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Abstract—Many decentralised services have recently emerged
on top of blockchain, offering benefits like privacy, and allowing
any node in the network to share its resources. In order to be a
competitive alternative to their central counterparts, their perfor-
mance needs to match up. Specifically, service allocation remains
a performance bottleneck for many decentralised services.

In this paper we present FLOCK, an allocation system which
is highly scalable, fast, and lightweight. Furthermore, it allows
nodes to indicate their preference for clients/sellers without
needing to submit bids by using stable matching algorithms. We
decouple the price discovery and outsource this function to a
smart contract on the blockchain.

Additionally, another smart contract is used to orchestrate
the allocation and take care of service discovery, while trusted
execution environments securely compute allocation solutions,
and off-chain payment networks are used to send rewards.

Evaluation of FLOCK shows that gas costs are manageable
and improve upon other solutions which leverage auctions, and
that our instance of the stable matching algorithm greatly
improves run-time and throughput over auction counterparts.
Finally, our discussion outlines practical improvements to further
increase performance.

Index Terms—Service Allocation, Blockchain, Stable Matching

I. INTRODUCTION

Ongoing efforts aim to decentralise traditionally centralised
cloud services, as these introduce a single point of failure and
raise privacy concerns. While edge computing [1] has allowed
computation to move from the distant cloud closer towards the
service user, recent initiatives take it a step further and allow
any node in a peer-to-peer (P2P) network to provide a service
through its spare resource capacity.

Examples of decentralised services are data storage (File-
coin [2], Storj [3]), computation outsourcing (Golem [4]), and
bandwidth sharing (Mysterium [5], Orchid [6]). Empowered
by blockchain, these services securely transfer funds as reward
for service delivery, without a trusted third party.

An important challenge for the functioning of these services
is allocating nodes requiring services to ones that offer the
corresponding services, while maintaining decentralisation.
Although a brute force allocation approach, whereby nodes
requiring and providing services individually discover each
other, can be viable with limited participants, a scalable
allocation mechanism is desirable in order for the decentralised
services to compete against their centralised counterparts.
Decentralisation is necessary to protect against bias and cen-
sorship from central parties, and protect user privacy.

In conjunction with scalability, two other desirable features
for an allocation mechanism are price derivation and support
for preference-based assignment. The price derivation deter-
mines appropriate rewards for nodes providing services based
on market dynamics. Enabling nodes requesting services to

indicate their preference over others in the allocation process
is also highly desirable in a decentralised system where any
(potentially malicious) node can offer or request services.

These three properties, namely scalability, price derivation,
and node preference, are in practise difficult to achieve si-
multaneously. For example, decentralised auctions, which have
been proposed as a solution to this problem, inherently lack
sufficient scalability.

In this paper we present FLOCK, an allocation system
for decentralised services on blockchain, which captures all
three desired properties. An ideal use-case for our system are
services with large volumes and tight time constraints such as
content retrieval in decentralised storage markets.

Unlike heavy-weight auctions that combine price deriva-
tion with node assignment, FLOCK achieves lightweight and
scalable allocation by decoupling its price derivation from the
preference-based assignment, outsourcing the market function
to an oracle smart contract. This oracle sets a global price per
service, and can be triggered by any node in the network.

FLOCK uses stable matching algorithms to allow for node
preferences, where nodes submit a partial preference ordering
of nodes offering or requesting a service to a billboard
contract. The computation of matching is outsourced to an
off-chain trusted execution environment (TEE). This keeps
smart contract costs low, and ensures privacy and speed. The
TEE is compensated by the allocated nodes using an off-chain
payment network, ensuring speed, low cost, and scalability.

Implementation and evaluation of our contracts shows that
gas costs are sufficiently low, especially compared to auction-
based solutions. Comparing our proposed algorithm to auction
algorithms demonstrates that FLOCK scales much better in
terms of computation run-time and throughput.

The rest of the paper is structured as follows. In section
II we describe work related to ours, after which we discuss
preliminary concepts on which FLOCK relies in section III.
Section IV states our system goals, allocation types, and use-
cases, before we state our architecture design in section V.
We implement and evaluate FLOCK in section VI and discuss
possible extensions in section VII. We finally conclude our
paper in section VIII.

II. RELATED WORK

In this section we review work related to our system. Stable
matching algorithms (section III-D) have been widely studied
and applied in real world settings [7]. Examples of this are
in cloud resource allocation, student roommate allocation, and
hospital resident allocation.



