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Abstract How does the presence of a robot affect pedestri-
ans and crowd dynamics, and does this influence vary across
robot type? In this paper, we took the first step towards an-
swering this question by performing a crowd-robot gate-
crossing experiment. The study involved 28 participants and
two distinct robot representatives: A smart wheelchair and
a Pepper humanoid robot. Collected data includes: video
recordings; robot and participant trajectories; and partici-
pants’ responses to post-interaction questionnaires. Quanti-
tative analysis on the trajectories suggests the robot affects
crowd dynamics in terms of trajectory regularity and interac-
tion complexity. Qualitative results indicate that pedestrians
tend to be more conservative and follow “social rules” while
passing a wheelchair compared to a humanoid robot. These
insights can be used to design a social navigation strategy
that allows more natural interaction by considering the robot
effect on the crowd dynamics.
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1 Introduction

The use of robots within pedestrian spaces is becoming in-
creasingly common. Mobile robots with various shapes, sizes
and functions have been applied in different essential areas.
For example, humanoid robots such as Pepper have been
used in home and public environment [25], autonomous ve-
hicles have been increasingly observed on the road and smart
wheelchairs have been developed and tested in clinical trials
[7, 3].

In many of these environments, the robot must interact
with pedestrians in a safe and potentially social way, requir-
ing an understanding of pedestrian dynamics in response to
different robots. However, state-of-the-art approaches nor-
mally model pedestrian dynamics using simulation or with
data collected in human-only experiments [11, 13]. The few
works that have explored pedestrian dynamics in a robot-
populated environment either studied this with a specific
type of robot or limited the number of pedestrians [6, 21,
38]. Although human perception and interaction with differ-
ent types of robots have been studied in many areas, it re-
mains to be explored in a crowd-robot navigation scenario.

In this paper, we aim to understand whether and how
pedestrian crowd-dynamics will be changed in the presence
of a robot, and how this change would be affected by the
robot type. To approach this problem, we identified two spe-
cific robots (a Pepper humanoid robot and a smart wheel-
chair) which have been widely used and researched, and rep-
resent two distinct types of robots that pedestrians would be
likely to encounter in their daily life in the future. These
two types of smart machines, while overlapping in the ar-
eas they would operate, differ in appearance, physics and
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level of autonomy, thus posing interesting cases to be stud-
ied. Specifically, we conducted a crowd-robot gate-crossing
experiment with these two robots and measured the effect
each robot exerted on the crowds macroscopically (i.e. as
one moving body of people) and on groups of individuals
microscopically (i.e. pedestrians in close proximity and far
away from the robot). In addition, the pedestrians’ percep-
tion of the robot and the associated actions were measured
qualitatively using surveys.

Our study makes the following contributions:
1. The first controlled crowd-robot experiment with recorded

pedestrian trajectory dataset in the presence of a robot, which
presents novel results.

2. An understanding of how pedestrian and crowd dy-
namics is affected by a robot. More specifically, we use both
local and global metrics to explore further the effect of the
robot motion on participants at the closest proximity of the
robot. It will inform the design of a more natural crowd pre-
diction method and a more realistic crowd simulation sce-
nario.

3. An understanding of how the type of robot affects
pedestrian behaviour, which highlights considerations for de-
signing robotic motion planning algorithms that also take
into account the effect of the robot on the crowd.

2 Related Work

2.1 Pedestrian Robot Interaction

The study of human-robot interaction has been an emerg-
ing area over the past few years. People’s perception and
reaction towards a robot is different from that to another hu-
man, and is greatly affected by factors such as demographics
[22], appearance and size of the robot [5], perceived like-
ability and aggressiveness of the robot [23], and personal
experience with pets or robots [34]. Despite this wide range
of study, human-robot interaction in navigation is still rela-
tively unexplored.

Recently, a small number of works have been explor-
ing pedestrian-robot interaction and its effect on pedestrian
behaviours. In general, the studies can be grouped into two
categories, uncontrolled data collection with natural pedes-
trians or controlled experiment with recruited participants.
Rothenbucher et al. (2016) studied the interaction between
autonomous vehicles and road users such as pedestrians and
cyclists in daily road crossing scenarios. The vehicle was
operated by a human driver but was disguised as an au-
tonomous one by hiding the driver from other road user’s
view [32]. Results indicated that most people managed to
interact smoothly with the vehicle while a small minority
were hesitant about crossing due to the lack of a driver. Ki-
dokoro et al. (2013) investigated the influence of a humanoid
robot on pedestrian comfort in a shopping mall, and clas-

sified the pedestrian behaviour towards the robot into four
distinct types: stop to interact, stop to observe, slow down
to look, uninterested [16]. Results showed that 31% (out of
1115) of the pedestrians changed their behaviour by either
slowing down or stopping as they encountered the robot.

