4.1 Evolutionary theories of ageing 
 

The firsts theories of the evolution of ageing derived from the observations of JBS 

Haldane, a geneticist who noticed that as individuals age, the force of natural selection 

decreases (Darlington, 1942). Haldane made this observation by wondering why the 

genes causing Huntington’s disease were not removed by natural selection despite 

the prevalence of the disease, its dominant, monogenic inheritance, and its highly 

deleterious effect. Notably, he found that most of the symptoms were triggered after 

reproductive age, meaning that the disease-causing gene was passed into the next 

generation before the patient displayed any symptom. Thus, the disease-causing gene 

had only a minor effect on reproductive success and was therefore only weakly 

negatively selected.  

 

Based on Haldane’s finding, Peter Medawar proposed that mutations affecting traits 

that manifest at ages after the onset of reproduction will be subject to a progressively 

weaker force of natural selection because death from predation and other external 

hazards steadily reduce the number of mutant-bearers on which selection can act 

(Medawar, 1952). However, as humans learned to control the environment and treat 

diseases, the consequences of the accumulation of late-acting mutations became 

visible at older ages. Five years later, George Williams, an evolutionary biologist, 

proposed an additional evolutionary theory, also based on the decline in the force of 

natural selection with age. While Medawar thought that the mutations responsible for 

ageing were silent in early life and then had a bad effect later in life, Williams proposed 

that mutations could be favoured by evolution because of their contribution to 

reproductive fitness, even if they pose a disadvantage later in life (Williams, 1957).  

 

Later, Thomas Kirkwood (Kirkwood, 1977), suggested a specific physiological version 

of the antagonistic pleiotropy idea. This theory suggests that organisms distribute their 

limited resources between reproduction and maintenance (e.g. DNA damage repair), 



Chapter 1 - General Introduction 

 21 

and because evolution prioritises reproduction, body maintenance could not be 

efficient, causing the accumulation of damage and ageing. However, this theory does 

not explain why organisms under caloric restriction (i.e. low resources), live longer and 

age slower than organisms with a normal diet (Section 1.5.1). 

 

More recently, Mikhail Blagosklonny proposed that ageing is caused by the 

continuation of development (Blagosklonny, 2008). During development, genetic 

pathways involved in biosynthesis are switched on, however, as the organism ages, 

these programs are not switched off, causing organ damage and ageing. Thus, ageing 

is not programmed but quasi-programmed as it is not encoded in our genome but 

happens because there is no mechanism to switch off the developmental 

programmes. However, this theory does not consider hypertrophy as a manifestation 

of ageing, despite studies of protein expression levels in humans indicate that the 

changes during ageing represent not only extensions (hyperfunction) but also 

reversals (hypertrophy) of developmental programmes (Somel et al., 2010). Also, it 

does not explain how excessive gene activity can be maintained considering the 

inexorable accumulation of molecular damage with age (Bae et al., 2018; Franco et 

al., 2018; Lei Zhang et al., 2019).  

 

1.4.2 Mechanistic theories of ageing 
 

Medawar’s and Williams’ theories provide suitable explanations on why we age, but 

they do not give any information on what are the molecular mechanisms by which 

ageing occurs. A more mechanistic theory of ageing is the free radical theory of ageing 

(Harman, 1956), which proposes that reactive oxygen species (i.e. ROS), which are 

by-products of oxidative metabolism, react with cellular molecules causing random 

damage to cellular components. Over time, damage accumulates, causing tissue 

dysfunction and consequently ageing. The problem with this theory is that it is not clear 

why this type of damage is considered primary. Also, it has been observed that the 

generation of ROS correlates positively with the increase in lifespan in some animals 

(Bazopoulou et al., 2019; Sanz, 2016; Scialò et al., 2016) and that ROS even serve 

as critical signalling molecules in cells, mainly through covalent modification of specific 

cysteine residues in redox-sensitive proteins (reviewed in D’Autréaux & Toledano 
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2007 and Ray et al. 2012). Thus, it is evident that the role of ROS in ageing needs 

reconsideration and it is not a primary damage. In this sense, in a broader view, López-

Otín et al., (2013), used experimental evidence from animal models to propose nine 

cellular and molecular hallmarks that contribute to the process of ageing. Briefly, a 

hallmark of ageing should (i) manifest during normal ageing, (ii) its experimental 

aggravation should accelerate ageing; and (iii) its experimental amelioration should 

retard the normal ageing process and, hence, increase healthy lifespan. Based on this 

definition the authors proposed 9 candidate hallmarks of ageing (Figure 1.6): 
 

Genomic instability 
Changes in DNA integrity and stability caused by exogenous physical, chemical and 

biological agents and endogenous threats including DNA replication errors, 

spontaneous reactions and ROS. The resulting legions to the DNA include point 

mutations, translocations, chromosomal gains and losses, double-strand breaks and 

adduct formation.  

 

Telomere attrition 
Cumulative and progressive loss of telomere-protective sequences from chromosome 

ends. If telomeres are shortened to a critical length, cell division stops (i.e. replicative 

senescence). It occurs in vitro after 40 to 60 cell divisions (i.e. Hayflick limit).  

 

Epigenetic alterations 
Changes in DNA-methylation patterns, post-translational modification of histones and 

chromatin remodelling. Epigenetic alterations cause transcriptional noise, RNA 

processing aberrations, impaired DNA repair and chromosomal instability. 
 

Loss of proteostasis 
Accumulation of protein polypeptide chains caused by a failure in the mechanisms for 

the stabilisation of correctly folded proteins (i.e. heat shock proteins) or the recognition 

and degradation of unfolded proteins (i.e. proteasome and lysosome). 

 

Deregulated nutrient sensing 
Alterations to pathways regulated by nutrient levels. Examples include the Insulin- and 

IGF-1 signalling pathways for the sensing of glucose; the mTOR pathway, for the 



Chapter 1 - General Introduction 

 23 

sensing of amino acids; the AMPK complex, for sensing AMP levels; and the sirtuins 

for sensing NAD+ levels.  

 

Mitochondrial dysfunction 
Perturbation of the mitochondrial function by mtDNA mutations, destabilisation of the 

electron transport chain complexes, altered mitochondrial dynamics (i.e. fission and 

fusion) and defective quality control by mitophagy. Mitochondrial dysfunction 

increases ROS generation, reduces energy output and promotes cell death and 

inflammation. 

  

Cellular senescence 
Cell cycle arrest coupled to detrimental phenotypic changes. A primary characteristic 

is a dramatic change in the cell secretome, which becomes highly enriched in pro-

inflammatory cytokines and matrix metalloproteinases.  

 
Stem cell exhaustion 
Decline in the regenerative capacity of tissues. It is mainly driven by the age-related 

reduction in the number of haematopoietic stem cells, mesenchymal stem cells, 

satellite cells and intestinal stem cells. However, an excessive proliferation of stem 

and progenitor cells can also be deleterious by accelerating the exhaustion of the stem 

cell niche.  

 

Altered intercellular communication 
Changes in the molecules involved in the cell-cell communication (e.g. endocrine, 

neuroendocrine and neuronal). A common alteration associated with intercellular 

communication is “inflammageing”, a low-level chronic inflammatory phenotype that 

occurs during ageing. 

 

Despite the remarkable progress made in understanding the ageing process through 

the lens of these hallmarks, it remains largely unknown how alterations in one 

particular hallmark affect the others (interconnectedness), a question that I will explore 

during this thesis. 
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Figure 1.6. Hallmarks of ageing. Figure extracted from López-Otín et al. (2013).  

 
1.5 The ageing process is malleable  
 
The experiments that gave rise to the hallmarks of ageing proved that the ageing 

process is malleable mainly through dietary, genetic and pharmacological 

interventions. In the following sections, I review in more detail some of the most 

promising interventions into ageing and the history behind their discovery. 

 

1.5.1 Dietary interventions 
 

Even though ageing research is a relatively new field, the wish to prolong life is old. In 

the 17th century, Robert Boyle, one of the founders of modern chemistry, wrote a wish 

list of inventions for the future and on the top of the list were “the prolongation of life” 

and the “recovery of youth”. Unfortunately, it was not until 1935 that Clive McCay 

discovered the first life-extending intervention. He took white rats and split them into 

two groups, one with the normal amount of food and the other one with less amount 
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of food but enough nutrients. Surprisingly, he observed that rats on the low-calorie diet 

lived around 30% longer and had fewer age-related diseases such as cancer, 

atherosclerosis and cataracts (McCay et al., 1989). Since then, the positive effects of 

caloric restriction on lifespan and healthspan have been reported in multiple species, 

from single-cell yeast to mammals, including monkeys (Colman et al., 2014; Mattison 

et al., 2012). Recently, studies of humans on caloric restriction have shown that they 

display improved metabolic and hormonal factors implicated in the pathogenesis of 

age-related diseases (Most et al., 2017) and younger biological age than ad libitum-

arm participants (Belsky et al., 2018).  

 

Unfortunately, the use of caloric restriction to ameliorate ageing is not very suitable for 

humans, usually characterised by very low compliance to even mild (90%) dietary 

regimes (Racette et al., 2006). A more achievable dietary intervention for humans is 

intermittent fasting, an eating pattern that cycles between periods of fasting and eating 

normally. Studies as early as 1946 showed that rats fasting 1 in every 3 days, live on 

average up to 20% longer (Carlson & Hoelzel, 1946). Recently, studies from our lab 

showed that intermittent fasting also extends lifespan in flies (Catterson et al., 2018). 

In humans, intermittent fasting reduces body weight and improve biomarkers 

associated with diabetes, cardiovascular disease and cancer (Patterson et al., 2015).  

 

1.5.2 Genetic interventions 
 

In 1983, most scientists thought that ageing was too complex to be affected by single 

gene mutations. However, Michael Klass, a postdoc working in David Hirsh's 

laboratory at the University of Colorado (US) thought differently. Using chemical 

mutagenesis, he aimed to identify long-lived worm mutants (Klass, 1983). As many of 

the long-lived mutant worms he discovered showed reduced food intake, he concluded 

that their increased lifespan was driven by caloric restriction. After Klass’ experiments 

were published, he moved to work in the industry, but his mutants were not forgotten. 

At the same time, another researcher from the same university was also exploring the 

genetic basis of ageing. Using Klass’ approach, Tom Johnson isolated a strain that 

ate normally and lived up to 65% longer and he called this mutant age-1, hoping that 
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other mutants regulating ageing would be eventually discovered (Friedman & 

Johnson, 1988).  

 

Years later, motivated by Johnson’s work, Cynthia Kenyon aimed to discover novel 

long-lived mutants using a fresh approach. Because worms give birth to around 300 

offspring, it is very difficult to find the parents among the offspring to know whether 

they lived longer. To solve this problem, Kenyon used daf-2 mutant worms, a 

temperature sensitive-mutant that promotes the entrance to dauer (i.e. German word 

for “enduring”), a hibernation state characterised by reduced growth. She planned to 

treat adult worms at 20 ºC with a chemical that causes random mutations and then 

shift the mutants to 25 ºC so the offspring hatch as dauer and the parents would be 

easily spottable as they will have greater size. Surprisingly, as the experiment started, 

something unexpected happened, the control group with the daf-2 mutation lived twice 

as long as wild-type worms, moved well and reproduced fairly normally (Kenyon et al., 

1993). The discovery of this mutant shocked many scientists at that time. In the words 

of my supervisor Professor Linda Partridge, “It was the crucial mutagenesis, it knocked 

my socks off” (Speech at the 350th anniversary of the Royal Society).  

 

Cloning of the daf-2 gene revealed that it encodes a transmembrane receptor protein 

with homology with an insulin/insulin-like growth factor (IGF-1) receptor, whose 

function is to regulate growth and reproduction (Kimura et al., 1997). Briefly, when 

there is an abundant food supply, the daf-2 receptor triggers a phosphorylation 

cascade that starts with age-1 and ends with daf-16, a transcription factor. If daf-16 is 

not phosphorylated, as in daf-2 mutants, it migrates to the nucleus to express genes 

that repress reproduction and growth and prolong lifespan. 

 

After the discovery of the daf-2 mutant, alterations in the insulin/IGF-1 signalling 

pathway in other organisms also showed similar effects on ageing. The first was a 

mutant strain of Drosophila called chico (i.e. “small boy” in Spanish) because the 

homozygotes are around half the size of wild-type flies. Our laboratory showed that 

reduced expression of chico extends lifespan in Drosophila (Clancy et al., 2001). 

Moreover, chico limits lifespan via inhibition of the transcription factor homologue to 

daf-16, called dFOXO in Drosophila. Loss-of-function of the insulin/IGF-1 receptor in 

Drosophila also extended lifespan (Tatar et al., 2001). In worms and flies, there is a 
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single insulin/IGF-1 receptor, while in mammals there is an insulin receptor (Insr) and 

an IGF-1 receptor (Igf1r). Mice with heterozygous loss of Igf1r live on average 26% 

longer (Holzenberger et al., 2003), whereas deletion of Insr in adipose tissue, extends 

mean lifespan by 18% in male and female mice (Blüher et al., 2003). 

 

Our best candidate interventions to target human ageing are obtained from 

experiments in mice, however, this is very expensive and time-consuming. The mean 

lifespan of the most commonly used strain of mouse (i.e. C57BL/6) is on average 

between 26 to 28 months and the mice can live up to 40 months without considering 

the effects on lifespan of the tested intervention. It has estimated that two lifespan 

experiments in mice may take up to 10 years and cost over 130000 USD (Robertson 

et al., 2011). Thus, it is highly convenient to study ageing using mice with accelerated 

ageing, which can provide important clues about ageing in a fraction of the cost and 

time. To our knowledge, the first mouse model of premature ageing was published by 

the Hoeijmakers’ group in 1997. The authors found that disruption of Ercc1, an 

endonuclease necessary for nucleotide excision repair, lead to genomic instability and 

caused a significant lifespan reduction and growth retardation, while displaying ageing 

phenotypes such as sarcopenia, kyphosis, poor coordination, loss of visual acuity and 

ataxia (Weeda et al., 1997).   

 

1.5.3 Pharmacological interventions 
 

The first formal study testing the effect on lifespan of different molecules was done by 

Thomas Gardner in 1948. He thought that queen bees lived longer than her workers 

because of Royal jelly, a honeybee secretion that is used to feed the queen bee larvae. 

He fractionated the various components of the royal jelly and tested each one for life-

extending properties using Drosophila melanogaster as a model. Flies fed with 

pantothenic acid (Vitamin B5), a compound representing 5% of royal jelly, lived 27% 

longer than controls (Gardner, 1948). Notably, other components of royal jelly did not 

increase lifespan significantly or decreased lifespan. Ten years later, the same 

compound was tested in mice (Pelton & Williams, 1958). Male and female mice with 

pantothenic acid supplement lived 18% and 20% longer, respectively. More recent 

studies have confirmed the positive effects of Royal jelly on mouse lifespan (Inoue et 
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al., 2003), but the major contribution of pantothenic acid to this lifespan extension 

remains unconfirmed. In humans, administration of Royal jelly to healthy volunteers 

improved indicators of physical and mental health (Morita et al., 2012). 

 

In the 1970s, the first synthetic drug with geroprotective properties was found. Aspirin, 

a synthetic derivative of salicylic acid, showed to increase the lifespan of flies up to 

40% (Hochschild, 1971), however, in subsequent experiments with female C57BL/6J 

mice, the same author could not find a significant increase in lifespan (Hochschild, 

1973). More recently, the Intervention Testing Program (ITP) showed that aspirin 

increases lifespan in heterogeneous male mice by a modest 8% (Strong et al., 2008), 

yet these effects were not replicated at higher doses (Miller et al., 2019). Despite 

several clinical trials in humans have shown that aspirin treatment is associated with 

a reduction in cardiovascular events and stroke, these benefits may be outweighed by 

a significant increase in the risk of gastrointestinal bleeding and haemorrhagic stroke 

(Berger et al., 2006; McNeil et al., 2018). 

