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COMPARISON OF SHAPE DERIVATIVES USING CUTFEM FOR
ILL-POSED BERNOULLI FREE BOUNDARY PROBLEM *

ERIK BURMAN t, CUIYU HE ¥, AND MATS G. LARSON §

Abstract. In this paper we study and compare three types of shape derivatives for free boundary
identification problems. The problem takes the form of a severely ill-posed Bernoulli problem where
only the Dirichlet condition is given on the free (unknown) boundary, whereas both Dirichlet and
Neumann conditions are available on the fixed (known) boundary. Our framework resembles the
classical shape optimization method in which a shape dependent cost functional is minimized among
the set of admissible domains. The position of the domain is defined implicitly by the level set
function. The steepest descent method, based on the shape derivative, is applied for the level set
evolution. For the numerical computation of the gradient, we apply the Cut Finite Element Method
(CutFEM), that circumvents meshing and re-meshing, without loss of accuracy in the approximations
of the involving partial differential models.

We consider three different shape derivatives. The first one is the classical shape derivative
based on the cost functional with pde constraints defined on the continuous level. The second shape
derivative is similar but using a discretized cost functional that allows for the embedding of CutFEM
formulations directly in the formulation. Different from the first two methods, the third shape
derivative is based on a discrete formulation where perturbations of the domain are built into the
variational formulation on the unperturbed domain. This is realized by using the so-called boundary
value correction method that was originally introduced to allow for high order approximations to be
realized using low order approximation of the domain.

The theoretical discussion is illustrated with a series of numerical examples showing that all three
approaches produce similar result on the proposed Bernoulli problem.

Key words. Ill-posed free boundary Bernoulli problem; Cut Finite Element Method; Level set
method; non-fitted mesh;
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1. Introduction. This paper deals with the free boundary identification of the
ill-posed free boundary Bernoulli problem. Comparing to the classical free boundary
Bernoulli problem, this paper studies the free boundary problems for which only
Dirichlet data is given on the free (unknown) boundary and Cauchy data is available
on the fixed (known) boundary. Such problems are found for instance in models
where perfectly insulated obstacles [1] need to be detected from data. Following [16]
we use the cut finite element method (CutFEM) together with a level set approach to
numerically identify the free boundary using the shape optimization method. The level
set method is highly flexible in handling topology changes and has been widely used
for inverse obstacle and optimal design problems [35, 34, 11, 39, 2, 3, 6, 13]. Since the
domain of computation changes in each iteration of the shape optimization method, it
is advantageous to use a fictitious domain type numerical method, provided a sufficient
accuracy can be ensured. This is the rationale for combining the CutFEM with the
level set method. The CwtFEM additionally features the following advantages: (1)
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2 E. BURMAN, C. HE AND M. G. LARSON

CutFEMs have been designed and analyzed for a large number of PDE models and
many types of boundary conditions, (2) for interface problems, CittFEM requires no
special construction for basis functions, c.f. the immersed finite element method, the
generalized finite element method [40, 37], and (3) optimal accuracy in the bulk and
on the boundary can be achieved. The cutFEM method has previously been applied
in combination with the level set approach to various shape optimization problems,
for instance in [38, 17, 5, 18].

To solve the shape optimization problem, we apply the a steepest descent type
algorithm algorithm. The gradient for the shape-dependent cost functional is the
so-called shape derivative. The main objective of the present work is to design and
compare different types of shape derivatives in the algorithm. Firstly we recall the
classical shape derivative that is obtained using the classical shape sensitivity analy-
sis [27] on the continuous level. To obtain the numerical approximation of the shape
derivative for the iterative procedure, the solutions in the derivative formulas are
replaced directly by their corresponding numerical approximations. We will refer
this derivative as the continuous shape derivative (SD). We note here that the shape
derivative derived from the continuous level has two equivalent forms by the structure
theorem of Hadamard and Zolésio [27, 25], i.e., the domain and boundary represen-
tations. Assuming enough regularity on the continuous level those two forms are
equivalent. However, the applicability of the domain form is in principle wider, since
it requires lower regularity. Moreover, it has been proven to possess certain super-
convergence properties compared to the boundary formulation [30, 29, 31]. In this
work, we also utilize the domain form.

We note that directly replacing the continuous SD by its numerical approxima-
tion only yields an approximate gradient, whose accuracy depends on the mesh-size
and that this may prohibit convergence to the minimizer on a fixed mesh. A natural
solution is to perform the shape sensitivity analysis directly on the discretized cost
functional which allows for the embedding of CwtFEM formulations. We will refer
this derivative as the discrete SD. The resulting advantage for discrete SD is exact-
ness on the mesh-scale considered. Nevertheless, the discrete SD has more complex
representation since the discretized cost functional contains significantly more terms
than the continuous one. Moreover, the discrete SD in general is not a function in the
finite element space and therefore approximation is still inevitable in the final step of
the construction of the shape derivative.

For the classical shape sensitivity analysis, the shape derivative is obtained by
perturbing the domain and taking the limit for small perturbations. Contrary to such
a classical analysis used for the previous SDs, the third shape derivative introduced
herein, is defined using only the unperturbed domain. Infinitesimal perturbations of
the domain are instead introduced through a boundary correction approach using the
weakly imposed boundary conditions that are characteristic of CutFEM. Boundary
correction method is a technique to create high order finite element approximations
for domains with smooth boundary when using a low order approximation of the
domain. Optimal order estimates are obtained through an extrapolation procedure
on the boundary [10, 20, 32, 23, 21, 4]. This type shape derivative is also exact as it
is based on the discretized functional. We remark that such shape derivative enjoys a
much simpler representation that only depends on the boundary terms in the Nitsche,
or Lagrange multiplier formulation. This technique, therefore, has great potential to
tackle more sophisticated problems where the classical shape derivative is difficult to
find. We will refer this derivative as the boundary SD. The rigorous justification of
this boundary value correction shape derivative will be left for future work, instead
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we will compare its performance numerically with the two other approaches.

To verify and compare the performance of the three different types of shape
derivatives, several numerical experiments are presented in section 6. Since the main
objective was to compare the shape derivatives, we only consider a simple steepest
descent algorithm for the optimization algorithm and it is expected that convergence
can be enhanced by applying a more sophisticated method such as the Levenberg-
Marquard method proposed in [12]. The results show that all three shape derivatives
have similar performance.

For another level set based identification method not relying on shape derivatives
we refer to [8, 9].

The paper is organized as follows. In section 2, we introduce the model problem.
Then we introduce the CutFEM for the numerical approximation of the primal and
dual solutions in section 3. The various shape derivatives are introduced in section 4.
The final optimization algorithm is provided in section 5. Finally, the results for
numerical experiments are presented in section 6.

2. Model problem. Let QCcR?2bea simply connected fixed domain and I'y :=
9. Let O be a family of admissible bounded connected domains €2 C Q) with the
Lipschitz boundary 092 = I'yUT'q where I'g is the free boundary to be determined (see
Figure 1 for an example). For simplicity, we assume there is no intersection between
I'q and I'y. We consider the interior type ill-posed free boundary Bernoulli problem,

Ty

Q

Tq

Fi1G. 1. The domain Q with the fived boundary I'y and the free boundary I'q. Here Q is the
entire square domain.

i.e., the fixed boundary I'; is exterior to I'g. Find ©2* € O and u : * — R such that

—Au = fin QF,
u =0 on Lo,

(2.1) ¢
u=gp on Iy,

Dpu=gn onTy.

The datum (f,gp,gn) is chosen such that f € L?(Q*), gp € HY?(I'y) and gy €
H='2(T}). Dyu := Vu-n where n is the unit outer normal vector to the domain.
It is known that, provided the data f, gp, gy are compatible with a solution I'g«, the
solution is unique. This follows by a unique continuation argument from the Cauchy
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4 E. BURMAN, C. HE AND M. G. LARSON

data on I'y. For a proof in the context of scattering problems we refer to [24, Theorem
2].

To represent the free boundary I'g, we use the level set method. To be precise,
we utilize a level set function ¢(x) for the domain 2 such that

>0 ifzgQ,
(2.2) ¢p(x) =0 ifxeTlq,
<0 ifzeq.

Note that the level set function is not unique and its value away from the free boundary
is not critical, provided the gradient of the level set function does not degenerate. A
common example for instance is the distance function to the free boundary.

For an arbitrary €2 € O, the system (2.1) is over-determined and therefore the
solution may not exist. Our goal is to identify the free boundary I'g- starting from
an initial guess I'q through the shape optimization method. We firstly rephrase the
problem (2.1) as a constrained PDE minimization problem.