Although these studies with natural pedestrians demon-
strated valuable qualitative results in understanding high-
level pedestrian-robot interaction, they are subject to various
uncontrolled factors such as scenario context and thus hav-
ing limited flexibility. On the other hand, some research ex-
plored the robot influence on pedestrian dynamics in a con-
trolled environment quantitatively. Chen et al. (2018) stud-
ied pedestrian-robot interaction in a corridor exiting experi-
ment with 11 participants and 1 robot [6]. Results indicated
that pedestrians’ overall speed was affected by the presence
of the robot. Vassallo et al. (2018) conducted a study which
investigated a gate crossing scenario between one pedestrian
and one robot where the robot was programmed to replicate
the interaction rules of human walkers [37]. Experimental
results indicated that there was no difference in terms of the
crossing order between human-human and the human-robot
case. Interestingly, their previous study indicated that pedes-
trians tend to give way to a robot which was programmed to
move at a constant speed passively [38]. Similarly, Marvro-
giannis et al. (2019) conducted a within-subjects study to
investigate the effect of distinct robot navigation algorithms
on pedestrians’ behaviour [21]. In each trial, 3 participants
interacted with a lab-built robot which is either been teleop-
erated or equipped with one of two navigation algorithms.
Results showed that the robot navigation algorithm has an
effect on human acceleration.

These studies revealed the influence of robot on pedes-
trian dynamics in a local level. However, most of the ex-
periments were conducted with a single or a small num-
ber of pedestrians, which limits their applicability to the
crowd-robot navigation scenario. In addition, these works
were concerned with one specific type of lab-made robot,
which restricts the result from being generalized to other
robots. This leads to a question: Does the occurrence of
a robot and its type affect the crowd dynamics, and if so,
how? In our work, we consider this question by performing
a Crowd-Robot-Interaction (CRI) experiment with two dif-
ferent types of robot, and we highlight different effects on
crowd dynamics from these two robots.

2.2 Crowd Prediction and Robot Navigation

A human is capable of navigating through crowds by pre-
dicting the motion trajectories of surrounding pedestrians
and taking them into account when planning his or her own
movement. To achieve safe and human-like navigation for
robots, it is crucial to mimic this decision-making process
by taking pedestrians’ trajectories into consideration. Early
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efforts in this area include ‘social force model’ [11] which
used ‘attractive’ and ‘repulsive’ force to model pedestrian-
obstacles and pedestrian-destination interactions.Several ex-
tensions are proposed to this model [40, 14]. Yamaguchi et
al. (2011) proposed to take the grouping behavior, smooth-
ness of movements and preferred speed of the pedestrian
into account [39]. The main concern with these models is
that the hand-crafted rules may not perfectly reflect the real-
istic behaviours of humans.

Data-driven approaches are then proposed to resolve this
problem. They allow the natural human-human interaction
to be captured and learned directly using real-world data.
Machine learning and deep learning methods such as Long
Short-Term Memory (LSTM) [1] have been applied to pre-
dict individual trajectories with the pairwise pedestrian in-
teractions being learned via a social-pooling layer. Genera-
tive Adversarial Networks [9, 18], Transformer model [8],
etc are also proposed for this task. However, the majority of
these models are trained and validated on human trajectory
datasets that either only contain pedestrian trajectories (e.g.
ETH dataset [27], UCY dataset [20], Grand Central dataset
[42]), or contain other non-robot road-users (e.g. Stanford
drone dataset [31] that also contains trajectories of bikers,
skateboarders, cars, buses, and golf carts, recorded in a Uni-
versity campus). Moreover, as reported in [2], many of these
datasets only cover low-to-medium-density crowd activities.
A model trained on such data might fail to make correct pre-
dictions in new situations.

State-of-the-art work also presents approaches that in-
corporate pedestrian trajectory prediction into robot naviga-
tion. Kerfs (2017) adopted an improved version of social-
LSTM to predict trajectories distributions and then used a
dynamic A* for robot route planning [15]. Similarly, Prad-
han et al. (2011) predicted pedestrians’ position and used a
potential function based path planner for robot navigation
in crowds [29]. These approaches achieved robot navigation
in human populated environments considering the human-
human interaction and how human behaviour would affect
the robot’s decision, but ignored the potential influence that
the robot would exert on the pedestrians.

In order to consider this mutual effect, some works com-
bined the prediction and planning process together. Traut-
man et al. (2013) addressed this mutual interaction by rea-
soning the robot and pedestrians’ future trajectories jointly
[36]. Their solution was evaluated on the ETH pedestrian
dataset [27]. Similarly, Kuderer et al. (2012) also treated the
navigation problem as jointly planning for robot and pedes-
trians. Differently from [36], they learned natural pedestrian
behaviours features from their own lab-collected pedestrian
data using the idea of maximum entropy [19]. However, the
data was recorded without the presence of a robot, and it has
been pointed out by the authors that pedestrians may react
differently to robots than to other humans.

