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ABSTRACT: We report the design, simulation, synthesis, and
reversible self-assembly of nanofibrils using polyhistidine-based
oligopeptides. The inclusion of aromatic amino acids in the
histidine block produces distinct antiparallel β-strands that lead to
the formation of amyloid-like fibrils. The structures undergo self-
assembly in response to a change in pH. This creates the potential
to produce well-defined fibrils for biotechnological and biomedical
applications that are pH-responsive in a physiologically relevant
range.

Peptides are biocompatible as well as biodegradable and
can be readily synthesized with high sequence complexity

and low polydispersity by using a range of methods.
Additionally, ensembles of peptides can undergo self-assembly
into nanostructures with complex structure−function relation-
ships including pores and fibrils as well as many more exotic
systems.1,2 Exploiting these properties has led to applications
in disciplines ranging from nanomedicine to solid-state
physics;3,4 however, achieving controlled self-assembly of
peptides is often challenging. Traditional molecular engineer-
ing efforts typically rely heavily on extant structural motifs in
biology,5 incorporating a non-peptide element to simplify
supramolecular interactions6,7 or studying simple di- or
tripeptide sequences.8 Several peptide systems have used pH-
responsiveness to help control the self-assembly process by
allowing the secondary structure of the peptide sequence in
different pH ranges to dictate the final tertiary and quaternary
structures.9−11 More recently, combinatorial and evolutionary
approaches, both experimental and in silico,12,13 have been used
to successfully engineer supramolecular peptide assemblies that
have proven useful in applications including hydrogel design
and emulsification.14,15 However, studies of larger oligopep-
tides remain beyond the reach of computational approaches,
while dynamic combinatorial library approaches often provide
limited fundamental insight. Consequently, examples of the
engineered self-assembly of ensembles of synthetic oligopep-
tides into structures with controlled dimensionality, structure,
and function remain both desirable and scarce.
Amyloid fibrils are a particularly common structure among

β-sheet forming peptides,16,17 often found in several
pathologies including amyloidosis, Parkinson’s disease, and

Alzheimer’s disease. However, amyloid fibrils also perform
physiological functions in organisms ranging from prokaryotes
to humans,18 such as in pigmentation, peptide hormone
storage, and modulating antimicrobial response.19 The
formation of fibrils usually occurs due to the aggregation of
β-structures to produce a more energetically favorable
configuration. The cross-β-sheet rich structure bestows fibrils
with high stability and tensile strength.16,20,21 These unique
properties have led many to take advantage of them in
bioprinting, in controlled release, or as a matrix for cell
adhesion.22−24 By harnessing their innate properties, we can
leverage the functional, nonpathogenic side of amyloid fibril
structures for biotechnological and biomedical applications.
Herein, we report the rational synthesis and self-assembly of

short pH-sensitive histidine-based amphiphilic oligopeptides
that produce amyloid fibril structures. By combining the
physiologically relevant pH-sensitivity of histidine with the
inherent propensity of aromatic amino acids to promote π−π
stacking and hydrophobic interactions, we have created unique
peptides with highly controllable self-assembly. This con-
stitutes the first histidine-based fibrils that are capable of
reversible assembly in response to a physiologically relevant
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stimulus, opening up the possibility for use in biological
applications.
The design for our histidine-based peptide revolved around

a diblock copeptide sequence that would be amphiphilic at
neutral pH and possess antifouling properties: (EK)2-(H)12.
Histidine was chosen for the hydrophobic block as its
protonated imidazolium side group has a pKa of ∼6.0, similar
to the acidic pH found in endosomes,25 allowing for reversible
self-assembly of the structures at a physiologically relevant pH.
The hydrophilic block was composed of alternating units of
glutamic acid (E) and lysine (K) to produce a zwitterionic
block with a net charge of ∼0.
We created three further histidine-based amphiphilic

oligopeptides with the addition of three different hydrophobic
amino acids in the histidine block. The purpose of these
additions was to (a) determine whether their presence affected
the pH-sensitivity of the block, (b) assess their effect upon the
hydrophobicity of the histidine block, and (c) understand
whether their incorporation into the histidine blocks would
affect the secondary structure and, hence, fibril formation. We
selected one nonaromatic amino acid, isoleucine (I), and two
aromatic amino acids, phenylalanine (F) and tryptophan (W),
to produce (EK)2-(IH)6, (EK)2-(FH)6, and (EK)2-(WH)5,
respectively. We refer to these four peptides collectively as
EKXH peptides and as EKH, EKIH, EKFH, and EKWH,
respectively, when referring to the individual peptides. Of the
hydrophobic amino acids, the use of phenylalanine in the
formation of fibrils is especially well-documented, with several
examples of Fmoc-FF nanotubes and nanofibrils in the
literature.26−28

