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Abstract. In this paper we study and compare three types of shape derivatives for free boundary4
identification problems. The problem takes the form of a severely ill-posed Bernoulli problem where5
only the Dirichlet condition is given on the free (unknown) boundary, whereas both Dirichlet and6
Neumann conditions are available on the fixed (known) boundary. Our framework resembles the7
classical shape optimization method in which a shape dependent cost functional is minimized among8
the set of admissible domains. The position of the domain is defined implicitly by the level set9
function. The steepest descent method, based on the shape derivative, is applied for the level set10
evolution. For the numerical computation of the gradient, we apply the Cut Finite Element Method11
(CutFEM), that circumvents meshing and re-meshing, without loss of accuracy in the approximations12
of the involving partial differential models.13

We consider three different shape derivatives. The first one is the classical shape derivative14
based on the cost functional with pde constraints defined on the continuous level. The second shape15
derivative is similar but using a discretized cost functional that allows for the embedding of CutFEM16
formulations directly in the formulation. Different from the first two methods, the third shape17
derivative is based on a discrete formulation where perturbations of the domain are built into the18
variational formulation on the unperturbed domain. This is realized by using the so-called boundary19
value correction method that was originally introduced to allow for high order approximations to be20
realized using low order approximation of the domain.21

The theoretical discussion is illustrated with a series of numerical examples showing that all three22
approaches produce similar result on the proposed Bernoulli problem.23

Key words. Ill-posed free boundary Bernoulli problem; Cut Finite Element Method; Level set24
method; non-fitted mesh;25

AMS subject classifications. 65N20,65N21,65N3026

1. Introduction. This paper deals with the free boundary identification of the27

ill-posed free boundary Bernoulli problem. Comparing to the classical free boundary28

Bernoulli problem, this paper studies the free boundary problems for which only29

Dirichlet data is given on the free (unknown) boundary and Cauchy data is available30

on the fixed (known) boundary. Such problems are found for instance in models31

where perfectly insulated obstacles [1] need to be detected from data. Following [16]32

we use the cut finite element method (CutFEM) together with a level set approach to33

numerically identify the free boundary using the shape optimization method. The level34

set method is highly flexible in handling topology changes and has been widely used35

for inverse obstacle and optimal design problems [35, 34, 11, 39, 2, 3, 6, 13]. Since the36

domain of computation changes in each iteration of the shape optimization method, it37

is advantageous to use a fictitious domain type numerical method, provided a sufficient38

accuracy can be ensured. This is the rationale for combining the CutFEM with the39

level set method. The CutFEM additionally features the following advantages: (1)40
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2 E. BURMAN, C. HE AND M. G. LARSON

CutFEMs have been designed and analyzed for a large number of PDE models and41

many types of boundary conditions, (2) for interface problems, CutFEM requires no42

special construction for basis functions, c.f. the immersed finite element method, the43

generalized finite element method [40, 37], and (3) optimal accuracy in the bulk and44

on the boundary can be achieved. The cutFEM method has previously been applied45

in combination with the level set approach to various shape optimization problems,46

for instance in [38, 17, 5, 18].47

To solve the shape optimization problem, we apply the a steepest descent type48

algorithm algorithm. The gradient for the shape-dependent cost functional is the49

so-called shape derivative. The main objective of the present work is to design and50

compare different types of shape derivatives in the algorithm. Firstly we recall the51

classical shape derivative that is obtained using the classical shape sensitivity analy-52

sis [27] on the continuous level. To obtain the numerical approximation of the shape53

derivative for the iterative procedure, the solutions in the derivative formulas are54

replaced directly by their corresponding numerical approximations. We will refer55

this derivative as the continuous shape derivative (SD). We note here that the shape56

derivative derived from the continuous level has two equivalent forms by the structure57

theorem of Hadamard and Zolésio [27, 25], i.e., the domain and boundary represen-58

tations. Assuming enough regularity on the continuous level those two forms are59

equivalent. However, the applicability of the domain form is in principle wider, since60

it requires lower regularity. Moreover, it has been proven to possess certain super-61

convergence properties compared to the boundary formulation [30, 29, 31]. In this62

work, we also utilize the domain form.63

We note that directly replacing the continuous SD by its numerical approxima-64

tion only yields an approximate gradient, whose accuracy depends on the mesh-size65

and that this may prohibit convergence to the minimizer on a fixed mesh. A natural66

solution is to perform the shape sensitivity analysis directly on the discretized cost67

functional which allows for the embedding of CutFEM formulations. We will refer68

this derivative as the discrete SD. The resulting advantage for discrete SD is exact-69

ness on the mesh-scale considered. Nevertheless, the discrete SD has more complex70

representation since the discretized cost functional contains significantly more terms71

than the continuous one. Moreover, the discrete SD in general is not a function in the72

finite element space and therefore approximation is still inevitable in the final step of73

the construction of the shape derivative.74

For the classical shape sensitivity analysis, the shape derivative is obtained by75

perturbing the domain and taking the limit for small perturbations. Contrary to such76

a classical analysis used for the previous SDs, the third shape derivative introduced77

herein, is defined using only the unperturbed domain. Infinitesimal perturbations of78

the domain are instead introduced through a boundary correction approach using the79

weakly imposed boundary conditions that are characteristic of CutFEM. Boundary80

correction method is a technique to create high order finite element approximations81

for domains with smooth boundary when using a low order approximation of the82

domain. Optimal order estimates are obtained through an extrapolation procedure83

on the boundary [10, 20, 32, 23, 21, 4]. This type shape derivative is also exact as it84

is based on the discretized functional. We remark that such shape derivative enjoys a85

much simpler representation that only depends on the boundary terms in the Nitsche,86

or Lagrange multiplier formulation. This technique, therefore, has great potential to87

tackle more sophisticated problems where the classical shape derivative is difficult to88

find. We will refer this derivative as the boundary SD. The rigorous justification of89

this boundary value correction shape derivative will be left for future work, instead90
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COMPARISON OF SHAPE DERIVATIVES FOR BERNOULLI FREE BOUNDARY PROBLEM3

we will compare its performance numerically with the two other approaches.91

To verify and compare the performance of the three different types of shape92

derivatives, several numerical experiments are presented in section 6. Since the main93

objective was to compare the shape derivatives, we only consider a simple steepest94

descent algorithm for the optimization algorithm and it is expected that convergence95

can be enhanced by applying a more sophisticated method such as the Levenberg-96

Marquard method proposed in [12]. The results show that all three shape derivatives97

have similar performance.98

For another level set based identification method not relying on shape derivatives99

we refer to [8, 9].100

The paper is organized as follows. In section 2, we introduce the model problem.101

Then we introduce the CutFEM for the numerical approximation of the primal and102

dual solutions in section 3. The various shape derivatives are introduced in section 4.103

The final optimization algorithm is provided in section 5. Finally, the results for104

numerical experiments are presented in section 6.105

2. Model problem. Let Ω̂ ⊂ R2 be a simply connected fixed domain and Γf :=106

∂Ω̂. Let O be a family of admissible bounded connected domains Ω ⊂ Ω̂ with the107

Lipschitz boundary ∂Ω = Γf∪ΓΩ where ΓΩ is the free boundary to be determined (see108

Figure 1 for an example). For simplicity, we assume there is no intersection between109

ΓΩ and Γf . We consider the interior type ill-posed free boundary Bernoulli problem,

Fig. 1. The domain Ω with the fixed boundary Γf and the free boundary ΓΩ. Here Ω̂ is the
entire square domain.

110
i.e., the fixed boundary Γf is exterior to ΓΩ. Find Ω∗ ∈ O and u : Ω∗ → R such that111

−4u = f in Ω∗,

u = 0 on ΓΩ∗ ,

u = gD on Γf ,

Dnu = gN on Γf .

(2.1)112

The datum (f, gD, gN ) is chosen such that f ∈ L2(Ω∗), gD ∈ H1/2(Γf ) and gN ∈113

H−1/2(Γf ). Dnu := ∇u · n where n is the unit outer normal vector to the domain.114

It is known that, provided the data f, gD, gN are compatible with a solution ΓΩ∗ , the115

solution is unique. This follows by a unique continuation argument from the Cauchy116

This manuscript is for review purposes only.



4 E. BURMAN, C. HE AND M. G. LARSON

data on Γf . For a proof in the context of scattering problems we refer to [24, Theorem117

2].118

To represent the free boundary ΓΩ, we use the level set method. To be precise,119

we utilize a level set function φ(x) for the domain Ω such that120

(2.2) φ(x)


> 0 if x 6∈ Ω,

= 0 if x ∈ ΓΩ,

< 0 if x ∈ Ω.