While the advances in trajectory prediction and robot
navigation are often of great significance, they inevitably
leave a gap in the validation of the suitability of pedestrian
trajectory dataset in robot navigation which requires con-
sideration of the potential effect created by the robot. This
gap boils down to understanding the interaction between the
crowd and the robot, which we aim to address in this study.

3 Method

3.1 Research questions

Motivated by the results presented in the literature, we be-
lieve that before solving the social navigation problem, it
is essential to understand whether the pedestrian and crowd
behaviour would change when a robot is present. In this pa-
per, we aim to address two main experimental questions and
test our hypothesis:

Q1. How does the presence of a robot influence pedes-
trian and crowd dynamics?

H1. We hypothesize the robot will affect crowd dynam-
ics both at a global and local level. Globally, we expect to see
longer evacuation time, lower averaged speed and accelera-
tion when a robot is added to the crowd. Locally, we expect
to see the robot has a more significant effect on pedestrians
who are in close proximity to it in terms of trajectory regu-
larity and interaction complexity.

Q2. If the robot does influence crowd behaviour, how
does the response vary across the robot type?

H2. We hypothesize pedestrians will behave differently
towards different types of robot. In this study, we expect to
see the crowds adopt a more conservative behaviour by giv-
ing more space and giving way to the smart wheelchair com-
pared to a humanoid robot.

3.2 Crowd-robot gate-crossing experiment

In order to answer these questions, we conducted a prelim-
inary study on crowd-robot interaction through a controlled
gate-crossing experiment. Ethics approval for the study was
granted by UCL Interaction Centre (UCLIC) Ethics Com-
mittee (ref. UCLIC 1819 011), following a thorough review
of the experiment protocol, participant recruitment plan, data
protection plan and risk assessments.

3.2.1 Choice of robot

While a number of related works investigated pedestrian-
robot interaction using a lab-made fully autonomous robot
platform [6, 21], we decided to use one commercial hu-
manoid robot (Pepper) and one smart wheelchair as shown
in Fig. 1. A smart wheelchair is normally built on a standard
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powered wheelchair and has a collection of sensors for per-
ception and navigation purpose. It can be either operated au-
tonomously or controlled collaboratively between a user and
a motion planner. In this study, we are interested in the latter.
For a shared-controlled wheelchair, a user can express his or
her driving intention through an interface (eg. Joystick), and
the wheelchair’s movement will be the result of a negotiation
between the user input and the motion planner. It provides
people who have mobility impairments and are considered
unsafe to drive a traditional wheelchair with a safe mobility
solution and allow them to express their driving intentions.

The reason for using these two robots are two-fold. First,
these two robots are already prevalent in their areas which
would allow us to generalize the findings for a wider range
of robots. As the worlds’ first social humanoid robot, over
10000 Pepper have been sold and adopted by companies in
the area of education and hospitality [26]. While not being
commercialized, smart wheelchairs have been widely used
in research and tested in clinical trials. It can be expected
to see these two types of robots being used in crowds in
the near future. Secondly, the similarity and difference be-
tween these robots pose an interesting case to be studied.
Pepper has a height of 120cm which is comparable to the
height of a person sitting on a power wheelchair. However,
the fact that a person comes together with the smart wheel-
chair may greatly alter a pedestrian’s perception and thus
generate interesting effects that need to be explored. State-
of-the-art research that explores human-aware navigation is
mainly designed for fully autonomous robots. However the
navigation strategies remain to be fully explored for semi-
autonomous robots such as the shared-control wheelchair,
where a human driver can be seen by the pedestrians. It
was suggested by Bingqing et al. (2019) that in contrast to
a standalone fully-autonomous robot, an additional interac-
tion channel between the wheelchair user and the surround-
ing pedestrians should be considered for a shared-control
wheelchair [41] due to the assumption that a human driver
would affect pedestrians’ perceptions and thus walking be-
haviours compared to the one with a standalone humanoid
robot. Consequently, we included the smart (shared-control)
wheelchair and Pepper in our study, and took the first step to
collect such interaction data.

It should be noted that in this study, we do not consider
the potential influence of different navigation algorithms on
the pedestrians’ dynamics. Instead, we assume the robots
are equipped with human-level navigation strategies. As a
result, a Wizard-of-Oz [30] method was adopted in our ex-
periment – the wheelchair was driven by an expert driver and
the humanoid robot was tele-operated by an experienced op-
erator. Although the wheelchair is not actually being shared-
controlled by both the user and the planner in this exper-
iment, we believe the intended end result of shared con-
trol would be similar as the one demonstrated by the expert

driver. As a result, although no path planner was used in this
experiment, the whole expert driver plus the wheelchair was
considered the same as a special of type of robot – a shared-
controlled wheelchair.