Define the spaces

(2.3) Hjp, () :={ve H(Q):v=0onTq},
(2.4) H3(Q) :={ve H(Q):v=0on d0}.
Recall that 9Q = T'q UTs. Let (-, -)q denote the L?-scalar product over  C R? and
(-,)p the L%-scalar product over the curve I' C R2. The L?-norm over a subset X of

R®, s = 1,2, will be denoted by || - || x.
We now rewrite (2.1) as follows: find Q* € O such that

(2.5) J(Q ):glelg.](ﬁ) vQeO,

where the cost functional is defined by

(26) J©) = L lgp —u(@)R,

where h is a constant that will be chosen as the mesh size of the finite element mesh
introduced later, and u(2) € Ho r,, () satisfies

(2.7) a(u,v) := (Vu, Vo)o = (f,v)a + (95, v)p, Vv € Horg(Q).

The corresponding Lagrangian for the constrained minimization problem (2.5)

follows:
1. _
(2.8) L w,v) = Sh Hgp — wlf, = a(w,v) +1(v)

where [(v) = (f,v)q + <gN,v>Ff.

The critical point of (2.8), denoted by (u(92),p(f2)), is obtained through taking
the Fréchet derivative with respect to (w, v). This leads to the solution of a decoupled
primal and adjoint equation. For the primal variable u(2), we solve (2.7). In strong
form, we note that (2.7) corresponds to the following well-posed forward problem:

—Au(2) = fin Q,
(2.9) u(2) =0 on I,
Dypu(2) = gn on T'y.

This manuscript is for review purposes only.
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For the adjoint solution p(2), we obtain the following weak formulation: find
p(Q) € Hyr,,(€2) such that

(2.10) (Vw, Vp(Q))e = h™" (u — gp,w)y, Yw € Hyp,, ().

When there is low risk of ambiguity, we replace (u(2),p(Q2)) by (u,p).
Remark 2.1. If Q = Q" we have u = gp on I'y and hence p = 0 in O~.

Remark 2.2. The relation between (2.1) and (2.5) is as follows. If Q* is the
solution to (2.1) then it is also the solution to (2.5). The inverse is also true, by the
uniqueness of the inclusion, however there may be local minima that complicate the
identification.

Below we present the algorithm of shape optimization using gradient descent iteration
to solve (2.5). For simplicity, we restrict our discussion only in the two dimensional
case. However, the algorithm and the related analysis can be directly extended to
three dimensions.

Algorithm 2.1 Steepest Descent Shape Optimization Method.

Choose an initial level set ¢(z,0) and set Q@ = {z € O, ¢(x,0) < 0} and
I ={x € Q,¢(z,0) =0}
Iterate until the stopping criteria is satisfied:

— Compute the primal and dual solutions «(€2) and p(£2) for (2.7) and (2.10),
respectively.
— Compute the shape derivative

B = argmin Dgq ¢ L(2, u, p)
0cUqa

where Dq ¢ L£(2, u, p) is the shape derivative of £ in the direction 6 and Uy
is the admissible set for 6.
— Compute ¢(x,7) by solving a transport equation in the direction 3 on 2 X

0,72, )] A
— Update ¢(z,0) = ¢(z,T) and set Q = {z € Q,¢(x,0) < 0}, T'q = {z €
Q, ¢(x,0) = 0}.

3. Approximation of primal and dual solutions using CutFEM. In this
section we approximate the primal and dual solution for (2.7) and (2.10), respec-
tively, using the CutFEM method. The main advantages of the CutFEM is that no
meshing or re-meshing procedure is needed to fit the moving boundary. The back-
ground domain Q, for simplicity, is assumed to be a regular domain, e.g., a unit
square. Moreover, stability and accuracy of CutFEM, similar to standard FEM, are
guaranteed both in the bulk and on the boundary given proper stabilization.

Let 7 = {K} be a shape regular triangular partition of {2 and h = %a¥ hx where
€
hg is the diameter of K. Aldo denote by my the outer normal unit vector to K.

Define the active computational domain 5 = U{K € T, K N Q # 0}, and the space
on
Vh(Qh) = {U S Hl(Qh) : U‘K S Pl(K) VK C Qh},

and, for v,w € V,(Qy,), define the bilinear form
(3.1) an(w, ) := an(w, ) + j(w,0)
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6 E. BURMAN, C. HE AND M. G. LARSON

with

(3.2) an(w,v) = (Vw, Vo)g — (Dpw,v)p, — (Dpv,w)p, + b~ (w,v)p,
and

(3.3) jww) =Y 'yh/F[[an]] [D,v] ds,

Fe&r(Qn)

where Er() = {F = K1 N Ky, K1, Ko C Q} denotes the set of all interior edges in
the active computational domain Q. The form j(w,v) is the so-called ghost penalty
stabilization [14] and [D,v]|r := (Vv|k -nk)+ (Vu|g -ng:) for F = KN K’, which
is the normal flux jump on F. Note that we added the ghost penalty stabilization for
all the interior edges in 2. Nevertheless, the stabilization may be localized to the
interior edges close to the interface zone without affecting the accuracy of the method.
Considering the following variational problems: find wuy, € V;,(2;) such that

(3.4) an(un,v) = (fiv)a + (gn,v)p, Yo € Va(Qn),
find pp, € V,(Qp) such that
(3.5) an(w,pr) = h™" (up — gp,w)p, Yw € Vp(Qp).

Remark 3.1. Note that in the above formulations all Dirichlet boundary condi-
tions on I'q are imposed weakly using Nitsche’s method [33].

4. Shape derivatives. In this section, our goal is to derive the formulas for
different types of shape derivatives. We firstly discuss some basic definitions and
provide some existing results.

4.1. Definition of the shape derivative. For Q € O, we let W (2, R?) denotes
the space of sufficiently smooth vector fields 6 : © — R? such that 8 = 0 on I'y. For
a vector field @ € W (€, R?), we define the map

(4.1) Tio:7€Q— x+t0(x) € Q(0) C R

The variable ¢ is interpreted as a pseudo-time. For small ¢ the mapping Q — Q.(0) is
assumed to be a bijection. We also assume that Q,(0) € O for any ¢t € I = {—§,6},
with § > 0 small enough. When there is no risk of confusion, we let €; = ©,(0) and
Tt == Tt,9~

The shape derivative of the cost functional £(9, u(2),p(2)) in the direction of 6
is defined as
(4.2)

Da o L£(2,u(2),p()) := lim L L(2(8), u(24(60)), p(2(8))) — L(2u(%), p(2))).

t—0 t

For a scalar function v(z,t) :  x I — R that is smooth enough, we define its
material derivative in the direction 8 by

(4.3) D g(a) = lim "0 —0(2010)

where z(t) = T o(x) = = + t0(x) and x(0) = . We also define the pseudo-time
derivative by

(4.4) Orv() = lim w

This manuscript is for review purposes only.
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By the chain rule it is easy to see that

(4.5) Digv=0wv+86-Vu.
The product rule holds for the material derivative:

(4.6) Dy g (vw) = wDy v + vD,; g w.

For easier representation, we replace the notations by ¢ := Dy gv and v’ := d;v when
there is no risk of ambiguity.

4.2. Shape derivatives of linear and bilinear forms. We now state several
technical results that allow us to derive the explicit representation of the shape deriva-
tive acting on the cost functional. The shape derivatives associated to the bulk terms
are fairly standard and the proofs of these results follow the ideas of [36, 25]. For
the cutFEM method however, we also need shape derivatives of integral forms over
the boundaries and of stabilization terms. All proofs are reported in the appendix
for completeness. The following concise notation for the symmetric gradient of the
deformation vector field 8 will be used below, S(8) = VO+ (V)" and on the interface
I'q we define Vp -0 =V -0 — (VO - n) - n, where n is the outer normal vector of I'.

LEMMA 4.1. Let Q be an open set in R?, I'q C 0Q is a closed curve, and 0 :
R? — R? be an injective differentiable mapping. Then the following equalities hold:

Dm,/ ¢dz:/(¢+(v-0)¢)d:¢,

(4.7) @ ¢

Doo [ wids= [ (5 (Tr-0)0)ds
T'g I'a

where we assume that ¢(x,t),9(z,t) : R?2 x I — R are functions smooth enough for
the expressions of (4.7) to be well defined.

LEMMA 4.2. With the same assumptions for Q and 6 as in Lemma 4.1, the fol-
lowing relation holds:

DQ,Q\/ Vw~V’udw:/(Vo0)(Vw~V’u)7(5(0)~Vw)~Vvdx

(4.8) @ @

+/V1b-VU+V1}-dex,
Q

where we assume that w(x,t),v(z,t) : R x I — R are functions smooth enough for
(4.8) to be well defined.

