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A B S T R A C T   

Local fiber orientation distributions (FODs) can be computed from diffusion magnetic resonance imaging (dMRI). 
The accuracy and ability of FODs to resolve complex fiber configurations benefits from acquisition protocols that 
sample a high number of gradient directions, a high maximum b-value, and multiple b-values. However, 
acquisition time and scanners that follow these standards are limited in clinical settings, often resulting in dMRI 
acquired at a single shell (single b-value). In this work, we learn improved FODs from clinically acquired dMRI. 
We evaluate patch-based 3D convolutional neural networks (CNNs) on their ability to regress multi-shell FODs 
from single-shell FODs, using constrained spherical deconvolution (CSD). We evaluate U-Net and High- 
Resolution Network (HighResNet) 3D CNN architectures on data from the Human Connectome Project and an 
in-house dataset. We evaluate how well each CNN can resolve FODs 1) when training and testing on datasets 
with the same dMRI acquisition protocol; 2) when testing on a dataset with a different dMRI acquisition protocol 
than used to train the CNN; and 3) when testing on a dataset with a fewer number of gradient directions than 
used to train the CNN. This work is a step towards more accurate FOD estimation in time- and resource-limited 
clinical environments.   

1. Introduction 

Diffusion magnetic resonance imaging (dMRI) can be used to 
investigate the organization of white matter (WM). WM is composed of 
neuronal axon fiber bundles that impose a preferential direction to the 
diffusion of water molecules [1,2], resulting in anisotropic diffusion 
along the axon fiber bundles [3,4]. 

WM tissue microstructural organization, such as axon diameter [5] 
and local fiber orientation distribution (FOD or fODF) [6], can be esti
mated from dMRI acquisitions. FODs can be used to perform fiber 
tractography [7,8], which has an important role in presurgical planning 
[9–12] and connectome analyses [13]. A common method to estimate 
local fiber orientation is diffusion tensor imaging (DTI) [3]. However, 
DTI only models single fiber populations and cannot resolve complex 
fiber configurations such as fiber crossings [6]. More robust methods for 

representing FODs have been proposed based on spherical deconvolu
tion [14–16] or other approaches that estimate diffusion orientation 
distribution functions from q-space [16,17]. 

Constrained spherical deconvolution (CSD) estimates a more com
plex FOD from dMRI signals [4,18]. Single-shell single-tissue CSD 
(S-CSD) models each voxel as a single compartment with one corre
sponding FOD, irrespective of the underlying tissue components [18]. 
However, S-CSD FODs suffer from partial volume effects (PVEs) when 
multiple tissues are present. Multi-shell multi-tissue CSD (M-CSD) 
reduce PVEs by modeling one anisotropic compartment, corresponding 
to WM, and two isotropic compartments, corresponding to grey matter 
(GM) and cerebrospinal fluid (CSF) [4]. M-CSD relies on decay behaviors 
of distinct tissue types across multiple b-values (or shells) to separate 
each voxel into three components. However, M-CSD is limited in clinical 
settings since it requires dMRI acquisitions with multiple shells (MS) 
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which has longer acquisition times compared to DTI or single-shell (SS) 
dMRI. 

Single-shell 2-tissue CSD (2TS-CSD) and single-shell 3-tissue CSD 
(SS3T-CSD) [19] attempt to resolve PVEs by modeling isotropic com
partments, similar to M-CSD, using the b = 0 s/mm2 image as a second 
shell. With the additional shell, a multi-tissue signal profile is computed 
by 2TS-CSD assuming one anisotropic component (WM) and one 
isotropic component (either GM or CSF). SS3T-CSD uses an iterative 
approach to fit a CSD model for the three tissues compartments by first 
fitting one pair of components (WM and GM) and then fitting another 
pair of components (WM and CSF) [19]. 

FODs that are able to resolve complex fiber configurations typically 
require specific dMRI acquisition protocols with a high number of 
gradient directions (b-vecs), a high maximum b-value and/or multiple b- 
values [20–23]. A higher number of gradient directions and higher 
b-values improve FOD angular resolution, enabling FODs to better 
resolve complex fiber configurations, such as fiber crossings [24,25]. 
However, local fiber reconstruction is more accurate for images with a 
high signal-to-noise ratio (SNR), which can be achieved from low 
b-value shells [25]. Despite these advantages, clinical uptake is limited 
due to longer acquisition times and the need for expert staff to set up the 
acquisition protocols [26]. Therefore, improving FOD modeling for 
clinically available dMRI acquisitions is an active topic of research. 

Deep learning (DL) has been successfully used for a variety of med
ical imaging tasks [27] to learn an underlying mathematical represen
tation that non-linearly maps data between representations [28]. DL 
regression has been presented to improve dMRI spatial resolution [29], 
to map model coefficients from q-space [30] to either neurite orientation 
dispersion and density imaging (NODDI) [31] or diffusion kurtosis im
aging (DKI) models [32], to output high quality CSD coefficients from 
CSD coefficients computed on dMRI with fewer gradient directions [33], 
to fit SH coefficients between different shells [34], and to map from 
S-CSD coefficients to FODs computed from histology [35]. 