(a) (b)

Fig. 1: (a) The humanoid robot Pepper (b) Our smart wheel-
chair

3.2.2 Participants

28 participants (15 females, 13 males) from different age
groups (M=33, SD=8.8 years old) were recruited from our
university and a participant pool. None had a mobility, sight
or hearing impairment. The participants were given a copy
of the information sheet and time to sign the consent form
prior to the experiment. To prevent any potential bias, the
actual purpose of the experiment was not revealed to them
during the introduction.

3.2.3 Apparatus

The experiment took place in an indoor pedestrian accessi-
bility lab. The lab environment allowed us to have signifi-
cant control over multiple variables. The place consists of
a platform which is constructed from 6*10 movable mod-
ules, with the size of each module being 1.2m*1.2m. We
used 6m*12m of the platform and constructed our gate us-
ing movable panels.

3.2.4 Task

In contrast to other work in the literature which studied inter-
action between one robot and one pedestrian [38] or a small
groups of people [21], we designed a robot-in-crowd gate-
crossing task. The gate-crossing task has been widely used
in analysing crowds dynamics [35], in situations such as en-
tering train stations and evacuation. During the experiment,
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each participant was asked to wear a coloured hat for detec-
tion and tracking purposes (see Fig. 2). In each run, 28 peo-
ple and the robot were randomly given an initial starting po-
sition number which was represented as one circle in Fig. 3).
In addition, we made sure that the starting positions assigned
to the people in proximity to the “robot” were not the same
in each run, so as to reduce the learning effect and potential
bias caused by individual behaviour. Furthermore, for more
valid comparison, we let participants keep their starting po-
sition across different scenarios. For example, the starting
position in (S2, run1) is different from (S2, run2) but is the
same as (S3, run1). All pedestrians were instructed to walk
together from one side of the platform to the other side by
crossing through a 2.2m wide gate (See Fig. 3).

A vocal command was used to inform pedestrians of the
start of each trial and the completion was achieved when all
the pedestrians crossed a destination line at the end of the
platform. After each scenario, all participants were asked to
fill in a short survey which was designed for them to reflect
on their behaviour.

(a) (b)

Fig. 2: Overview of the experiment from side and top camera

3.2.5 Experimental scenarios

We designed 4 testing scenarios with 3 independent vari-
ables: robot occurrence, robot type and robot speed (see Ta-
ble 1). Due to the inherent difference in speed-capabilities
of the robots, we set the low speed to approximately 0.5m/s
for the wheelchair and Pepper, while the high speed for the
wheelchair is about 1m/s which is comparable to normal
pedestrian walking speed. Each scenario was repeated 5 times.

3.2.6 Recorded data

The experiment was recorded by an overhead fish-eye IP
video camera (Axis M3037) at 12.5 fps. An additional IP

Fig. 3: Overview of the experimental plan. Each blue square
with the red number represents one module on the platform.
Black segments represent the movable panels which were
used to form a gate. Gray circles represent the pedestrians
and the blue circle stands for the robot. Positions were ran-
domly assigned.

Table 1: Four experimental scenarios.

Experimental Scenarios
Scene Robot Max Speed
S1 No robot N/A
S2 Wheelchair Low
S3 Wheelchair High
S4 Pepper Low

video camera was set up from the side with the aim to ob-
serve pedestrian behaviours qualitatively. In order to cali-
brate the fisheye camera, we used the well-known chess-
board method, collecting 22 various shots while changing
the location and orientation of the chessboard. We applied
the Scaramuzza fisheye model [33] which introduces map-
ping coefficients between distorted and corrected images.
We used the Matlab camera calibrator toolbox for calculat-
ing the coefficients and then undistorting the videos (see Fig.
4a) In the next step we computed the homography matrix be-
tween the undistorted image plane and the ground plane, by
mapping pixel coordinates of 4 of the corners of the platform
to their world coordinates. This process compensated the ro-
tation of the camera with respect to the ground plane and
gave top-view images which are suitable for object tracking
(see Fig. 4b).

We then used a special-purpose software called PeTrack
to extract the pedestrian trajectories. The issues of ID switches
and tracker drift were solved using semi-automatic processes.
Finally, we used separate linear functions to map the head
locations to the ground. For the humans we assumed an aver-
age height of 170cm. For Pepper and the wheelchair we used
heights of 120cm and 140cm, respectively. In order to fil-
ter out high frequency jerk from the trajectories we applied
a Kalman Smoother with a const-acceleration model. We
configured the model with dt=1/12.5, q=10 (process noise
constant) and r=1(observation noise constant). In total, 20(4
scenarios * 5 runs each scenario) trials were performed with
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valid interactions between the robot and the crowds. 546
pedestrian trajectories and robot trajectories were detected
and extracted using the open-source software PeTrack [4].