121

Note that the level set function is not unique and its value away from the free boundary122

is not critical, provided the gradient of the level set function does not degenerate. A123

common example for instance is the distance function to the free boundary.124

For an arbitrary Ω ∈ O, the system (2.1) is over-determined and therefore the125

solution may not exist. Our goal is to identify the free boundary ΓΩ∗ starting from126

an initial guess ΓΩ through the shape optimization method. We firstly rephrase the127

problem (2.1) as a constrained PDE minimization problem.128

Define the spaces129

H1
0,ΓΩ

(Ω) := {v ∈ H1(Ω) : v = 0 on ΓΩ},(2.3)130

H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}.(2.4)131132

Recall that ∂Ω = ΓΩ ∪ Γf . Let (·, ·)Ω denote the L2-scalar product over Ω ⊂ R2 and133

〈·, ·〉Γ the L2-scalar product over the curve Γ ⊂ R2. The L2-norm over a subset X of134

Rs, s = 1, 2, will be denoted by ‖ · ‖X .135

We now rewrite (2.1) as follows: find Ω∗ ∈ O such that136

(2.5) J(Ω∗) = min
Ω∈O

J(Ω) ∀Ω ∈ O,137

where the cost functional is defined by138

(2.6) J(Ω) =
1

2
h−1‖gD − u(Ω)‖2Γf

,139

where h is a constant that will be chosen as the mesh size of the finite element mesh140

introduced later, and u(Ω) ∈ H0,ΓΩ
(Ω) satisfies141

(2.7) a(u, v) := (∇u,∇v)Ω = (f, v)Ω + 〈gN , v〉Γf
∀ v ∈ H0,ΓΩ

(Ω).142

The corresponding Lagrangian for the constrained minimization problem (2.5)143

follows:144

L(Ω, w, v) =
1

2
h−1‖gD − w‖2Γf

− a(w, v) + l(v)(2.8)145

where l(v) = (f, v)Ω + 〈gN , v〉Γf
.146

The critical point of (2.8), denoted by (u(Ω), p(Ω)), is obtained through taking147

the Fréchet derivative with respect to (w, v). This leads to the solution of a decoupled148

primal and adjoint equation. For the primal variable u(Ω), we solve (2.7). In strong149

form, we note that (2.7) corresponds to the following well-posed forward problem:150

−4u(Ω) = f in Ω,

u(Ω) = 0 on ΓΩ,

Dnu(Ω) = gN on Γf .

(2.9)151
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For the adjoint solution p(Ω), we obtain the following weak formulation: find152

p(Ω) ∈ H1
0,ΓΩ

(Ω) such that153

(∇w,∇p(Ω))Ω = h−1 〈u− gD, w〉Γf
∀w ∈ H1

0,ΓΩ
(Ω).(2.10)154

When there is low risk of ambiguity, we replace (u(Ω), p(Ω)) by (u, p).155

Remark 2.1. If Ω = Ω∗ we have u = gD on Γf and hence p ≡ 0 in Ω∗.156

Remark 2.2. The relation between (2.1) and (2.5) is as follows. If Ω∗ is the157

solution to (2.1) then it is also the solution to (2.5). The inverse is also true, by the158

uniqueness of the inclusion, however there may be local minima that complicate the159

identification.160

Below we present the algorithm of shape optimization using gradient descent iteration161

to solve (2.5). For simplicity, we restrict our discussion only in the two dimensional162

case. However, the algorithm and the related analysis can be directly extended to163

three dimensions.164

Algorithm 2.1 Steepest Descent Shape Optimization Method.

Choose an initial level set φ(x, 0) and set Ω = {x ∈ Ω̂, φ(x, 0) ≤ 0} and
ΓΩ = {x ∈ Ω̂, φ(x, 0) = 0}.
Iterate until the stopping criteria is satisfied:

– Compute the primal and dual solutions u(Ω) and p(Ω) for (2.7) and (2.10),
respectively.

– Compute the shape derivative

β := argmin
θ∈Uad

DΩ,θL(Ω, u, p)

where DΩ,θL(Ω, u, p) is the shape derivative of L in the direction θ and Uad
is the admissible set for θ.

– Compute φ(x, τ) by solving a transport equation in the direction β on Ω ×
[0, τ(L,β)].

– Update φ(x, 0) = φ(x, T ) and set Ω = {x ∈ Ω̂, φ(x, 0) ≤ 0}, ΓΩ = {x ∈
Ω̂, φ(x, 0) = 0}.

3. Approximation of primal and dual solutions using CutFEM. In this165

section we approximate the primal and dual solution for (2.7) and (2.10), respec-166

tively, using the CutFEM method. The main advantages of the CutFEM is that no167

meshing or re-meshing procedure is needed to fit the moving boundary. The back-168

ground domain Ω̂, for simplicity, is assumed to be a regular domain, e.g., a unit169

square. Moreover, stability and accuracy of CutFEM, similar to standard FEM, are170

guaranteed both in the bulk and on the boundary given proper stabilization.171

Let T = {K} be a shape regular triangular partition of Ω̂ and h = max
K∈T

hK where172

hK is the diameter of K. Aldo denote by nK the outer normal unit vector to K.173

Define the active computational domain Ωh = ∪{K ∈ T ,K ∩ Ω 6= ∅}, and the space174

on Ωh175

Vh(Ωh) = {v ∈ H1(Ωh) : v|K ∈ P1(K) ∀K ⊂ Ωh},176

and, for v, w ∈ Vh(Ωh), define the bilinear form177

(3.1) ah(w, v) := ãh(w, v) + j(w, v)178
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6 E. BURMAN, C. HE AND M. G. LARSON

with179

(3.2) ãh(w, v) = (∇w,∇v)Ω − 〈Dnw, v〉ΓΩ
− 〈Dnv, w〉ΓΩ

+ βh−1 〈w, v〉ΓΩ
,180

and181

(3.3) j(w, v) =
∑

F∈EI(Ωh)

γh

∫
F

[[Dnw]][[Dnv]] ds,182

where EI(Ωh) = {F = K1 ∩K2,K1,K2 ⊂ Ωh} denotes the set of all interior edges in183

the active computational domain Ωh. The form j(w, v) is the so-called ghost penalty184

stabilization [14] and [[Dnv]]|F := (∇v|K ·nK) + (∇v|K′ ·nK′) for F = K ∩K ′, which185

is the normal flux jump on F . Note that we added the ghost penalty stabilization for186

all the interior edges in Ωh. Nevertheless, the stabilization may be localized to the187

interior edges close to the interface zone without affecting the accuracy of the method.188

Considering the following variational problems: find uh ∈ Vh(Ωh) such that189

(3.4) ah(uh, v) = (f, v)Ω + 〈gN , v〉Γf
∀v ∈ Vh(Ωh),190

find ph ∈ Vh(Ωh) such that191

(3.5) ah(w, ph) = h−1 〈uh − gD, w〉Γf
∀w ∈ Vh(Ωh).192

Remark 3.1. Note that in the above formulations all Dirichlet boundary condi-193

tions on ΓΩ are imposed weakly using Nitsche’s method [33].194

4. Shape derivatives. In this section, our goal is to derive the formulas for195

different types of shape derivatives. We firstly discuss some basic definitions and196

provide some existing results.197

4.1. Definition of the shape derivative. For Ω ∈ O, we let W (Ω,R2) denotes198

the space of sufficiently smooth vector fields θ : Ω→ R2 such that θ ≡ 0 on Γf . For199

a vector field θ ∈W (Ω,R2), we define the map200

(4.1) Tt,θ : x ∈ Ω→ x+ tθ(x) ∈ Ωt(θ) ⊂ R2.201

The variable t is interpreted as a pseudo-time. For small t the mapping Ω→ Ωt(θ) is202

assumed to be a bijection. We also assume that Ωt(θ) ∈ O for any t ∈ I = {−δ, δ},203

with δ > 0 small enough. When there is no risk of confusion, we let Ωt = Ωt(θ) and204

Tt = Tt,θ.205

The shape derivative of the cost functional L(Ω, u(Ω), p(Ω)) in the direction of θ206

is defined as207

(4.2)