 

Rapamycin 
In 2009, Harrison et al. showed that rapamycin, a molecule isolated from 

Streptomyces hygroscopicus, a bacterium found in the 70s in Rapa Nui (Chile), 

significantly increased the lifespan of genetically heterogeneous mice (Harrison et al., 

2009). This finding was relevant for two main reasons: i) most of the drugs or 

compounds shown to extend lifespan by then did not have a clear mechanism of 

action, while it was already established that the primary target of rapamycin was 

mTOR (Heitman et al., 1991), a protein involved in the regulation of cell growth and 

metabolism. Also, it was already known that mTOR regulated longevity, as genetic 

down-regulation of mTOR increased lifespan significantly in C. elegans (Vellai et al., 

2003) and Drosophila (Kapahi et al., 2004). ii) the discovery of rapamycin as a 

potential geroprotector was also significant because it was a drug already approved 

for human use since 1999. Thus, the safe dosage and side effects in humans were 

already established. Today, the aim is to determine if rapamycin can prevent the ill 

effects of ageing in healthy individuals without major side effects. A recent short-term 

clinical trial of rapamycin in healthy elderly people showed no major adverse effects 

(Kraig et al., 2018). Also in elderly volunteers, a 6-weeks clinical trial of the mTOR 
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inhibitor everolimus, an analogue of rapamycin, was generally well tolerated and 

showed to enhance the response to the influenza vaccine by 20% (Mannick et al., 

2014). A more recent study combining everolimus with BEZ235, a dual PI3K/mTOR 

inhibitor, found that 6 weeks of treatment substantially reduced the number of 

infections in the following year (Mannick et al., 2018).  

 

Metformin 
In 2010, another drug much commonly used in humans was associated with ageing. 

Metformin, a drug used to treat type 2 diabetes, showed to extend lifespan in C. 

elegans (Onken & Driscoll, 2010). Two years later, our lab showed that metformin did 

not extend lifespan in Drosophila, but it activated AMPK and reduced lipid storage 

(Slack et al., 2012). Later, the ITP reported modest effects in mouse lifespan by 

metformin, but they were not statistically significant (Strong et al., 2016). Considering 

that metformin is by far the most prescribed drug for type 2 diabetes, retrospective 

epidemiological studies allowed researchers to find associations between metformin 

usage and reduction of age-related diseases or mortality. A large epidemiological 

study found an increase of 18% in the median all-cause survival in patients under 

metformin compared to the general population, although higher morbidity was 

observed in the group taking the drug (Bannister et al., 2014). However, this study was 

conducted by comparing people with type 2 diabetes and treated with metformin 

against the rest of the population. Thus, it is not clear if metformin would have benefits 

in non-diabetic individuals. Moreover, metformin users may have greater health-

seeking behaviours than the control population as they have had contact with a 

clinician. Despite these questions remain unanswered, similar findings in various 

epidemiological studies (reviewed in Campbell et al. 2017) motivated the scientific 

community to evaluate the geroprotective properties of metformin in clinical trials. The 

Targeting Ageing with Metformin (TAME) initiative is planned to study the effects of 

metformin in non-diabetic people aged 65 to 79 by assessing multiple markers of age-

related health (Barzilai et al., 2016).  

 

Lithium 
In the mid-19th century, lithium was used to treat several diseases, including 

rheumatism, mania and depression. The stabilising mood effects of this drug were so 



Chapter 1 - General Introduction 

 30 

popular that in 1929 it was even part of the famous soft drink “7 Up” which originally 

was called “7 Up Lithiated Lemon Soda”. Lithium has shown to induce a dose-

dependent extension of lifespan in yeast, C. elegans, and Drosophila (Castillo-Quan 

et al., 2016; McColl et al., 2008; Sofola-Adesakin et al., 2014; Tam et al., 2014; Zarse 

et al., 2011), however, its effects on mammalian lifespan have not yet been reported. 

In C. elegans and Drosophila, lithium maintains locomotor performance during ageing 

(Castillo-Quan et al., 2016; Tam et al., 2014). In animal models of age-related 

diseases like Alzheimer’s disease, Huntington’s disease and stroke, lithium is 

neuroprotective and ameliorates the pathology (Chiu & Chuang, 2010; Farina et al., 

2017; X. Zhang et al., 2011). In humans, high levels of lithium in drinking water in 

regions of Japan have been associated with lower suicide rates (Ohgami et al., 2009) 

and reduced all-cause mortality (Zarse et al., 2011). Also, people with bipolar disorder 

taking lithium have longer leukocyte telomeres (Martinsson et al., 2013). 

Unfortunately, lithium is considered a “dirty drug” because frequently causes side 

effects, including nausea, hand tremors, lethargy, blurred thinking and weight gain. 

Thus, further safety studies in healthy individuals are required to determine which 

dosage reduces the risk of side effects but maintains the positive effects on ageing. 

 

To determine which interventions may have a positive effect on human ageing is 

probably the most important question in ageing research today. In a recent review 

published with my supervisor Linda Partridge, we have examined the drugs 

considered the most promising to ameliorate human ageing (Partridge et al., 2020). 

Based on their robustness in preclinical and clinical trials, we grouped them into two 

tiers. The top tier includes the three drugs mentioned previously (i.e. rapamycin, 

metformin and lithium) plus senolytics, acarbose, spermidine and NAD+ enhancers, 

while the second-tier included non-steroidal anti-inflammatory drugs (e.g. aspirin), 

reverse transcriptase inhibitors, systemic circulating factors, the microbiome, 

glucosamine, glycine and 17a-estradiol.  

 

1.6 Omics studies of interventions into ageing 
 

In the previous section, I reviewed some of the most promising interventions to delay 

ageing. Over the years, researchers have used high-throughput technologies to 
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determine the molecular changes that these interventions induce at different biological 

levels in a hypothesis-free manner. In this section, I summarise the observations of a 

few of these omics studies in animal models. 

 

1.6.1 Transcriptomics  
 
During transcription, a gene’s DNA is copied into RNA transcripts. The transcriptome 

is the set of all RNA transcripts in the cell. Through microarray and sequencing 

methods researchers can measure the abundance of these transcripts and estimate 

which genes are being expressed higher (up-regulated) or lower (down-regulated) 

than in the controls. Transcriptomic studies have been widely used to identify 

molecular mechanisms associated with mammalian ageing, for example by comparing 

different species (Fushan et al., 2015) or mouse strains (Houtkooper et al., 2013; 

Swindell, 2007) with different lifespans. Additionally, several studies in mice have 

revealed differentially expressed genes and pathways in response to genetic 

(Boylston et al., 2006; Rowland et al., 2005; Selman et al., 2009; Y. Zhang et al., 

2012), pharmacological (Martin-Montalvo et al., 2013) and dietary (Rusli et al., 2015; 

Swindell, 2009) interventions that affect ageing. The transcriptomes of pairs of 

lifespan-extending interventions have also been compared, for instance, treatment 

with rapamycin and caloric restriction (CR) (Fok et al., 2014), long-lived Ames and 

Little dwarf mice (Amador-Noguez et al., 2004) and CR and Ames dwarf mice 

(Tsuchiya et al., 2004), revealing conserved changes in gene expression. However, 

comparison of multiple lifespan-extending interventions, including Snell, Ames, and 

Little dwarf mice together with CR and CR-mimetic compounds have shown 

discrepant findings with gene signatures enriched in steroid metabolism, cell 

proliferation, and cellular morphogenesis (Swindell, 2007) or oxidative 

phosphorylation, drug metabolism and immune response (Tyshkovskiy et al., 2019).  

 

1.6.2 Proteomics 
 
After transcription, RNA transcripts (mRNA) are translated into proteins by the 

ribosome. However, studies indicate that there is a poor correlation between mRNA 

and protein expression data  (Ghazalpour et al. 2011; Pascal et al. 2008; Chen et al. 



Chapter 1 - General Introduction 

 32 

2002). Microarrays and mass spectrometry-based methods are the most commonly 

used technologies for the high-throughput study of the proteome. Interestingly, studies 

of the proteome of calorie-restricted mice or treated with rapamycin showed increased 

protein half-life compared to age-matched controls (Karunadharma et al., 2015). More 

recently, multi-tissue proteomic profiling of long-lived Drosophila insulin signalling 

mutants showed increased mitochondrial electron transport chain proteins in the fat 

body and proteasomal subunits in the gut (Tain et al., 2017). Similarly, proteomic 

profiling of C. elegans daf-2 mutants showed an up-regulation of proteins in core 

metabolic pathways, including glycolysis, pentose phosphate pathway, citric acid cycle 

and electron transport chain complexes (Depuydt et al., 2014). 

 

1.6.3 Epigenomics 
 
As with proteins, DNA also undergoes modifications. The epigenome is the entire set 

of chemical changes to DNA and histones in the cell. DNA methylation is the most 

commonly studied epigenetic modification, and bisulfite genomic sequencing is 

considered the gold standard for its detection. Studies in mice have shown that age-

associated DNA methylation changes are suppressed in Ames dwarf, calorie-

restricted, and rapamycin-treated mice (Cole et al., 2017; Hahn et al., 2017; T. Wang 

et al., 2017). In contrast, evidence of DNA methylation in C. elegans and D. 

melanogaster has been elusive and controversial since the 1980s, with no robust proof 

of its location or function (Dunwell & Pfeifer, 2014).  

 

1.6.4 Metabolomics 
 
As proteins (i.e. enzymes) interact within metabolic networks, they produce 

metabolites that are used to produce energy and form the building block of the cell. 

The metabolome comprises the complete set of the metabolites within the cell. 

Metabolites are usually measured using NMR spectroscopy and mass spectrometry. 

Global metabolomic analysis in long-lived growth hormone-releasing hormone 

knockout mice has revealed differences in metabolites of mitochondrial metabolism, 

specifically the response to oxidative stress, serotonin degradation and nicotine 

degradation (Hoffman et al., 2020). Similarly, studies of mice under caloric restriction 
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revealed changes in metabolites related to energy status, but no metabolites 

significantly changed in mice treated with rapamycin (Fok et al., 2014). However, the 

combination of dietary restriction and rapamycin treatment showed greater effects on 

the metabolome than dietary restriction alone. 

 

Despite the remarkable contribution of omics studies in long-lived models to 

understanding the molecular mechanisms of ageing, it remains largely unknown if 

these molecular changes are causal for the effects in lifespan and if opposite omics 

signatures are observed in models with accelerated ageing or during normal ageing, 

questions that I will explore during this thesis. 

 

1.7 In silico prediction of interventions to target ageing 
 

Even though we have made significant progress in finding new genetic and 

pharmacological interventions to modulate ageing, and to monitor the mechanisms 

underlying these changes, thousands of genetic interventions remain untested, 

especially in mammalian models. Moreover, high-throughput studies indicate that 

without prior knowledge, only 1 in 20 interventions tested prolong lifespan (Ye et al., 

2014). In this regard, computational methods can speed up the identification of 

interventions with an increased likelihood of affecting ageing. In this section, I review 

the available computational methods for the prediction of geroprotectors and genes 

associated with ageing. 

 

1.7.1 Computational drug repurposing for ageing 
 

Over the years, several bioinformatic methods have been developed to identify 

potential geroprotective drugs using different strategies and sources of data. Two 

studies adopted methods based on the hypothesis that proteins or ligands with similar 

structures are likely to bind similar ligands or proteins, respectively, to predict drug-

target interactions. The first of these studies aimed to identify novel drugs targeting 

three specific temperature-sensing proteins implicated in ageing in the rotifer 

Brachionus manjavacas (TRP7, S6P, FhBC) (Snell et al., 2016). The authors used a 

virtual screening software called FINDSITEcomb that combines protein modelling with 
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sophisticated threading approaches to model the target. The pockets in the model are 

then compared with the pockets of the crystallographic structures of proteins with 

ligands or modelled structures with known binders. The ligands of the top 100 ranked 

pockets are then compared with a library of screened ligands and ranked by ligand 

similarity. The authors screened 1347 FDA approved drugs in silico and tested four 

drugs for each target experimentally in the rotifers for their effects on lifespan and 

healthspan. Out of the 12 compounds tested, 5 significantly increased the rotifers’ 

lifespan.  

 

In a subsequent study by the same authors, the number of proteins analysed was 

expanded to include a set of ageing-related genes found in other animal models that 

have orthologous genes in rotifers (Snell et al., 2018). This time, 94 targets were 

screened in silico using the FINDSITEcomb software. The top 1% binding compounds 

for each target were further ranked by their cumulative lifespan extension achieved by 

genetic interventions into their targets as taken from experimental model organism 

data and filtered according to availability and previously predicted side effects (Zhou 

et al., 2015). From the 31 drugs experimentally tested in rotifers by two 10-day survival 

screens, seven drugs were further tested in two whole-life survival analyses, two of 

which resulted in a median lifespan extension of 13–42%.  

 

Another in silico screening study was restricted to a single gene, AMP-activated 

protein kinase (AMPK), activation of which partially mediates the effects of DR on 

ageing (Mofidifar et al., 2018). To find new molecules to activate AMPK and 

theoretically mimic DR, the authors performed virtual screening using molecular 

docking of 1908 FDA approved drugs. The interaction between the top-ranked 

compounds and their targets was then checked by molecular dynamics. The study 

reported four compounds with predicted high affinity for AMPK, but these were not 

tested experimentally.  

 

Using a priori information on known ageing-related genes, geroprotective drugs, or 

gene expression profiles, several studies have implemented a series of similarity-

based approaches to identify novel geroprotectors. Given that drugs targeting ageing-

related gene products are expected to affect the ageing process, Fernandes et al. 

(2016) focused on finding drugs that target the human orthologues of genes 
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associated with lifespan in animal models. For this calculation, inhibitory drugs 

interacting with anti-longevity genes and activators targeting pro-longevity genes were 

considered. In total, 376 drugs were scored, and 20 were statistically significant. 

Thirteen of these 20 drugs targeted histone deacetylases, and three were previously 

associated with lifespan extensions in animal models.  

 

An alternative approach is to find drugs similar to known geroprotective drugs using 

machine learning, which is a strategy well-suited for prediction tasks. Liu et al. (2016) 

attempted to predict new geroprotectors for C. elegans. They adopted a semi-

supervised algorithm trained with high-confidence geroprotectors derived from an 

experimental screen for C. elegans (Ye et al., 2014), together with their associated 

ageing-related genes curated from the literature and the GenAge database (De 

Magalhães & Toussaint, 2004). They produced a rank-ordered list of 785 drugs with a 

potential to increase lifespan in worms, with experimental validation for one drug in 

their list, using a lifespan assay. A separate machine learning approach was trained 

with chemical descriptors of known geroprotective drugs and functional annotation of 

their targets (Barardo et al. 2017). Using a supervised algorithm (i.e., random forest), 

they generated a ranked list of drugs predicted as lifespan-extending compounds, 

although no validation was performed. 

 

The Connectivity Map Resource provides drug-induced expression profiles for 1309 

compounds. Comparing these profiles with ageing-related gene expression signatures 

using a gene-set enrichment analysis can reveal drugs that generate changes in 

expression correlated (positively or negatively) to those seen in ageing (or any other 

biological process or disease). The first study of this kind used DR expression profiles 

in rats and rhesus monkeys to find DR mimetics (Calvert et al., 2016). They identified 

11 drugs that might increase lifespan by mimicking DR. They experimentally tested 

several of the drugs in C. elegans and found that most extended lifespan. In a similar 

approach, in a study that I contributed, we used a meta-analysis of gene expression 

changes in the ageing human brain to identify robust gene expression changes in 

ageing and find drugs targeting those genes (Dönertaş et al. 2018). Using the 

Connectivity Map data, we identified 24 drugs and provided in silico validation by 

showing significant enrichment of known geroprotective drugs in their list. Recently, 

Yang et al. (2018) used a network-based method, called ANDRU (ageing network-
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based drug discovery). Instead of relying on model organisms, this approach was 

driven by human transcriptome data (GTEx) from young and old adipose and artery 

tissues and signatures from the CREEDS database (Wang et al., 2016) to identify 

differentially expressed genes within the ageing-related networks and drugs reversing 

these changes. They report three distinct drugs ranking in the top five. Although none 

was previously reported as a lifespan modulator, these drugs target pathways that 

change in expression with age, such as metabolic enzymes and lipid metabolism.  

 

1.7.2 Identification of ageing-related genes 
 

As with drugs, several methods have been developed to identify genes with the 

potential to modulate ageing, most of which use machine learning algorithms 

(reviewed in Fabris et al. 2017). The first prediction of ageing-associated genes came 

with the creation of the GenAge database. Based on a network of genes associated 

with ageing and their interacting partners, the authors used a “guilty-by-association” 

strategy to identify new genes likely to affect ageing (De Magalhães & Toussaint, 

2004). Similarly, Managbanag et al. (2008) used genes known to increase replicative 

lifespan in yeast from different databases and literature search to identify new 

longevity-associated genes. A shortest pathway analysis predicted 88 genes that were 

experimentally tested. Experimental deletion of 7 (8%) of these genes increased 

replicative yeast lifespan (p = 0.02).  