(a) (b)

Fig. 4: Camera calibration: (a) Original image from the fish-
eye camera (b) Undistorted image after applying the homo-
graphic matrix

4 Analysis

To better evaluate the effect of robot in crowd dynamics in
both global and local level, we measured macroscopic and
microscopic features, and reported the result quantitatively.
Macroscopic features describe high-level crowd characteris-
tics while microscopic features take individuals’ properties
into account. In order to quantify the effect of the presence
of a robot and its effect on pedestrian dynamics, we analyzed
the extracted trajectories both macroscopically and micro-
scopically based on some common metrics that have been
used in previous works [21, 38, 28]. In general, we catego-
rized the applied metrics to measure ‘trajectory regularity’
and ‘interaction complexity’.

4.1 Preprocessing

Before applying metrics to the trajectories, we defined the
notion of region-of-interests (ROI) as 2m before the gate
and 0.5m after the gate, we observed this was the region
where most interaction happens. In addition, for more valid
comparison, we splited all the trajectories extracted from
the ROI into sub-trajectories with each having a fixed time
length of 10 frames (=0.8s).

4.2 Trajectory Regularity

We evaluated the geometrical and physical properties of the
sub-trajectories in order to reflect their irregularities and de-
viations from simple linear trajectory models. For this pur-
pose, we used three metrics, average speed, average acceler-

ation and path efficiency. Path efficiency is normally calcu-
lated as the ratio of distance between two terminals (~xend and
~xstart ) of the trajectory segment over the actual length of the
segment [21]. However, in our experiment, the existence of
the gate inherently affects pedestrians’ path efficiency. This
issue is addressed by dividing the sub-trajectories which cross
the gate into ‘before gate’ and ‘after gate’, with the sub-goal
(~xsub) being introduced as the point on the sub-trajectory at
the gate. As a result, path efficiency η for a sub-trajectory
Xk is defined as:

η(Xk) =

∥∥∥~xk
sub−~xk

start

∥∥∥+∥∥∥~xk
end−~xk

sub

∥∥∥
∑t

∥∥∥~xk
t+1−~xk

t

∥∥∥ (1)

where t ranges from start to end

4.3 Interaction Complexity

While the above metrics indicate the sub-trajectory regu-
larity and motion complexity of each pedestrian, they do
not imply the interaction between pedestrian-pedestrian and
pedestrian-robot. Consequently, we applied another three met-
rics to evaluate the interaction complexity in each scene.
They are evacuation time, local density, and pass order in-
version.

Evacuation time has been used as to assess crowd dy-
namics in emergency situations. Here we defined it as the
time elapsed from when the first pedestrian passes the gate
to the time when the last pedestrian passes the gate. This
quantity is further normalized by the number of pedestrian’s.

In terms of local density, Helbing et al. (2007) proposed
a formula based on the idea that each person occupies a fixed
radius of area [12]. In this paper, we adopted the notion pro-
posed by Plaue et al. (2011) where a nearest neighbor Gaus-
sian kernel estimator is used, which allows the difference of
each pedestrians occupied area to be taken into account [28].
For a point xt , the local density p(xt) is defined as,

p(~xt) =
1

2π

Kt

∑
i=1

1

(λdi
t )

2 exp(−
∥∥~xi

t −~xt
∥∥2

2(λdi
t )

2 ) (2)

where t is the time, Kt represents the total number of pedes-
trians at time t and di

t = min j 6=i

∥∥∥~x j
t −~xi

t

∥∥∥ is the Euclidean
distance from agent i to its nearest neighbour and λ > 0 is
a smoothing parameter. In this paper, we use the averaged
local density for each sub-trajectory as an indicator. In daily
life, a human always adapts to others when there is a risk
of collision. To analyse whether such adaption exists in the
human-robot navigation scenario and how it differs across
different types of robot, we used a signed definition of min-
imum predicted distance (SMPD) to analyze the adaption
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behaviour [38]. As detailed in [24], minimal predicted dis-
tance (MPD) estimated the risk of future collision by calcu-
lating the distance to the closest approach (DCA) between
the robot and the pedestrian at each time step, assuming they
keep a constant velocity.

Xpred(t,u) = X(t)+(u− t)V (t) (3)

MPD(t) = argmin
u

∥∥Xpred,h(t,u)−Xpred,r(t,u)
∥∥ (4)

where u is a future time parameter, Xpred,h(t,u) and Xpred,r(t,u)
are future positions of the human and the robot. By adding
a sign to this metric, we can estimate whether the robot or
the pedestrian is predicted to be ahead. In our study, we de-
fine tenter as when the robot entered the ROI and tpass as
when either the pedestrian or the robot passed the gate. Con-
sequently, we computed SMPD(tenter) and SMPD(tpass) for
each pedestrian-robot pair.