DΩ,θL(Ω, u(Ω), p(Ω)) := lim
t→0

1

t
(L(Ωt(θ), u(Ωt(θ)), p(Ωt(θ)))− L(Ω, u(Ω), p(Ω))).208

For a scalar function v(x, t) : Ω × I → R that is smooth enough, we define its209

material derivative in the direction θ by210

(4.3) Dt,θv(x) = lim
t→0

v(x(t), t)− v(x(0), 0)

t
211

where x(t) = Tt,θ(x) = x + tθ(x) and x(0) = x. We also define the pseudo-time212

derivative by213

(4.4) ∂tv(x) = lim
t→0

v(x, t)− v(x, 0)

t
.214
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By the chain rule it is easy to see that215

(4.5) Dt,θ v = ∂tv + θ · ∇v.216

The product rule holds for the material derivative:217

(4.6) Dt,θ (vw) = wDt,θv + vDt,θ w.218

For easier representation, we replace the notations by v̇ := Dt,θv and v′ := ∂tv when219

there is no risk of ambiguity.220

4.2. Shape derivatives of linear and bilinear forms. We now state several221

technical results that allow us to derive the explicit representation of the shape deriva-222

tive acting on the cost functional. The shape derivatives associated to the bulk terms223

are fairly standard and the proofs of these results follow the ideas of [36, 25]. For224

the cutFEM method however, we also need shape derivatives of integral forms over225

the boundaries and of stabilization terms. All proofs are reported in the appendix226

for completeness. The following concise notation for the symmetric gradient of the227

deformation vector field θ will be used below, S(θ) = ∇θ+(∇θ)t and on the interface228

ΓΩ we define ∇Γ · θ = ∇ · θ − (∇θ · n) · n, where n is the outer normal vector of Γ.229

Lemma 4.1. Let Ω be an open set in R2, ΓΩ ⊂ ∂Ω is a closed curve, and θ :230

R2 → R2 be an injective differentiable mapping. Then the following equalities hold:231

DΩ,θ

∫
Ω

φdx =

∫
Ω

(φ̇+ (∇ · θ)φ) dx,

DΩ,θ

∫
ΓΩ

ψ ds =

∫
ΓΩ

(ψ̇ + (∇Γ · θ)ψ) ds,

(4.7)232

where we assume that φ(x, t), ψ(x, t) : R2 × I → R are functions smooth enough for233

the expressions of (4.7) to be well defined.234

Lemma 4.2. With the same assumptions for Ω and θ as in Lemma 4.1, the fol-235

lowing relation holds:236

DΩ,θ

∫
Ω

∇w · ∇v dx =

∫
Ω

(∇ · θ)(∇w · ∇v)− (S(θ) · ∇w) · ∇v dx

+

∫
Ω

∇ẇ · ∇v +∇v̇ · ∇w dx,
(4.8)237

where we assume that w(x, t), v(x, t) : R × I → R are functions smooth enough for238

(4.8) to be well defined.239

Lemma 4.3. With the same assumptions for Ω and θ as in Lemma 4.1, the fol-240

lowing relation holds:241

DΩ,θ

∫
ΓΩ

(Dnw)v ds =

∫
ΓΩ

(∇ · θ)(Dnw)v − (S(θ) · ∇w) · nv ds

+

∫
ΓΩ

(Dnẇ)v ds+ (Dnw)v̇ ds,

(4.9)242

where we assume that w(x, t), v(x, t) : R × I → R are functions smooth enough for243

(4.9) to be well defined.244
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8 E. BURMAN, C. HE AND M. G. LARSON

In the following Lemma we provide the shape derivative for the ghost penalty245

stabilization term.246

Lemma 4.4. Assume that w(x, t), v(x, t) ∈ H1(Ω, t) and that locally on each tri-247

angle K, w(x, t)|K , v(x, t)|K ∈ H3/2+ε(K) for some ε > 0. Then there holds for each248

F ∈ EI(Ωh)249

(4.10) DΩ,θ

∫
F

[[Dnw]][[Dnv]] ds =

∫
F

([[Dnẇ]][[Dnv]] + [[Dnw]][[Dnv̇]]) ds+ ΥF (w, v)250

where251

ΥF (w, v) =

∫
F

[[(∇ · θ)Dnw − (S(θ) · ∇w) · n]][[Dnv]] ds

+

∫
F

[[(∇ · θ)Dnv − (S(θ) · ∇v) · n]][[Dnw]] ds

−
∫
F

[[Dnw]][[Dnv]]∇F · θ ds.

(4.11)252

4.3. Continuous SD. In this subsection, we obtain the continuous SD of the253

cost functional L(Ω, u, p) in the direction θ. From this point, we assume the admis-254

sible set for θ is H1(Ω̂)d. In the numerical approximation, we will simply replace255

the continuous solutions by their corresponding numerical approximations. Note that256

continuous SD is independent of the numerical method, and, therefore, the shape257

derivative is not exact. The error in the gradient will be of optimal order asymptoti-258

cally, if the CutFEM solution has optimal error estimates in W 1,4(Ω) and L4(Ω), see259

[16].260

On Ωt(θ), t ∈ [−δ, δ], u(x, t) ∈ H1
0,ΓΩt

(Ωt) and p(x, t) ∈ H1
0,ΓΩt

(Ωt) are defined261

such that262

(4.12) (∇u(x, t),∇v)Ωt = (f, v)Ωt + 〈gN , v〉Γf
∀ v ∈ H1

0,ΓΩt
(Ωt)263

and264

(4.13) (∇v,∇p(x, t))Ωt = h−1 〈u(x, t)− gD, v〉Γf
∀ v ∈ H1

0,ΓΩt
(Ωt).265

Immediately we have that ṗ = u̇ = 0 on ΓΩ, therefore u̇ ∈ H1
0,ΓΩ

(Ω) and ṗ ∈ H1
0,ΓΩ

(Ω).266

Lemma 4.5. Let L(Ω, u, p) be defined in (2.8). Then its shape derivative in the267

direction θ has the following representation:268

DΩ,θL(Ω, u, p)

=

∫
Ω

(∇ · θ) (fp−∇u · ∇p) dx+

∫
Ω

(S(θ) · ∇u) · ∇p dx+

∫
Ω

(∇f · θ)p dx.
(4.14)269

Proof. Rearrange L(Ω, u, p) such that270

(4.15) L(Ω, u, p) , A1 +A2271

where272

A1 = −(∇u,∇p)Ω + (f, p)Ω , A2 =
1

2
h−1 〈gD − u, gD − u〉Γf

+ 〈gN , p〉Γf
.273

274
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Note that ḟ = ∇f · θ since f ′ = 0. By Lemma 4.1 and Lemma 4.2, we then have275

Dθ,ΩA1 =

∫
Ω

(∇ · θ)(fp−∇u · ∇p) dx+

∫
Ω

(S(θ) · ∇u) · ∇p dx

− (∇u̇,∇p)Ω − (∇u,∇ṗ)Ω + (ḟ , p)Ω + (f, ṗ)Ω

=

∫
Ω

(∇ · θ)(fp−∇u · ∇p) dx+

∫
Ω

(S(θ) · ∇u) · ∇p dx+

∫
Ω

(∇f · θ)p dx

− (∇u̇,∇p)Ω − (∇u,∇ṗ)Ω + (f, ṗ)Ω.

(4.16)

276

Thanks to the fact that u̇ ∈ H1
0,ΓΩ

(Ω) and ṗ ∈ H1
0,ΓΩ

(Ω), together with (2.7) and277

(2.10), we have278

−(∇u̇,∇p)Ω − (∇u,∇ṗ)Ω + (f, ṗ)Ω = −h−1 〈u− gD, u̇〉Γf
− 〈gN , ṗ〉Γf

= −h−1 〈u− gD, u′〉Γf
− 〈gN , p′〉Γf

.
(4.17)279

Note that on Γf , we have used the fact that u̇ = u′ and ṗ = p′, since θ = 0 on Γf .280

By the product and chain rule we immediately have281

Dθ,ΩA2 = h−1 〈u− gD, u′〉Γf
+ 〈gN , p′〉Γf

.(4.18)282

Combining (4.15)–(4.18) gives (4.14). This completes the proof of the lemma.283

4.4. Discrete SD. In this subsection, we obtain the discrete SD of a discrete284

cost functional Lh(Ω, uh, ph) in the direction θ where Lh is the discrete Lagrangian285

functional that embeds the CutFEM formulation and (uh, ph) are the numerical ap-286

proximations. As a consequence the shape derivative in the direction θ is exact for287

the mesh-scale.288

Starting from the Lagrangian (2.8) we define the discrete Lagrangian functional289

as follows:290

Lh(Ω, wh, vh) =
1

2
h−1‖gD − wh‖2Γf

− ah(wh, vh) + l(vh),(4.19)291

where ah is defined in defined in (3.1) and, we recall, l(v) := (f, v)Ω + 〈gN , v〉Γf
.292