Our EKXH peptides were synthesized by using standard
Merrifield solid-phase peptide synthesis and purified by
preparative HPLC. The accuracy of the peptide sequences
was determined from their molecular weights by using
MALDI-TOF. Before self-assembly, the lyophilized peptides
were first dissolved in pH 4 PBS solution. The peptides were
then self-assembled by using the pH switch technique, whereby
the pH of the peptide solution is steadily increased by using a
syringe pump to inject 1 M NaOH at a rate of 1 μL/min. The
pH switch was performed until the final pH of each peptide
solution was pH 7.4. During the self-assembly process, the
peptide solutions transitioned from transparent to turbid in
appearance (Figure 1). The pH-sensitivity of the peptides was
quantitatively determined by using turbidity assays (Figure

S1), demonstrating that the self-assembly of the EHXH
peptides was pH-reversible and was governed by the
deprotonation of the imidazole group in all cases.
After self-assembly, the peptide samples were left to stand to

observe their colloidal stability; within minutes, sedimentation
of the peptide structures occurred (Figure S2a). The peptides
could be redispersed by agitating the sample, but they
subsequently sedimented again. Autocorrelation functions
from DLS measurements (Figure S2b) showed the presence
of very large structures (micrometer sized or larger).
Circular dichroism (CD) measurements were taken of the

EKXH peptides at pH 7.4 following self-assembly in water to
compare the effect of the addition of different hydrophobic
amino acids to the histidine block (Figure 2a).

The CD spectrum of EKH showed that the peptide adopted
a random coil conformation, with a characteristic wide negative
band at around 200 nm.29 In comparison, CD spectra for the
remaining peptides with aromatic amino acids clearly showed
the presence of antiparallel β-strands,30 suggesting that the
inclusion of aromatic amino acids in the histidine block
promoted the β-strand secondary structure. The distinct
spectroscopic signatures produced by EKFH and EKWH
indicated the formation of right-hand-twisted and left-hand-

Figure 1. Self-assembly of the peptides from pH 4 to pH 7.4 using the
pH switch method. The initial clear peptide solution becomes turbid
as the pH increases, indicating the formation of insoluble particles.

Figure 2. (a) Circular dichroism spectra of the EKXH peptides. EKH
is included as a baseline to demonstrate the change in secondary
structure that occurs when adding different hydrophobic amino acids
to the peptide sequence. (b) Transmission electron microscopy
images of the self-assembled structures for EKH, EKIH, EKFH, and
EKWH.
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twisted antiparallel β-strands, with sharp minima of great
magnitudes at approximately 200 and 225 nm, respectively.30

TEM images of the self-assembled EKXH peptides showed
fibrillar structures for all three peptides (Figure 2b), with
EKWH exhibiting the most well-defined fibril structures. The
fibrils for all the peptides had a width of ∼10 nm, with lengths
of micrometers or more. Together, the CD and TEM results
suggest that the inclusion of aromatic amino acids has a
profound effect on creating ordered structures. In particular,
EKWH showed a very well-defined β-sheet structure,
suggesting the formation of amyloid-like fibrils, which are
composed from a predominantly β-sheet structure that
produces a cross-β conformation.16