LEMMA 4.3. With the same assumptions for Q and 6 as in Lemma 4.1, the fol-
lowing relation holds:

DQVQ/F (Dpw)vds = /F (V-0)(Dyw)v — (S(0) - Vw) - nuds

(4.9) ¢ ¢

+ / (Dpw)vds + (Dyw)vds,
T'o

where we assume that w(x,t),v(z,t) : R x I — R are functions smooth enough for
(4.9) to be well defined.

This manuscript is for review purposes only.
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8 E. BURMAN, C. HE AND M. G. LARSON

In the following Lemma we provide the shape derivative for the ghost penalty
stabilization term.

LEMMA 4.4. Assume that w(z,t),v(z,t) € HY(Q,t) and that locally on each tri-
angle K, w(x,t)|x, v(z,t)|x € H3/?Y¢(K) for some € > 0. Then there holds for each
F e 5[(Qh)

(4.10) DQ,Q/ [Drw][Dnv] ds = / (IDp @] [Dpv] + [Dnw][Drno]) ds + T g (w,v)
F F
where
Tr(w,v) :/ [(V-0)D,w — (S(0) - Vw) - n][D,v] ds
F
(4.11) + /F[[(V -0)D,v — (S(0) - Vv) - n][D,w] ds
- /F[[an]] [Dnv] V- 0ds.

4.3. Continuous SD. In this subsection, we obtain the continuous SD of the
cost functional £(€,u, p) in the direction 6. From this point, we assume the admis-
sible set for 0 is H 1(Q)d. In the numerical approximation, we will simply replace
the continuous solutions by their corresponding numerical approximations. Note that
continuous SD is independent of the numerical method, and, therefore, the shape
derivative is not exact. The error in the gradient will be of optimal order asymptoti-
cally, if the CutFEM solution has optimal error estimates in W14(Q) and L*(Q2), see
[16].

On Q.(0), t € [-6,0], u(x,t) € H&,Fszt () and p(z,t) € H&,th(ﬂt) are defined
such that

(412) (Vu(w,t),Vv)Qt = (fv U)Qt + <gNaU>Ff Vv e H&]_“Qt (Qt)
and
(4.13) (Vv, Vp(z,t))q, = h~ " (u(z,t) — gp, v)rf Yo e H&th ().

Immediately we have that p = @& = 0 on T'g, therefore & € Hj () and p € Hj 1 (Q).

LEMMA 4.5. Let L(,u,p) be defined in (2.8). Then its shape derivative in the
direction 0 has the following representation.:

DQ,OE(Q7 U,p)
(4.14)
:/(v-e) (fp — Vu-Vp) dx+/(S(6)-Vu)-Vpdx—i—/(Vf-O)pdx.
Q Q Q
Proof. Rearrange L£(,u,p) such that
(4.15) L(2,u,p) 2 Ay + A
where

1
Al = _(vu7vP>Q + (f7p)Qa A2 = §h_1 <gD —Uu,gdp — u>1“f + <gNap>1"f .
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Note that f = V-8 since f/ = 0. By Lemma 4.1 and Lemma 4.2, we then have
(4.16)
Dg oA :/Q(V -0)(fp—Vu-Vp) d:c—i—/Q(S(O) -Vu) - Vpdz
— (Vi, Vp)a — (Vu, Vp)a + (f,p)a + (f, e
:/Q(v -0)(fp— Vu-Vp)dx + /Q(S(O) - Vu) - Vpdz + /Q(Vf -Q)pdx
— (Vi, Vp)a — (Vu, Vp)a + (f,P)a-

Thanks to the fact that @ € Hjp, () and p € Hgp, (), together with (2.7) and
(2.10), we have

—(V’ll, VP)Q - (V’U,, VP)Q + (f’p)Q =—h"" <u - gD”O’)Ff - <9N7p>r‘f

(4.17) B
=-h! <u _gDvu,>rf - <9N7p/>1‘f .
Note that on I'y, we have used the fact that @« = v’ and p = p/, since @ = 0 on T'y.
By the product and chain rule we immediately have

(4.18) Do oAy = h™" (u—gp, Whp, + (g8, P)p, -

Combining (4.15)—(4.18) gives (4.14). This completes the proof of the lemma. d

4.4. Discrete SD. In this subsection, we obtain the discrete SD of a discrete
cost functional Ly (Q,up,pp) in the direction @ where £, is the discrete Lagrangian
functional that embeds the CitFEM formulation and (uy,py) are the numerical ap-
proximations. As a consequence the shape derivative in the direction 6 is exact for
the mesh-scale.

Starting from the Lagrangian (2.8) we define the discrete Lagrangian functional
as follows:

1
(419) ,Ch(Q,’w}“Uh) = ih 1HgD — wh||%f — ah(wh,uh) + l(’l)h),

where ay, is defined in defined in (3.1) and, we recall, I(v) := (f,v)a + (95, V)r,-

Note that taking the Fréchet derivative with respect to vy, and wy, in (4.19) gives
the CwtFEM formulation for the critical point (up,pn) that satisfies (3.4) and (3.5),
respectively.

To define the discrete SD, firstly we need to define the finite dimensional function
space for the perturbed solutions (up(x,t),pn(x,t)) on Q;. We do this by using a
pullback map to €2 where the finite element mesh is triangular and use the standard
definition of the finite element space on the reference domain.

For each K € T, let K' = T, K. Note that K* does not necessarily remain
as a triangle, however, should be non-degenerate, and its shape is determined by 8.
It should be interpreted as an auxiliary perturbed element that only serves in the
analysis. Here we further assume that 8 € [C*(Q2)]¢. Then, by the inverse function
theorem, T is a bijection for sufficiently small ¢ and its derivatives are point wise well
defined. We also define 7% := {K*, K € T}, Qp,+ = T:(Q4), and the finite dimensional
space on {2y, ¢

ViH(Qny) == {v € H (Qny),v|re € VE(KY)}

This manuscript is for review purposes only.
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10 E. BURMAN, C. HE AND M. G. LARSON
where V}(K") is defined as Vi (K*) = V},(K)oT, *. Here Vi, (K) := Vi, (T)|x = Pi(K).
It is then easy to verify that

v, 0Ty € Viu(Qn) Vb, € VE( Q).

We now define up,(z,t) and pp(z,t) on Q. Let up(z,t) and pp(z,t) be the solution of
(3.4) and (3.5) in the space V}}(Q,+) with integrals on € and I'q replaced by €; and
T'q,, respectively.

LEMMA 4.6. Let up(z,t) and pp(x,t) be defined as above. Then
(4.20) up € Vh(Qh) and pp € Vh(Qh).
Proof. By the definition, we have that

in(x) = Tim = (un(2(0), ) — un(,0))

(4.21) =0 i

= lim + (wn(Ty(2),£) = un(2,0))
Since both up, (Ty(x),t) € Vi() and up(z,0) € Vi (), we have that @y, € Vi (Q4).
The result for p;, also holds by the same argument. 0

In the following lemma we derive the discrete derivative for £, (€2, up,pp) in the
direction 6.

LEMMA 4.7. Let Ly (Q, up,pr) be defined in (4.19). Then its shape derivative has
the following representation in the direction 6:

(4.22)
Do L (€2, un (), pr(£2))

:/Q(V~0)(fph*Vuh-Vph) d:v+/

(S(0) - Vuy,) - Vpp dx + / (Vf-0)pydx
Q Q

+ / (V- 0) (D )pn — (S(8) - Tan) - rapn ds
+ /F (v ! 0)(anh)uh - (S(Q) : Vph) s Nup ds

— | BhN(Vr-O)unphds+ Y yhYp(un,pr)
Ta Fe&r(Qn)

Proof. Rearrange L, (), up,pr) such that

4

(4.23) ﬁh(Q,uh,ph) £ Z.Az

i=1
where
1
Ar = —=(Vun, Vpp)a + (fion)q, A= §h71 (9D — un, g0 — un)p, + (9N, Pr)r, »
Az = (Dypun, pn)pg, + (Dnph,un)p, — B~ (un, pa)py, »  As = —j(un, pn)-

For the first two terms, we derive its shape derivative similarly as in (4.16) and (4.18):
Do oA = / (V-0)(fpn — Vun - Vpu) + (5(0) - Vup) - Vpn + (Vf - 0)pn dx
Q
— (Vun, Vpr)a — (Vun, Von)a + (f,r)e;

(4.24)
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and
(4.25) Dg.oAs = h~" (up — 9D, up)r, + (9N, Ph)r, -
For Az, by Lemma 4.1 and Lemma 4.3 we have

(4.26)
Dg o As :/F (V- 0)(Dyup)pr — (S(0) - Vuyp) - npp, + (Dyptip)pr, + (Dpup)pp ds

" / (V- 0)(Dop)un — (S(0) - Vn) - run + (Do Jun + (Dopr Vi ds

— Bh™! / (Vr - 0)uppn + tnpn + unps ds.
T'a

For A4, by Lemma 4.4 we have

(4.27) Do As = —j(un,pn) = j(in,pn) — Y ¥Tr(un,pn)-
FEEI(Q;L)
Thanks to the fact that @y, € V5 () and pp, € Vi, (Q,), with v replaced by py, in (3.4)

and w replaced by 4y, in (3.5), we have

0= —(Vin, Vpr)a — (Vun, Vi) + (f,Pr)e
—h™" {gp — Un, k), + (9N D),
(4.28) + (Dntin, ), + (Dntin, Pr)rg, + (Dnbh, un)rg, + (Dnph, Un)r,
— Bh™" (on, pa)r,, — Bh™" (un, Pu)p,
— j(un, pn) — (i, pr).
Combing (4.23)—(4.28) gives (4.22). |

Remark 4.8. The directional discrete SD is exact, however, due to the extra terms
in the CutFEM formulation it has a more complex representation.