Considering the human perception capability, we only
considered pedestrians who are behind the robot at tenter.
We define positive SMPD if the robot should pass first and
negative SMPD otherwise. As a result, a change of sign of
SMPD means that the future crossing order between the
robot and the participant is switched, and thus implies the
adaption in the pass order. In general, we define four pass
order groups based on the sign of SMPD at tenter and tpass,
namely: PosPos, NegNeg, PosNeg and NegPos. We clas-
sify ‘PosPos’ and ‘NegNeg’ as pedestrians who keep their
pass order, ‘PosNeg’ represents pedestrians who overtake
the robot while ‘NegPos’ implies pedestrians give the way
to the robot.

4.4 Statistics

In order to assess the effect generated by the robot and whether
it varies with robot type, detailed comparisons were made
within and across scenarios. To guarantee valid data compar-
ison, normality was assessed with the Kolmogorov-Smirnov
test. It was indicated by the test result that statistics have
a non-Gaussian distribution for some metrics. As a result,
we used Wilcoxon ranked sum tests to determine differences
and significant level. All effects were reported at p < 0.05.
All the figures indicate the significant level with ‘*’, where
‘*’ stands for p < 0.05.

5 Results

5.1 Quantitative Result

5.1.1 Average Speed and Average Acceleration

Overall, our results indicate a significant difference between
the human-only case (S1) and human-robot case (S2, S3,
S4) in terms of average pedestrian speed and acceleration.

In order to further investigate the local effects, we grouped
all pedestrian trajectories into two categories based on their
spatial relationship to the robot. According to Hall’s per-
sonal space theorem [10], we evaluated each pedestrian’s
distance to the robot at each time stamp. For a pedestrian
sub-trajectory, only those with the median of Euclidean dis-
tance less than the robot’s close social space (< 2.1m) were
considered as in proximity with the robot. This gives us 819
and 1067 pedestrian sub-trajectory segments near and far
away from the robot.

Fig. 5 depicts the average pedestrian speed categorized
by its proximity to the robot. The average value obtained
in S1 is used as a baseline for comparison. It can be ob-
served that in most scenarios (except S2 farSpeed), the av-
erage speed for pedestrians near and far away from the robot
are significantly different from the baseline (S1, no robot
case). Additionally, within the same scenario, pedestrians’
average speed differs greatly based on their proximity to
the wheelchair (S2, S3) or Pepper (S4). In terms of average
pedestrian acceleration, similar difference exist between no
robot and robot cases, while the local effect is less obvious.

5.1.2 Path Efficiency

In general, high path efficiency (> 85%) in all scenarios
was observed. While comparing the path efficiency of sub-
trajectories categorized by its proximity to the robot within
the same scenario, pedestrians who are in close proximity
with the robot in S3 and S4 have slightly lower path effi-
ciency compared with those who are distinct from the robot.

5.1.3 Evacuation time

Fig. 6 shows the evacuation time per person for all four
scenes. By comparing S1 (no robot case) with S2-S4 (robot
case), we can observed that crowd evacuation time signif-
icantly increased (p < 0.05) when a wheelchair or Pepper
is involved. In addition, a significant difference is observed
between wheelchair case and Pepper case regardless of the
robot speed.

5.1.4 Local density

Average local density for each pedestrian or the robot sub-
trajectory is illustrated in Fig. 7. Significant difference can
be observed between no robot (S1) and robot (S2-S4) cases,
as well as between the wheelchair (S2,S3) and Pepper (S4).
When the wheelchair was involved, the wheelchair speed
also showed influence on average pedestrian local density.
In terms of the robot, local density around Pepper is signifi-
cantly higher than that around the wheelchair.
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5.1.5 Pass Order

Fig. 8 provides a summary plot for the human-robot pass
order in all scenarios by analysing SMPD. We can observe
that about 50% of pedestrians kept their pass order when
they walk with a wheelchair or Pepper. Among the pedes-
trians who adapted their behaviour, less than 20% of them
overtook the wheelchair while this number is over 80% in
the case of Pepper. On the contrary, less than 20% of pedes-
trians gave way to the Pepper while over 80% of them let
the wheelchair pass first regardless of the wheelchair speed
setting. This behaviour difference is visualized in Fig. 9.
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Fig. 5: Average pedestrian speed categorized by its proxim-
ity to the robot. ‘N’ and ‘F’ stand for the speed for pedestri-
ans near the robot and far away from the robot. Pedestrian
speeds in robot scenarios are significantly different from
those in the no-robot scenario (S1). Within the same sce-
nario, pedestrians that are in close proximity with the robot
have lower speed compared to pedestrians far away from the
robot.