The rest of the related work is divided in two sections: out-
sourcing computation using TEEs, and auctions on blockchain.

A. Computation Outsourcing Using TEEs

TEEs (section III-C) are used as secure computation en-
claves, and are used in a variety of security use-cases, includ-
ing off-chain computation outsourcing.

One of main downsides of smart contract computation is the
lack of confidentiality and privacy, which are essential for use-
cases like sealed-bid auctions. Therefore most works optimise
privacy rather than scalability. The overheads in these solutions
result in slow execution times, and are therefore not suited for
fast and scalable allocation.

ShadowEth [8] presents a framework for leveraging TEEs to
confidentially execute smart contracts off-chain using a bounty
contract on-chain and distributed storage. Airtnt [9] and SPOC
[10] outsource computation using TEE’s, off-chain payment
channels, and a smart contract, targeting fair exchange of
resources, security, and correctness. One-to-one allocation of
clients to workers is assumed (rather than our multi-input,
single output). Ekiden [11] is another system that uses TEEs
to address the lack of confidentiality and poor performance of
blockchains, by separating execution and consensus.

Finally, Kosto [12] is a framework for secure computation
outsourcing using TEEs, and uses a wrapper function for
accounting, producing a proof of computation. A broker node
allows for minimal open payment channels.

B. Auctions on Blockchain

There has been much work on auction mechanisms. These
have traditionally been applied in a centralised manner, as
decentralised auctions are difficult to orchestrate. Blockchain
has made it possible to implement decentralised auctions on
top of smart contracts, either on-chain or outsourced to a
dedicated node to keep gas costs low.

Because sealed bid auctions require strong privacy guar-
antees, they often require expensive cryptographic overheads,
lowering their scalability. The following works focus mainly
on ensuring privacy and accountability.

AStERISK [13] presents a single-item Vickrey [14] auction
on smart contracts. Distributed authority is used for issuing
bidding credentials, as well as a number of cryptographic
operations. Enkhtaivan et al [15] implement an anonymous
English auction using TEE and blockchain, and use group
signatures to provide bidder anonymity.

Desai et al [16] propose a hybrid auction mechanism on
blockchain, combining public and private chains, and using
simple cryptographic proofs. An auctioneer starts, orchestrates,
and deploys the auction. Private chains lower the cost and
latency, but the cost of the public portion of the smart contracts
and role of auctioneer lower security and scalability.

Galal and Youssef propose a number of sealed bid auctions
[17], [18]. Most recently, Trustee [19] presents a Vickrey
auction on Ethereum using TEEs. The smart contract is used
as a billboard, after which computation is transferred to

an enclave using a relay controlled by an auctioneer. The
auctioneer can be untrusted and gains no bid information.

The above-mentioned related work on auctions are not
applicable for fast and scalable allocation, as they remain
expensive in terms of costs and overhead. Besides, they are all
single-item auctions, while we need to allocate large numbers
of nodes at once. PASTRAMI [20] is a decentralised multi-
item auction relying on the Vickrey-Dutch Multi-Item Auction
[21] to derive the Vickrey-Clarke-Groves (VCG) equilibrium,
allowing multiple buyers and sellers to be matched in one
round. After assembling bids on the smart contract, a dedicated
node performs the computation to minimise gas fees. All nodes
can check the solution and submit proofs of misbehaviour.
PASTRAMI is still not scalable enough for our use-case as it
suffers from high gas fees and latency, as well as from general
inefficiencies associated with auctions such as the delay of
valuing items and gathering bids.

III. PRELIMINARIES

We now review key concepts on which our solution relies:
blockchain, payment networks, TEEs, and stable matching.

A. Blockchain and Smart Contracts

A blockchain, as introduced by Bitcoin [22], is a shared
public ledger which is maintained by a P2P network. All
nodes have a full view of the shared history, and a consensus
algorithm dictates how blocks are appended.

Smart contracts are an extension from transactions, which
allow complex scripts of code to be stored and executed on-
chain. In Ethereum [23], Solidity, a Turing complete program-
ming language, can be used to create contracts to be deployed
to the Ethereum Virtual Machine. After a contract is deployed
under its own address, its functions can be called by nodes in
exchange for a reward proportional to the load added on the
network known as the gas cost. Gas can be bought using the
Ether cryptocurrency, and its amount per function is derived
from time constraints given by the caller.

Storing data on smart contracts will incur higher gas costs,
making alternative decentralised storage solutions such as
IPFS [24] more attractive. Accessing read-only data on a smart
contract is free. In terms of scalability and usability, keeping
gas costs low is essential.