Note that taking the Fréchet derivative with respect to vh and wh in (4.19) gives293

the CutFEM formulation for the critical point (uh, ph) that satisfies (3.4) and (3.5),294

respectively.295

To define the discrete SD, firstly we need to define the finite dimensional function296

space for the perturbed solutions (uh(x, t), ph(x, t)) on Ωt. We do this by using a297

pullback map to Ω where the finite element mesh is triangular and use the standard298

definition of the finite element space on the reference domain.299

For each K ∈ T , let Kt = Tt,θK. Note that Kt does not necessarily remain300

as a triangle, however, should be non-degenerate, and its shape is determined by θ.301

It should be interpreted as an auxiliary perturbed element that only serves in the302

analysis. Here we further assume that θ ∈ [C1(Ω)]d. Then, by the inverse function303

theorem, Tt is a bijection for sufficiently small t and its derivatives are point wise well304

defined. We also define T t := {Kt,K ∈ T }, Ωh,t = Tt(Ωh), and the finite dimensional305

space on Ωh,t306

V th(Ωh,t) := {v ∈ H1(Ωh,t), v|Kt ∈ V th(Kt)}307
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10 E. BURMAN, C. HE AND M. G. LARSON

where V th(Kt) is defined as V th(Kt) = Vh(K)◦T−1
t . Here Vh(K) := Vh(T )|K = P1(K).308

It is then easy to verify that309

vth ◦ Tt ∈ Vh(Ωh) ∀vth ∈ V th(Ωh,t).310

We now define uh(x, t) and ph(x, t) on Ωt. Let uh(x, t) and ph(x, t) be the solution of311

(3.4) and (3.5) in the space V th(Ωh,t) with integrals on Ω and ΓΩ replaced by Ωt and312

ΓΩt
, respectively.313

Lemma 4.6. Let uh(x, t) and ph(x, t) be defined as above. Then314

(4.20) u̇h ∈ Vh(Ωh) and ṗh ∈ Vh(Ωh).315

Proof. By the definition, we have that316

u̇h(x) = lim
t→0

1

t
(uh(x(t), t)− uh(x, 0))

= lim
t→0

1

t
(uh(Tt(x), t)− uh(x, 0)).

(4.21)317

Since both uh(Tt(x), t) ∈ Vh(Ωh) and uh(x, 0) ∈ Vh(Ωh), we have that u̇h ∈ Vh(Ωh).318

The result for ṗh also holds by the same argument.319

In the following lemma we derive the discrete derivative for Lh(Ω, uh, ph) in the320

direction θ.321

Lemma 4.7. Let Lh(Ω, uh, ph) be defined in (4.19). Then its shape derivative has322

the following representation in the direction θ:323

DΩ,θLh(Ω, uh(Ω), ph(Ω))

=

∫
Ω

(∇ · θ) (fph −∇uh · ∇ph) dx+

∫
Ω

(S(θ) · ∇uh) · ∇ph dx+

∫
Ω

(∇f · θ)ph dx

+

∫
ΓΩ

(∇ · θ)(Dnuh)ph − (S(θ) · ∇uh) · nph ds

+

∫
ΓΩ

(∇ · θ)(Dnph)uh − (S(θ) · ∇ph) · nuh ds

−
∫

ΓΩ

βh−1(∇Γ · θ)uhph ds+
∑

F∈EI(Ωh)

γhΥF (uh, ph)

(4.22)

324

Proof. Rearrange Lh(Ω, uh, ph) such that325

(4.23) Lh(Ω, uh, ph) ,
4∑
i=1

Ai326

where327

A1 = −(∇uh,∇ph)Ω + (f, ph)Ω , A2 =
1

2
h−1 〈gD − uh, gD − uh〉Γf

+ 〈gN , ph〉Γf
,328

A3 = 〈Dnuh, ph〉ΓΩ
+ 〈Dnph, uh〉ΓΩ

− βh−1 〈uh, ph〉ΓΩ
, A4 = −j(uh, ph).329330

For the first two terms, we derive its shape derivative similarly as in (4.16) and (4.18):331

Dθ,ΩA1 =

∫
Ω

(∇ · θ)(fph −∇uh · ∇ph) + (S(θ) · ∇uh) · ∇ph + (∇f · θ)ph dx

− (∇u̇h,∇ph)Ω − (∇uh,∇ṗh)Ω + (f, ṗh)Ω,

(4.24)332
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and333

Dθ,ΩA2 = h−1 〈uh − gD, u′h〉Γf
+ 〈gN , p′h〉Γf

.(4.25)334

For A3, by Lemma 4.1 and Lemma 4.3 we have335

Dθ,ΩA3 =

∫
ΓΩ

(∇ · θ)(Dnuh)ph − (S(θ) · ∇uh) · nph + (Dnu̇h)ph + (Dnuh)ṗh ds

+

∫
ΓΩ

(∇ · θ)(Dnph)uh − (S(θ) · ∇ph) · nuh + (Dnṗh)uh + (Dnph)u̇h ds

− βh−1

∫
ΓΩ

(∇Γ · θ)uhph + u̇hph + uhṗh ds.

(4.26)

336

For A4, by Lemma 4.4 we have337

Dθ,ΩA4 = −j(uh, ṗh)− j(u̇h, ph)−
∑

F∈EI(Ωh)

γΥF (uh, ph).(4.27)338

Thanks to the fact that u̇h ∈ Vh(Ωh) and ṗh ∈ Vh(Ωh), with v replaced by ṗh in (3.4)339

and w replaced by u̇h in (3.5), we have340

0 = −(∇u̇h,∇ph)Ω − (∇uh,∇ṗh)Ω + (f, ṗh)Ω

− h−1 〈gD − uh, u̇h〉Γf
+ 〈gN , ṗh〉Γf

+ 〈Dnu̇h, ph〉ΓΩ
+ 〈Dnuh, ṗh〉ΓΩ

+ 〈Dnṗh, uh〉ΓΩ
+ 〈Dnph, u̇h〉ΓΩ

− βh−1 〈u̇h, ph〉ΓΩ
− βh−1 〈uh, ṗh〉ΓΩ

− j(uh, ṗh)− j(u̇h, ph).

(4.28)341

Combing (4.23)–(4.28) gives (4.22).342

Remark 4.8. The directional discrete SD is exact, however, due to the extra terms343

in the CutFEM formulation it has a more complex representation.344

4.5. CutFEM with boundary value correction. In the classical shape sen-345

sitivity analysis as utilized for the continuous and discrete SD, the function u(x, t)346

and p(x, t) are defined on the domain of Ωt. In this subsection the effect of domain347

perturbation is included through the boundary correction approach. This means that348

the perturbed solutions (u(x, t), p(x, t)) remain defined on the unperturbed domain349

Ω for all t, but the effect of domain is included through an extrapolation procedure350

in the weakly imposed boundary conditions. The idea of the boundary correction ap-351

proach where weakly imposed boundary conditions are perturbed in order to improve352

geometry approximation was first introduced in [10]. The extension to CutFEM was353

considered in [20]. For a recent discussion of the method interpreted as a singular354

Robin condition we refer to [26]. The idea of extrapolation on the boundary has al-355

ready been used in the context of the standard Bernoulli problem, see [7]. However356

the use of boundary value correction as a vehicle for shape sensitivity analysis appears357

to be new.358

Drawing on the ideas on boundary correction for the CutFEM method [20], we359

modify the weak formulation on the free boundary as follows:360

(4.29)
ãth(w, v) = (∇w,∇v)Ω − 〈Dnw, v〉ΓΩ

− 〈Dnv, w ◦ Tt〉ΓΩ
+ βh−1 〈w ◦ Tt, v ◦ Tt〉ΓΩ

,361
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and362

ath(w, v) := ãth(w, v) + j(w, v).363

We emphasize that the above modified bilinear form ãth is similar to (3.2) but with364

the Dirichlet condition now imposed on Tt(ΓΩ) = ΓΩt through an extrapolation.365

Now, considering the following variational problems: finding uh(x, t) ∈ Vh(Ωh)366

such that367

(4.30) ath(uh(x, t), v) = (f, v)Ω + 〈gN , v〉Γf
∀v ∈ Vh(Ωh),368

and finding ph(x, t) ∈ Vh(Ωh) such that369

(4.31) ath(w, ph(x, t)) = h−1 〈uh(x, t)− gD, w〉Γf
∀w ∈ Vh(Ωh).370

Note that the above weak formulation is consistent with the following in the strong371

form:372

−4u = f ∈ Ω, Dnu = gN on Γf , and u = 0 on ΓΩt
.373

We now modify the discrete Lagrangian at pseudo-time t with respect to θ as follows:374