5.2 Qualitative Result

After each scenario, participants were asked to fill in a short
survey. To begin with, we asked participants if they noticed
the wheelchair or the humanoid robot during the last sce-
nario. Among those participants who acknowledged the ap-
pearance of the ‘robot’, most responded they looked at the
robot before passing the gate(44 %-wheelchair, 49%-Pepper)
and while passing the gate (24%-wheelchair, 17%-Pepper).
This result complies with our definition of ‘region of the
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Fig. 6: Evacuation time per pedestrian. A significant in-
crease can be observed when a robot is added to the crowd.
Pedestrians need longer evacuation time walking with Pep-
per compared to walking with a smart wheelchair.

interest (gate area: 2m before the gate and 0.5m after the
gate)’, with the assumption that most human-robot interac-
tion happens in that region. We further asked pedestrians to
reflect on their behaviour.

In Fig. 10, a noticeable difference in pedestrian walk-
ing behaviour can be observed between the wheelchair case
and the humanoid robot case. In detail, 68% of the pedestri-
ans admitted that they have adapted their behaviour by giv-
ing more space (50%) or deviated from their planned route
(18%) when they noticed the wheelchair. In terms of the hu-
manoid robot case, although more than a half of the pedestri-
ans (52%) respond a change in behaviour, it was less obvious
than the wheelchair case.

Fig. 11 depicts the result of pedestrians’ perception on
their collision avoidance behaviour. 73% pedestrians think
they avoided the wheelchair in the same way as they avoided
a person while more than half (54%) of pedestrians admit
they avoided the humanoid robot differently as they would
do to a person. This difference can be explained by the fact
that pedestrians perception of the robotic wheelchair is af-
fected by the presence of a human driver and their prior
mental model towards a wheelchair, which in turn affected
their behaviour.

6 Discussion

We studied how crowd dynamics in terms of trajectory reg-
ularity and interaction complexity are affected by the pres-
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Fig. 7: Local density around the pedestrians (pH) and the
robot (pR).When a robot is added to the crowd, the local
density around pedestrians decreases. Higher local density
can be seen around the Pepper robot compared with the
smart wheelchair.

ence of a wheelchair or a humanoid robot Pepper. Overall,
we find both H1 and H2 are confirmed.

In terms of H1, our results indicated that the occurrence
of a robot indeed affect the crowd dynamics. By looking at
the quantitative result, the global influence on trajectory reg-
ularity is mainly reflected on lower average walking speed
and average acceleration, while the average path efficiency
was less affected. This results is consistent with the one
from previous studies [6] where the author showed a moving
robot slows down a uni-directional flow. In addition, signifi-
cant disparity has been observed across the scenarios in term
of the interaction complexity. Temporally, the evacuation
time per person has increased significantly when a wheel-
chair or Pepper is involved. Spatially, pedestrians’ averaged
local density in S1 is higher than that in S2, S3 and S4.
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Fig. 8: Pass order inversion. In all scenarios, over 50%
pedestrians kept their passing order. Among those who
adapted their passing order for Pepper, over 80% overtook
while less than 20% gave the way to the robot. The situation
is the opposite in the wheelchair case.

Furthermore, pedestrian’s local density decreases when the
robot local density increases. These findings suggest pedes-
trians adapted their trajectory due to the occurrence of a
robot, which was further supported by the qualitative results
where pedestrians recognized their change in perception as
well as walking behaviour. In a local level, when we cate-
gorized the sub-trajectories based on the spatial relationship
to the robot, we have observed significant differences be-
tween the ‘near the robot’ and ‘far away from the robot’
group in terms of average speed and path efficiency. Pedes-
trians who are near the robot tend to move slower with lower
path efficiency compared to those far away from the robot.
No significant evidence has been observed on how the result
is affected by the robot speed though.

In terms of H2, we observed the effect of robot type on
crowd dynamics. The crowds also tend to spend more time
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Fig. 9: Sample robot and pedestrian trajectories. (a): The pedestrian (blue) gave way to the wheelchair (red). Right: The
pedestrian (blue) overtake Pepper (red).

Q1: If you have noticed the humanoid robot/wheelchair and the
person on it, did that change your behaviour comparing to that in
a scenario without the humanoid robot/wheelchair?

0 20 40 60 80 100
%

Wheelchair

Pepper

Yes, I gave more space to it
Yes, I deviated from my planned route to it
No, I kept my route
Others.

Fig. 10: Change in avoidance behaviour. In both cases, more
than 50% of participants recognized they adapted their walk-
ing behavior to avoid the robot. People gave more space to
the wheelchair compared to Pepper.

Q2: Did you treat avoiding the humanoid robot or wheelchair any
differently to how you would have avoided a person?