In Tanno et al. [29]; a CNN patch-based regression was presented to 
infer higher resolution patches and quantify uncertainty. In a different 
work, Golkov et al. [30] computed model coefficients (DKI or NODDI) 
from q-space signal intensities using a multilayer perceptron network 
(MLP). In Koppers et al. [34]; a MLP was trained using SH coefficients 
calculated from one or a combination of shells to infer the SH co
efficients of the same order for a different shell. In Nath et al. [35]; a 
neural network composed of regular hidden and residual layers 
(ResDNN) was trained to map S-CSD coefficients to FODs computed 
from macaque histology. In Lin et al. [33]; 3D CNNs were used to esti
mate M-CSD coefficients of a good quality MS dMRI acquisition from 
M-CSD coefficients computed from dMRI with fewer gradient directions. 

In this work, we aim to compute a more accurate and reliable FOD 
from SS dMRI, the most common dMRI acquisition in clinical applica
tions. Our goal is to demonstrate that 3D CNNs, U-Net [36] and 
High-Resolution Network (HighResNet) [37], can regress M-CSD co
efficients from 2TS-CSD coefficients. We present an application of CNNs 
that has not been proposed elsewhere in the literature and is 
non-obvious from other proposed regression tasks for dMRI which have 
focused on regression between shells using MLPs [34] or regression from 
few gradient directions to many gradient directions for MS acquisitions 
[33]. We present an extensive evaluation involving: (1) training and 
testing on datasets with the same dMRI acquisition protocol, (2) testing 
on datasets with different dMRI acquisition protocols than the training 
dataset, and (3) regressing from dMRI with fewer gradient directions 
than the training dataset. 

2. Methodology 

2.1. Pipeline overview 

Our pipeline consists of the following steps. We construct a paired 
dataset composed of one SS dMRI and one MS dMRI (Section 2.2) from 

the Human Connectome Project (HCP) [38] and an in-house dataset 
which we refer to as QS dataset (see Section 3.1 for a detailed descrip
tion of the datasets). For each dataset, we compute two CSD models, 
2TS-CSD and M-CSD (Section 2.3) from the SS dMRI and MS dMRI, 
respectively. Then, we train a CNN to regress the M-CSD coefficients 
from the 2TS-CSD coefficients (Section 2.4). 

2.2. Training dataset 

From a MS dMRI a paired SS dMRI dataset is constructed by selecting 
one shell from the MS dMRI. In this work, we select a shell that has at 
least a minimum number of gradient directions for a given b-value that 
can characterize the angular frequency components of the dMRI signal 
[25]. For the HCP dataset, we construct a SS dMRI for each of the three 
b-values (1000, 2000, 3000 s/mm2) where each shell has 90 directions. 
For the QS dataset, we construct a SS dMRI for two b-values (700, 2500 
s/mm2) with 32 and 64 directions, respectively. 

2.3. CSD modeling 

CSD models FODs from the dMRI signal intensities. A dMRI signal 
intensity is approximated by convolving CSD coefficients with a signal 
attenuation profile, also known as a response function [18]. The CSD 
coefficients are computed by minimizing differences between the dMRI 
signal intensities and signal intensities approximated from the CSD co
efficients using iterative linear least-squares. A soft regularizer is also 
applied to enforce a non-negativity constraint on the CSD coefficients. 

Although lmax = 8 provides FODs with a high angular contrast for 
high b-values (b > 1000 s/mm2) [25], in this work, we focused on lmax =

4, comprising 15 coefficients, to establish proof of concept. 
After computing CSD coefficients, we applied multi-tissue informed 

log-domain intensity normalization [39] to correct intensity 
inhomogeneities. 

2.3.1. M-CSD 
M-CSD coefficients are computed following the equation [4]: 
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where di is the vector of dMRI signal intensities in the i-th shell, xj is an 
unknown vector of coefficients for the FOD of tissue j, Ci,j is the matrix 
relating the coefficients for the FOD of tissue j to the dMRI signal in
tensities measured on the i-th shell in q-space by spherical convolution. 
An additional constraint is imposed on the coefficients where Aj is a 
tissue specific matrix relating the coefficients of the FOD for tissue j to 
their signal amplitudes, effectively imposing non-negativity on all co
efficients. To perform the optimization, we use the algorithm available 
within MRtrix [40]. 

2.3.2. 2TS-CSD 
For the 2TS-CSD, a similar approach to the M-CSD is used where the 

b = 0 s/mm2 (b-zero) image is used as a second shell. To ensure Equation 
(1) has a unique solution, we set j = 2, reducing the number of tissue 
components to two. We model one compartment as isotropic corre
sponding to CSF, and the other compartment as anisotropic, corre
sponding to WM. The CSF is selected as the isotropic compartment as it 
leads to a more accurate fit of the FOD compared to using GM as the 
isotropic compartment [19]. 
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2.4. CNN training 

We evaluate two 3D CNN architectures, a 3D High-Resolution 
Network (HighResNet) [41] and a 3D U-Net [36], on their ability to 
regress M-CSD coefficients from 2TS-CSD coefficients. Fig. 1 shows a 
graphical representation of the network architectures. For both net
works, patch-based training is used. Patch-based training requires a 
reduction in the effective receptive field (ERF) to reflect the selected 
patch size (Section 2.5) and avoid distortions at the patch boundary 
[42]. Details of how the ERF is reduced for each network are described 
below. 