 

Li et al. (2010) using 140 ageing-associated genes in humans with protein-protein 

interaction data constructed a network from which extracted topological features. The 

negative set of genes not associated with ageing used in the machine learning 

algorithm was composed of genes randomly selected from the Human genome. The 

study determined that proteins involved in ageing tend to have a higher number of 

interaction partners, interact with other ageing-related genes and are located at the 

centre of protein-protein interaction networks. The same research group repeated the 

analysis using longevity-associated genes in flies and mice an reached to similar 

conclusions (Feng et al., 2012; Song et al., 2012). 
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Huang et al. (2012) aimed to predict whether the deletion of a gene will decrease or 

increase in lifespan by using a two-layer model. The authors used a list of 533 gene 

deletions with known effects on yeast lifespan (i.e. increase, decrease or no effect). 

Gene expression data from 33 of these gene deletions was used to identify 442 genes 

discriminative for lifespan. The discriminative genes were merged with genes 

associated with ageing in the GenAge database to form a set of 525 lifespan-related 

genes. A machine learning model was built including biochemical and 

physicochemical features from the lifespan-related genes and features from an 

interaction network. They observed that the centrality of the deleted gene and the 

participation in chromatin silencing were important predictors of longevity.  

 

In a more straightforward approach, using data from the GenAge database, Wan et 

al. (2015) constructed four datasets of genes associated with longevity in yeast, 

worms, flies and mice. Then the GO terms annotated to each gene were used as 

features for each gene. The authors found that the features that classified better genes 

into pro- or anti-longevity were the participation in biological processes associated with 

ageing, including autophagy, translation, DNA repair and telomere organisation.  

Fabris & Freitas (2016) used a set of genes associated with ageing or mortality 

phenotypes in mice, and gene features such as amino acid sequence, sequence 

motifs, protein-protein interactions and KEGG pathway annotations in a machine 

learning model to classify mouse genes into ageing-related or non-ageing related. 

They observed that features associated with KEGG pathways lead to the highest 

predictive accuracy (AUC = 0.71) and proteins involved in the Prolactin signalling 

pathway were likely ageing-related. More recently, Kerepesi et al. (2018) used 21000 

proteins features to classify all proteins in the human genome into ageing-related or 

non-ageing related. The authors found that 36 protein features resulted in a model 

with a remarkable 98% accuracy. The feature with the best predictive power was 

“number of ageing-related interaction partners”, indicating that proteins interacting with 

known ageing related-targets are more likely to affect ageing.  
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1.8 Thesis objectives 
 

In this chapter, I explained why further research on ageing is needed. Briefly, I 

described how human life expectancy is continuing to increase worldwide, and how 

although this trend is to be celebrated, the later years of life are still often spent in poor 

health and lowered quality of life. Luckily, these ill health effects are not inevitable, as 

they are directly caused by ageing, a process that is malleable in animal models 

through genetic or pharmacological interventions. Still, to find new geroprotective 

interventions and understand their mechanisms of action is challenging. In the 

following chapters, I will describe computational approaches aiming to address these 

challenges, in the attempt to develop future treatments that can allow people to live 

healthier for longer. 

 

In section 1.5.3, I described several drugs with geroprotective properties in animal 

models. Unfortunately, there are still thousands of drugs and targets with 

geroprotective potential that have not been tested and we still do not know if these 

drugs will work against human ageing. Despite, ageing researchers have aimed to 

accelerate this translation through the development of computational methods to 

prioritise geroprotective drugs and targets (Section 1.7), only a few have focused on 

making predictions directly based on human ageing data. In chapter 2, I will introduce 

a drug repurposing approach based on finding which drugs target a significant 

proportion of human ageing-related genes and pathways. I will validate our findings 

by i) comparing them against drugs with known geroprotective properties in animal 

models and ii) testing experimentally the effect on C. elegans lifespan of the top-

ranked compound. Finally, I will compare our results against all published drug 

repurposing studies to determine if our candidate drugs are also repeatedly predicted 

to affect ageing. 

 

In section 1.6, I described how the use of omics technologies led us to achieve a better 

understanding of the mechanisms of ageing. However, comparisons of the various 

mechanisms of ageing are scares and it is still not yet clear how we can use this 

knowledge to find new targets and drugs to module ageing. In chapter 3, I will present 

a meta-analysis of transcriptomic data from 18 mouse models of ageing, aiming to 
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understand i) what are the similarities between interventions with similar effects on 

lifespan compared to interventions opposite effects on lifespan? ii) are the molecular 

mechanisms of ageing tissue-dependent?, iii) what are the most common 

mechanisms of ageing within intervention with similar lifespan effects? iv) are there 

some conserved changes with opposite directions between long- and short-lived 

mice? v) do the changes during normal ageing mimic the changes on short-lived 

models and reverse those of long-lived models? vi) which genetic interventions induce 

similar transcriptional changes to those observed in the mouse models of ageing?  

 

In the final chapter (chapter 4), I will discuss our contributions to the ageing field and 

future directions of research. 
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Chapter 2 Identification of geroprotectors for humans 
 
2.1 Introduction 
 

Although pharmacological interventions have the potential to ameliorate ageing in 

humans, the development of drugs for this purpose would present major challenges. 

The trial of new drugs to modulate human ageing would require treating healthy 

individuals over long periods, which is unlikely to be allowed by drug agencies, 

particularly for drugs with unknown safety profiles. For this reason, it is more feasible 

to repurpose drugs already approved for specific diseases, or that passed the safety 

tests but failed against their original indication, than to target ageing itself with new 

drugs (Newman et al., 2016; Partridge, 2016). Moreover, even if we focus on drugs 

that passed the safety tests, thousands of drugs would require to be tested. A solution 

is to develop computational methods that can prioritise drugs for testing based on 

existing molecular data. As I described in Section 1.7.1, at least 11 computational 

methods have been developed to identify potential geroprotectors. However, more 

than 70% of the methods use animal models data to predict geroprotectors, despite 

the translation from non-mammalian species to humans is still a challenge, and certain 

aspects of ageing may be human-specific. In this regard, based on the empirical 

observation that proteins involved in ageing tend to interact with many other ageing-

related proteins (Section 1.7.2), that the identification of drugs with multiple ageing-

related targets represents a suitable strategy to find geroprotectors for humans.  

 

In this chapter, I present a study aimed to use molecular data from humans to develop 

a drug-repurposing method capable of prioritising geroprotective drugs. Using publicly 

available databases, I rank-ordered drugs by their probability of affecting ageing, by 

measuring whether they targeted more genes related to human ageing than expected 

by chance. I further enhanced the power of the approach to predict ageing-modulating 

drugs by using other biological annotations such as pathways and ontology terms as 

the comparator. Finally, I integrated the ranked lists of drugs calculated from different 

data sources and experimentally validated the geroprotective properties of the top-

ranked drug. Most of the work presented in this Chapter has been published as 

Fuentealba et al., (2019). 
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2.2 Results 
 
2.2.1 Defining a dataset of drug-protein interactions and ageing-related genes 
 

I inferred drug-ageing association by comparing drug-gene interactions with gene-

ageing associations. Figure 2.1 presents an overview of the procedure I used to 

prioritise compounds associated with ageing. First, a dataset containing the 

interactions between drugs and proteins was built based on data from the STITCH 

database (Szklarczyk et al., 2016). As I was focused on finding drugs applicable to 

humans, I kept only drugs targeting human proteins and successfully mapped to the 

DrugBank database (Law et al., 2014) using the UniChem resource (Chambers et al., 

2013) (Figure 2.1A). The resulting dataset was composed of 18393 interactions 

between 2495 drugs and 2991 proteins. More than half of the drugs (51.1%) in the 

dataset are approved for human use, 18.6% are in some phase of the approval 

process, and 28.4% have been shown to bind to disease targets in experiments.  

 

The next step was to define a set of genes associated with human ageing. For this 

purpose, I used the Aging Clusters resource (Blankenburg et al., 2018), which contains 

information from 4 different sources including genes: i) changing expression with age 

ii) whose DNA methylation levels change with age iii) associated with age-related 

diseases and iv) included in manually curated databases of genes linked with longevity 

in genetic studies (Budovsky et al., 2013), associated with cellular senescence (Zhao 

et al., 2016) or showing evidence for a causative role in human ageing (Tacutu et al., 

2013). To improve the confidence of the human ageing-related genes selected, I only 

used 1216 genes found in at least 2 of the 4 data sources. 
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Figure 2.1. Overview of the methods used in this study to prioritise compounds likely 

to ameliorate ageing in humans. A) STITCH chemicals were mapped into DrugBank 

drugs using the UniChem resource programmatically. B) The significance of the drug-

ageing inference was calculated using Fisher’s exact test, which calculates the 

probability that the overlap between two samples (ageing-related genes and drug 

targets) drawn from the same universe is due to chance. This comparison was made 

at different biological levels. C) Diagram of the procedure to expand the “gene” 

information into multiple biological levels. Ageing-related genes were mapped to other 

levels using an enrichment analysis, while the drugs’ targets were cross-referenced 

with the list of genes defining each annotation. 
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2.2.2 Gene-based inference of drug-ageing associations 
 

Based on the premise that drugs targeting more ageing-related genes were more likely 

to affect the ageing process, I calculated the statistical significance of the overlap 

between the gene targets of each drug and the ageing-related genes (Figure 2.1B). 
From the 1147 drugs analysed, 19 were statistically enriched for ageing-related 

targets after multiple testing correction (Table 2.1, Supplementary Table 1). I 

performed an in silico validation of our method to prioritise ageing-related drugs, by 

comparing the obtained list with the DrugAge database (Barardo et al. 2017). Six out 

of the 19 drugs have already been reported to significantly extend the lifespan of at 

least one model organism (labelled in black in Table 2.1), while only 1 was expected 

by chance. Using literature mining, I identified studies showing the association with 

ageing of other three drugs in the list, including cAMP analogues (Tong et al., 2007), 

selenium (Hao et al., 2016; Zhang et al., 2018) and tanespimycin (Fuhrmann-

Stroissnigg et al., 2017; Fujikake et al., 2008). In contrast, I also found evidence for 

the DNA-mediated, pro-ageing (anti-longevity) effects of doxorubicin (Buttiglieri et al., 

2011), cisplatin (Nonnekens & Hoeijmakers, 2017) and hydrogen peroxide (Lisanti et 

al., 2011). Altogether, 12 of the 19 (63%) candidate drugs showed experimental 

evidence to modulate ageing. 

 

Because of limited data on which alterations in the ageing-related genes are beneficial 

or detrimental, I expected to obtain anti-ageing and pro-ageing drugs in our list. I 

performed an interaction-based similarity analysis to determine if drugs with similar 

effects on ageing had similar mechanisms of action. I found that pro-ageing 

compounds clustered separately from the other drugs, however, known geroprotectors 

showed different mechanisms of action (Supplementary Figure 1). Similarities were 

found in the mechanism of action of sorafenib and regorafenib, bexarotene and GW-

501516, and sirolimus and ECGC, in agreement with a previous study (Aliper et al., 

2017). 
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Table 2.1. Drugs significantly enriched for ageing-related targets. The names of the 

drugs previously shown to extend lifespan in animal models are in bold and genotoxic 

molecules are in italic. The columns k(l) and m(n) are consistent with the diagram in 

Figure 1B. OR stands for odd-ratios and adj.p-value is the p-value adjusted for multiple 

testing. 

 

 

2.2.3 Drug-ageing association based on pathways and ontologies 
 

Given that geroprotective effects are likely to be mediated through altered pathway 

activity and cellular function, I investigated if I could enhance the prediction of 

geroprotectors using other biological annotations as comparators. I calculated the 

pathways and gene functions enriched in ageing-related genes. A total of 82 KEGG 

and 54 Reactome pathways were enriched in this set of genes, as well as 1177 

biological processes (BP), 69 cellular components (CC) and 103 molecular functions 

(MF). Also, I calculated that 676 proteins interacted with the set of ageing-related 

genes. These terms were defined as the set of ageing-related terms (Figure 2.1C, left 
side). Equivalently, drugs were then associated with these terms through association 

with their targets using the list of genes defining each term according to the DAVID 

Drug name Status OR p-value adj.p-value 
Resveratrol Investigational 2.52 2.09E-08 1.82E-04 
Sunitinib Approved 8.11 4.92E-08 2.15E-04 
Genistein Investigational 2.84 6.40E-07 1.86E-03 
Simvastatin Approved 2.80 1.53E-06 3.35E-03 
Tanespimycin Investigational 6.71 2.64E-06 4.62E-03 
Regorafenib Approved 9.16 4.43E-06 6.45E-03 
Epigallocatechin gallate Investigational 2.50 5.96E-06 7.44E-03 
Doxorubicin Approved 2.78 7.20E-06 7.87E-03 
Selenium Approved 6.25 9.44E-06 9.17E-03 
Celecoxib Approved 3.46 1.58E-05 1.38E-02 
Indole-3-carbinol Investigational 6.32 1.83E-05 1.46E-02 
Hydrogen peroxide Investigational 2.00 2.85E-05 2.07E-02 
GW-501516 Investigational 9.56 6.23E-05 3.82E-02 
Bexarotene Approved 7.60 6.98E-05 3.82E-02 
Dorsomorphin Experimental 7.60 6.98E-05 3.82E-02 
Sorafenib Approved 3.03 7.25E-05 3.82E-02 
Sirolimus Approved 2.30 7.42E-05 3.82E-02 
Cisplatin Approved 2.38 8.39E-05 4.07E-02 
cAMP Experimental 2.29 1.00E-04 4.60E-02 
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knowledge-base (Huang et al., 2007) and the biological database network (Mudunuri 

et al., 2009). This mapping procedure resulted in a set of terms from each data source 

related to each drug (drug-related terms) (Figure 2.1C, right side). Analogously to 

the gene-based association analysis, I calculated for each biological annotation if the 

overlap between ageing-related terms and drug-related terms was statistically 

significant using a Fisher’s exact test. This procedure generated 6 lists of ranked 

compounds (i.e. based on protein-protein interactions, biological processes, cellular 

components, molecular Functions, KEGG and Reactome pathways) in addition to the 

gene-based analysis (Supplementary Table 2-7).  
 

I evaluated the similarity between the ranking of compounds in the different lists and 

observed a moderate concordance (Kendall’s W = 0.58, p-value = 1.02E-266). The 

highest correlations were observed between the results from biological processes and 

cellular components (Kendall’s tau = 0.51, p-value < 2.2E-16) (Supplementary 
Figure 2), while the lowest was observed between cellular components and genes 

(Kendall’s tau = 0.16, p-value = 3.289E-11). An intrinsic limitation of our strategy is 

that it is based on genes known to be associated with ageing. To evaluate the 

possibility of research bias, I performed random permutations to simulate the 

enrichment of each drug for a random set of terms at each biological level. None of 

the top-ranked drugs in each list ranked higher than in the analysis in more than 1.7% 

of the simulations (Supplementary Table 8).  
 

Given that our method rank-orders the drugs by the significance of the association, it 

is possible to quantify the overall capability of the strategy to prioritise geroprotectors 

by calculating for each list the fraction of known geroprotectors (ranked by p-value) 

among the fraction of drugs considered in each analysis (Figure 2.2A). The 

enrichment for geroprotectors was quantified by calculating the area under the curve 

(AUC) generated by plotting these two variables. The maximum AUC was obtained 

when biological processes (AUC = 0.69) were used as the comparator 

(Supplementary Figure 3). The use of genes showed the lowest enrichment when all 

evaluated drugs were considered (AUC = 0.59), which suggests that the use of higher 

biological levels to calculate the inference improves the prediction capabilities and that 

the use of genes leads to a loss of power to rank drugs targeting a low proportion of 

ageing-related genes, which is observed in Figure 2.2A as a loss of enrichment after 
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25% of the drugs were ranked. I evaluated if the AUCs were statistically significant by 

calculating the AUC from the simulations generated to quantify the research bias. The 

p-value for each curve was calculated as the number of simulated results with an AUC 

equal or higher than the analysis. All lists showed an enrichment higher than expected 

by chance (Supplementary Table 9). When I only considered the first 20 top-ranked 

drugs, I observed that using biological processes or cellular components to perform 

the comparison showed the highest proportion of geroprotectors (45%), while only 2 

geroprotectors (10%) were found among the top 20 drugs when KEGG pathways were 

used. Although the number of drugs reported to decrease lifespan in animal models is 

smaller than the set of geroprotectors, I repeated the enrichment analysis using anti-

longevity drugs (Figure 2.2B). The enrichment for anti-longevity drugs was lower than 

for geroprotectors (Supplementary Figure 3). The highest AUC was observed when 

cellular components were used (AUC = 0.63) while using genes showed the lowest 

enrichment for anti-longevity drugs (AUC = 0.54). 