B. Payment Networks

Blockchain applications require low overhead and cost to be
useable, and therefore their transaction costs need to remain
low. A bottleneck for this has been on-chain payments, which
incur a fee for every transaction. When we require many
micro-transactions (such is the case for a long-term service)
to be sent, the cost quickly becomes unmanageable.

Payment channels have emerged as a useful method to keep
the cost low between two parties sending multiple transactions
between them. Both parties submit a deposit, send payment
receipts, and terminate the channel once finished. However,
the cost of opening and closing channels still remains large,
and needs to be opened for every new node.



A better extension yet are payment networks [25]-[28]. An
example of this is the Raiden Network ! for Ethereum. These
rely on the payment channels, but extend them with cross
channel payments, allowing for transactions between nodes
who do not have a direct channel. The locked transaction is
routed through a path of nodes who have payment channels
with enough capacity to support the payment amount. The
receiver requests the secret to unlock the payment, which it
sends to the closest node (last hop) to receive a balance proof
of the payment. This happens between all other nodes on route
to finalise the payment. When nodes become unresponsive, the
payment can be settled on-chain.

C. Trusted Execution Environments

TEEs allow secure computation to be performed on remote
untrusted nodes, using hardware enclaves [29]. The code to
be executed in the enclave can be verified for correctness, and
external access to the enclave is protected against. Among
others (e.g. [30], [31]), Intel software guard extension (SGX)
[32] is a TEE implementation which allows users to upload
and execute code into a tamper proof secure container, called
the enclave. After being uploaded, the code cannot access the
OS functions. SGX allows code to be attested to prove it is
running properly. This can be done via remote attestation or
using intra-attestation. Furthermore, enclave data can be sealed
outside of the secure memory.

Although there are many benefits of using SGX, there are
known drawbacks as well [33]. First, there is limited secure
memory of 128MB. There can also be availability failures as
the platform owner can (maliciously) terminate an enclave.
SGX can also be susceptible to side-channel attacks [34] and
single point attacks. In section V-D we discuss why these
drawbacks are not a problem in FLOCK. We use SGX as
our TEE in the rest of the paper.

D. Stable Matching Problem

Stable matching algorithms have been used in a wide range
of applications [7], as a mechanism to pair entities from
two sets based on their preferences for each other, without
monetary bids. In its most basic form the problem is also
known as the stable marriage problem, with a set of men and a
set of women with preference ordering of each man or woman
in the other set. Gale and Shapely [35] provided a simple
algorithm to produce a stable matching, and the problem has
since had many extensions, including partial preference lists,
student-roommate allocation, and student-project allocation.

More notably, stable matching has played an important
role in hospital resident allocation [36], where the simple
problem is extended. Residents are allowed to include in their
preference list any subset of the hospitals, and hospitals rank
all residents that ranked them. Furthermore, all hospitals have
a budget of residents which they can accept.

One feature of stable matching algorithms is that the set of
nodes which takes the initiative in the algorithm produces a
matching which is best for that set, and thus has an advantage.
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Fig. 1: The allocation triangle, showing the desirable proper-
ties for decentralised blockchain-based service allocation.

This yields that the second set is not incentivised to be
truthful.

IV. SYSTEM GOALS

In this section we describe desirable properties our alloca-
tion system should have, and discuss how other initiatives have
failed to capture these. We then sketch the allocation landscape
for decentralised services and derive two types of allocation.
Finally, we discuss decentralised storage network use-cases.

A. Desirable Properties

Our allocation should have several properties on top of
decentralisation. First, our solution needs to be scalable,
especially when user numbers grow into the millions (e.g.
BitTorrent?). This scalability is in terms of latency, throughput,
and cost. Second, any node offering a service is potentially
malicious. To mitigate against the risk of attacks and insuffi-
cient service, nodes need to be able to indicate a preference
over their allocated node. Last, as there is no centralised sale
of the service, we need some way to set prices. This price
derivation should be based on market dynamics to reflect
supply and demand, but can be extended to include other
factors. Surveying previous works shows that it is particularly
difficult to achieve all of these three properties simultaneously.
To illustrate we use the allocation triangle in Figure 1.

Normally, decentralised storage networks use an on-chain
orderbook to match clients and sellers based on their bid price.
This approach would only capture the price derivation aspect
of the triangle as it is not scalable and there is no method
for specifying a preferred node in a bid. Derived prices are
different for individual storage instances (i.e. storage is seen as
heterogeneous and can be priced different for different nodes).