4.5. CutFEM with boundary value correction. In the classical shape sen-
sitivity analysis as utilized for the continuous and discrete SD, the function w(z,t)
and p(x,t) are defined on the domain of ;. In this subsection the effect of domain
perturbation is included through the boundary correction approach. This means that
the perturbed solutions (u(x,t),p(x,t)) remain defined on the unperturbed domain
Q for all ¢, but the effect of domain is included through an extrapolation procedure
in the weakly imposed boundary conditions. The idea of the boundary correction ap-
proach where weakly imposed boundary conditions are perturbed in order to improve
geometry approximation was first introduced in [10]. The extension to CwtFEM was
considered in [20]. For a recent discussion of the method interpreted as a singular
Robin condition we refer to [26]. The idea of extrapolation on the boundary has al-
ready been used in the context of the standard Bernoulli problem, see [7]. However
the use of boundary value correction as a vehicle for shape sensitivity analysis appears
to be new.

Drawing on the ideas on boundary correction for the CutFEM method [20], we
modify the weak formulation on the free boundary as follows:

(4.29)
at (w,v) = (Vw, Vov)g — (Dpw, V)p, — (Dnv,woTi)p, + Bh Y (wo T, vo T, »
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and
a;l(w7 ”U) = aZ(w’ U) + ](wv v)'
We emphasize that the above modified bilinear form a}, is similar to (3.2) but with
the Dirichlet condition now imposed on T3(I'g) = T'g, through an extrapolation.
Now, considering the following variational problems: finding wup(z,t) € Vi(Q4)
such that

(4.30) a%(uh(m,t),v) = (f,v)a+ <gN7U>Ff Yo € Vi, (%),
and finding pp,(x,t) € Vi (Q4) such that
(4.31) ab (w,pn(x,t)) = = (up(z,t) — gp, w>Ff Yw € Vi(Q4).

Note that the above weak formulation is consistent with the following in the strong
form:
-Au=feQ, Dyu=gyonly, and u=0onTg,.

We now modify the discrete Lagrangian at pseudo-time ¢ with respect to 8 as follows:
Eh(Qta Uh(l', t),ph(ﬂ?, t))

(4.32) . .,
=507 llgp —un(z, )llt, — an(un(z,t), pa(2, 1)) + Upn (2, t)).
where up,(z,t) and pp(x,t) are the solutions to (4.30) and (4.31), respectively.
Remark 4.9. It is easy to see that
}grg)fh(ﬁt»w(t),ph(t)) = Ln (2, un, pn).

Finally, we define the modified directional shape derivative in the direction 8 by

~ 1
(4.33) Da,oLn (S, un, pr) = lim — (ﬁh(ﬂt,uh(t)aph(t)) — Ln(Q, UmPh)) ;
where up,, pj, are the solutions on Q for (3.4) and (3.5), respectively.

4.6. Boundary SD. In this subsection we derive the explicit formula for the
Boundary SD defined in (4.33) in the direction 6.

LEMMA 4.10. Let up and pp be the solutions of (3.4) and (3.5), respectively. We
have the following expression for the modified shape derivative defined in (4.33):

(4.34)
Do Ln(,un, pr) = (Dnpn, Vg, - 0)r — Bh~" ((Vun - 0, pp)p, + (Vpr - 0, un)p,) -

Proof. By definition we have
- 14
Daq,o Lr (2, un, pp) = th_I}(l) n (ﬁh(Qu up(t), pr(t) — Ln (€, Uh,ph))

. H 1 -1 2 2
=tim =0 (lun(t) = 9o 2, = llun — 92, )

—im > (ah (un(6), (1)) — an(un, pn)
(4.35) + lg%%(f,ph(t) ~ pn)o +gigg)% {gn, Pu(t) = Pn)r,

~ lim %(j(uh(t),ph(t)) — j(un,pn))
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By direct calculations, we have

(436) "41 = hil <uh - gD?u;L>Ff 3 A3 = (f?p;L)Q7
(437) A4 - <gNap;z>Ff ) -A5 = _J(U;uph) _.](uhap;z)

Expanding and regrouping terms in a} (-) and ay(-) gives

Ay = Jim (o (un (1), (1)) — o ()

- g%% (Vun(t), Vpu(t))a — (Vun, Vor)a)
(4.38) — Jim = (D (1), pa(t)), — (D i)

1
~ lim & ((Dupn(t), un(t) 0 Tidr, = (Dupis ),

o1
+ %g% Eﬂh ! ((uh(t) o Ty, pn(t) o Ty)p,, — <Uh7ph>r9) .

Applying the product rule, Taylor expansion and neglecting the higher order terms
gives
(4.39)

_AZ :(VU%»Ph)Q + (vuhv Vp%)ﬂ - <Dnu%7ph>pn - <Dnuh7p;z>FQ

1
— lim ~ ((Dnpn(t), un(t) + tVun(t) - 0)p, — (Dupn,un)r,,)

+ lim %Bh*l ((un(t) + tVun(t) - 0, pp(t) + tVpn(t) - 0)p,, — (un,pn)p,,)
=(Vuy,, Vpn)o + (Vun, Vo )a — (Dnty, pr)py, — (Dntn, P,
— ({(Dnphs un)py, + (Dupny up)p, + (Dnph, Vun - 0)r,)
+ Bh7 (g pidr,, + (un, Pl + (Vun - 60, p0)p, + (un, Von - 0)r,) -
Note that uj,p), € V4(Qn). By (3.4) and (3.5) we have
(4.40)
(Vpn, Vug)o = (Dnphs ) pg, = (Dnth, pi)rg + B (phs ) p,, + 5 (pny up,)

:ah(u;wph) =h"! <uh - gD7u?L>Ff

and

(4.41) (Vun, Vpi,)o = (Dnun, Pl)p, = (Dapl, un)rg + B8R~ (un, ph)re + j(un, pj,)
=an(un,pp) = (f,ph)e + (9n.Ph)r, -

Combining (4.35)—(4.41) gives (4.34). This completes the proof of the lemma. d

Remark 4.1. Applying Taylor expansion and omitting higher order terms gives

al (w,v) = (Vw, Vv)g — (Dpw,v)r, — (Dpv,w)p, + Bh1 (w,v)p,

(4.42) . . .
—t ((Dyv, Vo - O)r, +Bh " (Vw-0,v)p + ph™" (Vv -0, w)rn) .

Taking the derivative with respect to ¢ in (4.42) and multiplying the result by —1 also
gives (4.34).
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Remark 4.2. We note that here the modified shape derivative Dq gLy, (Q) is also
exact for the discrete formulation. However, comparing to the discrete SD in (4.22) the
boundary SD formula in (4.34) is more simple. Moreover, since the shape derivative
only has surface forms on the free boundary, it enjoys the flexibility for the boundary
type shape derivative.

5. Optimization algorithms. The objective now is to find the vector field
0 : Q — Q such that the cost functional decreases the fastest along that direction. To
this end we consider the following constrained minimization problem: find 3 € H'(Q)¢
such that

(5.1) B = argmin DgqoL(Q,u,p).
HGHHI(Q):l
6=0 on'I;

Define the corresponding Lagrangian
_ 2
K(8,%) = Do.o (2. p) + A (10121 g — 1)

From remark 4.1 in [16], an equivalent formulation of (5.1) renders to find B e
H} ()4 such that

(5:2) (8,0) 1) = —DaoL(Qu,p) V6 € Hy ()7,

where 8 = 203 and A =

18 16
ﬁ . Then it is easy to see that by taking 8§ = 3

(53) DQﬂE = _(B7ﬂ)H1(Q)d = _HB”H(}(Q)d < 07

which guarantees that 3 is a descent direction.