Upon closer inspection, high-resolution TEM imaging of
EKWH showed the formation of extended fibrils with a typical
length of 0.5 μm or more, widths between 10 and 40 μm, and a
lamellar structure with a repeat distance of 35 ± 5 Å (Figure
3a−c and Figure S3). The dark bands in the micrographs are a

result of the samples being stained with phosphotungstic acid
(PTA), which binds more strongly to carboxylic acid groups
than carbonyl groups,31 corresponding to the locations of the
glutamic acid groups in the hydrophilic moiety as well as the
C-termini of the peptides. The characteristic spacing of the
dark bands is attributed to EKWH arranging itself linearly, with
the N-terminus of one peptide next to the C-terminus of
another.
Simulations were employed to investigate the structure and

behavior of the target peptides at an atomistic level. Each
peptide (EKH, EKWH, EKIH, and EKFH) was initially
constructed by using AmberTools tleap and cpptraj (Figure
S4).32 The standard protonation state at physiological pH was
assigned to the ionizable residues, with special consideration
for the histidine residues, which were set as monoprotonated.
To corroborate the CD results, the β-strands were built in both
parallel and antiparallel arrangements (Φ = −119°, Ψ = 113°)
and (Φ = −139°, Ψ = 135°) for parallel and antiparallel,
respectively (Figure S4a).33 Six of these individual β-strands

were then arranged into β-sheets by using a custom PyMOL
script,34 with a defined inter-peptide Cα−Cα distance of 4.9 Å.
Two possible arrangements of the strands were considered for
the antiparallel β-sheets: a same-sided arrangement, in which
all the histidine side chains were located on the same side of
the β-sheet, and an alternating arrangement, where both His
and Ile, Phe, or Trp side-chains were expressed on both sides
of the β-sheet in an alternating fashion (see Scheme S1 and
Figure S4b in the Supporting Information for details). Finally,
lamellar structures were constructed from three of these
antiparallel β-sheets in their rigid and unequilibrated form,
with an intersheet distance of 11.5 Å to avoid clashes between
the extended side-chains (Figure S4c). To maintain a balance
between computational cost and accuracy, lamellar structures
made from three β-sheets were studied to test the behavior of
the internal and external interactions of the much larger fibrils.
In these lamellae, the distance between the two areas within
the peptide with carboxyl groups (the C-terminus and the
region with the glutamic acid residues) was found to be ∼35 Å.
This was in excellent agreement with the lamellae repeat
distances observed via TEM.
All-atom, explicit solvent simulations were performed by

using GROMACS 2018.335 with the a99SB-disp force field,36

which has been shown to provide accurate results, specifically
when focusing on intrinsically disordered proteins analogous to
the peptides under investigation here.37 See the Computational
Methods section in the Supporting Information for details
about the building of the systems and the simulations
performed. The final structures from the equilibration process
were used as the starting point for the molecular dynamics
(MD) simulations. Each simulation was run for 1 μs for all of
the systems. Figure 4 shows the time evolution of the root-
mean-square deviation (RMSD) from the initial, ideal
structures throughout each of the alternating antiparallel β-
sheet simulations, which is used as a direct measure of the β-
sheets’ stability. All the systems start from a similar position,
but quickly EKIH, EKFH, and EKH, to a lesser extent,
undergo a conformational change. On the contrary, EKWH
settles into a stable natural β-sheet arrangement. We have also
clustered the structures exhibited during the last 500 ns of the
MD simulations (see Histograms in Figure 4). For EKWH and
EKFH, the majority of the simulation snapshots are
characterized in the first cluster, representing 79% and 66%
of all the structures explored during the simulation,
respectively. In these cases, the difference between the first
cluster and the second and third clusters is very significant, as
these subsequent clusters contain far fewer structures than the
first. Contrastingly, we would like to emphasize the significant
difference in the behavior observed for EKH and EKIH. In the
former, the first three clusters, which account for the highest
representation of the structures, were composed of only 16% of
the structures in the first cluster down to the 9% in the third
cluster. EKIH, potentially due to the introduction of a
nonaromatic amino acid, produced an even greater distribution
of structures, with the first three clusters only including 6% to
3% of the simulated structures. This means that the fluctuation
shown by this system along the dynamics is very high, and it is
an indication of unstable structure. Additionally, Figure 4
shows a representative snapshot of the first cluster for each of
the systems, further demonstrating that EKIH evolved to a
disordered structure and EKH saw significant distortion of one
of the β-strands, while EKFH and especially EKWH were very
stable, maintaining their structure for the full 1 μs. These