Auctions generally improve on this as they capture both
price derivation and user preferences through bids. The down-
side however is their scalability, especially in low latency
settings. To start with, the preparation phase of auctions
(valuating items and gathering bids) in itself incurs a time
delay too significant for instant allocation. The execution phase
increases this delay further.

In Vickrey auctions, large numbers of allocations require
many subsequent auctions, while the performance of multi-
item auctions such as the VCG quickly degrades with in-
creasing numbers of participants and items. These auctions

Zhttps://www.bittorrent.com/company/about-us/



generally require extra privacy measures to keep bids sealed,
as they need to mitigate against a number of attacks. These
attacks become less lucrative when no money is involved in
the allocation, as is the case with stable matching algorithms.
These capture the user preferences, and are faster and more
scalable than auctions. In section V-A we combine this with
price derivation to achieve all three desirable properties.

B. Types of Allocation

In an allocation, we assume to have a large number of clients
and sellers. Generally, the number of sellers will be less than
the number of clients. These sellers can offer many different
types of goods, depending on the decentralised application.
We envision that for each large decentralised application there
will be a separate allocation to which clients and sellers flock.

We consider two general service types which need fast,
scalable, and lightweight service allocation:

1) Services where a seller sells a single instance of a
service. We can denote this service as binary: either it
is provided or it is not.

2) Services where the seller sells a part of a good within
a certain capacity. Sellers have a budget and try to
maximise their revenue by selling in smaller chunks.

These two service types require different modifications to
the allocation algorithm used. The first type can be modelled as
a regular stable marriage problem with incomplete preference
lists, ensuring that nodes do not need to submit preference
orderings over large sets of users. This will produce a matching
of clients to sellers for the single service instance.

We can model the second type as the hospital/residents
problem. This again allows for incomplete preference order-
ings from the client side, and allows the sellers to define a
budget they have available. Clients can be assigned to a seller
as long as it has remaining capacity.

C. Decentralised Storage Use-Cases

The service types defined above can be easily illustrated
using decentralised storage and retrieval markets. Typically,
such networks use the storage market to sell storage to client
nodes in chunks (in GB) within their capacity. This is a clear
example of our second service type, and can be modelled using
hospital/residents allocation.

The retrieval market on the other hand is used by nodes in
the network to fetch specific content from one of the storage
nodes. In this case the client contracts a retrieval miner, which
either delivers the file or not (for which it receives some off-
chain payment). This is an example of the first service type.

The rest of the paper focuses on these two service types,
and for our evaluation specifically on the second type. We
have done this for simplicity and clarity, but our solution can
easily be adapted to support more complex cases. One such
extension is as follows.

The retrieval market has stringent time constraints, as a
client does not want to wait long before fetching a website
for example, and hence performing the allocation as requests
come in might be too slow. In section VII-C we discuss a

Smart Contract| Execution Node|
Sellers

1: start_allocation()
2: update_state()

5: choose_TEE()

Clients

3: reg()

4: reg()

6: send_list+nonce()

7: update_state()

8: send_preference() + encrypted_rpayment()
|

9: send_preference() + encrypted_payment()

10: calculate_solution() |

13: unlock_payment()

11: send_solution()

14: unlock_payment()

Fig. 2: Simplified sequence of events in our system. We have
represented all sellers and clients in single actors.

method for performing the allocation before requests come in,
by allocating retrieval nodes to content providers rather than
clients to sellers.

V. ARCHITECTURE DESIGN

We now present FLOCK, which satisfies all desirable prop-
erties of the allocation triangle of section IV-A for decen-
tralised allocation of blockchain services. We first present an
overview of our solution, after which we go into detail of our
system components.

A. Overview

Our solution is composed of two parts, which together
achieve scalability, price derivation, and preference based
allocation. In the first part, we use a smart contract to function
as a billboard for the allocation, which registers participants
and orchestrates the initial phase. Service discovery is taken
care of by this contract, as it is public and reachable by all
nodes. The complexity of this contract is kept to a minimum
to save gas costs, and execution of the allocation algorithm
is outsourced to an SGX enclave (execution node), which
assures privacy and correctness of execution without expensive
techniques such as SMPC or zero-knowledge proofs.

To incentivise proper behaviour of the execution node, a
small reward is transferred by nodes in the allocation using
off-chain payment networks. This keeps the cost and overhead
low, ensuring scalability.