2.4.1. HighResNet 
The original HighResNet architecture is comprised of three levels of 

dilated convolutions and nine residual connections resulting in 0.81 M 
trainable parameters. HighResNet was originally proposed as a compact 
network that could achieve large ERFs [42] without requiring a 
downsample-upsample pathway to capture low and high level features 
[36,43]. Dilated convolutions are used to produce accurate predictions 
and detailed probabilistic maps near object boundaries [41]. In this 
paper, we modified the HighResNet architecture by reducing the num
ber of layers to achieve the desired ERF. The final HighResNet archi
tecture comprises two levels of dilated convolutions and four residual 
connections resulting in 0.16 M trainable parameters. A parametric 
rectified linear unit (PReLU) activation function was used in place of a 
ReLU. PReLU adaptively learns the rectifier parameters and has been 
shown to improve CNNs performance in other applications [44]. 

2.4.2. U-Net 
The original 3D U-Net is a “U”-shaped network that has a 

downsample-upsample pathway composed of 14 convolutional layers 
[36] resulting in 19.08 M trainable parameters. We adapted the U-Net 
architecture to achieve the desired ERF by reducing the network to ten 
convolutional layers resulting in 3.93 M trainable parameters. We 
removed one encoder block (2 × (conv. + batch norm. + PReLu) + max 
pooling) and one decoder block (concat. + up-sampling + 2 × (conv. +
batch norm. + PReLu)). 

2.4.3. Data augmentation 
Classic techniques for on-the-fly augmentation including axis flip

ping, scaling, and rotation have been successfully applied to CNN 
training for small 3D medical imaging datasets [37,41,45]. However, 
applying these techniques as implemented in traditional medical image 
processing tools is not appropriate for CSD coefficients as they are in the 
SH domain and not the 3D spatial domain. Therefore, we apply 3D 
random rotations in the SH domain. 

2.5. Training setup 

Each network is trained with an RMSprop optimizer to minimize the 
L2 loss between the M-CSD coefficients and the CSD coefficients 

regressed by the CNN, measured by loss(y, ŷ) = ‖y− ŷ‖2
2

2 where y are the 
ground truth coefficients (M-CSD) and ̂y are the coefficients regressed by 
the network. The initial parameters for each CNN are set using the He 
uniform initialization [44]. Each CNN is trained for 400 epochs, with a 
weight decay of 1E − 6. Training starts with a learning rate of 3E − 2, 
which is then reduced by 1/2 every 50 epochs. Training weight decay, 
initial learning rate, and number of epochs were experimentally chosen 
based on observed convergence. Patches are uniformly sampled within 
the binary mask corresponding to the intracranial space computed using 
the skull-stripped algorithm of MRtrix [40]. 

For each iteration in an epoch, a subject from the training set is 
randomly selected. Subsequently, CSD coefficients are augmented by 
applying a random FOD rotation in the range of [− 25, 25] degrees. From 
this augmented data, 40 patches of size 32 × 32 × 32 × 15 were 
randomly sampled from within the intracranial space, where 15 is the 
number of 2TS-CSD coefficients. The number of patches were experi
mentally selected to achieve low validation loss while being able to be 
loaded on the available graphics processing unit (GPU) memory. An 
epoch finishes when all subject from the training set have been selected 
once. For every epoch, a new set of random rotations and patches are 
computed for each subject. 

3. Experimental design 

3.1. Datasets 

We use two datasets to conduct our analysis: the publicly available 
HCP [38] and a dataset acquired at the National Hospital for Neurology 
and Neurosurgery, Queen Square (QS). The details of each dataset and 
the applied preprocessing are described below. 

3.1.1. QS dataset 
The QS dataset is comprised of 50 volumetric MS dMRI scans ac

quired from patients with epilepsy who appeared “structurally normal” 
on a T1-weighted MRI (T1). Small lesions may be present focally in the 
GM but should not distort or affect the WM FOD computation. All pa
tients underwent MRI scanning as part of routine clinical care. Images 
are acquired on a 3T GE MR750 including a T1 sequence (MPRAGE) and 
a MS dMRI sequence with 2 mm isotropic resolution and the gradient 
directions 11, 8, 32, and 64 at b = 0, 300, 700, and 2500 s/mm2, 
respectively and one b = 0 s/mm2 with reverse phase-encoding. The MS 
dMRI is corrected for signal drift, geometric distortions and eddy- 

Fig. 1. HighResNet architecture [41] and U-Net architecture [36] used in this work.  
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current induced distortions as in Mancini et al. [11]. 

3.1.2. HCP dataset 
We use a subset of the HCP dataset comprised of 45 subjects [38]. 

Images are acquired on a 3T scanner with the following parameters: 
1.25 mm isotropic resolution with 90 gradient directions for each b =
1000, 2000, and 3000 s/mm2 and 18 images at b = 0 s/mm2. Images in 
the HCP dataset are corrected following the protocols described in 
Sotiropoulos et al. [38] prior to download. 

3.2. Evaluation metrics 

To evaluate the CSD model accuracy, we compute mean absolute 
error (MAE) and the angular correlation coefficient (ACC) [46] for all 
voxels in the WM (Section 2.3). WM voxels are identified using geodesic 
information flows (GIF) to segment the WM as a binary mask [47]. The 
“ground truth” CSD is the M-CSD computed using dMRI with all gradient 
directions and shells. 