The following Hadamard Lemma indicates that under certain regularity the vari-
ational problem (5.2) is equivalent to an interface problem. See Theorem 2.27 and
detailed definitions of function spaces in [36].

Lemma 5.1 (Hadamard). If £((2) is shape differentiable at every element Q of
class C*,Q C €. Furthermore, assume that 02 is of class C¥~1. Then there exists a
scalar function G(I'q) C D~*(T'g) such that

(5.4) DQ’Q,C(Q) = QH -nds.
Iq
Combining (5.2) and Lemma 5.1 immediately gives
(5.5) (VB,VO)o + (8,0)a=— | GO -nds.
T'a

In strong form, equation (5.5) is equivalent to the following interface problem for
B e H (Q),

(5.6) ~AB+B=0 in Q,

(5.7) [D.B] = —Gn on g,
(5.8) 8] =0 on I'g,
(5.9) B=0 on 9.
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Given that I'q is smooth and G € HY?(T'g), we also have the following regularity
estimate:

(5.10) 181220y + 1Bl 2y S 16120,

(see [22]) and hence B € H* ()4 N H2(Q\ T'n)%.

Here we illustrate the algorithm based on the cost functional for the continu-
ous SD. In numerics, the continuous SD can be directly replaced by the discrete or
boundary SD.

5.1. Approximation of the shape derivative B using CutFEM. In this
subsection, we use the CutFEM of the interface type [28] to obtain a numerical ap-
proximation for B in (5.5). The same mesh used for solving (u, pp,) will also be used
here. No fitting of the mesh to I'q is required.

We firstly define the related finite element spaces. Given a closed interface I' C Q,
define Q) C Q to be the domain enclosed by I' and define Qf = Q \ Q. Also define
Qf = U{K € T,K NQF # 0}. Finally, define the finite element spaces V,"(Q,") and
Vi () by

VN = {vT e HY(QS) :vT|x € PHK) VYK NQf # 0},
and
Vi (@) ={v € H(Q}) :v g € PH(K) VK NQp #0}.

Note that V,"(Q;7) and V, (Q;) are both defined on “cut” elements K € T such that
K NT # (. When there is no risk of ambiguity, we remove (Qf) in the finite element
space notations. B

The finite element solution for 3 is then set to find 8, := (,8;,,8,:) € Vh+ x V-
such that

(5.11) bo(B,0) +§(By,0) =1:1(8) VO e V,E xV,~

where

(5.12)
bo(By,8) = (VBE. VO )i + (VB; VO ) — (DB} 10Dy — (DB 0) g

- <{Dn0}v [[/Bh]]>r + ﬂlhil <[[ﬁh]]7 [[0]]>F - <Dn0a/6h>a§z + ﬂ2h71 <5ha 9>afz

(5.13)
B0 = (S [DasfeTT+ Y [ 1D.871ID67]
Fe&r () Fe&r(Qy,) r
and
(5.14)

11(0) = —DaeL(Qun,pr) or  — DaeLln(Qun,pn) or  — Do eln(Q,un,pp),
1
where {D,,0}|r := 3 (V0+ + VB_) -nr is the arithmetic average operator where nr is

set to be the outer normal vector of I pointing from Q;f to 2, and, [0]|r := 6" -6~
is the jump operator.
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5.2. Level set update. In this subsection, we update the free boundary I'q in
the steepest descent direction (shape derivative) of 3. Our goal is to solve for the
level set function ¢(x + tB(x),t) for the given B such that

oz +tB(x),t) = ¢(2,0) VtandVa e Q.

Taking the derivative with respect to ¢ gives that

9¢
20
ot
This yields a Hamilton-Jacobi equation, if the nonlinear dependence of 3 on the

optimization is accounted for. However for fixed vector field 8 this is simply an
advection problem with a non-solenoidal transport field.

(5.15) V.0 B+ in €.

Remark 5.1. Note that we can simply choose the level set function at the initial
stage as the distance function. However, after some evolution steps, the updated level
set function no longer has this property. This can cause problems for accuracy of the
numerical method if the magnitude of the gradient locally becomes very small or very
large. Nevertheless, it is well known that the issue can be resolved by redefining ¢
regularly as the distance function while keeping the interface position fixed. In the
numerical examples presented herein we did not notice any need for such re-distancing,
since an advection stable scheme was used to propagate the interface.

To approximate (5.15), we use the Crank-Nicolson scheme in time combining with
gradient penalty stabilization in space for the advection problem [19, 15]. We remain
to use the same background mesh 7T for this step.

For the given §, let 7(£2, 3;,) = Rx* ﬂ, where J(2) is the cost functional
1Bl i1y
defined in (2.6), R is the learning rate, and 3,, is the solution to (5.11). We note that
the steepest descent formula for 7 is based on (5.3). Firstly, we divide [0, 7] into N
equal length time steps and let 6t = 7/N and ¢; = id; for ¢ = 0,--- N. Denote by
7 = ¢n(tn). Given the initial level set @9, find ¢} € Vh(Q) forn =1,---, N such
that for all w € V;,(€) there holds:

(5.16)
n_ 4n—1 n n—1 n n—1
(4582 0) (o0 VA0 o (A ) <o
ot Q ||/3h||H1(Q)d 2 Q 2
where

rr(v, w) = Z Vzhz/F[[Dnv]][[an]] ds

Fe&y (Q)
with 75 > 0 is a positive parameter and £7(Q) is the set of all interior facets in 7.

6. Numerical experiments. In the numerical experiments we mainly aim to
compare the performances of the three different shape derivatives, i.e., continuous SD
given in (4.14), the discrete SD given in (4.22), and the boundary SD given in (4.34).

A regular fixed background mesh of Q) is used for all evolving PDE models. For
all numerical experiments in this paper, we will use the unit square domain as the
background domain, i.e., O = [0,1]2. The background mesh is set as a uniform
100 x 100 crossed triangular mesh. The penalty parameters in (3.1) are chosen as
v=0.1and § =10. And in (5.11), the parameters are chosen such that 8; = S = 10
and v; = 1. In (5.16), we chose R = 0.5 or 1, N =10 and 72 = 1.
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—+— continuous SD
2k == discrete SD
—%--boundary SD

log(I(2))

2 4 6 8 10 12 14 16
iterations

(a) level sets at iterations 0,1,2,5 and 10 (b) evolutions of cost functional

Fi1G. 2. Ezample 6.1. T'qx is a circle. Case 1. Initial level set as a circle.

Ezample 6.1 (Circle). We recall the problem:

—Au=f inQ*,
(6.1) u=0 onDlg-,
u=gp, Dybu=gn only.

For this example, the free boundary I'- is the circle with radius ro = 1/4 and center
being (0.5,0.5).

We choose to use the data (f, gp,gn) such that
(6.2) f=-4/r, gp=4r—1on 09, gy = Dyu on 95,

with w = 4r — 1 and r = /22 +y2. We note that the choice for the boundary
data is not unique and indeed there are infinitely many choices. Indeed, assuming
f € L*(Q*) is given. For any gp € H'/?(I';), there exits the so-called Dirichlet-
Neumann mapping, R : gp € HY/?(T'y) — gy € H~Y/%(I'4) such that gy = D,,u and
that u is the solution to

—Au=f in€Q, u=0 onlqg, u=gp only.

Therefore, for any gp, we can use (f,gp, R(gp)) as the given compatible data.

We start with a smaller circle (with same center (0,5,0.5)) as the initial free
boundary (see the inner most circle in Figure 2a) that has the following level set
function written in polar coordinates:

3(r,0) = —r +1/8.

The stopping criteria is set such that J(Q) < 1E — 5. It takes 14, 16 and 16
iterations, respectively, using the continuous SD, discrete SD and boundary SD to
reach the stopping criteria. In this case, the performances among all three shape
derivatives are almost identical. Figure 2a shows the level sets at iterations 0,1,2,5
and 10 (from the inner most the to the outer most circles). The true level set is
marked as magenta and is almost completely covered by the computed level set at
step 10. The level set at iteration 0 is the initial given level set. At iteration 10, the
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(a) Tg= (circle) and the initial (b) iteration 5 (c) iteration 10
level set (ellipse)

—+—continuous SD

—+— discrete SD

- — ~ — 4 - boundary SD

N e TN

— 'T.«,"Tfi T

Wﬁzﬁ‘ g

oy W‘%‘gl

iterations
(d) iteration 50 (e) final level sets (f) evolutions of cost functional

Fia. 3. Ezample 6.1: T'qx is a circle. Case 2. Initial level set as an ellipse.

537 computed level set almost coincides with the true level set function. Figure 2b shows
538 the decreasing log rate of the cost functional J(£2). In this case the cost functional
539 converges at a fast and uniform rate for all three shape derivative.