L̃h(Ωt, uh(x, t), ph(x, t))

=
1

2
h−1‖gD − uh(x, t)‖2Γf

− ath(uh(x, t), ph(x, t)) + l(ph(x, t)).
(4.32)375

where uh(x, t) and ph(x, t) are the solutions to (4.30) and (4.31), respectively.376

Remark 4.9. It is easy to see that377

lim
t→0
L̃h(Ωt, uh(t), ph(t)) = Lh(Ω, uh, ph).378

Finally, we define the modified directional shape derivative in the direction θ by379

(4.33) DΩ,θL̃h(Ω, uh, ph) = lim
t→0

1

t

(
L̃h(Ωt, uh(t), ph(t))− Lh(Ω, uh, ph)

)
,380

where uh, ph are the solutions on Ω for (3.4) and (3.5), respectively.381

4.6. Boundary SD. In this subsection we derive the explicit formula for the382

Boundary SD defined in (4.33) in the direction θ.383

Lemma 4.10. Let uh and ph be the solutions of (3.4) and (3.5), respectively. We384

have the following expression for the modified shape derivative defined in (4.33):385

DΩ,θL̃h(Ω, uh, ph) = 〈Dnph,∇uh · θ〉ΓΩ
− βh−1

(
〈∇uh · θ, ph〉ΓΩ

+ 〈∇ph · θ, uh〉ΓΩ

)
.

(4.34)
386

Proof. By definition we have387

DΩ,θL̃h(Ω, uh, ph) = lim
t→0

1

t

(
L̃h(Ωt, uh(t), ph(t)− Lh(Ω, uh, ph)

)
= lim
t→0

1

2t
h−1

(
‖uh(t)− gD‖2Γf

− ‖uh − gD‖2Γf

)
− lim
t→0

1

t

(
ath(uh(t), ph(t))− ah(uh, ph)

)
+ lim
t→0

1

t
(f, ph(t)− ph)Ω + lim

t→0

1

t
〈gN , ph(t)− ph〉Γf

− lim
t→0

1

t
(j(uh(t), ph(t))− j(uh, ph))

,
5∑
i=1

Ai.

(4.35)388
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By direct calculations, we have389

A1 = h−1 〈uh − gD, u′h〉Γf
, A3 = (f, p′h)Ω,(4.36)390

A4 = 〈gN , p′h〉Γf
, A5 = −j(u′h, ph)− j(uh, p′h).(4.37)391

392

Expanding and regrouping terms in ath(·) and ah(·) gives393

−A2 = lim
t→0

1

t

(
ath(uh(t), ph(t))− ah(uh, ph)

)
= lim
t→0

1

t
((∇uh(t),∇ph(t))Ω − (∇uh,∇ph)Ω)

− lim
t→0

1

t

(
〈Dnuh(t), ph(t)〉ΓΩ

− 〈Dnuh, ph〉ΓΩ

)
− lim
t→0

1

t

(
〈Dnph(t), uh(t) ◦ Tt〉ΓΩ

− 〈Dnph, uh〉ΓΩ

)
+ lim
t→0

1

t
βh−1

(
〈uh(t) ◦ Tt, ph(t) ◦ Tt〉ΓΩ

− 〈uh, ph〉ΓΩ

)
.

(4.38)394

Applying the product rule, Taylor expansion and neglecting the higher order terms395

gives396

−A2 =(∇u′h, ph)Ω + (∇uh,∇p′h)Ω − 〈Dnu
′
h, ph〉ΓΩ

− 〈Dnuh, p
′
h〉ΓΩ

− lim
t→0

1

t

(
〈Dnph(t), uh(t) + t∇uh(t) · θ〉ΓΩ

− 〈Dnph, uh〉ΓΩ

)
+ lim
t→0

1

t
βh−1

(
〈uh(t) + t∇uh(t) · θ, ph(t) + t∇ph(t) · θ〉ΓΩ

− 〈uh, ph〉ΓΩ

)
=(∇u′h,∇ph)Ω + (∇uh,∇p′h)Ω − 〈Dnu

′
h, ph〉ΓΩ

− 〈Dnuh, p
′
h〉ΓΩ

−
(
〈Dnp

′
h, uh〉ΓΩ

+ 〈Dnph, u
′
h〉ΓΩ

+ 〈Dnph,∇uh · θ〉ΓΩ

)
+ βh−1

(
〈u′h, ph〉ΓΩ

+ 〈uh, p′h〉ΓΩ
+ 〈∇uh · θ, ph〉ΓΩ

+ 〈uh,∇ph · θ〉ΓΩ

)
.

(4.39)

397

Note that u′h, p
′
h ∈ Vh(Ωh). By (3.4) and (3.5) we have398

(∇ph,∇u′h)Ω − 〈Dnph, u
′
h〉ΓΩ

− 〈Dnu
′
h, ph〉ΓΩ

+ βh−1 〈ph, u′h〉ΓΩ
+ j(ph, u

′
h)

=ah(u′h, ph) = h−1 〈uh − gD, u′h〉Γf

(4.40)

399

and400

(∇uh,∇p′h)Ω − 〈Dnuh, p
′
h〉ΓΩ

− (Dnp
′
h, uh)ΓΩ

+ βh−1(uh, p
′
h)ΓΩ

+ j(uh, p
′
h)

=ah(uh, p
′
h) = (f, p′h)Ω + 〈gN , p′h〉Γf

.
(4.41)401

Combining (4.35)–(4.41) gives (4.34). This completes the proof of the lemma.402

Remark 4.1. Applying Taylor expansion and omitting higher order terms gives403

ath(w, v) ≈ (∇w,∇v)Ω − 〈Dnw, v〉ΓΩ
− 〈Dnv, w〉ΓΩ

+ βh−1 〈w, v〉ΓΩ

− t
(
〈Dnv,∇w · θ〉ΓΩ

+ βh−1 〈∇w · θ, v〉ΓΩ
+ βh−1 〈∇v · θ, w〉ΓΩ

)
.

(4.42)404

Taking the derivative with respect to t in (4.42) and multiplying the result by −1 also405

gives (4.34).406
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Remark 4.2. We note that here the modified shape derivative DΩ,θL̃h(Ω) is also407

exact for the discrete formulation. However, comparing to the discrete SD in (4.22) the408

boundary SD formula in (4.34) is more simple. Moreover, since the shape derivative409

only has surface forms on the free boundary, it enjoys the flexibility for the boundary410

type shape derivative.411

5. Optimization algorithms. The objective now is to find the vector field412

θ : Ω̂→ Ω̂ such that the cost functional decreases the fastest along that direction. To413

this end we consider the following constrained minimization problem: find β ∈ H1(Ω)d414

such that415

(5.1) β = argmin
‖θ‖H1(Ω̂)=1

θ=0 on Γf

DΩ,θL(Ω, u, p).416

Define the corresponding Lagrangian417

K(θ, λ) = DΩ,θL(Ω, u, p) + λ
(
‖θ‖2

H1(Ω̂)
− 1
)
.418

From remark 4.1 in [16], an equivalent formulation of (5.1) renders to find β̃ ∈419

H1
0 (Ω̂)d such that420

(5.2) (β̃,θ)H1(Ω̂) = −DΩ,θL(Ω, u, p) ∀θ ∈ H1
0 (Ω̂)d,421

where β̃ = 2λβ and λ =
‖β̃‖H1(Ω̂)d

2
. Then it is easy to see that by taking θ = β422

(5.3) DΩ,βL = −(β̃,β)H1(Ω̂)d = −‖β̃‖H1
0 (Ω̂)d < 0,423

which guarantees that β is a descent direction.424

The following Hadamard Lemma indicates that under certain regularity the vari-425

ational problem (5.2) is equivalent to an interface problem. See Theorem 2.27 and426

detailed definitions of function spaces in [36].427

Lemma 5.1 (Hadamard). If L(Ω) is shape differentiable at every element Ω of428

class Ck,Ω ⊂ Ω̂. Furthermore, assume that ∂Ω is of class Ck−1. Then there exists a429

scalar function G(ΓΩ) ⊂ D−k(ΓΩ) such that430

(5.4) DΩ,θL(Ω) =

∫
ΓΩ

Gθ · n ds.431

Combining (5.2) and Lemma 5.1 immediately gives432

(5.5) (∇β̃,∇θ)Ω + (β̃,θ)Ω = −
∫

ΓΩ

Gθ · n ds.433

In strong form, equation (5.5) is equivalent to the following interface problem for434