MAE measures how well CSD coefficients match with lower values 
indicating high similarity to the ground truth CSD coefficients. MAE is 

computed as MAE(y, ŷ) = |y− ŷ|
n where y is the ground truth M-CSD co

efficients and ŷ are either the CSD coefficients inferred from a trained 
network or 2TS-CSD coefficients. 

ACC is computed between two different sets of SH coefficients u, the 
M-CSD coefficients, and v, from either the CSD coefficients inferred from 
a trained network or 2TS-CSD coefficients, both models have the SH 
order j, where 

ACC(u, v) =

∑∞

j=1

∑j

m=− j
uj,mv∗j,m

[
∑∞

j=1

∑j

m=− j
u2

j,m

]0.5[
∑∞

j=1

∑j

m=− j
v2

j,m

]0.5

+ α

(2) 

ACC are in the range [− 1, 1], where 1 implies a perfect linear cor
relation between two functions on a sphere, and − 1 implies a negative 
correlation [48]. Note, in this work the value − 1 is not achievable due to 
the non-negativity constraint imposed on the CSD coefficients. 

3.3. Experiments 

We assess CNN performance in the following scenarios: 1) training 
and testing on datasets with the same dMRI acquisition protocol 
(Experiment 1 – Intra-Scanner Acquisition Performance); 2) testing on 
datasets with different dMRI acquisition protocols than the training 
dataset (Experiment 2 – Inter-Scanner Acquisition Performance); and 3) 
testing on datasets with fewer dMRI gradient directions than the training 
dataset (Experiment 3 – Downsampled Imaging Performance). Additionally, 
we assess performance variability within specific brain regions. The 
details of each experiment are described below. For all experiments, the 
“ground truth” CSD is the M-CSD computed using the complete set of 
gradient directions and shells (Section 2.2). 

3.3.1. Experiment 1 – Intra-Scanner Acquisition Performance 
We assess how well CNNs were able to regress M-CSD coefficients 

when using dMRI acquired on the same scanner and with the same 
protocol for training and testing. In this experiment, 5-fold cross- 
validation is conducted where 3 folds are used for training, 1 fold for 
validation, and 1 fold for testing. 

3.3.2. Experiment 2 – Inter-Scanner Acquisition Performance 
We assess the generalizability of CNNs to regress M-CSD coefficients 

from dMRI acquired from different acquisition protocols and a different 
scanner. We use CNNs trained in Experiment 1 – Intra-Scanner Acqui
sition Performance, without additional model tuning, to test on a dataset 
with different dMRI acquisition protocol than used during training. For 

example, a CNN trained on QS dataset using 2TS-CSD coefficients 
derived from the b = 700 s/mm2 shell is evaluated on the HCP dataset 
using 2TS-CSD coefficients derived from the b = 2000 s/mm2 shell. 

3.3.3. Experiment 3 – Downsampled Imaging Performance 
We assess the robustness of CNNs when acquisitions have fewer 

gradient directions than the training dataset. Using the same test data
sets as in Experiment 1 – Intra-Scanner Acquisition Performance, we 
subsampled the number of gradient directions in the dMRI by 25%, 50%, 
and 75%. CNNs trained from Experiment 1 – Intra-Scanner Acquisition 
Performance, with no further tuning, were used to regress M-CSD co
efficients from 2TS-CSD coefficients computed from the subsampled 
dMRI. CNNs were tested with both 2TS-CSD coefficients computed from 
the same dMRI acquisition protocol (as in Experiment 1 – Intra-Scanner 
Acquisition Performance) and dMRI with different acquisition protocols 
(as in Experiment 2 – Inter-Scanner Acquisition Performance). 

Each subsampled dMRI was created as follows. For the original dMRI 
dataset, we first reorder the set of gradient directions such that if a scan 
is terminated prematurely, at any point, the acquired gradient directions 
will still be close to optimally distributed on the half-sphere [40]. Then, 
we truncated the number of gradient directions for both b = 0 s/mm2 

and the selected shell to generate the SS dMRI with the desired reduction 
in gradient directions. Finally, the 2TS-CSD is computed for the sub
sampled SS dMRI as described in Section 2.3. 

3.3.4. Variability within brain regions 
We assess the performance of the CNNs to regress M-CSD coefficients 

within the specific brain regions: frontal, occipital, parietal, and tem
poral lobes and the corpus callosum (CC). All brain regions were 
determined from a segmentation generated using [47] with WM labels 
derived from the Hammers Atlas [49]. 

3.4. Implementation 

All experiments were performed on a workstation equipped with an 
Intel CPU (Xeon® W-2123, 8 × 3.60 GHz; Intel), 32 GB of memory and a 
NVIDIA GPU (GeForce Titan V) with 12 GB of on-board memory. All 
code was implemented in Python 3.6. PyTorch 1.6.0 [50] was used for 
network training. NiftyNet 0.4.0 [37] was used for data loading and 
sampling. Data augmentation was performed using SHtools 4.5 [51]. 
The code used to train the CNNs is available online.1 

4. Results 

For all Tables and Figures, the acronym QS 700-HCP 2000 CNN U- 
Net indicates that CSD coefficients are from a CNN trained on the QS 
dataset using the 2TS-CSD coefficients from b = 700 s/mm2 shell and 
tested using as input 2TS-CSD coefficients from the HCP dataset from the 
b = 2000 s/mm2 shell. The method 2TS-CSD (QS 700) indicates the 
baseline approach computed from the QS dataset computed for the b =
700 s/mm2 shell. The “ground truth” is always the M-CSD coefficients 
computed using the complete set of gradient directions and shells. 