 

Because various cutoff values can be selected to define the dataset of drug-

protein/protein-protein interactions and enriched GO terms/pathways, I repeated the 

analysis using different confidence scores in the STITCH and STRING databases and 

p-value cutoff in Gene Ontology (GO), KEGG and Reactome to explore its influence 

on the performance. When I measured enrichment for geroprotectors, I did not 

observe a major change in the AUC when higher or lower confidence scores were 

used (Supplementary Figure 3). The selection of a lower p-value cutoff leads to the 

same (GO:CC and KEGG) or lower (GO:MF and Reactome) enrichment whereas the 

use of a higher p-value cutoff leads to a decrease (GO:MF and Reactome) or increase 

(GO:CC and KEGG) in the AUC. A similar lack of trend was observed in the 

enrichment for anti-longevity drugs. Overall, the cutoffs used initially (p-value of 0.05 

and confidence score of 700) maximised the enrichment for geroprotectors when 

genes, Reactome pathways and molecular functions were used.   
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Figure 2.2. Comparison of the results using different data sources. Enrichment curves 

for A) pro-longevity drugs and B) anti-longevity drugs. The results of each data source 

are displayed in lines with different colours. The enrichment expected by chance is 

shown as a diagonal line with AUC = 0.5. 

Even though all the lists of drugs showed significant enrichment for geroprotective 

drugs, they showed low overlap between the top-ranked compounds. Thus, I 

integrated the results into a single list accounting for the complexity of the multitiered 

effect of drugs by calculating their average ranking in the different analyses. The 

combination generated a list equally enriched as the maximum AUC obtained by the 

previous analysis (AUC = 0.69). Among the top 10 drugs with the best average ranking 

(Table 2.2, Supplementary Table 10), I found 2 drugs that have shown to extend 

lifespan in animal models (trichostatin A (Tao et al., 2004) and celecoxib (Ching et al., 

2011)). Half of these 10 drugs are classified as kinase inhibitors, while 8 are anti-

cancer drugs and 7 are approved for human use.  

 

2.2.4 The HSP-90 inhibitor tanespimycin as a novel geroprotector 
 

Leading the joint ranking was tanespimycin, a well-characterised HSP-90 inhibitor that 

has been shown to activate the transcription factor HSF-1 and induce a heat shock 

response (Fujikake et al., 2008). As a proof-of-principle, I investigated whether 

tanespimycin could activate HSF-1 and extend lifespan in the nematode worm C. 

elegans. To perform these experiments, I establish a collaboration with a research 

fellow from our Institute whose expertise is on protein homeostasis. The following 
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experiments were performed by Dr John Labbadia and his student Rhianna Williams 

at the Institute of Healthy Ageing. 

 

Table 2.2. Top-ranked compounds using multiple levels of biological action. The 

names of the drugs previously shown to extend lifespan in animal models are in bold. 

The numeric values represent the ranking of the drugs when different sources of data 

(columns) are used. The last column is the ranking average (Avg.) for each drug in the 

7 ranked lists.  

 
 

To test the efficacy of tanespimycin dosing in C. elegans, we grew worms expressing 

mCherry under the control of a hsf-1 (C. elegans orthologue of HSF-1) responsive 

promoter (i.e. hsp-16.2) (Mendenhall et al., 2015) on solid media plates containing 

various doses of tanespimycin. Worms were exposed to tanespimycin continuously 

from the first larval stage (L1) of development, or the first day of adulthood. Worms 

grown continuously on tanespimycin plates exhibited a dose-dependent activation of 

the hsf-1 transcriptional reporter, starting at 25 µM and peaking at 100 µM (Figure 
2.3A-B). Similarly, exposure to tanespimycin plates only in adulthood resulted in 

significant activation of the hsf-1 reporter at 50 and 100 µM concentrations. No 

markers of toxicity were observed in any treatment groups, except for the 100 µM 

larval group, which were developmentally delayed by 24 hours and had a significantly 

reduced brood size (Supplementary Figure 4), consistent with chronic HSP-90 

inhibition (Melo & Ruvkun, 2012). Together, these data demonstrate that tanespimycin 

activates hsf-1 in C. elegans and that treatment during adulthood is not associated 

with overt toxicity.  

Drug name Status Genes PPI 
Gene ontology Pathways 

Avg. BP CC MF KEGG Reactome 
Tanespimycin Investigational 5 26 57 43 44 39 9 31.86 
Imatinib Approved 63 3 21 34 12 66 38 33.86 
Sunitinib Approved 2 1 59 31 31 56 63 34.71 
Trichostatin Experimental 83 41 19 54 13 41 52 43.29 
Geldanamycin Investigational 32 37 87 76 47 13 21 44.71 
Sorafenib Approved 16 68 11 15 8 155 42 45.00 
Dasatinib Approved 41 12 43 81 62 49 35 46.14 
Erlotinib Approved 27 6 93 85 71 64 7 50.43 
Etoposide Approved 23 11 20 90 32 120 67 51.86 
Celecoxib Approved 10 2 33 42 34 180 70 53.00 
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We next sought to determine whether tanespimycin treatment could extend lifespan 

in C. elegans. To circumvent potential longevity effects arising from delayed 

development and reproduction, we exposed worms to 100 µM tanespimycin plates 

from the first day of adulthood. Tanespimycin treatment significantly extended median 

and maximal lifespan compared to vehicle-treated controls (Figure 2.3C). To 

determine whether the effects of tanespimycin on lifespan require hsp-90 (C. elegans 

orthologue of HSP-90), we also exposed worms to tanespimycin treatment in the 

presence of hsp-90(RNAi). Consistent with previous reports, hsp-90 (RNAi) treatment 

significantly reduced hsp-90 mRNA levels compared to empty vector treated controls 

(Figure 2.3D), and significantly shortened C. elegans lifespan (Figure 2.3C) 
(Somogyvári et al., 2018). Furthermore, upon depletion of hsp-90, tanespimycin 

treatment no longer increased lifespan compared to vehicle controls (Figure 2.3C). 
These data suggest that tanespimycin treatment extends lifespan in an hsp-90 

dependent manner, but that severe depletion of hsp-90 is toxic to animals, despite the 

activation of protective stress responses. 

 

 
Figure 2.3. Pro-longevity effect of tanespimycin in C. elegans. Representative 

fluorescent images of day 6 adult, hsp-16.2p::mCherry transcriptional reporter worms, 
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grown on plates containing 0.1% DMSO (vehicle) or different concentrations of 

tanespimycin continuously from the first larval stage, or the first day of adulthood 

onward. B) The relative fluorescent intensity of hsp-16.2p::mCherry worms grown on 

plates containing 0, 1, 10, 25, 50, or 100 µM tanespimycin continuously from the first 

larval stage or only from the first day of adulthood onward. Values plotted are the mean 

of at least 5 animals, and error bars represent the standard deviation from the mean. 

Statistical significance relative to the DMSO control group was calculated by one-way 

ANOVA with Tukey post-analysis pairwise comparison of groups. * = p < 0.05, ** = p 

< 0.01, *** = p < 0.001. C) Lifespan at 20 ºC of N2 worms grown on plates containing 

0.1% DMSO or 100 µM tanespimycin from the first day of adulthood onward in the 

presence of empty vector control or hsp-90(RNAi). Statistical significance was 

calculated by Log-rank (Mantel-Cox) test. *** = p < 0.001. Treatment groups: 0.1% 

DMSO (n = 102, 14 censored, median lifespan = 17 days), 100 µM tanespimycin 

(n=107, 9 censored, median lifespan 21 days), 0.1% DMSO + hsp-90(RNAi) (n = 69, 

30 censored, median lifespan = 15 days), 100 µM tanespimycin + hsp-90(RNAi) (n = 

92, 22 censored, median lifespan = 15 days). D) Relative hsp-90 mRNA levels 48 

hours following exposure to empty vector control or hsp-90(RNAi). Levels of hsp-90 

mRNA were normalized to the geometric mean of three housekeeping genes (cdc-42, 

rpb-2, and pmp-3). Values plotted are the mean of 3 biological replicates and error 

bars represent standard deviation. Significance levels were calculated as in Figure 

2.3B.  

 
2.2.5 Comparing the results with eleven in silico drug-repurposing studies 
 

As I described in Chapter 1, the drug-repurposing methods to target ageing differ in 

their aims and data sources. This made me wonder how similar were the results 

obtained by the different methods, including ours. To facilitate their comparison, 

together with Melike Donertas, a PhD student working with Professor Janet Thornton, 

we collected and summarised each study in terms of i) the drugs identified, ii) the 

genes targeted by these drugs, and iii) all biological pathways (KEGG) known to be 

targeted by drugs (Figure 2.4).  Additionally, we compared the results with the 

manually curated databases of ageing-related genes (GenAge) and drugs (DrugAge). 
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Most of the work presented in this section has been published as Dönertaş et al., 

(2019)(co-first author). 

 

Drugs 
Overall, we observed that only 12% of all DrugAge drugs are prioritised by at least one 

study (41 of 346 drugs in DrugAge), with one in every four drugs discovered already 

present in DrugAge, reflecting the prioritisation process and the low number of drugs 

reported as significant by each study (15 drugs on average). Also, the 163 drugs 

identified usually differ between studies with 91% (149 drugs) of them identified just 

by one study. From the remaining 14 drugs present in more than one study, 

trichostatin, geldanamycin, tanespimycin and vorinostat were identified by three 

studies (Figure 2.5A), all of which, excepting tanespimycin, were previously 

experimentally validated for geroprotective effects in animal models (McDonald et al. 

2013; Barardo et al. 2017). Surprisingly, the method I presented was able to prioritise 

3 of these drugs (trichostatin, geldanamycin and tanespimycin) among the top 10 

candidates (Table 2.2).  
 

Genes 
Overall, 103 genes (34%) of the GenAge human genes and 94 genes (10%) of the 

GenAge model organism genes were targeted by the candidate drugs in at least one 

study. This difference possibly reflects the different sizes of the datasets, with over 

three times the number of model organism genes in GenAge. Based on the DGIdb 

database (Barardo et al. 2017), 796 genes (27% of the druggable genome) are 

targeted by at least one drug identified in the computational studies (Figure 2.5B) and, 

while few genes were identified in multiple studies, some of them were present in the 

GenAge database (Tacutu et al., 2018). Two of these genes DDIT3 (DNA Damage 

Inducible Transcript 3) and ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2) were 

targeted by the drugs prioritised in eight studies. However, nine studies identified 

drugs targeting BIRC5 (Baculoviral IAP Repeat Containing 5) and KRAS (KRAS Proto-

Oncogene, GTPase), and ten studies predicted drugs modulating ABCB1 (ATP 

Binding Cassette Subfamily B Member 1), which have not previously been related to 

human ageing. Despite this, genes discovered by multiple studies do not necessarily 

suggest higher relevance to ageing and may instead reflect research bias (e.g. genes 



Chapter 2 - Identification of geroprotectors for humans 

 52 

targeted by many drugs because of a role in a prevalent disease such as cancer). We 

observed that 80% of known geroprotectors target at least one gene targeted by the 

candidate geroprotective drugs identified by these twelve computational studies.  

 

 
Figure 2.4. Drugs, human genes and KEGG pathways discovered in the 12 studies. 

Circular heatmap of the drugs discovered by each of the 12 studies (drugs sector), 

genes targeted by these drugs (human genes sector), and the pathways including 

these genes (KEGG pathways sector). Drugs, genes and pathways are clustered 

independently to reflect discovery patterns from the studies. For the drugs and human 

genes sectors, the inner circle shows whether drugs or genes were previously 

associated with ageing, based on the DrugAge or GenAge database, respectively. If 

a drug was not present in DrugAge, it was classified as “candidate”, and the cell was 

coloured blue, whereas if the drug was already in DrugAge, it was classified as 

“previously discovered” and the cell coloured in orange. An equivalent strategy using 

the GenAge databases instead of DrugAge was used for the human gene sector. In 
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the inner wheel, we present the overlap with drugs targeting ageing-related genes 

(drug sector – GenAge Human/Model tracks) and for the human gene sector the 

overlap with genes targeted by the drugs in DrugAge (Human genes sector – DrugAge 

track). The KEGG pathways sector shows the proportion of genes on each pathway 

targeted by the drugs discovered by each study. The cells representing KEGG 

pathways were coloured using a continuous gradient from white to green, where white 

means that none of the genes in that pathway were targeted by the drugs identified. 

In the section closer to the centre of the heatmap, we show the proportion of ageing-

related genes in these pathways and the coverage of genes targeted by drugs in the 

DrugAge database.  

 
Pathways 
Intriguingly, among the 319 druggable KEGG pathways, 92% include at least one gene 

targeted by the drugs identified in the studies. The same tendency was observed for 

genes in GenAge (83% Model GenAge & 74% Human GenAge), or genes targeted by 

the DrugAge drugs (88%). While this may suggest ageing is ubiquitous and affects all 

pathways, another possibility is that genes present in many pathways could be 

discovered repeatedly because they play a central role in diseases and regulatory 

mechanisms. Although this may not conclusively prove that ageing is systemic, the 

prioritised candidate drugs have a genome-wide effect. 
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Figure 2.5. Candidate drugs and genes from the druggable genome proposed by 

multiple studies. A) Network representation of candidate drugs discovered by multiple 

studies and the studies in which they were found. Orange nodes show drugs 

previously discovered to affect lifespan in animal models (DrugAge) and blue the novel 

candidates. The edges link drugs identified in the relevant study. B) Distribution of the 

number of genes targeted by the drugs identified with respect to the number of studies. 

The x- and y-axes show the number of studies and genes, respectively. The pie charts 

show the percentage of genes in GenAge (human database) for each category. The 

boxed numbers show the total number of genes in each category. 
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2.3 Discussion 
 

I designed this study to infer and rank drugs matched to ageing at multiple levels of 

biological activity using a simple statistical test. In an initial gene-centric analysis, 19 

drugs were identified as candidates expected to modulate ageing in humans. A major 

finding was that 6 of the statistically significant drugs (resveratrol, genistein, 

simvastatin, epigallocatechin gallate, celecoxib and sirolimus) have already shown 

geroprotective properties in experimental studies in model organisms. This statistically 

significant enrichment suggests that, despite its simplicity, the method is robust to 

prioritise geroprotectors. Then, I expanded the analysis to higher levels of biological 

complexity and again found statistically significant enrichment for geroprotectors in all 

cases. Compounds ranked high on average included trichostatin and celecoxib, drugs 

known to prolong lifespan in animal models (Calvert et al., 2016; Ching et al., 2011; 

Tao et al., 2004). The compound ranked highest on average was tanespimycin, an 

HSP-90 inhibitor, shown to acts as a senolytic agent by killing human senescent cells 

without affecting the viability of healthy cells (Fuhrmann-Stroissnigg et al., 2017) and 

to ameliorate disease phenotypes in Drosophila models of Huntington’s disease and 

spinocerebellar ataxia (Fujikake et al., 2008). We found that tanespimycin treatment 

extended median (23%) and maximum (16%) lifespan in C. elegans, through its target 

HSP-90 (hsp-90 in C. elegans), possibly through the induction of cytoprotective 

pathways caused by mild stress. Thus, these positive effects on lifespan caused by 

tanespimycin may represent a hormetic response, a biphasic dose-response 

characterized by a low-dose increase of lifespan and a high-dose reduction of lifespan. 

If this is the case, even greater increases in lifespan may be achieved at even lower 

drug concentrations. To identify the maximum response within the hormetic zone a 

wider range of concentrations needs to be tested.  

 

Evidence from the literature supports the senolytic action of other drugs that I identified 

as potentially geroprotective. Dasatinib, a kinase inhibitor ranked 7th on average, has 

been reported to induce apoptosis in senescent preadipocytes (Zhu et al., 2015). 

Combination of dasatinib and quercetin, which also inhibits HSP-90, induced 

apoptosis in senescent murine mesenchymal stem cells and mouse embryonic 



Chapter 2 - Identification of geroprotectors for humans 

 56 

fibroblasts in vitro, improved cardiovascular function in aged mice, and decreased 

bone loss and age-related symptoms in progeroid mice (Zhu et al., 2015). 