β̃ ∈ H1(Ω)d,435

−4β̃ + β̃ = 0 in Ω̂,(5.6)436

[[Dnβ̃]] = −Gn on ΓΩ,(5.7)437

[[β̃]] = 0 on ΓΩ,(5.8)438

β̃ = 0 on ∂Ω̂.(5.9)439440
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Given that ΓΩ is smooth and G ∈ H1/2(ΓΩ), we also have the following regularity441

estimate:442

‖β̃‖H1(Ω̂) + ‖β̃‖H2(Ω̂\ΓΩ) . ‖G‖H1/2(ΓΩ),(5.10)443

(see [22]) and hence β̃ ∈ H1(Ω̂)d ∩H2(Ω̂ \ ΓΩ)d.444

Here we illustrate the algorithm based on the cost functional for the continu-445

ous SD. In numerics, the continuous SD can be directly replaced by the discrete or446

boundary SD.447

5.1. Approximation of the shape derivative β̃ using CutFEM. In this448

subsection, we use the CutFEM of the interface type [28] to obtain a numerical ap-449

proximation for β̃ in (5.5). The same mesh used for solving (uh, ph) will also be used450

here. No fitting of the mesh to ΓΩ is required.451

We firstly define the related finite element spaces. Given a closed interface Γ ⊂ Ω̂,452

define Ω−Γ ⊂ Ω̂ to be the domain enclosed by Γ and define Ω+
Γ = Ω̂ \ Ω−Γ . Also define453

Ω±h = ∪{K ∈ T ,K ∩ Ω±Γ 6= ∅}. Finally, define the finite element spaces V +
h (Ω+

h ) and454

V −h (Ω−h ) by455

V +
h (Ω+

h ) = {v+ ∈ H1(Ω+
h ) : v+|K ∈ P 1(K) ∀K ∩ Ω+

Γ 6= ∅},456

and457

V −h (Ω−h ) = {v− ∈ H1(Ω−h ) : v−|K ∈ P 1(K) ∀K ∩ Ω−Γ 6= ∅}.458

Note that V +
h (Ω+

h ) and V −h (Ω−h ) are both defined on “cut” elements K ∈ T such that459

K ∩ Γ 6= ∅. When there is no risk of ambiguity, we remove (Ω±h ) in the finite element460

space notations.461

The finite element solution for β̃ is then set to find βh := (β+
h ,β

−
h ) ∈ V +

h × V
−
h462

such that463

b0(βh,θ) + j(βh,θ) = l1(θ) ∀θ ∈ V +
h × V

−
h(5.11)464

where465

b0(βh,θ) = (∇β+
h ,∇θ

+)Ω+
Γ

+ (∇β−h ,∇θ
−)Ω−Γ

− 〈{Dnβh}, [[θ]]〉Γ − 〈Dnβh,θ〉∂Ω̂

− 〈{Dnθ}, [[βh]]〉Γ + β1h
−1 〈[[βh]], [[θ]]〉Γ − 〈Dnθ,βh〉∂Ω̂ + β2h

−1 〈βh,θ〉∂Ω̂

(5.12)

466

467

j(βh,θ) = γ1h

 ∑
F∈EI(Ω+

h )

∫
F

[[Dnβ
+
h ]][[Dnθ

+]] +
∑

F∈EI(Ω−h )

∫
F

[[Dnβ
−
h ]][[Dnθ

−]]


(5.13)

468

and469

(5.14)
l1(θ) = −DΩ,θL(Ω, uh, ph) or −DΩ,θLh(Ω, uh, ph) or −DΩ,θL̃h(Ω, uh, ph),470

where {Dnθ}|Γ :=
1

2

(
∇θ+ +∇θ−

)
·nΓ is the arithmetic average operator where nΓ is471

set to be the outer normal vector of Γ pointing from Ω+
h to Ω−h , and, [[θ]]|Γ := θ+−θ−472

is the jump operator.473
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5.2. Level set update. In this subsection, we update the free boundary ΓΩ in474

the steepest descent direction (shape derivative) of β. Our goal is to solve for the475

level set function φ(x+ tβ(x), t) for the given β such that476

φ(x+ tβ(x), t) = φ(x, 0) ∀ t and ∀x ∈ Ω̂.477

Taking the derivative with respect to t gives that478

(5.15) ∇xφ · β +
∂φ

∂t
= 0 in Ω̂.479

This yields a Hamilton-Jacobi equation, if the nonlinear dependence of β on the480

optimization is accounted for. However for fixed vector field β this is simply an481

advection problem with a non-solenoidal transport field.482

Remark 5.1. Note that we can simply choose the level set function at the initial483

stage as the distance function. However, after some evolution steps, the updated level484

set function no longer has this property. This can cause problems for accuracy of the485

numerical method if the magnitude of the gradient locally becomes very small or very486

large. Nevertheless, it is well known that the issue can be resolved by redefining φ487

regularly as the distance function while keeping the interface position fixed. In the488

numerical examples presented herein we did not notice any need for such re-distancing,489

since an advection stable scheme was used to propagate the interface.490

To approximate (5.15), we use the Crank-Nicolson scheme in time combining with491

gradient penalty stabilization in space for the advection problem [19, 15]. We remain492

to use the same background mesh T for this step.493

For the given Ω, let τ(Ω,βh) = R∗ J(Ω)

‖βh‖H1(Ω̂)d
, where J(Ω) is the cost functional494

defined in (2.6), R is the learning rate, and βh is the solution to (5.11). We note that495

the steepest descent formula for τ is based on (5.3). Firstly, we divide [0, τ ] into N496

equal length time steps and let δt = τ/N and ti = iδt for i = 0, · · ·N . Denote by497

φnh = φh(tn). Given the initial level set φ0
h, find φnh ∈ Vh(Ω̂) for n = 1, · · · , N such498

that for all w ∈ Vh(Ω̂) there holds:499

(5.16)(
φnh − φ

n−1
h

δt
, w

)
Ω̂

+
1

‖βh‖H1(Ω̂)d

(
βh · ∇

φnh + φn−1
h

2
, w

)
Ω̂

+rh

(
φnh + φn−1

h

2
, w

)
= 0,500

where501

rh(v, w) =
∑

F∈EI(Ω̂)

γ2h
2

∫
F

[[Dnv]][[Dnw]] ds502

with γ2 > 0 is a positive parameter and EI(Ω̂) is the set of all interior facets in T .503

6. Numerical experiments. In the numerical experiments we mainly aim to504

compare the performances of the three different shape derivatives, i.e., continuous SD505

given in (4.14), the discrete SD given in (4.22), and the boundary SD given in (4.34).506

A regular fixed background mesh of Ω̂ is used for all evolving PDE models. For507

all numerical experiments in this paper, we will use the unit square domain as the508

background domain, i.e., Ω̂ = [0, 1]2. The background mesh is set as a uniform509

100 × 100 crossed triangular mesh. The penalty parameters in (3.1) are chosen as510

γ = 0.1 and β = 10. And in (5.11), the parameters are chosen such that β1 = β2 = 10511

and γ1 = 1. In (5.16), we chose R = 0.5 or 1, N = 10 and γ2 = 1.512
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(a) level sets at iterations 0, 1, 2, 5 and 10
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(b) evolutions of cost functional

Fig. 2. Example 6.1. ΓΩ∗ is a circle. Case 1. Initial level set as a circle.

Example 6.1 (Circle). We recall the problem:513

−4u = f in Ω∗,

u = 0 on ΓΩ∗ ,

u = gD, Dnu = gN on Γf .