4.1. Experiment 1 – Intra-Scanner Acquisition Performance 

Table 1 reports the mean, standard deviation, and median MAE and 
ACC between the indicated CSD coefficients and the M-CSD coefficients 
when training and testing on data with the same dMRI acquisition 
protocol. CSD coefficients from U-Net are the most similar to M-CSD 
coefficients while the baseline 2TS-CSD coefficients are the least similar. 
Pronounced ACC improvements are found in the QS dataset (9% for the 
mean ACC) compared to the HCP dataset (5% for the mean ACC) for the 
best performing CNNs. 

1 https://github.com/OeslleLucena/RegressionFOD. 
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Fig. 2 shows cumulative distribution functions (CDFs) for ACC. CSD 
coefficients regressed from CNNs have curves more skewed torward 
high ACC, indicating more voxels with a high level of agreement to the 
M-CSD coefficients, compared to 2TS-CSD coefficients. 

Figs. 4 and 5 show qualitative heatmaps of the ACC for the WM 

voxels. ACC heatmaps have a high similarity across the three tested 
methods in WM voxels far from boundaries, where PVEs are minimal, 
and low correlation in voxels near WM boundaries, which are most 
likely to have PVEs. 

Figs. 6 and 7 present a glyph representation of FODs computed from 
the CSD coefficients, showing the fiber direction and distribution per 
voxel. The glyphs qualitatively show that CSD coefficients regressed 
from either U-Net or HighResNet are better able to resolve multiple fiber 
populations, small rotations and scaling within the selected regions than 
the 2TS-CSD coefficients. 

Additional experiments where we trained the CNNs using lmax = 8, 
comprising 45 coefficients, are found in the Supplementary Material 
Section 1. Similar results were found for lmax = 8 as for lmax = 4. Finally, 
in Section 3 of Supplementary Material, we qualitatively evaluated the 
ability of the regressed CSD coefficients to perform tractography on QS 
2500 and HCP 2000, generating four WM language-related tracts using 
ROI-based probabilistic tractography [11]. Tractography performed 
using CSD coefficients regressed from CNNs results in tracts more similar 
to tracts generated from M-CSD coefficients and with fewer spurious 
streamlines than tracts generated from 2TS-CSD coefficients (Supple
mentary Figures 2-3). 

4.2. Experiment 2 – Inter-Scanner Acquisition Performance 

We evaluate how well the CNNs perform when testing on datasets 
with different dMRI acquisition protocols than used during training. As 
models trained with the HCP dataset for different b-values had similar 
performance in Experiment 1 – Intra-Scanner Acquisition Performance 
(Section 4.1), we select one model (HCP 2000) for evaluation in this 
experiment. 

Table 2 reports the mean, standard deviation, and median MAE and 
ACC between the indicated CSD coefficients and the M-CSD coefficients. 
U-Net and HighResNet were quantitatively more similar to M-CSD co
efficients than the 2TS-CSD coefficients. 

CSD coefficients regressed from CNNs have greater similarity to M- 
CSD coefficients compared to the 2TS-CSD coefficients indicated by the 
CDFs skewing toward higher ACC values as shown in Fig. 3. 

Figs. 4 and 5 show ACC heatmaps for the WM voxels. ACC heatmaps 
show higher errors in WM voxels far from the boundary in the CSD 

Table 1 
Mean, standard deviation (std), and median MAE and ACC measured between 
M-CSD and CSD coefficients for Experiment 1. The best value, minimum value 
for MAE and maximum value for ACC, are indicated by bold text. Train-Test 
indicates the dataset used for training CNNs and inference, respectively. HR 
indicates HighResNet.  

Train-Test Method MAE ACC   

mean(std) mean(std) median 

– 2TS-CSD (QS 700) 0.972 
(0.079) 

0.851 
(0.133) 

0.882 

QS 700-QS 700 CNN HR 0.450 
(0.048) 

0.928 
(0.088) 

0.959  

CNN U-Net 0.440 
(0.038) 

0.927 
(0.097) 

0.960 

– 2TS-CSD (QS 
2500) 

0.826 
(0.070) 

0.917 
(0.107) 

0.966 

QS 2500-QS 2500 CNN HR 0.307 
(0.031) 

0.958 
(0.069) 

0.981  

CNN U-Net 0.311 
(0.030) 

0.954 
(0.077) 

0.981 

– 2TS-CSD (HCP 
1000) 

0.815 
(0.130) 

0.895 
(0.117) 

0.939 

HCP 1000-HCP 
1000 

CNN HR 0.303 
(0.038) 

0.961 
(0.057) 

0.983  

CNN U-Net 0.298 
(0.042) 

0.960 
(0.063) 