 

Tanespimycin, geldanamycin and trichostatin among the top 10 compounds from the 

combined ranked list have been previously proposed as geroprotective for humans 

using computational analysis (Dönertaş et al. 2018). Also sorafenib, imatinib, dasatinib 

in our list overlap with the predictions from Ziehm et al. 2017; and erlotinib with the 

candidate geroprotectors from Snell et al. 2018, meaning that in total 7 of our top 10 

drugs candidate drugs have been previously predicted to influence ageing by other 

drug-repurposing methods. Moreover, among all the drug-repurposing methods 

currently available for ageing, the method presented here identified 7 of the 14 

candidate drugs prioritised by multiple studies. 

 

2.3.1 Limitations 
 

Despite the capability of the method to prioritise geroprotective drugs, I identified 

several limitations. For non-commonly studied drugs, the interactome is incomplete. 

This may explain why I observed many anti-cancer and well-known drugs in our 

results. However, I assessed the research bias using permutations and I found no 

significant effect on our results. Another limitation of our approach is that the drug-

protein interaction data may include false positive interactions leading to unreliable 

results. However, we mitigated these effects by only including interactions with a 

confidence score that prioritize interactions found in multiple data sources. Also, the 

drug-protein interaction information completely neglects the tissue specificity of the 

proteome. Thus, further studies are required to determine which tissues these 

geroprotective drugs are affecting. Also, inferred associations do not provide 

information about the directionality of the effect, which in this case means that it is 

unknown if the drugs will delay or accelerate ageing. While I indirectly assessed this 

using an interaction-based similarity analysis between the drugs, resulting in clusters 

or pairs of drugs with a similar mechanism of action, experiments are required to 

determine the precise effects of each drug on ageing.   
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2.4 Methods 
 
2.4.1 Data sources 

 

Drug-protein interaction dataset 
Chemical-protein interactions were extracted from the Search Tool for Interactions of 

Chemicals (STITCH) database 5.0 (Szklarczyk et al., 2016). I chose this resource 

because it acts as a probabilistic network, by collecting interactions from multiple 

sources, including experiments, databases and a text-mining algorithm. Individual 

scores for each source are combined into an overall confidence score using a naive 

Bayesian formula defined as 𝑆𝑐𝑜𝑟𝑒 = 1 − ∏ (1 − 𝑆!)! , where Si represents the 

confidence score for the source i. Later, because the Bayesian combination of scores 

can overestimate the effect of small individual contributions, the score is corrected for 

the probability of observing an interaction by chance. The overall confidence score 

ranges from 0 to 1, where a value of 0.4 or greater is medium confidence, and a score 

equal to or higher than 0.7 is high confidence. To get a reliable set of interactions, I 

removed all interactions with a confidence score lower than 0.7. The database also 

maps the direction of each interaction, i.e. whether the chemical acts on the protein or 

if the protein modifies the chemical (e.g. transformation of the chemical during a 

catalytic reaction). To confine the analysis to the actions of chemicals on proteins, only 

the cases where the chemical activates or inhibits a protein were kept. To focus on 

drugs in development or approved for human use, I filtered the chemicals in STITCH 

5.0 by the drugs in DrugBank 5.0 (Law et al., 2014) using UniChem (downloaded on 

July 2017)(Chambers et al., 2013). The InChi key for each drug was retrieved from 

PubChem (http://pubchemdocs.ncbi.nlm.nih.gov/pug-rest) and used to obtain the 

DrugBank identifiers via UniChem. The names of the drugs were obtained from the 

DrugBank vocabulary file, and the development status was obtained using the 

structure external links file. Finally, I mapped the Ensembl identifiers for each protein 

into the HUGO Gene Nomenclature Committee (HGNC) approved gene names using 

Ensembl Biomart (version 91) (Durinck et al., 2009).  
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Drug-related terms 
I mapped the targets of each drug in the drug-protein interaction dataset to multiple 

biological levels by using the information about the genes that define each level 

analysed. I downloaded (June 2018) the gene-centric definitions of GO terms and 

Reactome pathways from the DAVID knowledgebase (Huang et al., 2007). Genes on 

each KEGG pathways were obtained using the biological database network 

(https://biodbnet-abcc.ncifcrf.gov/db/db2db.php, version 20151204)(Mudunuri et al., 

2009). Protein-protein interactions were mapped directly using the STRING database 

(version 10) (von Mering et al., 2005). Only proteins interacting with the set of ageing-

related genes with a confidence equal of higher than 0.9 were considered. 

 

Ageing-related genes 
Genes present in manually curated databases are more susceptible to research and 

reporting bias than those found in objective searches. Instead of selecting a set of 

ageing-related genes from a particular study or database, I used genes linked with 

ageing from the Ageing Clusters resource (https://gemex.eurac.edu/bioinf/age/, 

downloaded on December 2017). This repository contains the results of a network-

based meta-analysis of human ageing genes (Blankenburg et al., 2018) that 

considered 35 different datasets. The author classified the genes into the following 4 

categories: i) curated ageing-related genes from databases such as GenAge (Build 

17) (Tacutu et al., 2013), LongevityMap (Build 1) (Budovsky et al., 2013) and CSGene 

(Zhao et al., 2016); ii) genes differentially expressed with age, regimes of CR or 

healthy ageing; iii) age-related changes in the methylation of cytosine guanidine 

dinucleotides (CpGs) in the DNA; and iv) genes associated with age-related diseases 

from databases such as the Human Gene Mutation (version 2015.03) (Stenson et al., 

2014) or the Human Phenotype Ontology (version 2016.01.13) (Köhler et al., 2014). 

To improve the reliability of the set of ageing-related genes and reduce research bias, 

I considered only the genes present in at least two categories.  

 

Ageing-related terms 
Using the set of ageing-related genes, I performed gene-based enrichment analysis 

to infer the function and pathways associated with ageing. Gene Ontology (BP, CC, 

MF) terms were calculated using the enrichGO function from the clusterProfiler 
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package (version 4) (Yu et al., 2012), using the Benjamini and Yekutieli method 

(Benjamini & Yekutieli, 2001) for adjustment, a conservative correction that does not 

rely on the assumption that the test statistics are independent. The adjusted p-value 

cutoff was set to 0.05 and for biological processes I consider the top 500 terms 

enriched. Enriched KEGG pathways were determined using the enrichKEGG function 

from the clusterProfiler package, using the same parameters used for the gene 

ontology enrichment. Reactome pathways were calculated using the function 

enrichPathway from the ReactomePA package (Yu & He, 2016). Protein-protein 

interactions were obtained using STRING (Version 10) (von Mering et al., 2005) 

database.  

 

2.4.2 Statistical analysis to rank the drugs 
 

Independently of the biological level, the drug-ageing associated was inferred by 

calculating the statistical significance of the drug-related terms and ageing-related 

terms using a Fisher’s exact test. Drugs were associated with ageing at the following 

biological levels: gene, pathways (KEGG, Reactome), functions (GO:BP, GO:CC, 

GO:MF) and indirect protein interactions. The universe was defined as all the terms 

on each level associated with at least one drug. Thus, drugs with a lower p-value 

modulate a higher proportion of ageing-related terms than that expected by chance. 

To control for the false discovery rate, I used the Benjamini and Yekutieli adjustment 

(Benjamini & Yekutieli, 2001). A p-value lower than 0.05 after multiple testing 

correction was considered significant. 

 

2.4.3 Measuring the impact of research bias 
 

Some drugs have been more studied than others, which could bias the results towards 

drugs with a higher proportion of discovered targets. To evaluate the impact of this 

research bias, I randomly selected the same number of terms that were used as 

ageing-related terms 1000 times, and I repeated the statistical analysis. Then, I 

counted the times the statistically significant drugs appeared on the same or lower 

ranking. I expected that drugs associated with many terms would rank higher 

independently of the random set generated. 
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2.4.4 Enrichment for pro- and anti-longevity drugs 
 

Each drug list generated was ranked by the p-values obtained from the statistical 

analysis. Then, I transformed the ranking of the drug into a value ranging from 0 to 1. 

A set of 142 pro-longevity drugs and 30 anti-longevity drugs present in the DrugAge 

(Build 1) and DrugBank 5.0 databases were used to determine the occurrence and 

ranking of pro- and anti-longevity compounds in the lists, respectively. The ranking 

was then scaled into a value between 0 to 1. The AUC between the variables 

describing the pro-longevity drugs and drugs analysed was calculated using the 

function AUC from the DescTools package (Version 0.99) (https://cran.r-

project.org/package=DescTools). To measure its statistical significance, I calculated 

the AUC of the lists previously generated to measure the research bias, and I counted 

the number of simulations with an equal or higher AUC.  

 

2.4.5 Experimental procedure 
 

Worm husbandry and lifespan 
N2 and TJ3002 (zSi3002[hsp-16.2p::mCherry::unc-54; Cbr-unc-119(+)]II)]  

hermaphrodite worms were maintained as previously described (Brenner, 1974) at 

20°C on 60 mm NGM plates. Plates were seeded with Escherichia coli (OP50) grown 

overnight in LB media. RNAi was essentially performed as previously described 

(Kamath et al., 2003) with the slight modifications that bacterial cultures were induced 

with 5 mM IPTG for 3 hours following overnight growth in LB, and tetracycline was not 

included in plates or bacterial cultures.  

 

Tanespimycin dose-response test 
Tanespimycin (Fisher Scientific) was solubilized in DMSO to stock concentrations of 

1, 10, 25, 50, and 100 mM. 1 ml of DMSO or tanespimycin solutions were added to 

each litre of NGM media just before plate pouring to reach final concentrations of 1, 

10, 25, 50, and 100 µM in plates. Plates were kept away from light, stored at 4°C, and 

used within 2 weeks of pouring. TJ3002 reporter worms were synchronised by 

bleaching and added to 0.1% DMSO or tanespimycin plates as L1s or as day 1 adults. 

Worms were transferred to fresh plates every day and then imaged on day 6 of 
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adulthood using a Zeiss Apotome fluorescent microscope and Hamamatsu Orca Flash 

4.0 camera. Brightness and contrast were adjusted linearly, and equally, for all 

images, using Adobe Photoshop CS6. Fluorescence intensity was measured under 

different conditions using ImageJ. Significance testing of differences in fluorescence 

intensity was calculated by one-way ANOVA with Tukey pairwise comparison of 

groups using GraphPad Prism.  

 

2.4.6 Lifespan assays 
 

Gravid N2 adults were bleached to release eggs, and L1 larvae were allowed to hatch 

overnight in M9 buffer without food. L1 worms were then added to plates seeded with 

bacteria expressing an RNAi control vector (L4440) and containing 0.1% DMSO. 

Worms were added to plates at a density of approximately 50 worms per plate. On the 

first day of adulthood (50h post-plating L1s), worms were transferred to new 0.1% 

DMSO plates or 100 µM tanespimycin plates, seeded with L4440 or bacteria 

expressing dsRNA against hsp-90 (hsp-90(RNAi)). Worms were transferred to fresh 

plates every day during the first 7 days of adulthood and every other day thereafter. 

Worms were scored for survival every two days by gently prodding animals repeatedly 

with a platinum wire. Animals that failed to exhibit signs of movement or pharyngeal 

pumping were scored as dead. Animals that displayed internal hatching of progeny 

(“bagging”) or prolapse of intestine through the vulva (“rupturing”) were censored from 

our analysis. Median lifespans and significance testing between lifespans of different 

treatment groups were performed in GraphPad Prism using a Log-rank (Mantel-Cox) 

test. 

 

2.4.7 Real-time quantitative PCR in C. elegans 
 

Approximately 50 worms per treatment group were collected and snap-frozen in 20 µl 

of M9 buffer, 48 hours after exposure to empty vector control or hsp-90(RNAi). Worms 

were lysed in Trizol reagent and RNA was extracted using a Qiagen RNeasy micro-

kit. 1 µg of RNA was used to generate cDNA using BioRad iScript supermix, and real-

time quantitative PCR of resulting cDNA (diluted 1:10 with nuclease-free water) was 

performed using BioRad SsoAdvanced Universal SYBR green supermix and a BioRad 



Chapter 2 - Identification of geroprotectors for humans 

 62 

CFX96 Real-time quantitative PCR system. Quantification of relative mRNA levels 

was performed using the standard curve method and hsp-90 levels were normalized 

to the geometric mean of three housekeeping genes (cdc-42, rpb-2, and pmp-3). All 

kits and master mixes were used as per the manufacturer’s instructions. The primers 

used were as follows:  

 

hsp-90 forward – GACCAGAAACCCAGACGATATC 

hsp-90 reverse – GAAGAGCACGGAATTCAAGTTG 

cdc-42 forward – TGTCGGTAAAACTTGTCTCCTG 

cdc-42 reverse – ATCCTAATGTGTATGGCTCGC 

rpb-2 forward – AACTGGTATTGTGGATCAGGTG 

rpb-2 reverse – TTTGACCGTGTCGAGATGC 

pmp-3 forward – GTTCCCGTGTTCATCACTCAT 

pmp-3 reverse – ACACCGTCGAGAAGCTGTAGA
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Chapter 3 Prediction of genetic interventions to 
prolong healthy lifespan 

 

3.1 Introduction 
 

Ageing is a complex and pleiotropic process probably influenced by hundreds of 

genes. However, experiments in animal models have shown that it can be modulated 

even by single-gene mutations (Bartke, 2011; Folgueras et al., 2018; Kenyon, 2005; 

Partridge, 2018; Uno & Nishida, 2016). As almost all drugs are protein inhibitors, these 

gene mutations serve as a robust starting point to identify new pharmacological 

interventions to ameliorate ageing. Unfortunately, an assessment of the GenAge 

database indicates that the number of ageing-associated genes seems to have 

plateaued (de Magalhães, 2021), despite many still remain untested, especially in 

mammalian models. Thus, the development of computational methods to detect 

genetic interventions to prolong healthy lifespan is highly desirable. 

 

In this chapter, I present the result of a study aimed at identifying molecular 

mechanisms of healthy lifespan and using this information to identifying novel genetic 

interventions with the potential to modulate ageing. I analysed and compared 

transcriptomic data from long- and short-lived mutant mice to identify molecular 

mechanisms associated with lengthening and shortening of healthy lifespan. By 

further comparing the transcriptomes of mouse models of ageing to the transcriptomic 

changes observed during normal ageing, I determined which interventions resemble 

or reverse normal ageing-related changes. Finally, I identified novel genetic 

interventions with the potential to ameliorate ageing, by comparing all transcriptomic 

data publicly available from genetic interventions in mice against the changes in gene 

expression observed in mice with delayed (long-lived), accelerated (short-lived) and 

normal ageing (ageing-related changes). Most of the work reported in this Chapter has 

been published as Fuentealba et al., (2021) 
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3.2 Results 
 
3.2.1 Comparison of the transcriptome of long- and short-lived mutant mice  
 

I first asked if genetic interventions that lengthen or shorten healthy lifespan show 

characteristic transcriptomic changes, by comparing publicly available microarray and 

RNA-seq data from 10 long-lived and 8 short-lived mouse models of ageing (Figure 
3.1). The data came from 26 independent studies and included samples from adipose, 

brain, liver and muscle. To avoid potential batch effects, I derived 57 independent 

datasets using each study, genotype, tissue, sex and age, and performed differential 

expression analysis (Supplementary Table 11). Then, I calculated Spearman’s rank 

correlation coefficient (rs) between the gene expression fold changes (Supplementary 
Figure 5). Given that the transcriptomes from several mutants were measured in 

multiple studies and within each study in multiple datasets, I averaged the correlations 

for the same genetic interventions. Since thousands of genes were used to calculate 

these correlations, even small correlations were statistically significant. To better 

estimate a threshold of significance for transcriptome-wide correlations, I analysed 

and correlated 65 transcriptomic datasets covering 51 genetic interventions in mice 

not previously associated with ageing (Supplementary Table 12). I observed that 5% 

of the comparisons between the various genetic interventions had an absolute 

correlation coefficient higher than 0.15 (Supplementary Figure 6). Thus, 

transcriptome-wide correlations above this value were considered statistically 

significant for the mutants affecting lifespan (black squares in Figure 3.2A, C-E).  
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Figure 3.1. Pathways and processes modulated by the mouse models of ageing with 

transcriptomic data available. Genes whose mutation lengthen or shorten lifespan are 

coloured in green and yellow, respectively. Figure created with BioRender.com. 