(6.1)514

For this example, the free boundary ΓΩ∗ is the circle with radius r0 = 1/4 and center515

being (0.5, 0.5).516

We choose to use the data (f, gD, gN ) such that517

(6.2) f = −4/r, gD = 4r − 1 on ∂Ω̂, gN = Dnu on ∂Ω̂,518

with u = 4r − 1 and r =
√
x2 + y2. We note that the choice for the boundary519

data is not unique and indeed there are infinitely many choices. Indeed, assuming520

f ∈ L2(Ω∗) is given. For any gD ∈ H1/2(Γf ), there exits the so-called Dirichlet-521

Neumann mapping, R : gD ∈ H1/2(Γf )→ gN ∈ H−1/2(Γf ) such that gN = Dnu and522

that u is the solution to523

−4u = f in Ω, u = 0 on ΓΩ∗, u = gD on Γf .524

Therefore, for any gD, we can use (f, gD,R(gD)) as the given compatible data.525

We start with a smaller circle (with same center (0, 5, 0.5)) as the initial free526

boundary (see the inner most circle in Figure 2a) that has the following level set527

function written in polar coordinates:528

φ(r, θ) = −r + 1/8.529

The stopping criteria is set such that J(Ω) ≤ 1E − 5. It takes 14, 16 and 16530

iterations, respectively, using the continuous SD, discrete SD and boundary SD to531

reach the stopping criteria. In this case, the performances among all three shape532

derivatives are almost identical. Figure 2a shows the level sets at iterations 0, 1, 2, 5533

and 10 (from the inner most the to the outer most circles). The true level set is534

marked as magenta and is almost completely covered by the computed level set at535

step 10. The level set at iteration 0 is the initial given level set. At iteration 10, the536
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(a) ΓΩ∗ (circle) and the initial
level set (ellipse)

(b) iteration 5 (c) iteration 10

(d) iteration 50 (e) final level sets
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Fig. 3. Example 6.1: ΓΩ∗ is a circle. Case 2. Initial level set as an ellipse.

computed level set almost coincides with the true level set function. Figure 2b shows537

the decreasing log rate of the cost functional J(Ω). In this case the cost functional538

converges at a fast and uniform rate for all three shape derivative.539

We then test with an initial level set as an ellipse (see the red curve in Figure 3a):540

φ(x, y) = − (x− 0.5)2

c21
− (x− 0.5)2

c22
+ 1, where c1 = 3/8, and c2 = 1/8.541

With the same stopping criteria that J(Ω) ≤ 1E − 5, it takes 169 , 155, and 123542

iterations respectively for the continuous SD, discrete SD and boundary SD. Fig-543

ure 3b–Figure 3d show the obtained level sets at iterations 5, 10 and 50. The final544

converged computational level sets are given in Figure 3e. The level sets are marked545

with green for the continuous SD, blue for the discrete SD and red for the boundary546

SD. We again observe high coincidence among level sets computed by all SDs. Fig-547

ure 3f compares the evolution of cost functionals. It is obvious to see two different548

convergence patterns for all cases: for about the first 20 iterations the cost functional549

is decreasing at a uniform fast rate with small oscillations and afterward is deceasing550

at a much slower rate with more severe oscillations.551

If the initial level set is not properly chosen, the iterative procedure could require552

much more iterations to converge due to the very slow convergence in the second stage.553

Moreover, due to the nature of steepest descent method, iterations may stagnate at554

a local minimum.555

We also note that the observed oscillations of the cost functional are natural since556

the pseudo time step is fixed. A more monotone behavior can be achieved if a line557
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search is included. Furthermore, even though the discrete and boundary SDs are558

exact, the gradient β is not necessarily in the finite element space and, therefore, still559

requires approximation.560

Example 6.2 (Ellipse). For this example, the free boundary ΓΩ∗ is an ellipse (see561

Figure 4a) with the following level set representation:562

φ(x, y) = −16(x− 0.5)2 − 64(y − 0.5)2 + 1.563

We chose to use the data (f, gD, gN ) such that f ≡ 0, gN = (sin(x+y), cos(x+y))·n on564

Γf , and gD = R−1(gN ) where R−1 is the inverse mapping of the Dirichlet-Neumann565

mapping R. Numerically, gD is approximated by solving (3.4) on a 500 × 500 finer566

mesh.567

We start with the following circle as the initial level set (see Figure 4a):568

φ(x, y) = −
√

(x− 0.6)2 + (y − 0.4)2 + 1/6,569

which has partial intersection with the true free boundary ΓΩ∗ . With the stopping570

criteria that J(Ω) ≤ 1E − 5, it takes 120 , 154, and 146 iterations respectively for571

the continuous SD, discrete SD and boundary SD. Figure 4b–Figure 4d show the572

obtained level sets at iterations 5, 10 and 50. The final computed level sets are given573

in Figure 4e. We again observe high coincidence among level sets computed by all574

SDs. Figure 4f compares the evolution of cost functional and similar phenomenons575

are observed to former examples. The number of iterations required to reach the576

stopping criteria also differs a significant amount due to its slow convergence rate and577

oscillating behavior in the second stage. In this case, unfortunately, the presenting578

algorithm is not able to yield significantly better level sets by simply running more579

iterations.580

Example 6.3 (Lamé Square). For this example the free boundary ΓΩ∗ is a Lamé581

Square that has the following level set representation (see Figure 5a):582

φ(x, y) = −81(x− 0.5)n − 1296(y − 0.5)n + 1, n = 4.583

The level set becomes closer to a rectangle as the integer n increases. We chose the584

data (f, gD, gN ) such that f = 0, gN = (5 sin(θ), 5 cos(θ)) · n where θ = tan−1((y −585

0.5)/(x−0.5)) and gD = R−1(gN ). Numerically, gD is again approximated by solving586

(3.4) on a 500× 500 finer mesh.587

We start with the following circle as the initial level set (see Figure 5a)588

φ(x, y) = −
√

(x− 0.5)2 + (y − 0.5)2 + 1/8.589

With the stopping criteria that J(Ω) ≤ 5E − 6 with a maximal iteration number of590

200, it takes 173, 174, and 200 iterations respectively using the continuous, discrete,591

and boundary SDs. Figure 5c – Figure 5d show the level sets at iterations 5, 10 and592

50. The final computed level sets are given in Figure 5e. In this case, the level593

sets produced by the continuous and discrete SDs are almost identical, however, are594

slightly different from those produced by the boundary SD. Figure 5f compares the595

evolution of cost functional. We observe different convergence patterns between the596

boundary SD and the rest. In the first 60 iterations, the cost functional based on597

the boundary SD decreases faster, however, for the remaining iterations its level sets598

remain steady.599
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(a) ΓΩ∗ (ellipse) and the initial
level set (circle)

(b) iteration 5 (c) iteration 10

(d) iteration 50 (e) final level sets
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Fig. 4. Example 6.2: ΓΩ∗ is an ellipse. Initial level set as a circle.

We also note that the final level sets in Figure 5e represent almost the best level600

sets we can achieve with the proposed algorithm. To illustrate, in Figure 6a we601

report the level set at the 1000th iteration for the discrete SD which barely shows any602

difference to its corresponding level set in Figure 5e. Figure 6b plots the evolution of603

the corresponding cost functional.604

Example 6.4 (Topology change with merging). In this test, we aim to validate605

the capability of topology change for our algorithm. The free boundary ΓΩ∗ and606

the given data (f, gD, gN ) are set to be the same as in Example 6.3. We choose the607

initial level set as two separate Lamé squares with the following level set functions608

(see Figure 7a):609

φ(x, y) = max (φ1(x, y), φ2(x, y)) ,610

where φ1(x, y) = 1−1296(x−0.32)4−1296(y−0.5)4 and φ2(x, y) = 1−1296(x−0.68)4−611

1296(y−0.5)4. The stopping criteria is set the same that J(Ω) ≤ 5E−6. It takes 271,612

271, and 129 iterations for the respective continuous, discrete, and boundary SDs to613

reach the stopping criteria. Figure 7b -Figure 7e show the level sets at the respective614

iterations 10, 50 and 100 and the last iteration. We observe that the level set gradually615

merges into one simple connected shape for all SDs. The level sets obtained by all616

SDs are still almost identical. However, it takes significantly less iterations for the617

boundary SD as it converges slightly faster in the initial stage.618

Example 6.5 (Doubly Connected Domain). In this example, the free boundary619
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(a) ΓΩ∗ (Lamé Square) and the
initial level set (circle)

(b) iteration 5 (c) iteration 10

(d) iteration 50 (e) final level sets
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Fig. 5. Example 6.3: ΓΩ∗ as a Lamé Square. Initial level set as a circle.
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Fig. 6. Example 6.3: ΓΩ∗ as a Lamé Square. Initial level set as a circle.