0.983 

– 2TS-CSD (HCP 
2000) 

0.742 
(0.123) 

0.909 
(0.107) 

0.953 

HCP 2000-HCP 
2000 

CNN HR 0.284 
(0.042) 

0.961 
(0.062) 

0.984  

CNN U-Net 0.283 
(0.038) 

0.960 
(0.066) 

0.984 

– 2TS-CSD (HCP 
3000) 

0.737 
(0.109) 

0.899 
(0.112) 

0.941 

HCP 3000-HCP 
3000 

CNN HR 0.310 
(0.046) 

0.951 
(0.077) 

0.980  

CNN U-Net 0.303 
(0.041) 

0.952 
(0.075) 

0.980  

Fig. 2. ACC cumulative distribution functions (CDFs) for Experiment 1. The ideal ACC CDF would give a single peak at one. Note HighResNet (HR) and U-Net have 
similar CDFs, causing overlay of the green and orange lines. 
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Fig. 3. ACC Cumulative distribution functions (CDFs) for Experiment 2. The ideal ACC CDF would give a single peak at one. HR indicates HighResNet.  

Fig. 4. ACC heatmaps overlaid on a T1 for one subject from the QS dataset. ACC is displayed in the JET colormap scaled between [0, 1]. HR indicates HighResNet.  

Fig. 5. ACC heatmaps overlaid on a T1 for one subject from the HCP dataset. ACC is displayed in the JET colormap scaled between [0, 1]. HR indicates HighResNet.  
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coefficients regressed from CNNs for Experiment 2 – Inter-Scanner 
Acquisition Performance compared to Experiment 1 – Intra-Scanner 
Acquisition Performance. However, CSD coefficients regressed from 
CNNs better capture finer details in regions containing fiber crossings 
and voxels near the WM boundaries compared to the 2TS-CSD 
coefficients. 

Figs. 6 and 7 show a visual representation of the FODs as glyphs. 
FODs for the QS dataset show a higher qualitative agreement in single 
fiber populations compared to multiple fiber populations. FOD ampli
tudes were observed to be smaller than expected for the QS 700 dataset 

when CSD coefficients were regressed with CNNs training on the HCP 
dataset. This may occur due to a poor angular contrast in the low b-value 
(b = 700 s/mm2 32 directions) of the testing data, which the CNNs 
cannot properly regress. 

As shown in Fig. 7, when evaluating on the HCP dataset, CNNs 
trained on QS 2500 were capable of resolving fiber crossings while CNNs 
trained on QS 700 did not capture these finer details. However, both 
CNNs resolved FOD scaling and small rotations. 

Fig. 6. A glyph representation of the FODs for the regions indicated by the red and blue boxes (magnified by 3 × ) for one subject from the QS dataset. ACC is 
displayed in grayscale scaled between [0, 1]. HR indicates HighResNet. 

Fig. 7. A glyph representation of the FODs for the regions indicated by the red and blue boxes (magnified by 1.5 × ) for one subject from the HCP dataset. ACC is 
displayed in grayscale scaled between [0, 1]. HR indicates HighResNet. 
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4.3. Experiment 3 – Downsampled Imaging Performance 

We evaluated how well CNNs regressed CSD coefficients from 2TS- 
CSD computed from dMRI with subsampled gradient directions. For 
this experiment, we selected the best CNNs from Experiment 1 – Intra- 
Scanner Acquisition Performance for each dataset, QS 2500 and HCP 
2000. 

Fig. 8 shows box plots of ACC for different amounts of gradient di
rection subsampling. CSD coefficients regressed from CNNs have better 
performance compared to 2TS-CSD coefficients for all levels of sub
sampling. This demonstrates robustness in our method to appropriately 
regress coefficients regardless of the number of gradient directions. 

We qualitatively evaluated our method on its ability to generate 
accurate and reliable fiber bundles for QS 2500 and HCP 2000 when 
dMRI with 50% of the gradient directions to regress CSD coefficients was 
used as input. Tractography computed from CSD coefficients regressed 
from CNNs resulted in tracts more similar to tracts generated from M- 
CSD coefficients and with fewer spurious streamlines than tracts 
generated from 2TS-CSD coefficients as shown in Supplemental Material 
Figs. 2 and 3. 

4.4. Variability within brain regions 

We evaluate how well CNNs regressed CSD coefficients within spe
cific brain regions to identify if there are spatial dependencies (Section 
3.3.4). We selected the best CNNs from Experiment 1 – Intra-Scanner 
Acquisition Performance for each dataset, QS 2500 and HCP 2000. 
Fig. 9 shows ACC for the CC and frontal, occipital, parietal, and temporal 
lobes. 

When regressing CSD coefficients for the HCP dataset, ACC between 
the regressed coefficients and M-CSD coefficients was higher compared 
to 2TS-CSD coefficients using CNNs trained on QS 2500. When 
regressing CSD coefficients for the QS dataset, CNNs trained on HCP 
2000 had good performance in specific regions (occipital and temporal 
lobes) but relatively poor performance in other regions (CC, frontal and 
parietal lobes). However, differences in ACC for the CNN trained on HCP 
2000 and the 2TS-CSD coefficients are relatively small and may be the 
result of random variation within models. One factor related to perfor
mance is the 2TS-CSD coefficients had relatively good performance 
(>0.9 for all regions), therefore, regression of CSD coefficients using 
CNNs had very little room to improve. The performance of CNNs to 
regress CSD coefficients on subsampled SS dMRI showed higher agree
ment with the M-CSD than the 2TS-CSD coefficients for all brain regions. 