The algorithms used to compute the allocation are instances
of stable matching. Partial preference orderings are submitted
based on metrics like personal experience, expected Quality-
of-Service (QoS), and reputation. This reputation could be
inferred from previous on-chain transactions (like in [37]), or
using off-chain reputation systems.

So far, our solution is scalable and allows for preference
based allocation, but lacks price derivation. To solve this, the
second part of our solution uses an oracle contract, which
decouples the price derivation from the allocation computation.
This way, we outsource market function based on macro



parameters to the smart contract, rather than do this on a per-
item basis, making the process more efficient.

Figure 2 shows a sequence of events during allocation. Any
node in the network can trigger an allocation, after which
interested nodes register either as a client or seller. After a
threshold of nodes is reached, the billboard contract picks an
execution node and sends them a list of nodes in the allocation
among other parameters. All clients and sellers compile a
partial preference list of the nodes in the opposite set, and
submit this to the execution node along with an encrypted
payment promise. The execution node then computes the
allocation and returns the solution to the clients and sellers,
who in turn unlock their payments.

Algorithm 1 Setup (threshold)

Require: ! in_progress
1. Delete: clients, sellers, execution_node
» THRESHOLD < threshold
3 c_count, s_count < 0
4 1n_progress <— true
s. waiting_for_node < false

Algorithm 2 Register (z, caller_address)

Require: in_progress & ! waiting_for_node
Require: ! already_registered
i if x ==0 & ! c_full then
2 céc+1
s clients.add(caller_address)
o else if x == 1 & ! s_full then
s s+s+1
o  sellers.add(caller_address)
7. end if
s if c_Full & s_Full then
9. waiting_for_node < true
0. end if

Algorithm 3 ClaimTask (caller_address)

Require: in_progress & waiting_for_node
Require: ! already_registered

1. execution_node < caller_address

2 in_progress < false

B. Billboard Contract

The billboard contract orchestrates the beginning phase of
the allocation. First, nodes who are interested in participating
in an allocation register at the contract as a client or seller.
The contract sets parameters to dictate when the allocation is
full; this could for example be a time interval (in terms of
blocks) or a pre-set number of nodes allowed to join.

After registration, the contract needs to compile a list of
participant addresses which the execution node uses to accept
user preference lists. In its most basic implementation this
temporary storage can be handled by the smart contract,
which the execution node can read. However, storing large
amounts of data on the blockchain becomes very expensive,
and therefore in practise an alternative should be used. We
provide a further discussion of this in section VII-A.

C. Integration with SGX

After the registration phase, the smart contract chooses an
execution node with an available enclave. This can be an
execution node claiming a task, or chosen and contacted by
the contract based reputation.

The execution node then obtains a nonce, and a list of node
addresses in the allocation. The nonce decides which set in the
allocation algorithm will be the initiators for that round. This
is not known beforehand so all are incentivised to be truthful
in their preferences. Clients and sellers send their preference
lists directly to the execution node.

It is assumed that nodes are connected to a payment network
such as Raiden, and they can send off-chain payments without
added cost. The node in the allocation sends the execution
node an encrypted payment receipt, which the latter will be
able to unlock upon completion.

Next, the enclave runs the algorithm to produce an allo-
cation. This algorithm will be publicly available (e.g. stored
on decentralised storage) and should be remotely attested by
a subset of nodes to verify correct instantiation. Finally, the
enclave sends the results back to the nodes, after which the
secret is released and their balance is updated.

D. SGX Security Analysis

The disadvantages associated with SGX are not a problem
for FLOCK. As opposed to auctions, there is little to be gained
from attacks on the allocation, as there is no money directly
involved. We discuss SGX specific attacks and explain why
they are unlikely.

Side-channel attacks aim to infer information from inside
an enclave, but in our case the costs of an attack is much
higher than potential gain, as price derivation is decoupled and
therefore there should be indifference over allocated nodes.

Single-point attacks may be launched as a general attack
against a service, aiming to exploit the single point of failure
of the enclave, which may lead to censorship or Denial-of-
Service. This would require considerable resources, and the
smart contract has a number of backup nodes if an enclave
fails, and could revert to computing the allocation on-chain.

Attacks from the SGX platform operator are incentivised
against as a gas fee is paid to claim the task, which is recovered
from off-chain payments. If it acts maliciously it will not
recover these funds. Similarly, availability failures should be
rare as the platform owner wants to keep the enclave running.