540 We then test with an initial level set as an ellipse (see the red curve in Figure 3a):
—0.5)2 —0.5)2
541 (b(m,y):—(m 5 S _@ 5 ) + 1, wherec; = 3/8, and ¢z = 1/8.
‘1 €2

542 With the same stopping criteria that J(Q) < 1E — 5, it takes 169 , 155, and 123
543 iterations respectively for the continuous SD, discrete SD and boundary SD. Fig-
544 ure 3b—Figure 3d show the obtained level sets at iterations 5,10 and 50. The final
545 converged computational level sets are given in Figure 3e. The level sets are marked
546 with green for the continuous SD, blue for the discrete SD and red for the boundary
547 SD. We again observe high coincidence among level sets computed by all SDs. Fig-
548 ure 3f compares the evolution of cost functionals. It is obvious to see two different
549 convergence patterns for all cases: for about the first 20 iterations the cost functional
550 is decreasing at a uniform fast rate with small oscillations and afterward is deceasing
at a much slower rate with more severe oscillations.

If the initial level set is not properly chosen, the iterative procedure could require
much more iterations to converge due to the very slow convergence in the second stage.
Moreover, due to the nature of steepest descent method, iterations may stagnate at
a local minimum.

We also note that the observed oscillations of the cost functional are natural since
the pseudo time step is fixed. A more monotone behavior can be achieved if a line

W N o=

[SLENG] B, B, BNV, BIEG) BIEG) )
v Ot ot Ot gt Ut Ot Ut

3
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search is included. Furthermore, even though the discrete and boundary SDs are
exact, the gradient 3 is not necessarily in the finite element space and, therefore, still
requires approximation.

Ezample 6.2 (Ellipse). For this example, the free boundary T'g« is an ellipse (see
Figure 4a) with the following level set representation:

d(z,y) = —16(z — 0.5)% — 64(y — 0.5)% + 1.

We chose to use the data (f, gp, gn) such that f =0, gy = (sin(z+y), cos(z+y))-n on
'y, and gp = R~1(gn) where R™1 is the inverse mapping of the Dirichlet-Neumann
mapping R. Numerically, gp is approximated by solving (3.4) on a 500 x 500 finer
mesh.

We start with the following circle as the initial level set (see Figure 4a):

d(z,y) = —/(x —0.6)2 + (y — 0.4)2 + 1/6,

which has partial intersection with the true free boundary I'g«. With the stopping
criteria that J(Q2) < 1E — 5, it takes 120 , 154, and 146 iterations respectively for
the continuous SD, discrete SD and boundary SD. Figure 4b—Figure 4d show the
obtained level sets at iterations 5,10 and 50. The final computed level sets are given
in Figure 4e. We again observe high coincidence among level sets computed by all
SDs. Figure 4f compares the evolution of cost functional and similar phenomenons
are observed to former examples. The number of iterations required to reach the
stopping criteria also differs a significant amount due to its slow convergence rate and
oscillating behavior in the second stage. In this case, unfortunately, the presenting
algorithm is not able to yield significantly better level sets by simply running more
iterations.

Ezample 6.3 (Lamé Square). For this example the free boundary I+ is a Lamé
Square that has the following level set representation (see Figure 5a):

o(z,y) = =81(x — 0.5)" —1296(y — 0.5)" +1, n=4.

The level set becomes closer to a rectangle as the integer n increases. We chose the
data (f,gp,gn) such that f = 0, gy = (5sin(d),5cos(#)) - n where § = tan=((y —
0.5)/(z—0.5)) and gp = R~ !(gn). Numerically, gp is again approximated by solving
(3.4) on a 500 x 500 finer mesh.

We start with the following circle as the initial level set (see Figure 5a)

o(x,y) = —/(x — 0.5)2 + (y — 0.5)2 4+ 1/8.

With the stopping criteria that J(2) < 5F — 6 with a maximal iteration number of
200, it takes 173, 174, and 200 iterations respectively using the continuous, discrete,
and boundary SDs. Figure 5¢ — Figure 5d show the level sets at iterations 5,10 and
50. The final computed level sets are given in Figure 5e. In this case, the level
sets produced by the continuous and discrete SDs are almost identical, however, are
slightly different from those produced by the boundary SD. Figure 5f compares the
evolution of cost functional. We observe different convergence patterns between the
boundary SD and the rest. In the first 60 iterations, the cost functional based on
the boundary SD decreases faster, however, for the remaining iterations its level sets
remain steady.
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(a) T« (ellipse) and the initial (b) iteration 5 (c) iteration 10
level set (circle)

—+—continuous SD
—+— discrete SD
- boundary SD

105(@)

0
iterations

(d) iteration 50 (e) final level sets (f) evolutions of cost functional

FiG. 4. Example 6.2: T'qx is an ellipse. Initial level set as a circle.

We also note that the final level sets in Figure 5e represent almost the best level
sets we can achieve with the proposed algorithm. To illustrate, in Figure 6a we
report the level set at the 1000th iteration for the discrete SD which barely shows any
difference to its corresponding level set in Figure 5e. Figure 6b plots the evolution of
the corresponding cost functional.

Ezample 6.4 (Topology change with merging). In this test, we aim to validate
the capability of topology change for our algorithm. The free boundary I'g« and
the given data (f,gp,gn) are set to be the same as in Example 6.3. We choose the
initial level set as two separate Lamé squares with the following level set functions
(see Figure 7a):

¢($, y) = max (¢1($,y), ¢2($7y)) ’

where ¢1 (7, y) = 1-1296(x—0.32)*—1296(y—0.5)* and ¢o(z,y) = 1—1296(x—0.68)*—
1296(y —0.5)*. The stopping criteria is set the same that J(2) < 5E —6. It takes 271,
271, and 129 iterations for the respective continuous, discrete, and boundary SDs to
reach the stopping criteria. Figure 7b -Figure 7e show the level sets at the respective
iterations 10, 50 and 100 and the last iteration. We observe that the level set gradually
merges into one simple connected shape for all SDs. The level sets obtained by all
SDs are still almost identical. However, it takes significantly less iterations for the
boundary SD as it converges slightly faster in the initial stage.

Ezample 6.5 (Doubly Connected Domain). In this example, the free boundary
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F1G. 5. Ezample 6.3: T'qx as a Lamé Square. Initial level set as a circle.
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Fic. 6. Ezample 6.3: I'qx as a Lamé Square. Initial level set as a circle.

620 T~ is represented as two isolated circles (see Figure 8a):

621 ¢(z,y) = max (0.15 V(@ =022 1 (y—05)2, 0.15— \/(x — 0.80)2 + (y — 0.5)2) .

622 We start with the following simply connected Cassini oval as the initial level set (see
623 Figure 8a)

621 @lz,y) = —(#2+ 932 +2@% —9?) —1+b*, =3x—-15 §=3y—15 b=1.001.

625 The stopping criteria is set such that the maximal number of iterations not exceeds
626 300. We set the given data (f,gp,gn) such that f =0, gy = (x — 0.5,y — 0.5) - n
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(a) T+ (Lamé Square) and (b) iteration 10 (c) iteration 50
the initial level set (two small

Lamé Squares)

~—+— continuous SD
—*— discrete SD
2 —+# - boundary SD

f“ \/‘\‘
L/\_J

log(J(2))

o 50 100 150 200 250
iterations

(d) iteration 100 (e) final level sets (f) evolutions of cost functional

Fic. 7. Exzample 6.4: T'qx is a Lamé Square. Initial level set as two separated Lamé Squares.

on 'y and gp = R~!. Numerically, gp is approximated again by solving (3.4) on a

500 x 500 finer mesh.

Figures Figure 8b—8e show the level sets at the respective iterations 50, 100, 200 and
300. We observe that the Cassini oval gradually splits into two separate symmetric
parts. Figure 8f compares the evolution of cost functional for the first 100 iterations.
We observe that the convergence for this example is extremely slow which is likely due
to the sharp angles (non-smoothness) evolved due to splitting. The results generated
by the three SDs are again very similar.

For all the numerical examples, we note that even the cost functionals exhibit os-
cillations in the second stage, the evolution of level sets remains relatively steady. We
also observe that when the level sets involve non-smooth boundary, the convergence
can be very slow.

7. Appendix.

Proof of Lemma 4.1.

Proof. Through a change of variable, we have

/Qt(e) ola,t) de = /Q¢ oTyoutdr = /Qd)(a:(tL Hpu(t) do
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(a) T+ (two circles) and the
initial level set (Cassini oval)

(b) iteration 50

(c) iteration 100

log(J(@)

(d) iteration 200

(e) iteration 300

Fic. 8. Ezample 6.5: '+ as two separate circles.

Cassini oval.