We evaluated our method on its ability to mitigate PVEs. We show a 
boxplot (Supplementary Figure 1) for the ACC in voxels at the WM/GM 
interface, the region most likely to contain PVEs. We demonstrate that 
CSD coefficients regressed from CNNs are more similar to M-CSD co
efficients than 2TS-CSD coefficients at the WM/GM interface. 

5. Discussion 

We evaluated a patch-based CNN to regress M-CSD coefficients from 
2TS-CSD coefficients. We demonstrated quantitatively (Tables 1 and 2 
and Figs. 8 and 9) and qualitatively (Figs. 2–7) that CNNs can accurately 
regress CSD coefficients using data that are common in clinical settings - 
SS dMRI. CNNs can regress M-CSD coefficients from data with the same 
dMRI acquisition protocol as the training set (Experiment 1 – Intra- 
Scanner Acquisition Performance); generalize well to dMRI data ac
quired with different protocols than the training dataset (Experiment 2 – 
Inter-Scanner Acquisition Performance); and are robust to dMRI with 
fewer gradient directions than the training dataset (Experiment 3 – 
Downsampled Imaging Performance). 

We evaluated two common neural network architectures, U-Net [36] 
and HighResNet [37]. Both architectures perform similarly throughout 
all experiments. The aim of this work was not to find the best CNN to 
perform CSD coefficient regression but to show the capability of DL to 
enhance CSD coefficients for clinically available dMRI acquisition pro
tocols. Overall larger improvements, in terms of MAE and ACC, were 
observed in clinical protocols (QS) compared to research protocols 
(HCP). The HCP dataset has high spatial and angular resolution, which 

Table 2 
Mean, standard deviation (std), and median MAE and ACC measured between 
M-CSD and CSD coefficients for Experiment 2. The best value, minimum value 
for MAE and maximum value for ACC, are indicated by bold text. Train-Test 
indicates the dataset used for training CNNs and inference, respectively. HR 
indicates HighResNet.  

Train-Test Method MAE ACC   

mean(std) mean(std) median 

– 2TS-CSD (QS 700) 0.972 
(0.079) 

0.851 
(0.133) 

0.882 

HCP 2000-QS 
700 

CNN HR 0.702 
(0.069) 

0.910 
(0.096) 

0.943  

CNN U-Net 0.702 
(0.075) 

0.902 
(0.099) 

0.935 

– 2TS-CSD (QS 
2500) 

0.826 
(0.070) 

0.917 
(0.107) 

0.966 

HCP 2000-QS 
2500 

CNN HR 0.428 
(0.039) 

0.945 
(0.075) 

0.971  

CNN U-Net 0.469 
(0.034) 

0.938 
(0.081) 

0.967 

– 2TS-CSD (HCP 
2000) 

0.742 
(0.123) 

0.909 
(0.107) 

0.953 

QS 700-HCP 
2000 

CNN HR 0.556 
(0.075) 

0.943 
(0.070) 

0.971  

CNN U-Net 0.684 
(0.081) 

0.946 
(0.073) 

0.973 

QS 2500-HCP 
2000 

CNN HR 0.441 
(0.079) 

0.943 
(0.074) 

0.973  

CNN U-Net 0.453 
(0.088) 

0.939 
(0.089) 

0.973  

Fig. 8. ACC for gradient directions subsampling. CNNs trained on QS 2500 (left) and on HCP 2000 (right). HR indicates HighResNet.  
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allows the 2TS-CSD to resolve complex fiber configurations and compute 
very accurate FODs while for the QS dataset individual shells are unable 
to properly capture these differences. 

In this work, we investigated CNN-based regression methods for lmax 
= 4, comprising 15 coefficients, to establish proof of concept. However, 
we evaluated the ability to regress M-CSD coefficients for lmax = 8 for the 
best performing CNNs (QS 2500, HCP 2000) to assess a real-world 
setting. We found similar performance between both lmax orders (Sup
plementary Material Section 1). 

Similar works have proposed DL-based approaches for regressing 
FODs. Koppers et al. [34] trained a MLP using SH coefficients calculated 
from one shell or combination of shells to infer SH coefficients of the 
same order for a different shell. Koppers et al. [34] regress SH co
efficients between shells. In our work, we use CNNs to regress M-CSD 
coefficients from 2TS-CSD coefficients to go from a SS to MS 
representation. 

Nath et al. [35] trained a neural network composed of regular hidden 
and residual layers (ResDNN) to regress from S-CSD coefficients to FODs 
computed from histology obtained from a macaque model. FODs 
computed from histology have higher resolution than FODs computed 
from dMRI. Due to a lack of ground truth in human data, the model was 
validated measuring reproducibility in a scan-rescan dataset comprising 
12 subjects. ACC was computed between two FODs obtained from two 
different scanning sessions. In this work, we are interested in regressing 
M-CSD coefficients from 2TS-CSD coefficients, recognizing that even 
M-CSD coefficients have limitations for both angular and spatial reso
lution of WM fibers [4]. Hence, we measured ACC between the regressed 
coefficients and the “ground truth” M-CSD coefficients. Direct compar
isons between Nath et al. [35] and our work are not possible, as ACC 
between scan-rescan FODs should be higher than ACC between CSD 
coefficients of varying quality. 