In the liver, 65% of correlations between interventions with equivalent effects on 

lifespan (i.e. long-lived vs long-lived and short-lived vs short-lived), were positive, 

reaching similarities as high as rs = 0.64 (Ghr-/- vs Pou1f1dw/dw) within long-lived mice 

and rs = 0.47 (Ercc6m/mXpa-/- vs Ercc1-/-) within short-lived mice (Figure 3.2A). In long-

lived mice, mutations in genes controlling the synthesis and release of growth 

hormone and the growth hormone receptor (Figure 3.1, top left) induced remarkably 

similar transcriptomic changes (mean rs = 0.33). Fgf21 over-expression induced a 

similar transcriptome to the growth-hormone-related mutants, probably due to its well-
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known role in inhibiting growth hormone signalling (Inagaki et al., 2008). There were 

also positive correlations between interventions in the insulin signalling pathway, 

particularly between Irs1-/- and Rps6kb1-/- mutants, which is interesting considering 

that Rps6kb1 directly phosphorylates and inhibits Irs1 (Zhang et al., 2008). Although 

it is well known that growth hormone activates the insulin signalling pathway via Irs1, 

I did not detect any significant correlation between Irs1-/- and the growth-hormone-

related mutants, possibly because of effects of growth hormone signalling on 

additional downstream targets to insulin signalling. Heterozygous mutation of Akt1, 

which is involved in insulin signalling, did not induce a similar expression pattern to 

other long-lived mice, possibly reflecting the pleiotropic effects of Akt1 function and 

hence alternative mechanisms to prolong lifespan. Among short-lived models, the 

highest correlation was observed between interventions in the DNA repair system 

(Figure 3.1, bottom), including Ercc6m/mXpa-/-, Ercc1-/- and Ercc1-/d7 (mean rs = 0.24). 

Sirt6-/- showed similarity with Ercc1-/d7 and Ercc6m/mXpa-/-, which may be explained by 

the recently discovered function of Sirt6 as a DNA strand break sensor and activator 

of the DNA damage response (Onn et al., 2020). The only statistically significant 

negative correlation I found was between Tert and Sirt6 knockout mice. With some 

exceptions, these results suggest that mutations in genes whose product participate 

in the same process or directly interact within the same signalling pathway are more 

likely to induce similar transcriptomic changes.  

 

Surprisingly, 78% of the correlations between interventions leading to opposite effects 

on lifespan (i.e. long-lived vs short-lived) were positive, but smaller than interventions 

with similar lifespan effects. The maximum correlation observed of this type was an 

unreported one between LmnaG609/G609G and Rps6kb1-/- (rs = 0.23). I observed a 

correlation between interventions in the DNA repair system (i.e. Ercc6m/mXpa-/-, Ercc1-

/- and Ercc1-/d7) and mutants of genes regulating the synthesis of growth hormone (i.e. 

Pou1f1dw/dw and Prop1df/df), which has been previously attributed to similar gene 

expression patterns on the somatotropic axis and anti-oxidant responses 

(Schumacher et al., 2008). In summary, although many correlations were positive 

even when the effects on lifespan were opposite, correlations between interventions 

with equivalent effects on lifespan were more likely to reach the threshold of 

significance (Figure 3.2B).  



Chapter 3 - Prediction of genetic interventions to prolong healthy lifespan 

 67 

 

Figure 3.2. Correlation analysis between the mouse models of ageing. (A) 

Spearman’s rank correlation coefficients between the liver transcriptome of the mouse 

models of ageing. The intensity of the colours represents the magnitude of the 

correlations. Bars next to the heatmaps show the effect on lifespan from each 

intervention. Diagonals show the number of datasets associated with each 

intervention. Black squares mark statistically significant correlations (i.e. |rs| > 0.15). 

(B) Pairwise correlations between the liver transcriptomes of interventions with 

equivalent or opposite impact on lifespan. Error bars represent one standard deviation 

from the mean. P-values below were calculated using a t-test with a population mean 

equal to zero as the null hypothesis. Statistical significance at the top is for the 

difference between the groups calculated using unpaired, two-samples Wilcoxon-test. 

Points circled in black represent statistically significant correlations. Transcriptome 

correlations between mouse models of ageing in the (C) adipose, (D) muscle and (E) 

brain. Heatmaps follow the same scheme used in panel A. 
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I next assessed if the correlations I observed in the liver were present in other tissues. 

From the 51 pairwise correlations in the other tissues, 22 (43%) followed the same 

direction as in the liver, but 18 (35%) were in the opposite direction. The remaining 11 

pairwise correlations corresponded to comparisons with the mutant PolgD257A/D257A, for 

which there was no data available from the liver. Among the positive and significant 

correlations observed in the liver (i.e. rs > 0.15) only the comparisons between 

LmnaG609G/G609G vs Rps6kb1-/- and Irs1-/- vs Rps6kb1-/- were significant in other tissues 

(Figure 3.2C, rs = 0.46 and 0.22, respectively). The only negatively correlated 

interventions in the liver involved Tert-/-, which was not measured in other tissues. I 

found tissue-specific correlations that were not significant in the liver, including 

Rps6kb1-/- vs Sirt6-/- in the muscle (rs = 0.27) (Figure 3.2D) and Irs1-/- vs 

LmnaG609G/G609G in the adipose tissue (rs = 0.21). Likewise, some correlations found in 

the liver were not detected in the brain such as Pou1f1dw/dw vs Prop1df/df and Ercc1-/- 

vs Ercc6m/mXpa-/- (Figure 3.2E). This analysis indicates that interventions into ageing 

may induce tissue-specific effects.  

 

3.2.2 Functional analysis of the transcriptional changes in the mouse models 
of ageing  

 

I next sought to identify pathways enriched in the gene expression changes observed 

in the mutant mouse models of ageing. I only employed the liver data for this analysis, 

as it was the only tissue with enough interventions to identify statistically significant 

trends. I performed functional enrichment analysis on each dataset using Gene 

Ontology (GO) terms and a Gene Set Enrichment Analysis (GSEA). To identify gene 

sets (i.e. GO terms) with consist changes, I calculated their median rank based on 

enrichment scores across interventions and compared it against a random distribution 

of median ranks from the same number of interventions. 

 

After multiple testing correction, I identified 470 gene sets in long-lived mice 

(Supplementary Table 13), and 99 gene sets in short-lived mice showing consistent 

changes (Supplementary Table 14). Remarkably, 93% of the gene sets found in 

short-lived mice were down-regulated, whereas 57% of the gene sets identified in 

long-lived mice were up-regulated. Surprisingly, 58 gene sets showed consistent 
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changes in both groups of mice (Figure 3.3A), of which 55 were up-regulated in long-

lived mice and down-regulated in short-lived mice. These gene sets included 36 

biological processes, 10 of which were linked with energy metabolism and 6 with lipid 

metabolism. I observed the same trends in several processes associated with the 

metabolism of drugs, nucleic acids, amino acids and carboxylic acid. Consistent with 

the alteration in energy metabolism, I found similar gene expression patterns in genes 

forming the mitochondrial membrane and the electron transport chain, as well as 

genes coding for proteins with NADH dehydrogenase activity. Overall, these 

transcriptomic changes match well with previous studies in long-lived mice reporting 

an increase in protein levels and activity of several components of the electron 

transport system, and increased physiological markers of mitochondrial metabolism 

(Anderson et al., 2009; Brown-Borg et al., 2012; Westbrook et al., 2009). Also, the 

increased expression of genes controlling lipid metabolism is biologically meaningful, 

considering that previous studies have found that long-lived mice use fat as an energy 

source, instead of carbohydrates (Westbrook et al., 2009).  

 

Based on a leading-edge analysis, I asked which genes contributed the most to the 

changes in gene expression observed in energy and lipid metabolism, and if some 

genes were acting as hubs between both sets of processes. As a filter, I selected 

genes causing the enrichment of more than one process in at least half of the mice. 

Interestingly, I observed that Ppargc1a (Peroxisome proliferator-activated receptor 

gamma, coactivator 1 alpha), a transcriptional coactivator, was frequently involved in 

the up-regulation of energy and lipid metabolism in long-lived mice (Figure 3.3B, red 
labels). Given that cells ectopically expressing Ppargc1a display resistance to 

oxidative stress (St-Pierre et al., 2006; Valle et al., 2005), activation of Ppargc1a in 

long-lived mice may explain why these mice maintain a high activity of the electron 

transport chain without causing oxidative damage. Remarkably, overexpression of 

Ppargc1a in skeletal muscle extend the lifespan of sedentary mice and led to 

molecular changes that resemble the patterns observed in skeletal muscle from 

younger mice (Garcia et al., 2018). Also, tissue-specific overexpression of the 

Drosophila orthologue (dPGC-1/spargel) in progenitor and stem cells within the 

digestive tract extends lifespan and delay the onset of ageing-related pathologies in 

the intestine (Rera et al., 2011).  
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Also involved in the up-regulation of energy and lipid metabolism I found Mif 

(Macrophage migration inhibitory factor), a cytokine whose increased expression has 

been noticed not only in long-lived dwarf mice but also in caloric and methionine 

restricted mice (Miller et al. 2002; Miller et al. 2005). In short-lived mice, Aldh5a1 

(aldehyde dehydrogenase family 5) and Idh1 (isocitrate dehydrogenase 1) were down-

regulated and involved in several processes associated with energy and lipid 

metabolism (Figure 3.3C, red labels). Consistently, mice with mutations in these 

genes display premature death and increased oxidative stress (Hogema et al., 2001; 

Itsumi et al., 2015; Latini et al., 2007).  

 

I further compared the genes leading the regulation of energy and lipid metabolism in 

long- and short-lived mice (Figure 3.3B-C) and I identified 5 genes in common: 

cytochrome c oxidase subunit 5A (Cox5a), cytochrome c-1 (Cyc1), NADH:ubiquinone 

oxidoreductase subunit B10 (Ndufb10), NADH:ubiquinone oxidoreductase core 

subunit V2 (Ndufv2) and ubiquinol-cytochrome c reductase (Uqcrfs1). I directly 

compared their normalised fold change in long- and short-lived mice using an unpaired 

two-sample Wilcoxon test. The expression of all 5 genes was regulated in opposite 

directions between both groups of mice and the differences were statistically 

significant (p < 0.05) (Supplementary Figure 7). 
 

In short-lived mice, most of the differentially expressed processes were down-

regulated and linked with the mitochondria, which may indicate mtDNA damage. To 

probe this idea, I analysed the gene sets enriched in polymerase γ mutant mice 

(PolgD257A/D257A), which display a 2500-fold increase in mtDNA mutations compared to 

wild-type mice (Khrapko & Vijg, 2007). Indeed, I observed that in muscle and brain, 

the gene sets in Figure 2A were strongly down-regulated, showing that short-lived 

mice induce a transcriptomic signature matching that of mutant mice with exacerbated 

mtDNA mutations (Supplementary Figure 8).  
 

I identified gene sets changing expression specifically in long- or short-lived mice. In 

long-lived mice, the top down-regulated process was B-cell mediated immunity, while 

the most up-regulated process was carboxylic acid catabolism (Supplementary Table 
13). Also, in long-lived mice, consistent with the up-regulation of the electron transport 

chain, I observed an up-regulation of processes linked with ATP synthesis 
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(Supplementary Figure 9). This result is in line with a previous study reporting an 

increase in ATPase activity in long-lived mice (Choksi et al., 2011). Similarly, I 

observed up-regulation of expression of genes involved in thermogenesis, another 

process activated by Ppargc1a in response to cold exposure (Gill & La Merrill, 2017) 

(Puigserver et al., 1998). Thus, Ppargc1a may be activated by the reduced core body 

temperature typical of long-lived dwarf mice due to a higher body surface to body mass 

ratio (Ferguson et al., 2007; Hauck et al., 2001; Hunter et al., 1999). Another well-

recognised stimulator of oxidative metabolism and ATP production is calcium (Glancy 

et al., 2013; Griffiths & Rutter, 2009; Tarasov et al., 2012). Consistently, I observed an 

up-regulation of several genes involved in calcium homeostasis. Unfortunately, there 

is currently no evidence of the effect on lifespan of calcium treatment in mammals. 

Among the down-regulated gene sets in long-lived mice, I observed several linked with 

the response to endoplasmic reticulum (ER) stress, including the unfolded protein 

response (UPR) (Supplementary Figure 10). This down-regulation may reflect lower 

levels of ER stress, as observed in long-lived daf-2(e1370) worms and under caloric 

restriction (Henis-Korenblit et al., 2010; Matai et al., 2019). In short-lived mice, the 

most down-regulated process was carboxylic acid catabolism, and the most up-

regulated process was immune response activating signal transduction 

(Supplementary Table 14).  Overall, I only identified two additional groups of gene 

sets down-regulated, and they were related to nucleic acid metabolism and 

biosynthesis (Supplementary Figure 11). In line with this observation, previous 

studies have shown a correlation between mitochondrial dysfunction and aberrant 

biosynthesis of nucleotides (Desler et al., 2007). 
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Figure 3.3. Gene expression trends conserved in the mouse models of ageing. (A) 

Gene sets showing consistent changes in long- and short-lived mice (FDR < 0.05). 

The heatmap colours represent the statistical significance of the enrichment and the 

direction of the change. The ‘Ageing’ column represents the enrichment scores 

associated with the transcriptomic changes during ageing. The ‘Group’ column 

indicates different groups of gene sets with similar function. Genes regulating 

biological processes linked with energy and lipid metabolism in (B) long-lived and (C) 

short-lived mice. Labelled in red are genes involved in both sets of processes. Nodes 

representing genes are coloured in grey, and nodes from biological processes are 

coloured based on the groups in panel A.  
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I next compared the transcript profiles of the long-and short-lived mutant mice with 

profiles characteristic of normal ageing in multiple tissues. I performed functional 

enrichment analysis using age-related genes from wild-type mice. Changes during 

normal ageing resembled mostly the transcriptomes of the short-lived mouse models 
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(Figure 3.3A, ‘Ageing’ column). To test if these similarities existed at the gene level, 

I calculated the transcriptome-wide correlations between each mouse model of ageing 

and the ageing transcriptome. On average, I observed a positive and statistically 

significant correlation between the transcriptomes of short-lived mice and the changes 

during ageing (Figure 3.4, left panel), while interventions that lengthened life 

displayed a correlation close to zero (mean rs = 0.005). I further analysed the 

correlations at the pathway level using enrichment scores and obtained a similar result 

(Figure 3.4, right panel). Overall, this analysis supports the hypothesis that 

accelerated ageing models reproduced partially the molecular changes observed 

during normal ageing. 

 

 

Figure 3.4. Gene and pathway-based correlations between the transcriptome of 

ageing-related interventions and that induced by ageing. Each point represents one 

intervention, and the shapes indicate the tissue from which the transcriptome was 

derived. Transcriptomic changes in the mouse models of ageing were compared with 

the changes during ageing on the same tissue. Error bars show one standard deviation 

from the mean. P-values below were calculated using a t-test with a population mean 

equal to zero as the null hypothesis. P-values at the top are for the difference between 

the groups using an unpaired, two-samples Wilcoxon-test.  
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3.2.4 Identification of genetic interventions affecting lifespan 
 

I next investigated the use of gene sets consistently associated with lifespan (Figure 
3.3A) to identify other genetic interventions that could affect ageing. Using publicly 

available datasets for other mouse mutants I examined their correlation with the 

transcriptomes of long-lived mice, short-lived mice and normal ageing (Figure 3.5). I 
predict that genetic interventions more positively correlated with long-lived mice will 

lengthen lifespan, whereas mutants more strongly correlated with short-lived mice and 

ageing will shorten lifespan. From the 51 gene mutants analysed, 23 showed a higher 

correlation with long-lived mice and 28 a more positive correlation with short-lived 

mice. Among the 27 mutants with a positive correlation with the ageing transcriptome, 

21 (77%) were positively correlated with short-lived mice, and 18 (66%) were 

negatively correlated with long-lived mice. Similarly, from the 24 mutants negatively 

correlated with ageing, 14 (58%) showed the same trends in short-lived mice, and 21 

(87%) displayed the opposite trend in long-lived mice.  

 

To evaluate the robustness of our correlation approach, I investigated whether the 

mutants were previously associated with changes in lifespan in the literature and the 

GenAge database (De Magalhães & Toussaint, 2004). I also determined if mutations 

in the orthologues of these genes in C. elegans and D. melanogaster showed effects 

on lifespan. Among the 51 gene mutants analysed, I found experimental evidence 

matching our predictions in 9 cases (Fisher’s exact test p = 0.017). All genetic 

interventions with experimental evidence to lengthen lifespan showed a more strongly 

positive correlation of changes in gene expression with those seen in long-lived mice. 