(f) evolutions of cost functional

Initial level set as one simply connected

where p(t) = det(VTi,6) and x(t) = x + t0(x). Note that ;(0) = 1. By definition,

1
DQ’G ¢d$ =lim — /
Q t—0 t oM (0)

S (0a(0) O = 9L, o) d
Q

(7.1)

= lim

_ /Q d(x,0)d + /Q 6(x,0)V - 0dz

where we have used the fact that (see Example 3.1 in [25])

lim ~ (u(t) — p(0)) = V- 6.

t—0 t

To prove the second part of (4.7), we have that

[ swtde= [ ooTipultd -
Ca,(6) Lo

T'a

d(z(t), t)w(t) dx

619 where w(t) = u(t)|(VIie)~" - n|. Note that w(0) = 1. Finally, combining the fact

650

that

lim - (w(t) — w(0) = V-0 — (VO-7) -

t—0 ¢
gives the second part of (4.7). This completes the proof of the lemma.
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Proof of Lemma 4.2.

Proof. By a change of variables, we have

t—0t

.1
lim= </Qt(3) Vuw(z,t) - Vo(a,t) de — /Q Vw(z,0) - Vo(z,0) dw)

(7.2) :}Lr%% (/Q((Vw oTy) - (VvoTy)u(t)dx — /va(x’ 0) - Vo(z,0) dx)

:Hml(/Q(A(t)-V(ont))-V(voTt)dm—/

Vw - Vo dm)
Q

:/(A’(t)-Vw)'Vv—Fth-Vv—FViz-dex,
Q

where we used the chain rule

(7.3) (Vu)oTy = VT, " - V(uoTy)

and introduced A(t) and its derivative

(7.4) A(t) = p()VT7 VT, A(t)=V-0I-5(9),

and finally we employed the product rule. This completes the proof of the lemma. O

Proof of Lemma 4.3.

Proof. Firstly by a change of variable we have

Vw(z,t) - nw(x,t)ds = /F (VwoTy) - (ngoTy)(voTyw(t)ds

(7.5)
= /1“ (VTP - V(woTy)) - (ng o Ty)(vo Ty)w(t) ds.

From Theorem 4.4 in [25] it holds that

VI ' n

noly = —————.
VT

Recall that w; = p(t)|VT, " -n| and A(t) = u(t)VT, 1 (VT;)~t. By a direct calculation
together with (7.3) we have

(7.6) /F (Vw(z,t) - ny)v(z,t)ds = /F (A(t) - V(woTy)) -n(veTy)ds
Finally, combing (7.6) and (7.4) gives

Dq.o Vw-nvds = / (A'(t) - (Vw - n)v + (Vi -n)vds + (Vw - n)ods
T'o

(7.7) Fe
=/ (V-0)(Vw-n)v—(5(0) - Vw) - nv+ (Vw - n)ods + (V- n)vds.
T'o
This completes the proof of the lemma. 0
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Proof of Lemma 4.4.

Proof. By the assumption that T} is smooth, using similar arguments in Lemma 4.11}
and Lemma 4.2 gives

/F Vo n][Vo-nds
(7.8) = /FWw oT" - (ny o T)][Vvo T (ng o Ty)|w(t)ds
= [ @V (o T) - nlA® V(o T - nl™ (1)
Applying the product rule, we then have that
Do /F [Vw - n][Vo - n]ds
= [0V ][00+ [4©) V0 n][Veo -]
+/F[[Vw-n]][[w-n}]+[[w-n]][[vw-n]]ds
(79 - /F [V - n][Vo - n] o (0)ds
- /F[[(V~0)Vw~n— S(6) - Vo - n][Vo - n]]ds—l—/F[[Vzb-n]][[Vv-n]]ds
+/F[[(v.0)w n—S(6) ~Vv~n]][[Vw-n]]ds—|—/F[[Vw~n]][[Vi)-n]] ds
—/F[[Vw-n]][[Vv-n] (V-0—(V0-n)-n)ds.
This completes the proof of Lemma 4.4. 0

REFERENCES

[1] L. AFrRAITES, M. DAMBRINE, K. EPPLER, AND D. KATEB, Detecting perfectly insulated obstacles
by shape optimization techniques of order two, Discrete & Continuous Dynamical Systems-
B, 8 (2007), pp. 389416, https://doi.org/10.3934/dcdsb.2007.8.389.

[2] G. ALLAIRE, F. JOUVE, AND A.-M. TOADER, A level-set method for shape optimization,
C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 1125-1130, https://doi.org/10.1016/
S1631-073X(02)02412-3.

[3] G. ALLAIRE, F. JOUVE, AND A.-M. TOADER, Structural optimization using sensitivity analysis
and a level-set method, J. Comput. Phys., 194 (2004), pp. 363-393, https://doi.org/10.
1016/j.jcp.2003.09.032.

[4] N. M. ArarraH, C. CANUTO, AND G. Scovazzi, Analysis of the shifted boundary method
for the Poisson problem in general domains with corners, Math. Comp., (2021), https:
//doi.org/10.1090/mcom/3641.

[5] A. BERNLAND, E. WADBRO, AND M. BERGGREN, Acoustic shape optimization using cut finite
elements, International Journal for Numerical Methods in Engineering, 113 (2018), pp. 432—
449, https://doi.org/10.1002/nme.5621.

[6] F. BoucHON, S. CLAIN, AND R. TouzaNi, Numerical solution of the free boundary Bernoulli
problem using a level set formulation, Comput. Methods Appl. Mech. Engrg., 194 (2005),
pp. 3934-3948, https://doi.org/10.1016/j.cma.2004.09.008.

[7] F. BoucHON, S. CLAIN, AND R. TouUzANI, A perturbation method for the numerical solution
of the Bernoulli problem, J. Comput. Math., 26 (2008), pp. 23-36, http://www.jstor.org/
stable/43693422.

This manuscript is for review purposes only.


https://doi.org/10.3934/dcdsb.2007.8.389
https://doi.org/10.1016/S1631-073X(02)02412-3
https://doi.org/10.1016/S1631-073X(02)02412-3
https://doi.org/10.1016/S1631-073X(02)02412-3
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1090/mcom/3641
https://doi.org/10.1090/mcom/3641
https://doi.org/10.1090/mcom/3641
https://doi.org/10.1002/nme.5621
https://doi.org/10.1016/j.cma.2004.09.008
http://www.jstor.org/stable/43693422
http://www.jstor.org/stable/43693422
http://www.jstor.org/stable/43693422

[20]

21]

22]

23]

=

H 2 O

E. BURMAN, C. HE AND M. G. LARSON

. BOURGEOIS AND J. DARDE, A quasi-reversibility approach to solve the inverse obstacle prob-

lem, Inverse Probl. Imaging, 4 (2010), pp. 351-377, https://doi.org/10.3934/ipi.2010.4.351.

. BOURGEOIS AND J. DARDE, The “exterior approach” to solve the inverse obstacle problem

for the Stokes system, Inverse Probl. Imaging, 8 (2014), pp. 23-51, https://doi.org/10.
3934 /ipi.2014.8.23.

. H. BRAMBLE, T. DUPONT, AND V. THOMEE, Projection methods for Dirichlet’s problem

in approrimating polygonal domains with boundary-value corrections, Math. Comp., 26
(1972), pp. 869-879, https://doi.org/10.2307/2005869.

. BURGER, A level set method for inverse problems, Inverse Problems, 17 (2001), pp. 1327—

1355, https://doi.org/10.1088,/0266-5611/17/5/307.

. BURGER, Levenberg-Marquardt level set methods for inverse obstacle problems, Inverse Prob-

lems, 20 (2004), pp. 259-282, https://doi.org/10.1088,/0266-5611,/20,/1/016.

. BURGER AND S. J. OSHER, A survey on level set methods for inverse problems and optimal

design, European journal of applied mathematics, 16 (2005), pp. 263-301, https://doi.org/
10.1017/S0956792505006182.

. BURMAN, Ghost penalty, Comptes Rendus Mathematique, 348 (2010), pp. 1217-1220, https:

//doi.org/10.1016/j.crma.2010.10.006.

. BURMAN, Crank-Nicolson finite element methods using symmetric stabilization with an

application to optimal control problems subject to transient advection-diffusion equations,
Commun. Math. Sci., 9 (2011), pp. 319-329, https://doi.org/10.4310/CMS.2011.v9.nl.al6.

. BurmAN, D. ELFVERSON, P. HANSBO, M. G. LARSON, AND K. LARSSON, A cut finite element

method for the Bernoulli free boundary value problem, Comput. Methods Appl. Mech.
Engrg., 317 (2017), pp. 598-618, https://doi.org/10.1016/j.cma.2016.12.021.