Finally, there is limited protected memory on SGX of
128MB, which poses a constraint on the computation. The re-
quired memory is mainly for storing addresses and preference
lists. Ethereum addresses consist of 42 hexadecimal characters,
which take up 21 bytes. Assuming an average preference list
size of 5 per node, the enclave needs to store 6 addresses per
node. This means that per node we would need to store 126
bytes, allowing us to fit 1,015,873 addresses in our memory
limit. This does not take into account storage of the allocation
algorithm or nonce, but as we do not expect even 10% of this
amount, we should have plenty of space left. Therefore, the
memory limit should not be a problem for our computation.
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E. Oracle Contract

The oracle contract is responsible for a global price deriva-
tion. The contract derives its state (i.e. the price to be paid
for a service) from the underlying billboard contract and
other public parameters. The oracle contract can be deployed
for different services and incorporate complex financial rules
dictating the price. Our simple contract used in section VI-A
uses the ratio of clients to sellers and the change of the price
of Ethereum to set a price.

The oracle contract updates its price when called by a node.
Its pricing mechanism and the parameters from which the price
is derived are transparent. Therefore, any node can see if there
is a discrepancy between the current price and what it should
be, and can call the function to update. This is financially
incentivised when the price difference will cause more gain
than the cost of calling the contract.

Our work is aimed at fast allocation of large numbers of
nodes, and for this use-case global pricing is an efficient
solution. However, we note that there is still a need for other
mechanisms like auctions for popular items. We envision a
secondary market based on multi-item auctions for the top
sellers and others who want to sell spare capacity from the
primary market. This can be compared to the spot market
approach from Amazon, where flat and on-demand instances
of services are sold on the primary market based on a global
price, after which spare capacity is offered based on bids on
the secondary market, usually at a lower price.

VI. EVALUATION

To evaluate FLOCK we have implemented? its key compo-
nents and performed extensive simulations to assess latency,
cost, scalability and more. Specifically, we look at our smart
contract performance in terms of gas costs and extensively
compare our proposed allocation algorithm to other initiatives.

A. Smart Contract Cost

We implemented our billboard and oracle contracts in
Solidity, and run several simulations to explore their gas costs.
We start with our billboard contract, and its main functions:
Setup, Register, and Claim. For completeness we have added

3https://github.com/navinkeizer/FLOCK
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their pseudo-code. The Setup function (algorithm 1) is used
to reset the allocation state and start a new allocation with
a new Threshold. Nodes can use Register (algorithm 2) as
long as they have not already registered as client or seller,
which is checked with an internal function. We keep track
of the number of nodes in either set using count variables.
Finally, an execution node can use Claim (algorithm 3) if it is
not participating in the allocation. Its gas fee can be seen as
collateral which it will regain after successful computation.

Figure 3 shows the progression of the gas costs as more
nodes participate in the allocation. We clearly see a linear
increase of the gas costs, which quickly become unmanage-
able. This is due to our simple implementation using on-
chain storage of the intermediate states (the list of nodes
participating in the allocation), and therefore this simple proof-
of-concept implementation lacks in performance.

We therefore need an off-chain storage solution in our
contract, which we discuss further in section VII-A. We have
implemented the billboard contract with this assumption of
off-chain storage available in Figure 4, to show that in this
case, gas costs are not only an order of magnitude lower, but
also remain nearly constant. There will be some interaction
needed between the smart contract and the off-chain compo-
nent, and therefore we can see Figure 4 as a lower bound on
gas costs, whilst Figure 3 is the absolute upper bound.

In Figure 5a, we show how our on-chain solution for a 5
node setup outperforms implementations of PASTRAMI and
Trustee, for all actors associated with the allocation/auction.
For our on-chain implementation, we assume that the gas costs
paid by the execution node is fully refunded with an added pre-
mium by nodes in the allocation through the payment network,
and reflect this in the gas costs. Furthermore, PASTRAMI has
an added cost of up to 131,804 in case of misbehaviour.

Figure 5b shows the gas costs of the oracle contract, along
with the conversion to USD*. Deployment and setup of the
contract are one time costs, after which the update cost is paid
by those who call it, when they notice a price discrepancy.
Nodes are incentivised to call this function when their gain of
a new price exceeds $0.7529. We note that network congestion
may increase gas cost significantly, which has prompted layer

“based on the average gas price on 08-11-2020



N\
os \

Algorithm Run Time (seconds)
Algorithm Run Time (seconds)

018 !