For instance, the transcriptome of Jak2 knockout mice showed an average rs = 0.18 

with long-lived mice, but a correlation close to zero against short-lived mice (rs = 

0.002). Consistently, fruit flies with a loss of function mutations in the hop gene 

(orthologue of Jak2) live on average 17% longer than wild-type flies (Larson et al., 

2012). Similarly, transcriptomic changes induced by Keap1 knockout in mice were 

positively correlated with long-lived mice (rs = 0.17) and negatively correlated with 

short-lived mice (rs = -0.13). As expected, keap1 loss of function mutations extends 

lifespan of fruit flies by 8-10% (Sykiotis & Bohmann, 2008). The transcriptome of Ahr 

and Dbi knockout mice displayed a positive correlation with long-lived mice and a 

negative correlation with short-lived mice and ageing. Confirming our predictions, C. 
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elegans carrying a loss of function allele of ahr-1 (Ahr in mice), display extended 

lifespan and increase motility and stress resistance (Eckers et al., 2016). Similarly in 

worms, knockdown of either acpb-1 or acbp-3 (Dbi in mice), extends lifespan 

(Shamalnasab et al., 2017). Among the interventions with a more positive correlation 

with short-lived mice and ageing, I found evidence of premature death in 6 cases, 

including Sirt7, Dicer1, Pdss2, Rb1 and Sgpl1 knockout mice (Frezzetti et al., 2011; 

Lin et al., 2011; Lyon & Hulse, 1971; Schmahl et al., 2007; Vakhrusheva et al., 2008). 

The negative effects on lifespan of Dicer1 and Sgpl1 have been also shown in C. 

elegans, as loss of dcr-1 (Dicer1 in mice) shorten maximum lifespan by 20% (Mori et 

al., 2012) and RNAi knockdown of spl-1 (Sgpl1 in mice), reduces median lifespan by 

22% (Samuelson et al., 2007). Overall, the experimental evidence matching with our 

predictions supports the use of gene sets describing mitochondrial metabolism to 

predict the effects of genetic interventions on lifespan.  

 

Figure 3.5. Correlation between the transcriptomes of long- and short-lived mice and 

that induced by 51 different gene knockouts. Correlations were calculated using 
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enrichments scores of the gene sets in Figure 3A. The colours of the dots represent 

the correlations with the ageing transcriptome. Labels represent the name of the gene 

knocked out. Gene knockouts known to lengthen or shorten lifespan in animal models 

are coloured in green and yellow, respectively. 

Finally, using the DrugBank database (Law et al., 2014), I searched for drug targeting 

the human orthologues of the 16 gene knockouts with a positive correlation with long-

lived mice and negative correlation with short-lived mice. As most drugs are protein 

inhibitors, these may represent potential geroprotectors that mimic the effects of 

knocking out the same target. I found 31 compounds associated with 7 knocked out 

genes (Table 3.1). From these compounds, 5 have been associated with lifespan 

extension in animal models (Fisher’s exact test p = 0.01), including spermidine, vitamin 

E, estradiol, rifampicin and genistein.  Notably, 2 of these compounds have already 

proven to be geroprotective in mice. Spermidine-treated wild-type mice live up to 25% 

longer and display delayed age-related decline in cardiovascular function (Eisenberg 

et al., 2016; Yue et al., 2017), while the median lifespan of vitamin E supplemented 

mice is 15% greater than of controls (Selman et al., 2008).  

 

Table 3.1. Drugs targeting the genes involved in the candidate genetic interventions 

affecting lifespan. Human orthologues from the mouse genes were obtained using 

WORMHOLE (http://wormhole.jax.org). Drugs labelled in bold are known 

geroprotectors. 

 

 

 

 

 

 

 

  

Mouse gene Human gene Drugs 

Ahr AHR Mexiletine, Nimodipine, Flutamide, Atorvastatin, 
Leflunomide, Ginseng 

Dbi DBI Coenzyme A, Hexadecanal 
Keap1 KEAP1 Dimethyl fumarate 

Mapk14 MAPK14 KC706, SCIO-469, VX-702 
Ncoa2 NCOA2 Genistein, Methyltrienolone 

Nr1i2 NR1I2 
Vitamin E, Rifampicin, Estradiol, Erlotinib, 
Estradiol, Ethinyl Rifaximin, Paclitaxel, Docetaxel, 
Prasterone, Hyperforin, SR12813, Rilpivirine 

Txnrd1 TXNRD1 Spermidine, Flavin adenine dinucleotide, 
Motexafin gadolinium, Arsenic trioxide, PX-12 
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3.3 Discussion 
 

In this study, I collected and analysed publicly available microarray and RNA-seq data 

of 18 interventions that affect ageing and cause changes in lifespan, together with 

transcript profiles of normal ageing. The transcriptomes were more similar between 

interventions with the equivalent effects on lifespan, especially if they targeted the 

same pathway. I detected positive, but weaker, correlations between interventions 

with opposite effects on lifespan, in line with previous studies (Schumacher et al., 

2008). The biggest correlation found in this case was an undiscovered one between 

LmnaG609G/G609G and Rps6kb1-/-, in the liver and adipose tissue. Interventions like 

Akt1+/- (long-lived), Myc+/- (long-lived) and Terc-/- (short-lived) did not produce changes 

in gene expression that correlated with those from other interventions, suggesting the 

existence of different mechanisms to lengthen and shorten lifespan.  

 

Based on functional enrichment analysis, I identified 58 gene sets (i.e. GO terms), 

which behaved consistently and showed opposite changes in gene expression in long- 

and short-lived mouse models. The data implicated mitochondrial metabolism as a 

key determinant of healthy lifespan. As in short-lived mice, I detected a transcriptomic 

down-regulation of mitochondrial metabolism with age in wild-type mice, confirming its 

relevance for normal ageing and supporting the hypothesis that models of accelerated 

ageing approximate normal ageing at the molecular level, as has been previously 

proposed (Burtner & Kennedy, 2010; C. Y. Liao & Kennedy, 2014). 

 

Finally, comparing the gene sets associated with lifespan and ageing with those 

changing expression in mouse mutants with no known association with ageing, I found 

16 gene knockouts that were positively correlated with expression changes in long-

lived mice and negatively correlated with expression changes in short-lived mice. Our 

predictions, therefore, encourage future ageing studies on these mutant mice, 

specially Keap1, Ahr and Dbi knockouts, which already showed experimental 

evidence in C. elegans and D. melanogaster (Eckers et al., 2016; Shamalnasab et al., 

2017; Sykiotis & Bohmann, 2008), as well as experiments with the drugs that prolong 

lifespan in invertebrate models and target the knocked out genes. 
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3.3.1 Limitations 
 

An inherent limitation of the study is that is biased towards interventions in the nutrient-

sensing pathways (long-lived mice) or the DNA repair system (short-lived mice), which 

have been more extensively studied. However, this allowed us to determine that 

genomic instability leads to mitochondrial dysfunction, and that deregulation of the 

nutrient sensing pathways improves mitochondrial function. To develop a complete 

picture of the interconnections between the hallmarks of ageing, transcriptomic data 

from interventions targeting other hallmarks of ageing are required. Most of our 

observations are extracted from the liver transcriptome because it was the only tissue 

with enough transcriptome data to identify robust trends across interventions. 

However, as I reported in Section 3.2.1, genetic interventions may have tissue-specific 

effects, meaning that the comparison of transcriptomic profiles is likely to be useful 

only when is done in the same tissue or cell type. Thus, further research in other 

tissues is necessary to determine the level of conservation of the mechanisms I found 

associated with lifespan. Finally, our analysis suggests the mitochondria is likely to 

have a primary role in determining lifespan, however, changes in mitochondrial genes 

at the expression level do not necessarily allow us to infer changes at the level of 

mitochondrial function nor establishing that these transcriptomic changes are causal 

for changes in lifespan. 

 

3.4 Methods 
 
3.4.1 Transcriptomic dataset collection 
 

I obtained a list of short-lived and long-lived mouse models of ageing from Folgueras 

et al. (2018). Then, using the gene symbol of each mutant I searched in the meta-

databases OmicsDI 1.0 (Perez-Riverol et al., 2017) and All of gene expression (Bono, 

2020) for microarray and RNA-seq datasets from mice. Using the Mouse Genome 

Database (version 6.17) (Bult et al., 2019), I only included studies with raw data 

available where the genotype of the wild-type matched the genotype of the mouse 

model of ageing and where multiple samples per condition were available. I focused 

on datasets from liver, adipose, muscle and brain as these were the most common 

tissues among the datasets I found. The samples in each study were grouped into 
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datasets with the same sex, age and tissue, resulting in 57 datasets from 26 studies 

that were processed separately (Supplementary Table 11). To investigate the gene 

expression changes during ageing, I used the dataset with the largest sample size for 

each tissue (Supplementary Table 15). 
 

3.4.2 Differential expression analysis 
 

For microarrays, I obtained the raw data from the Gene Expression Omnibus (GEO) 

and Array Express database using the R packages GEOquery (version 3.13) (Sean & 

Meltzer, 2007) and ArrayExpress (version 1.52) (Kauffmann et al., 2009), respectively. 

Affymetrix array data were processed using the RMA algorithm from the package oligo 

(Carvalho & Irizarry, 2010) to perform background correction, quantile normalisation 

and summarization. I carry out the summarization using the core genes for exon and 

gene arrays. For Illumina and Agilent microarrays, I employed background correction 

and quantile normalisation using the limma package (version 3.4) (Ritchie et al., 2015). 

I removed probes mapping to multiple genes and kept the probe with the highest 

average expression across samples if multiple probes mapped to one gene. Then, I 

fitted a linear model of gene expression versus genotype for each gene and calculated 

the summary statistics using empirical Bayes. P-values were adjusted for multiple 

testing using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995) to obtain 

the false discovery rate. I calculated the gene expression changes of age in the same 

way, with the difference that chronological age was used as the independent variable 

instead of genotype. 

 

RNA-seq reads were obtained from the Sequence Read Archive (Leinonen et al., 

2011). I mapped raw reads to the mouse genome sequence (GRCm38.p6) using 

STAR (version 2.7) (Dobin et al., 2013) and counted mapped reads using 

featureCounts from the package Rsubread (version 2.6) (Liao et al., 2019). I removed 

genes with less than 10 counts on average across samples to reduce memory usage 

and increase data processing speed as recommended by DESeq2 manual (Love et 

al., 2017). Later evaluation of the influence of this pre-filtering showed no major effect 

on the results (Supplementary Figure 12-13). Differential expression analysis was 
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then performed using DESeq2 (version 1.32) (Love et al., 2014) controlling the false 

discovery rate using the Benjamini-Hochberg method. 

 

I further performed a principal component analysis on each dataset using the 

normalised gene expression values (Supplementary Figure 14) and did not observe 

any sample with outlier levels of expression sufficient to warrant exclusion from the 

analysis. I examine which experimental variables (i.e. study, genotype, tissue, sex, 

age, lifespan effect, technology) accounted for the transcriptional differences between 

the datasets. I performed a principal component analysis of the quantile normalised 

fold changes of 4074 genes detected across all 57 datasets (Supplementary Figure 
15) and then tested which variables explained the differences observed in the first two 

principal components, applying a multivariate analysis of variance (MANOVA). As 

expected, datasets from the same study, genotype and tissue correlated more than 

expected by chance (Supplementary Table 16). 
 

To obtain gene expression data from genetic interventions not previously associated 

with ageing, I downloaded the metadata from all single gene perturbation signatures 

for mice from the CREEDS database (version 1.0) 

(http://amp.pharm.mssm.edu/CREEDS/#downloads)(Z. Wang et al., 2016). I manually 

removed interventions not coming from mouse liver or already included in our study. 

The remaining interventions were processed with GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/).  

 

3.4.3 Transcriptome-wide correlation analysis 
 

Using the log2 fold changes from the differential expression analysis, I calculated the 

correlation between the datasets using Spearman’s rank method (Spearman, 1904) 

considering genes in common between the pair of datasets. On interventions with 

multiple datasets, I averaged the correlations first between datasets from the same 

study and intervention, and then with the same intervention across different studies. 

Heatmaps visualising correlations were created using ComplexHeatmap (version 2.7) 

(Gu et al., 2016).  
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3.4.4 Functional enrichment and consistency analysis 
 

I performed functional enrichment analysis of each dataset separately using the 

function gseGO from the package ClusterProfiler (version 4.0) (Yu et al., 2012) on 

genes ranked by the sign of the log2 fold changes multiplied by the logarithm of the p-

values from the differential expression analysis. Based on this rank-ordered list of 

genes, I further assessed if genes in each gene ontology term were more likely to be 

up or down-regulated than what is expected by chance based on 10000 permutations. 

I calculated an enrichment score for each pathway and each intervention by 

multiplying the log10(p-value) by 1 or -1 depending on the direction of the change. To 

identify GO terms with consistent changes, I calculated for each GO term the median 

rank of the enrichment score across short-lived or long-lived mice and I compare it 

against a random distribution of median ranks with the same number of interventions. 

P-values were obtained by dividing the observed median rank by the total number of 

random median ranks generated (i.e. 1e6). I adjusted the p-values for multiple testing 

using the Benjamini-Hochberg method.  

 

As with the gene expression values, I tested which experimental variables explained 

the differences between the datasets using enrichment scores. In contrast to gene 

expression values, variation in enrichment scores was best explained by the effect on 

lifespan of the interventions (Supplementary Table 17).  
 

To visualise gene ontology terms specific to long- or short-lived mice, I calculated the 

similarity between the consistently varying terms using the overlap coefficient (oc). I 

constructed a network connecting the terms (nodes) where edges represent pairs of 

terms with an oc > 0.4. Clusters with less than 5 nodes were excluded. 

 

𝑜𝑐 = 	|$∩&|
'()(|$|,|&|)

, where A and B represent gene ontology term
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Chapter 4 General discussion and concluding remarks  
 
In this thesis, I aimed to identify genetic and pharmacological interventions to target 

ageing through computational studies. In this last chapter, I discuss the major findings 

of the studies in the context of ageing research and give a perspective on how to move 

the field forward considering our results. 

 

Several methods designed to identify ageing-related genes have observed that one 

particular property of ageing-genes is to target other genes linked with ageing (Feng 

et al., 2012; Kerepesi et al., 2018; Li et al., 2010; Song et al., 2012). Taking this feature 

into account I evaluated if drugs that also target multiple ageing-related genes were 

also more likely to affect ageing, and more importantly if we could use this strategy to 

find drugs to target human ageing. Indeed, I discovered that this strategy is suitable to 

find geroprotectors as drugs targeting a significant proportion of human ageing-genes 

were more likely to have geroprotective properties than what is expected by chance.  

 

Previous drug repurposing studies on Rheumatoid arthritis, Parkinson’s disease and 

Alzheimer’s disease have shown that the performance of this type of strategy can be 

greatly improved when the comparisons are made at higher levels of biological action 

(Issa et al., 2016; Tung, 2015). I tested and showed that this was also the case of 

ageing, displaying a greater enrichment for geroprotectors, particularly when biological 

processes are used as a comparator. That the effects on ageing are driven at the 

pathway level rather than the gene level is meaningful as genes within the same 

pathway tend to interact more often and ageing-genes interact with other ageing-

genes. I also confirmed this in chapter 3, as genetic interventions within the same 

induce remarkable similar transcriptomic changes. Thus, genetic and pharmacological 

interventions in genes within ageing pathways are likely to affect ageing.  

 

I also evaluated if the mechanisms of the candidate drugs were similar pointing to a 

central mechanism to regulate ageing. However, as the hallmarks of ageing suggest, 

I found different mechanisms to modulate ageing when I used drug-protein information 

and also gene expression as a comparator. This suggests that multiple pathways will 

be required to be targeted simultaneously to substantially ameliorate ageing, 
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especially in the case of pharmacological interventions which produce smaller effects 

in lifespan and healthspan than genetic interventions. Actually, recent studies have 

shown that the use of drugs targeting distinct subsets of the ageing-related pathways, 

complement one another and delay ageing with a higher potential compared to single-

drug treatments (Admasu et al., 2018; Castillo-Quan et al., 2019).  

 

One caveat of the drug repurposing methods for ageing developed so far is that they 

only evaluate the top candidates (reviewed in Dönertaş et al., 2019), however, it is 

possible that despite finding geroprotectors among the top candidates, most 

geroprotectors are negatively selected by the method. Considering this possibility, I 

measured the enrichment of our ranked list of compounds with respect to all known 

geroprotectors. This simple analysis can be used by other researchers to compare the 

performance of the drug repurposing methods for ageing.  