Lin et al. [33] used a 3D CNN to regress M-CSD coefficients from 
M-CSD coefficients computed on dMRI with downsampled gradient di
rections (similar to Experiment 3 – Downsampled Imaging Perfor
mance). Lin et al. [33] evaluated regression of M-CSD coefficients from 
S-CSD coefficients for one subject in the HCP dataset. For this subject, 

ACC ranged from 0.95 to 0.96 in WM regions and 0.87 to 0.89 in partial 
volume regions when dMRI was downsampled to 45 gradient directions 
at b = 2000 s/mm2 shell (50% of the original gradient directions). In 
comparison, our method had median ACC ranged from 0.92 to 0.96 in 
45 patients when the S-CSD model was computed on 50% of the gradient 
directions at b = 2000 s/mm2 shell. Hence, our CNNs have similar 
performance to Lin et al. [33]. 

Our approach may enable faster commercial dMRI acquisition with 
fewer gradient directions, thereby reducing acquisition times and 
facilitating translation in time-limited clinical environments [26]. Our 
work has the potential to estimate CSD coefficients from SS dMRI with 
similar quality to M-CSD coefficients. This method could be applied to 
improve the analysis of retrospective data where changing the acquisi
tion is not possible. 

There are two key limitations in this work. First, we used datasets to 
train our CNNs from the same scanner with the same acquisition pro
tocol. Although we demonstrate that our approach is capable of gener
alizing across dMRI acquisition protocols (Experiment 2 – Inter-Scanner 
Acquisition Performance and Experiment 3 – Downsampled Imaging 
Performance), further improvements in the CNNs may be obtained by 
combining datasets during training. Secondly, we did not validate on 
subjects with pathologies that would distort WM tissue connectivity, 
such as tumors. Although the QS dataset [11] was acquired from pa
tients with epilepsy, if any small lesions or abnormalities were present 
they were not big enough to distort normal WM anatomy. One future 
avenue of research is to evaluate this approach on data with pathologies 
that distort normal anatomy and validate it in a clinical setting, e.g. 
presurgical planning. 

6. Conclusions 

In this work, we presented a 3D patch-based convolutional neural 
network (CNN) to regress multi-shell, multi-tissue constrained spherical 
deconvolution (M-CSD) coefficients from single-shell 2-tissue CSD co
efficients (2TS-CSD). Two CNN architectures, U-Net and HighResNet, 
were evaluated on their ability to regress CSD coefficients 1) on the same 

Fig. 9. ACC for specific brain regions tested on QS 2500 (Top) and on HCP 2000 (Bottom). ACC for specific brain regions when testing with dMRI containing all 
gradient directions (Left) and 50% of the gradient directions (Right). HR indicates HighResNet. 
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dataset; 2) across different diffusion MRI (dMRI) acquisition protocols, 
and 3) on dMRI with fewer gradient directions than the training dataset. 
Our approach enables robust multi-tissue CSD FODs on SS dMRI 
acquisition protocols with few gradient directions, allowing faster dMRI 
acquisition in clinical settings. Further validation is required to 
demonstrate this approach generalizes to datasets acquired at multiple 
sites and on patients with brain pathologies that distort normal anat
omy, such as tumors. 
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D. Cremers, Q-space deep learning: twelve-fold shorter and model-free diffusion 
mri scans, IEEE Trans. Med. Imag. 35 (2016) 1344–1351. 

[31] H. Zhang, T. Schneider, C.A. Wheeler-Kingshott, D.C. Alexander, Noddi: practical 
in vivo neurite orientation dispersion and density imaging of the human brain, 
Neuroimage 61 (2012) 1000–1016. 

[32] H. Lu, J.H. Jensen, A. Ramani, J.A. Helpern, Three-dimensional characterization of 
non-Gaussian water diffusion in humans using diffusion kurtosis imaging, NMR in 
Biomedicine, An International Journal Devoted to the Development and 
Application of Magnetic Resonance In vivo 19 (2006) 236–247. 

[33] Z. Lin, T. Gong, K. Wang, Z. Li, H. He, Q. Tong, F. Yu, J. Zhong, Fast learning of 
fiber orientation distribution function for mr tractography using convolutional 
neural network, Med. Phys. 46 (2019) 3101–3116. 

[34] S. Koppers, C. Haarburger, D. Merhof, Diffusion mri signal augmentation: from 
single shell to multi shell with deep learning, in: International Conference on 
Medical Image Computing and Computer-Assisted Intervention, Springer, 2016, 
pp. 61–70. 

[35] V. Nath, K.G. Schilling, P. Parvathaneni, C.B. Hansen, A.E. Hainline, Y. Huo, J. 
A. Blaber, I. Lyu, V. Janve, Y. Gao, et al., Deep learning reveals untapped 
information for local white-matter fiber reconstruction in diffusion-weighted mri, 
Magn. Reson. Imag. 62 (2019) 220–227. 
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