016 ?

o1 ° 3

— g

2 - . 3

€ o -

S A )

3, // ) £

" R =

0 S

(0] =

£ oo // g

= 0 =

 0.06 ‘/ —

S e o 3
_

o« 0.0¢ g S

o e 0 S

" o

- o

02|~ 0 =

L L L L L L L L 5 L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000

Number of Clients in Allocation

Fig. 6: Single-item allocation algorithm

Number of Clients in Allocation

Fig. 7: Multi-item allocation algorithm
comparison (maximum capacity = 3)

5000 6000 7000 8000 9000 100 20 30 400 500 600 700 800 900 1000

Number of Sellers in Allocation

Fig. 8: Performance of Vickrey auction
(clients = 500, maximum capacity = 5)

100

——m

—— oA
uuuuu

¢
4
Matching Run Time (seconds)

= 2w
° Q
< X o
<] = —o—m @
o —— oA » 4
D 10 Vickey AT I
= ) 5
%) £ S
g’ < 10 e
= \(\ L —o—
5 S = —o
] ~. E |
£ ~— =
= . o =]
gl a
=
£ s =
g S 102
o - 3
o = 'S
= EO
= g
£ =
10? =
£ S
S 2w e w0 ww
> . . . . . . . — <
< 0 100 200 300 400 500 6000 7000 8000 9000

Number of Clients in Allocation

Fig. 9: Multi-item allocation throughput
comparison (maximum capacity = 3) 10)
2 [38] scalability solutions to be developed such as roll-
ups, shards, and side-chains. On top of Proof-of-Stake based
blockchains (like Ethereum 2.0), these are expected to greatly
reduce smart contract costs.

B. Allocation Algorithm Performance

To verify the scalability of our system, we show that our
allocation algorithm executes with low latency, and achieves
a significant improvement over other algorithms that could
be used. We focus on the second type of services from
section IV-B and model this using an implementation of the
hospital/resident (HR) stable matching algorithm?.

For a comparison with auctions, we use the VDA implemen-
tation from PASTRAMI, and implement a simple Vickrey auc-
tion, which does not implement the security functions needed
for sealed bids. We also looked at implementations of VCG
auctions, but as they were significantly slower we have omitted
them from our results. Finally, we have implemented a simple
mechanism to allocate at random without any constraints, to
represent an optimally scalable solution. We have left out the
secure enclave overheads as it would be similar for all.

First, we compare the algorithm run times for a constant
number of sellers (100) and increasing numbers of clients.
We make the assumption that there will be more clients than
sellers, as there are barriers to becoming a seller such as spare
capacity available and system requirements.

Figure 6 shows the run time for varying clients for the
different algorithms in the single-item case — that is, where

Shttps://github.com/daffidwilde/matching
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Fig. 10: Multi-item allocation through-
put comparison (maximum capacity =
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Fig. 11: Influence of preference list size
on performance (for hospital/resident
algorithm, maximum capacity = 3)

all sellers only have one item to sell. It is evident that until
about 3,000 clients, the HR algorithm performs better than
the Vickrey. It is important to note that the strength of the
HR algorithm lies in allocating large amounts of nodes at the
same time, which is not exploited in the single item case.

Therefore, Figure 7 is more relevant, as it shows the
same simulation for the multi-item case (i.e. all sellers can
have capacities higher than 1). The HR algorithm clearly
outperforms the VDA and remains close to optimal, staying
under a second when approaching 10,000 clients.

So far, the HR algorithm is much faster than the VDA
algorithm. Looking solely at latency however, gives a skewed
image in favour of the Vickrey auction (as we saw in the
single-item case). To inspect this comparison further we will
now look at the throughput in matchings per second.

Figures 9 and 10 show the throughput of our algorithms for
increasing numbers of clients. We have varied the maximum
capacity in terms of items to sell per seller, as this illustrates
the strength of the HR algorithm. Evidently, the HR algorithm
outperforms the VDA algorithm, as well as the simple Vickrey
auction up until a certain limit. This limit moves from 6,000
clients for a maximum capacity of 3 to over 10,000 clients for
a maximum capacity of 10. This illustrates the scalability of
the HR algorithm.

Furthermore, it is important to note that in these simulations
the simple Vickrey auction only matches one client per seller
rather than within a capacity like the HR, which results in
a much lower percentage of clients being matched. A simple
solution could be to duplicate the bids for any of the instances



of a node, but this fails in practise as a client may only require
a single instance or would lower their bids for a subsequent
instance as its utility for it is lower. Practical implementation
would require more sophisticated bids like the VDA, which
we have shown performs sub-optimal to the HR algorithm.