. BurMAN, D. ELFVERSON, P. HANSBO, M. G. LARSON, AND K. LARSSON, Shape optimiza-

tion using the cut finite element method, Computer Methods in Applied Mechanics and
Engineering, 328 (2018), pp. 242-261, https://doi.org/10.1016/j.cma.2017.09.005.

. BurMAN, D. ELFVERSON, P. HANsBO, M. G. LARSON, AND K. LARSSON, Cut topology

optimization for linear elasticity with coupling to parametric nondesign domain regions,
Comput. Methods Appl. Mech. Engrg., 350 (2019), pp. 462-479, https://doi.org/10.1016/
j.cma.2019.03.016.

. BURMAN AND M. A. FERNANDEZ, Finite element methods with symmetric stabilization for

the transient convection-diffusion-reaction equation, Comput. Methods Appl. Mech. En-
grg., 198 (2009), pp. 2508-2519, https://doi.org/10.1016/j.cma.2009.02.011.

. BURMAN, P. HANSBO, AND M. G. LARSON, A cut finite element method with boundary value

correction, Math. Comp., 87 (2018), pp. 633-657, https://doi.org/10.1090/mcom/3240.

. BurMAN, P. HANSBO, AND M. G. LARSON, Dirichlet boundary value correction using la-

grange multipliers, BIT Numerical Mathematics, 60 (2020), pp. 235-260, https://doi.org/
10.1007/s10543-019-00773-4.

. CHEN AND J. Zou, Finite element methods and their convergence for elliptic and parabolic

interface problems, Numer. Math., 79 (1998), pp. 175-202, https://doi.org/10.1007/
s002110050336.

. CHEUNG, M. PEREGO, P. BOCHEV, AND M. GUNZBURGER, Optimally accurate higher-order

finite element methods for polytopial approximations of domains with smooth boundaries,
Mathematics of Computation, 88 (2019), pp. 2187-2219, https://doi.org/10.1090/mcom/
3415.

. CoLTON AND R. KRESS, Looking back on inverse scattering theory, SIAM Review, 60 (2018),

pp. 779-807, https://doi.org/10.1137/17M1144763.

. C. DELFOUR AND J.-P. ZOLEsIO, Shapes and geometries: metrics, analysis, differential

calculus, and optimization, STAM, 2011, https://doi.org/10.1137/1.9780898719826.

. DuponT, J. GUzZMAN, AND R. ScoTT, Obtaining higher-order Galerkin accuracy when the

boundary is polygonally approzimated, arXiv e-prints, (2020), arXiv:2001.03082.

. HADAMARD, Mémoire sur le probléme d’analyse relatif o ’équilibre des plaques élastiques

encastrées, vol. 33, Imprimerie nationale, 1908.

. HANSBO AND P. HANSBO, An unfitted finite element method based on Nitsche’s method for

elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5537—
5552, https://doi.org/10.1016/S0045-7825(02)00524-8.

. HIPTMAIR AND A. PAGANINI, Shape optimization by purswing diffeomorphisms, Computa-

tional Methods in Applied Mathematics, 15 (2015), pp. 291-305, https://doi.org/10.1515/
cmam-2015-0013.

. HipTMAIR, A. PAGANINI, AND S. SARGHEINI, Comparison of approzimate shape gradi-

ents, BIT Numerical Mathematics, 55 (2015), pp. 459-485, https://doi.org/10.1007/
510543-014-0515-z.

This manuscript is for review purposes only.


https://doi.org/10.3934/ipi.2010.4.351
https://doi.org/10.3934/ipi.2014.8.23
https://doi.org/10.3934/ipi.2014.8.23
https://doi.org/10.3934/ipi.2014.8.23
https://doi.org/10.2307/2005869
https://doi.org/10.1088/0266-5611/17/5/307
https://doi.org/10.1088/0266-5611/20/1/016
https://doi.org/10.1017/S0956792505006182
https://doi.org/10.1017/S0956792505006182
https://doi.org/10.1017/S0956792505006182
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.4310/CMS.2011.v9.n1.a16
https://doi.org/10.1016/j.cma.2016.12.021
https://doi.org/10.1016/j.cma.2017.09.005
https://doi.org/10.1016/j.cma.2019.03.016
https://doi.org/10.1016/j.cma.2019.03.016
https://doi.org/10.1016/j.cma.2019.03.016
https://doi.org/10.1016/j.cma.2009.02.011
https://doi.org/10.1090/mcom/3240
https://doi.org/10.1007/s10543-019-00773-4
https://doi.org/10.1007/s10543-019-00773-4
https://doi.org/10.1007/s10543-019-00773-4
https://doi.org/10.1007/s002110050336
https://doi.org/10.1007/s002110050336
https://doi.org/10.1007/s002110050336
https://doi.org/10.1090/mcom/3415
https://doi.org/10.1090/mcom/3415
https://doi.org/10.1090/mcom/3415
https://doi.org/10.1137/17M1144763
https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1515/cmam-2015-0013
https://doi.org/10.1515/cmam-2015-0013
https://doi.org/10.1515/cmam-2015-0013
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1007/s10543-014-0515-z

COMPARISON OF SHAPE DERIVATIVES FOR BERNOULLI FREE BOUNDARY PROBLE2Y

(31]

32]

(33]

34]

(35]

(39]

[40]

A. LAURAIN AND K. STURM, Distributed shape derivative via averaged adjoint method and ap-
plications, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), pp. 1241—
1267, https://doi.org/10.1051/m2an/2015075.

A. MAIN AND G. Scovazzi, The shifted boundary method for embedded domain computa-
tions. part i: Poisson and stokes problems, Journal of Computational Physics, 372 (2018),
pp. 972-995, https://doi.org/10.1016/j.jcp.2017.10.026.

J. NITSCHE, Uber ein wvariationsprinzip zur losung von Dirichlet-problemen bei verwendung
von teilraumen, die keinen randbedingungen unterworfen sind, in Abhandlungen aus dem
mathematischen Seminar der Universitat Hamburg, vol. 36, Springer, 1971, pp. 9-15, https:
//doi.org/10.1007/BF02995904.

S. OSHER AND R. P. FEDKIW, Level set methods: an overview and some recent results, Journal
of Computational physics, 169 (2001), pp. 463-502, https://doi.org/10.1006/jcph.2000.
6636.

D. PENG, B. MERRIMAN, S. OsHER, H. ZHAO, AND M. KANG, A pde-based fast local level set
method, Journal of computational physics, 155 (1999), pp. 410-438, https://doi.org/10.
1006/jcph.1999.6345.

J. SOKOL OWSKI AND J.-P. ZOLESIO, Introduction to shape optimization, vol. 16 of Springer
Series in Computational Mathematics, Springer-Verlag, Berlin, 1992, https://doi.org/10.
1007/978-3-642-58106-9.

T. STROUBOULIS, I. BABUSKA, AND K. COPPS, The design and analysis of the generalized finite
element method, Computer methods in applied mechanics and engineering, 181 (2000),
pp- 43-69, https://doi.org/10.1016,/S0045-7825(99)00072-9.

C. H. VILLANUEVA AND K. MAUTE, Cutfem topology optimization of 3d laminar incompressible
flow problems, Computer Methods in Applied Mechanics and Engineering, 320 (2017),
pp. 444-473, https://doi.org/10.1016/j.cma.2017.03.007.

M. Y. WaANG, X. WANG, AND D. Guo, A level set method for structural topology optimization,
Computer methods in applied mechanics and engineering, 192 (2003), pp. 227—246, https:
//doi.org/10.1016 /S0045-7825(02)00559-5.

L. ZHANG, A. GERSTENBERGER, X. WANG, AND W. K. Liu, Immersed finite element method,
Computer Methods in Applied Mechanics and Engineering, 193 (2004), pp. 2051-2067,
https://doi.org/10.1016/j.cma.2003.12.044.

This manuscript is for review purposes only.


https://doi.org/10.1051/m2an/2015075
https://doi.org/10.1016/j.jcp.2017.10.026
https://doi.org/10.1007/BF02995904
https://doi.org/10.1007/BF02995904
https://doi.org/10.1007/BF02995904
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1006/jcph.2000.6636
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1016/S0045-7825(99)00072-9
https://doi.org/10.1016/j.cma.2017.03.007
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/j.cma.2003.12.044

	Introduction
	Model problem
	Approximation of primal and dual solutions using CutFEM
	Shape derivatives
	Definition of the shape derivative
	Shape derivatives of linear and bilinear forms
	Continuous SD
	Discrete SD
	CutFEM with boundary value correction
	Boundary SD

	Optimization algorithms
	Approximation of the shape derivative  using CutFEM
	Level set update

	Numerical experiments
	Appendix
	References