ΓΩ∗ is represented as two isolated circles (see Figure 8a):620

φ(x, y) = max
(

0.15−
√

(x− 0.2)2 + (y − 0.5)2, 0.15−
√

(x− 0.80)2 + (y − 0.5)2
)
.621

We start with the following simply connected Cassini oval as the initial level set (see622

Figure 8a)623

φ(x, y) = −(x̂2 + ŷ2)2 +2(x̂2− ŷ2)−1+b4, x̂ = 3x−1.5, ŷ = 3y−1.5, b = 1.001.624

The stopping criteria is set such that the maximal number of iterations not exceeds625

300. We set the given data (f, gD, gN ) such that f = 0, gN = (x − 0.5, y − 0.5) · n626
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(a) ΓΩ∗ (Lamé Square) and
the initial level set (two small
Lamé Squares)

(b) iteration 10 (c) iteration 50

(d) iteration 100 (e) final level sets

0 50 100 150 200 250
iterations

-14

-12

-10

-8

-6

-4

-2

0

lo
g(
J(

))

continuous SD
discrete SD
boundary SD

(f) evolutions of cost functional

Fig. 7. Example 6.4: ΓΩ∗ is a Lamé Square. Initial level set as two separated Lamé Squares.

on Γf and gD = R−1. Numerically, gD is approximated again by solving (3.4) on a627

500× 500 finer mesh.628

Figures Figure 8b–8e show the level sets at the respective iterations 50, 100, 200 and629

300. We observe that the Cassini oval gradually splits into two separate symmetric630

parts. Figure 8f compares the evolution of cost functional for the first 100 iterations.631

We observe that the convergence for this example is extremely slow which is likely due632

to the sharp angles (non-smoothness) evolved due to splitting. The results generated633

by the three SDs are again very similar.634

For all the numerical examples, we note that even the cost functionals exhibit os-635

cillations in the second stage, the evolution of level sets remains relatively steady. We636

also observe that when the level sets involve non-smooth boundary, the convergence637

can be very slow.638

7. Appendix.639

Proof of Lemma 4.1.640

Proof. Through a change of variable, we have641

∫
Ωt(θ)

φ(x, t) dx =

∫
Ω

φ ◦ Tt,θµt dx =

∫
Ω

φ(x(t), t)µ(t) dx642
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(a) ΓΩ∗ (two circles) and the
initial level set (Cassini oval)

(b) iteration 50 (c) iteration 100

(d) iteration 200 (e) iteration 300
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Fig. 8. Example 6.5: ΓΩ∗ as two separate circles. Initial level set as one simply connected
Cassini oval.

where µ(t) = det(∇Tt,θ) and x(t) = x+ tθ(x). Note that µ(0) = 1. By definition,643

DΩ,θ

∫
Ω

φdx = lim
t→0

1

t

(∫
Ωt(θ)

φ(x, t) dx−
∫

Ω

φ(x, 0) dx

)

= lim
t→0

∫
Ω

1

t
(φ(x(t), t)µt − φ(x, 0)µ0) dx

=

∫
Ω

φ̇(x, 0)dx+

∫
Ω

φ(x, 0)∇ · θdx

(7.1)644

where we have used the fact that (see Example 3.1 in [25])645

lim
t→0

1

t
(µ(t)− µ(0)) = ∇ · θ.646

To prove the second part of (4.7), we have that647 ∫
ΓΩt(θ)

φ(x, t) dx =

∫
ΓΩ

φ ◦ Tt,θω(t) dx =

∫
ΓΩ

φ(x(t), t)ω(t) dx648

where ω(t) = µ(t)|(∇Tt,θ)−t · n|. Note that ω(0) = 1. Finally, combining the fact649

that650

lim
t→0

1

t
(ω(t)− ω(0)) = ∇ · θ − (∇θ · n) · n651

gives the second part of (4.7). This completes the proof of the lemma.652
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Proof of Lemma 4.2.653

Proof. By a change of variables, we have654

lim
t→0

1

t

(∫
Ωt(θ)

∇w(x, t) · ∇v(x, t) dx−
∫

Ω

∇w(x, 0) · ∇v(x, 0) dx

)

= lim
t→0

1

t

(∫
Ω

((∇w ◦ Tt) · (∇v ◦ Tt)µ(t) dx−
∫

Ω

∇w(x, 0) · ∇v(x, 0) dx

)
= lim
t→0

1

t

(∫
Ω

(A(t) · ∇(w ◦ Tt)) · ∇(v ◦ Tt) dx−
∫

Ω

∇w · ∇v dx
)

=

∫
Ω

(A′(t) · ∇w) · ∇v +∇ẇ · ∇v +∇v̇ · ∇w dx,

(7.2)655

where we used the chain rule656

(7.3) (∇u) ◦ Tt = ∇T−tt · ∇(u ◦ Tt)657

and introduced A(t) and its derivative658

(7.4) A(t) = µ(t)∇T−1
t (∇Tt)−t, A′(t) = ∇ · θI − S(θ),659

and finally we employed the product rule. This completes the proof of the lemma.660

Proof of Lemma 4.3.661

Proof. Firstly by a change of variable we have662 ∫
ΓΩt

∇w(x, t) · ntv(x, t) ds =

∫
ΓΩ

(∇w ◦ Tt) · (nt ◦ Tt)(v ◦ Tt)ω(t) ds

=

∫
ΓΩ

(∇T−tt · ∇(w ◦ Tt)) · (nt ◦ Tt)(v ◦ Tt)ω(t) ds.

(7.5)663

From Theorem 4.4 in [25] it holds that664

nt ◦ Tt =
∇T−tt · n
|∇T−tt · n|

.665

Recall that ωt = µ(t)|∇T−tt ·n| and A(t) = µ(t)∇T−1
t (∇Tt)−t. By a direct calculation666

together with (7.3) we have667 ∫
ΓΩt

(∇w(x, t) · nt)v(x, t) ds =

∫
ΓΩ

(A(t) · ∇(w ◦ Tt)) · n(v ◦ Tt) ds(7.6)668

Finally, combing (7.6) and (7.4) gives669

DΩ,θ

∫
ΓΩ

∇w · nv ds =

∫
ΓΩ

(A′(t) · (∇w · n)v + (∇ẇ · n)v ds+ (∇w · n)v̇ ds

=

∫
ΓΩ

((∇ · θ)(∇w · n)v − (S(θ) · ∇w) · nv + (∇w · n)v̇ ds+ (∇ẇ · n)v ds.

(7.7)670

This completes the proof of the lemma.671
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Proof of Lemma 4.4.672

Proof. By the assumption that Tt is smooth, using similar arguments in Lemma 4.1673

and Lemma 4.2 gives674 ∫
F t

[[∇w · nt]][[∇v · nt]] ds

=

∫
F

[[∇w ◦ T t · (nt ◦ Tt)]][[∇v ◦ T t · (nt ◦ Tt)]]ω(t) ds

=

∫
F

[[A(t)∇(w ◦ T t) · n]][[A(t)∇(v ◦ T t) · n]]ω−1(t) ds

(7.8)675

Applying the product rule, we then have that676

DΩ,θ

∫
F

[[∇w · n]][[∇v · n]] ds

=

∫
F

[[A′(0)∇w · n]][[∇v · n]] + [[A′(0)∇v · n]][[∇w · n]]

+

∫
F

[[∇w · n]][[∇v̇ · n]] + [[∇v · n]][[∇ẇ · n]] ds

−
∫
F

[[∇w · n]][[∇v · n]]ω′(0)ds

=

∫
F

[[(∇ · θ)∇w · n− S(θ) · ∇w · n]][[∇v · n]] ds+

∫
F

[[∇ẇ · n]][[∇v · n]] ds

+

∫
F

[[(∇ · θ)∇v · n− S(θ) · ∇v · n]][[∇w · n]] ds+

∫
F

[[∇w · n]][[∇v̇ · n]] ds

−
∫
F

[[∇w · n]][[∇v · n]] (∇ · θ − (∇θ · n) · n)ds.

(7.9)677

This completes the proof of Lemma 4.4.678
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von teilräumen, die keinen randbedingungen unterworfen sind, in Abhandlungen aus dem770
mathematischen Seminar der Universität Hamburg, vol. 36, Springer, 1971, pp. 9–15, https:771
//doi.org/10.1007/BF02995904.772

[34] S. Osher and R. P. Fedkiw, Level set methods: an overview and some recent results, Journal773
of Computational physics, 169 (2001), pp. 463–502, https://doi.org/10.1006/jcph.2000.774
6636.775

[35] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A pde-based fast local level set776
method, Journal of computational physics, 155 (1999), pp. 410–438, https://doi.org/10.777
1006/jcph.1999.6345.778

[36] J. Soko l owski and J.-P. Zolésio, Introduction to shape optimization, vol. 16 of Springer779
Series in Computational Mathematics, Springer-Verlag, Berlin, 1992, https://doi.org/10.780
1007/978-3-642-58106-9.781
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