 

In addition to validate our candidate drugs theoretically based on previous evidence, I 

also select the top-ranked compound tanespimycin to perform experimental testing in 

C. elegans.  For the first time, we showed that mild inhibition of HSP-90 with 

tanespimycin induce a stress response that triggers cytoprotective mechanisms and 

that stronger inhibition using RNA interference causes a reduced lifespan in 

agreement with previous studies (Somogyvári et al., 2018). This confirms the previous 

idea that a little stress may be good for cellular health and longevity (Labbadia et al., 

2017), and more importantly, that we can trigger this hormetic response using drugs. 

Interestingly, we also observed a dose-dependent activation of hsp-16.2, a gene 

whose expression has been proposed as a biomarker of lifespan and thermotolerance 

(Mendenhall et al., 2012).  Thus, considering that we observed a maximum activation 

at the concentration that the lifespan was performed, it is possible that higher 

concentrations could cause a higher lifespan extension.  

 

Remarkably, three months after our publication, another drug-repurposing study 

based on human gene expression data, proposed tanespimycin as a candidate 

geroprotector and confirmed its effect on C. elegans lifespan (Janssens et al., 2019). 

Shortly after, a post-doctoral fellow working in the Partridge Laboratory at Max-Plank 

Institute for Biology of Ageing, tested the effect of tanespimycin in D. melanogaster 

and observed that it prolongs lifespan but only in female flies (Supplementary Figure 
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16) (Unpublished). Interestingly, in the mouse models of ageing with lengthened 

lifespan, I observed a common down-regulation of biological processes linked with the 

heat shock response. Given that I observed that activation of these processes causes 

an extension lifespan, it is likely that the changes observed in long-lived mice are the 

consequence of lower proteostatic stress levels than normal mice.  

 

Another way that could indicate that our candidate drugs are meaningful is to 

determine if they have been predicted previously by other methods. Indeed, we found 

that our method was the best re-discovering drugs prioritized by multiple methods, 

with 7 of these drugs among the top 10 candidates.  Tanespimycin is one of the few 

drugs predicted to delay ageing by multiple drug-repurposing studies. Thus, its 

experimental validation shows the robustness of the various methods to predict 

geroprotectors. However, no major focus has been attempted by the scientific 

community in testing the candidate drugs proposed by multiple studies, which is 

surprising considering the exponential development of drugs to target ageing (de 

Magalhães, 2021).  

 

I revealed different mechanisms of ageing even within interventions with similar effects 

in lifespan, and I also found that the molecular changes that these interventions cause 

are different depending on the tissue. This complexity suggests that while some 

interventions may have beneficial effects in delaying ageing in some tissues, they may 

be detrimental for others.  

 

Typically, studies aiming to identify the molecular mechanism of ageing search for 

molecular changes in long-lived or short-lived animal models that are not visible in 

normal strains. However, most researchers assume that these changes are beneficial 

(in long-lived models) or detrimental (in short-lived models), neglecting the possibility 

that they might be just the cellular response to the perturbation, a common 

phenomenon observed across a variety of biological conditions (Powers et al., 2018). 

A more robust strategy is to compare mouse models with different rates of ageing, for 

example searching the molecular mechanism observed during normal ageing and also 

in accelerated ageing mice but reversed in mice with delayed ageing. By doing this, I 

found that metabolic pathways associated with the mitochondria were the only ones 

with these properties. This result opens the possibility to use the expression of 
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mitochondrial genes as biomarkers of lifespan, which can contribute to significantly 

reduce time and cost associated with the identification of new geroprotectors.  

 

Since the discovery of mouse models with accelerated ageing phenotypes (Weeda et 

al., 1997), researchers have wondered if these mice truly reproduce the effects of 

ageing (Burtner & Kennedy, 2010; C. Y. Liao & Kennedy, 2014). Confirming this idea, 

I found that as during normal ageing, mouse models with accelerated ageing are likely 

to display mitochondrial dysfunction, a hallmark of ageing. In contrast, enhanced 

mitochondrial maintenance was not a unique characteristic of long-lived strains, as 

they also showed changes in proteostasis and the immune response. However, this 

result needs to be taken with caution, as the higher number of processes associated 

with long-lived could be due a higher number of datasets involved, which increases 

the power to detect conserved changes. In recent years, researchers have claimed 

that the hallmarks of ageing require revision, as new studies have implicated other 

processes in ageing (Bhadra et al., 2020; Knupp & Miura, 2018). In our study, I found 

support for the relevance on ageing of processes such as ion transport, glycosylation, 

gene silencing and thermogenesis.  

 

Besides the transcriptomic data from mouse models of ageing, there are several 

datasets of gene knockouts in mice. I used these datasets to determine which other 

genetic interventions resemble the transcriptomic changes of long-lived mice and 

could have the potential to prolong lifespan. Remarkably, I discovered that 6 of the 

gene knockouts that resemble short-lived models and ageing display premature death. 

Unfortunately, gene knockouts similar to long-lived mice have not been tested 

experimentally in lifespan assays, but down-regulation of several of the orthologues in 

animal models have shown to be geroprotective. Also, several of the drugs that target 

these genes have shown geroprotective properties, among which I found erlotinib, a 

drug also proposed by our first drug-repurposing analysis.  
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4.1 Future perspectives 
 

Nowadays the drug-protein interactome is a large data source but far from completion. 

Thus, further research is needed to increase the drug-protein interaction data using 

high-throughput technologies like those currently available from kinases (Sorgenfrei 

et al., 2018). This will not only improve the robustness of the first method presented 

here but also promote the development of machine learning methods that are more 

suitable for prediction tasks. In this regard, it is also essential to encourage ageing 

researchers and scientific journals to publish results from drugs causing negative or 

no effect on lifespan, in order to have a balanced positive and negative set of drugs to 

evaluate the repurposing methods and construct better machine learning based 

methods. The method can also be improved by increasing the reliability of the drug-

protein interaction database, yet this requires the complex task of manually identify 

the sources prone to include false positives and recalculate the confidence scores. It 

may be also possible to improve the enrichment for geroprotectors by using a different 

method to calculate the similarity between gene sets such as the Jaccard index or the 

Pearson’s correlation which have produced meaningful results in other contexts (Bass 

et al., 2013). Also, the method could be potentially improved by using a different 

strategy to combine the results from the enrichment analysis, such as validated rank-

based meta-analysis (Kolde et al., 2012), which may be less biased by the number of 

datasets involved. 

 

So far, there is experimental evidence validating the geroprotective properties of 

tanespimycin in worms and flies. Thus, the next step is to test if tanespimycin prolongs 

survival in healthy mice. If this is the case, there is solid evidence to perform a short 

safety trial in humans. Based on previous clinical trials with tanespimycin, it is known 

that it only causes mild side effects at biologically active doses and that the side-effects 

are associated with the vehicle (i.e dimethyl sulfoxide alias DMSO) rather than off-

target effects of the drug (Erlichman, 2009). Thus, it may be appropriate to investigate 

the possibility to reduce the side effects even further by using alternative delivery 

methods, as micellar nanocarriers previously developed for the delivery of 

tanespimycin (Katragadda et al., 2013; Xiong et al., 2009).  
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Also, the analysis presented in this thesis strongly encourage the experimental testing 

in C. elegans and D. melanogaster of the kinase inhibitors sorafenib, dasatinib, 

imatinib and erlotinib, and compounds like adenosine and vorinostat. Similarly, drugs 

that have already shown lifespan-extending properties in invertebrates like trichostatin 

A, valproic acid, wortmannin, LY-294002 and levothyroxine need to be tested in 

vertebrate models of ageing as killifish or mice.  

 

Importantly, considering that lifespan experiments are time-consuming and expensive, 

researchers should consider the use of a different surrogate to measure the effects on 

ageing in laboratory animals. The most promising alternatives are transcriptomic and 

epigenetic clocks developed for animal models, which allows calculating biological age 

with a small error (Meyer & Schumacher, 2020; Thompson et al., 2018). The 

development of new drug repurposing methods and the evaluation of their biological 

age using omics clocks within the same study is expected to greatly accelerate the 

discovery of geroprotectors.  

 

From the 80 mouse models of ageing described by Folgueras et al. 2018, only 19 have 

transcriptomic data available, with very few having proteomic, epigenomic or 

metabolomic data. Also, most of the transcriptomic data available come from liver 

samples, however, I confirmed that mutations affect tissues differently at the molecular 

level. Thus, further omics studies at different biological levels in different tissues are 

needed in the mouse models of ageing to provide a better characterisation of the 

molecular changes associated with ageing interventions. This, in turn, will help to 

understand the interconnections between the hallmarks of ageing and create more 

accurate biological clocks that can be used to quantify the effects on ageing of the 

interventions in a fraction of the time required for a lifespan experiment.  

 

I found that lifespan extension was strongly associated with an increased expression 

of Ppargc1a. Given it has been observed that over-expression of Ppargc1a in the 

skeletal muscle is sufficient to prolong mouse lifespan (Garcia et al., 2018), the next 

step is to test if the same intervention in the liver also causes lifespan extension. Also, 

considering the relevance of Ppargc1a for mitochondrial biogenesis and 

thermogenesis, it would be interesting to determine if there is a difference in 
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mitochondrial copy number in long-lived mice and if transferring long-lived mice to 

higher temperatures at different ages normalises their lifespan.  

I discovered 16 gene knockouts positively correlated with expression changes in long-

lived mice and negatively correlated with expression changes in short-lived mice. Our 

predictions, therefore, encourage the calculation of the biological age using the mouse 

epigenetic clock (Thompson et al., 2018) and lifespan experiments on these mutant 

mice and the drugs targeting the mutated genes. 
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Appendix - Supplementary material 
 
Supplementary Figures 
 

 

Supplementary Figure 1. Interaction-similarities between the top-ranked 

compounds. A) Scheme of the interactions similarity between two drugs. Interactions 

with both drugs in the same direction are shown as blue lines while opposite 

interactions are displayed in red. B) A positive value (blue) represents a similar 

interaction pattern, a negative value (red) opposite interaction pattern. The values from 

the diagonal were removed for better display of the indexes between different 

compounds. Annotations were added in the upper part of the heatmap to indicate if 

the drugs were in the DrugAge database and their current development status. Row 

and columns were clustered by similarity values, and the calculated hierarchical tree 

is shown at the top. 
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Supplementary Figure 2. Correlation between the ranked list of compounds. Boxes 

are coloured by Kendall’s correlation coefficient. 

 
Supplementary Figure 3. Area under the enrichment curves calculated using 

different cutoff values. The solid lines represent the enrichment for pro-longevity drugs 

and the dashed lines for anti-longevity drugs. I analysed 3 cutoffs for the confidence 

score (600, 700, 800) and the adjusted p-value (0.01, 0.05, 0.1).  The colour of the 

lines and dot represent the use of different types of data as the comparator. 
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Supplementary Figure 4. Exposure to high doses of 17-AAG early in life can delay 

development and reduce brood size. A) Proportion of the population that had reached 

adulthood 52 and 76 hours post-seeding of L1 worms to plates containing 0.1% DMSO 

or increasing concentrations of 17-AAG. B) Total number of progeny produced by 

worms exposed to 0.1% DMSO or increasing concentrations of 17-AAG from the first 

larval stage (L1) onward or from the first day of adulthood. The number of progeny 

produced by individual worms on days 1 to 5 of adulthood was counted and combined. 

10 worms were scored per treatment group and the values plotted are the mean. Error 

bars denote standard deviation. Statistical significance was calculated by one-way 

ANOVA with Tukey pairwise comparison of groups. *** = p < 0.001. 
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Supplementary Figure 5. Spearman’s rank correlation coefficients between the 

transcriptome of mouse models of ageing.  
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Supplementary Figure 6. Distribution of pairwise correlation between the 

transcriptomes of mutants not previously associated with ageing.  

 
 
 

 
Supplementary Figure 7. Expression of genes leading the regulation of energy and 

lipid metabolism in long- and short-lived mice. 
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Supplementary Figure 8. Transcriptional changes in PolgD257A/ D257A mutant mice in 

gene sets associated with lifespan and ageing. 
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Supplementary Figure 9. Gene set up-regulated in long-lived mice. Nodes represent 

GO terms and edges indicate shared genes between the terms. The colour of the 

circles denotes the significance of the consistency across mutant mice. 
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Supplementary Figure 10. Gene set down-regulated in long-lived mice. Nodes 

represent GO terms and edges indicate shared genes between the terms. The colour 

of the circles denotes the significance of the consistency across mutant mice 
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Supplementary Figure 11. Gene set down-regulated in short-lived mice. Nodes 

represent GO terms and edges indicate shared genes between the terms. The colour 

of the circles denotes the significance of the consistency across mutant mice. 
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Supplementary Figure 12. Gene sets showing consistent changes in long- and short-

lived mice (FDR < 0.05). The heatmap colours represent the statistical significance of 

the enrichment and the direction of the change. The ‘Ageing’ column represents the 

enrichment scores associated with the transcriptomic changes during ageing.  
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Supplementary Figure 13. Correlations between the transcriptome of ageing-related 

interventions and that induced by ageing. Each point represents one intervention, and 

the shapes indicate the tissue from which the transcriptome was derived. 

Transcriptomic changes in the mouse models of ageing were compared with the 

changes during ageing on the same tissue. Error bars show one standard deviation 

from the mean. P-values below were calculated using a t-test with a population mean 

equal to zero as the null hypothesis. P-values at the top are for the difference between 

the groups using an unpaired, two-samples Wilcoxon-test. 
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Supplementary Figure 14. Principal component analysis of the datasets based on 

expression levels. The samples are coloured by the genotype. 
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Supplementary Figure 15. Principal component analysis of the interventions based 

on the normalised fold changes from the differential expression analysis. The labels 

and colour indicate the genes altered. In parenthesis on the axis is the percentage of 

the variance explained by each principal component.  
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Supplementary Figure 16. Survival of Drosophila melanogaster upon chronic 

treatment with Tanespimycin. Continuous lines represent female flies and dotted lines 

represent male flies. Black lines represent wild-type flies and orange lines represent 

flies fed with tanespimycin. Only female flies fed with 500nM Tanespimycin live 

significantly longer (log-rank test p-value = 1.26E-5).  
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Supplementary Tables 
 

Supplementary tables are available at https://github.com/msfuentealba/phd_thesis 

Comma separated files are named using the corresponding table names used in the 

text. 

 

Table legends  

 
Supplementary Table 1. Enrichment analysis of drugs targeting ageing-related 

genes. 

Supplementary Table 2. Enrichment analysis of drugs targeting genes interacting 

with ageing-related genes. 

Supplementary Table 3. Enrichment analysis of drugs targeting genes involved in 

biological processes associated with ageing. 

Supplementary Table 4. Enrichment analysis of drugs targeting genes involved in 

cellular components associated with ageing. 

Supplementary Table 5. Enrichment analysis of drugs targeting genes involved in 

molecular functions associated with ageing. 

Supplementary Table 6. Enrichment analysis of drugs targeting genes involved in 

pathways (KEGG) associated with ageing. 

Supplementary Table 7. Enrichment analysis of drugs targeting genes involved in 

pathways (Reactome) associated with ageing. 

Supplementary Table 8. Evaluation of the research bias for the top-ranked 

compounds on each list. The first column represents the type of data used as the 

comparator between ageing and drug targets. The p-value on the second column 

corresponds to the higher p-value obtained for the 20 compounds on the top of each 

list, and it represents how many of the 1000 permutations showed a higher rank than 

in the analysis. 
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Supplementary Table 9. Evaluation of the statistical significance of the enrichment 

for pro-longevity compounds. The first column represents the type of data used as the 

comparator between ageing and drug targets. The second columns show the p-value, 

which represents how many of the 1000 permutations used to evaluate the research 

bias, showed an AUC equal or higher than the analysis. 

Supplementary Table 10. Average ranking of drugs for targeting ageing at different 

levels of biological actions.  

Supplementary Table 11. Transcriptomic datasets of the mouse models of ageing. 

Supplementary Table 12. Transcriptomic datasets of genetic interventions not 

previously associated with ageing. The last two columns represent the sample 

identifiers of controls and mutant mice.  

Supplementary Table 13. Gene sets with consistent transcriptomic changes in long-

lived mice. 

Supplementary Table 14. Gene sets with consistent transcriptomic changes in short-

lived mice. 

Supplementary Table 15. Transcriptomic datasets of mice at different ages. 

Supplementary Table 16. Experimental variables influencing the transcriptomic 

differences between the datasets based on gene expression values. 

Supplementary Table 17. Experimental variables influencing the transcriptomic 

differences between the datasets based on enrichment scores
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