0 20 40 60 80 100
%

Wheelchair

Pepper
No
Yes

Fig. 11: Difference in avoidance behaviour in human only
and human-robot environment. Over 70% of participants
think they avoided the wheelchair in the same way they
would do to a person, while this number is only about 40%
in the Pepper case.

in evacuation with the Pepper (S4) than with the wheelchair
(S2, S3). When looking at how individuals adapt their be-
haviour, qualitative results indicated that most pedestrians
adapt by overtaking Pepper, while giving the way to the
wheelchair. Compared to previous studies where pedestri-
ans gave way to a passively moving robot [38], our results
imply an interesting change of such behaviour due to the
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robot type. Although further investigation on pedestrian fac-
tors would help us better understand the behaviour, this dif-
ference can be explained by the idea that pedestrians’ per-
ception of the robotic wheelchair is affected by the presence
of a human driver and their prior mental model towards a
wheelchair, especially when a person appears to be mobil-
ity impaired. It makes them tend to follow ‘social rules’ and
result in the change of their behaviour, while such a rule
is not observed when the overtaking target is replaced by
a humanoid robot. Spatially, robot type also has effect on
pedestrians’ local density. While looking at the robots, the
wheelchair was surrounded by fewer people compared to
Pepper. This finding is further supported by our survey re-
sult as shown in Fig. 11, where more pedestrians were aware
they ‘gave more space’ to the wheelchair than the humanoid
robot. These results suggest pedestrians’ local adaptive be-
haviour and the overall crowd interaction are affected by the
occurrence of a robot, and this varies across the two tested
robot platforms.

Our experiment was conducted with two specific robots,
but we believe these results could be generalized to other
robots. In this study, our robots are good representatives of
mobile robots, which covers a great range of differences in
terms of appearance, size, and dynamic constraints. In ad-
dition, by introducing the distinct factor of ”human driver”,
our result could also inform the design of navigation strategy
for shared-controlled robots.

Therefore, we draw the following recommendations from
our study:

1. It would be important to consider the effect a robot
exerts on the surrounding pedestrians while planning for its
next motion – which means prediction and planning should
be considered together to capture the natural interaction in
complex environments.

2. In order to achieve social robot navigation using data
driven methods, pure pedestrian data recorded from an envi-
ronment without robots may be insufficient, and it is better
to obtain the pedestrian data where the specific robot is in-
volved, as both the presence and the type of the robot affects
pedestrian’s trajectory regularity as well as crowd interac-
tion complexity. By doing so, more natural social navigation
could potentially be achieved, though of course the gener-
alization would need to be further explored. For example,
Kim and Pineau (2016) approached the social navigation
problem from inverse reinforcement learning, and learnt a
cost function from data that was collected when a human
demonstrator drove a smart wheelchair in crowds [17]. It al-
lows the wheelchair to navigate in a socially adaptive way,
while such a cost function may not generalize well to other
types of robot, as the crowd dynamics may be affected by the
robot itself (and the driver that comes along with the robot).
On the other hand, if the difference in pedestrian dynamics
can be modelled in a crowd simulator, more realistic inter-

actions between pedestrians-crowds and the specific type of
the robot could be simulated, thus providing us a powerful
tool to validate the developed navigation algorithm.

3. The social navigation strategy should potentially be
developed differently for a shared-controlled robot and a
fully autonomous humanoid robot. In this study, we did not
explore the influence of the existence of a human driver on
the pedestrian’s perception and behaviour by separating ”the
driver” and ”the robotic wheelchair”, but rather considered
the natural use case where the “wheelchair + driver” sys-
tem is seen as a whole. In this experiment, the user did not
actively interact with surrounding pedestrians but merely fo-
cused on the navigation task. In the future, it would be in-
teresting to explore the user-pedestrian interaction, such as a
wheelchair user approaching his/her friend while navigating
through a crowd.

Although the results obtained from this experiment may
be limited to certain design factors, we believe this work has
set a very important first step to help us better understand
crowd-robot interaction in navigation.

7 Conclusion

In this paper, we presented the first crowd-robot crossing
experiment with collected trajectory dataset in the presence
of two robot representatives: a smart wheelchair and a Pep-
per humanoid robot. Quantitative analysis implies the pres-
ence of the wheelchair and the Pepper affect crowd dynam-
ics both locally and globally. Besides, the influence varies
across the robot type. In general, the effect is reflected in the
individual trajectory regularity and the interaction complex-
ity. Qualitative results further supported the idea that pedes-
trians tend to behave more conservatively around the wheel-
chair compared to the Pepper, potentially due to the percep-
tion of a human driver. These results suggest the influence of
the robot on crowds should be taken into consideration when
designing the pedestrian model in simulation and navigation
strategy for different kinds of robot.

In the future, this work could be extended to explore the
effect of different types of robot on pedestrian dynamics in
bi-directional or even more complex scenarios. In addition,
the human factors such as age, gender, familiarity with the
robot which would potentially affect crowd dynamics in so-
cial navigation could be further investigated.
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