Additionally, Figure 8 confirms that if we increase the
sellers for the Vickrey auction, to make for a fair comparison
with the HR algorithm, its performance lacks behind. We show
this by comparing its runtime of 0.12 seconds to match about
150 sellers to 500 clients, to the runtime of the HR in Figure 7,
when there are 100 sellers with on average 1.5 items matched
to 500 clients, of 0.0066 seconds.

Figure 11 shows the increase of the algorithm runtime as we
increase the preference list size and shows a linear increase,
confirming that small preference lists are preferred for faster
execution, which is in line with users not being able to submit
full preference lists due to incomplete information.

Finally, although we cannot show this in simulation, we
note that the preparation phases for the auctions are much
longer, especially when adding more complex bids. For our
HR allocation, we can automate the preparation phase were all
nodes have a list of trusted nodes from which it submits those
that are available in the allocation. Furthermore, as mentioned
before, we compare to a very primitive version of the Vickrey
auction which does not implement the security features needed
for sealed bid auctions, and therefore its performance can be
seen as the ideal case.

VII. DISCUSSION

In our work we have presented a decentralised service allo-
cation system on blockchain, which supports lightweight and
scalable pairings of clients and sellers. We have highlighted
the importance of capturing all sides of the allocation triangle,
in order for decentralised services to compete with centralised
counterparts. Our solution captures these aspects, but is by
no means the only possible solution. We now discuss possible
extensions to our work which could improve on its limitations,
and performance.

A. Off-Chain Storage for Intermediate States

Our simple billboard contract implementation is meant
as a proof-of-concept. As seen in our evaluation, on-chain
storage is not feasible and quickly renders the system useless.
Instead, while collecting the nodes in an allocation round, this
intermediate data should be outsourced off-chain.

For example, decentralised storage (IPFS, Storj) can be used
to temporarily store the user list, as long as retrieval of these
nodes remains quick. Another method could be to use another
dedicated node with SGX capabilities as a temporary storage
node. We leave implementation of this to future work.

B. Decoupled Service Discovery

To further decrease the cost and delays associated with an
allocation, we may need a solution to be completely off-chain.
We use smart contracts, as their public reachability provides
inherent service discovery. This is at a cost, which can be
significant if it needs to be repeatedly paid by users.

Therefore, a solution may decouple the service discovery
completely, and use other mechanism to query the P2P net-
work and find decentrally orchestrated allocations. Service
discovery could also take into account the distance between
nodes to minimise networks delays.

C. Real-Time Allocation

Although the performance of our implementation meets our
scalability and speed constraints, certain applications require
near real-time allocation. The delays including gathering pref-
erences, blockchain consensus, and algorithm execution might
be too long. An example of this is content retrieval markets,
where nodes requesting some content should not have to wait
for the allocation to be ran upon every request.

In this case, we can increase the performance of our
system by performing the allocation beforehand, rather than as
requests come in. The allocation now is between the content
provider and the retrieval miner (seller). This can be done
periodically, assigning the task of retrieval of some content to
a node. Other nodes can request the content from this node,
and payment by clients is still based on the oracle contract.
In practise this is an easy extension to our implementation.

D. Oracle Contract Extensions

We have described and implemented a simple oracle con-
tract in this work. This concept can be extended much further.
As a start, each decentralised service that is offered may have
its own oracle dictating its price. We could take this further and
define different prices for different nodes in the same service,
based on parameters such as QoS, reputation, and location.

The composition of the contract should be left to developers.
Our implementation uses the most basic market dynamics,
and lacks financial sophistication. The oracle can be made
arbitrarily complex however, and its design may be based on
financial incentives and game theory.

Finally, as we increase complexity of our oracle, its cost
will increase too. A solution to this could be to outsource
its computation to a secure enclave, similarly to how the
allocation is computed. This would however decrease the
decentralisation and security of our solution, and would require
more complete security analyses as there might be attack
vectors with monetary gain, as in this computation there is
an important monetary aspect.

VIII. CONCLUSION

In this paper we presented FLOCK, a decentralised service
allocation system on blockchain, which supports lightweight
and scalable pairings of clients to sellers. Our solution lever-
ages smart contracts, stable matching, payment networks, and
TEEs to achieve all properties of the allocation triangle.

Evaluation of our system shows that the cost and overhead
of FLOCK are manageable and much lower compared to
systems using auctions. Furthermore, using a hospital/resident
stable matching algorithm greatly improves performance over
auction algorithms in terms of latency and throughput. Finally,
we discussed additional ways to improve FLOCK’s perfor-
mance and limitations.
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