Figure 3. (a, b) TEM micrographs showing lamellar structure in
EKWH fibrils. (c) Measuring the separation between the dark bands
in the fibrils yields a repeat distance of ∼35 Å.
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results were in agreement with the experimental results
(further results, including those for the parallel β-sheets, can
be found in the Supporting Information, Figure S5).
Analysis of the root-mean-square fluctuation (RMSF) per

residue (Figure S6) demonstrated an increase in stiffness from
EKIH < EKH < EKFH < EKWH, in both the parallel and
antiparallel arrangements. However, the overall stabilization of
the antiparallel β-sheets was more significant. These measure-
ments of the systems match the observed rigidity and stability
scaling of the experimental results.
In light of both the experimental and simulated results for

the β-sheets, we only considered the most unstable (EKIH)
and most stable (EKWH) β-sheets when building the lamellar
structures. Figure S7a shows the evolution of the RMSD along
the 1 μs lamellae simulations, indicating that EKIH undergoes
an important change, deviating from the initial structure during
the first 400 ns, and then is stabilized in a different
conformation. For the EKWH lamellae, we performed the
simulations for both the same-sided and the alternating
antiparallel arrangements (Figure S4b) to provide a better
contrast of intersheet interactions. While the same-sided
EKWH lamellae suffer a significant destabilization in the first
500 ns, only to then stabilize in a disordered conformation, the
alternating arrangement demonstrates a stable behavior for the
whole 1 μs simulation. These results were also confirmed by
cluster analysis and a subsequent evaluation of the hydrogen
bond interactions within the lamellar structures (see Figure
S7b−d). The RMSF analysis (see Figure S8) corroborates
these conclusions. It highlights that for the alternating EKWH
lamellae the only mobile residues are in the hydrophilic blocks,
while for EKIH and the same-sided EKWH there is higher
motion in the hydrophobic blocks of peptides in the outer
sheets. These results have been confirmed by the analysis of
contact maps between initial and final snapshots of all the
lamellar systems under consideration. We have evaluated

which interactions changed the most along the simulation,
both within and between the β-sheets, and have demonstrated
how changes in the distribution of interactions directly affect
the conformation and stabilization of the lamellar structures
(see the Supporting Information for further discussion, Figures
S9−S11). In summary, the differences in the interaction
network completely change the geometry of the EKIH lamellar
structure, while for EKWH the lamellar structure is more stable
and maintained along the simulations. These results directly
support and allow us to understand the experimental findings.
In summary, we have shown that the insertion of the

aromatic amino acids phenylalanine and tryptophan into a
short histidine block promotes the reversible formation of well-
defined β-sheets and, hence, pH-responsive fibrils. It is
particularly remarkable that we can introduce these aromatic
amino acids into our amphiphilic oligopeptides, without
sacrificing the unique pH-sensitivity bestowed by the histidine
residues. Circular dichroism and transmission electron
microscopy showed the formation of fibrillar, lamellar
structures of tunable mechanical properties. Simulations
provided molecular insight into the effect of systematic residue
substitutions upon secondary structure and self-assembly.
Systematically producing β-sheet structures for use in
applications such as tissue engineering and bioprinting can
be a difficult challenge. However, our findings demonstrate
that we can influence the secondary structure in a well-defined
manner by introducing aromatic amino acids into a histidine-
based peptide sequence. Furthermore, we have successfully
created amphiphilic oligopeptide structures that are pH-
sensitive in a physiologically relevant pH range, allowing for
controlled assembly and disassembly for biological applica-
tions. It is our hope that this insight into the connection
between primary and secondary structure with self-assembly
may help to further elucidate the mechanisms underpinning

Figure 4. Time evolution of the root-mean-square deviation (RSMD, Å) of the alternating antiparallel β-sheet structures for the MD simulations of
EKH (purple), EKIH (cyan), EKFH (magenta), and EKWH (orange). Comparison between the representative initial structure (left) and stabilized
structures (right) visually shows the conformational changes of each β-sheet during the MD simulations. Representative snapshots were clustered
for the last 500 ns of the simulations, the results of which are shown in the histograms (far right).
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peptide assembly, thus allowing for the creation of more
complex and versatile next-generation biomaterials.
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