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Abstract

Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It
integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and
provides a powerful framework for a number of inference problems using genomic sequence data from multiple species,
including estimation of species divergence times and population sizes, estimation of species trees accommodating
discordant gene trees, inference of cross-species gene flow, and species delimitation. In this review, we introduce
the major features of the MSC model, discuss full-likelihood and heuristic methods of species tree estimation, and
summarize recent methodological advances in inference of cross-species gene flow. We discuss the statistical and
computational challenges in the field and research directions where breakthroughs may be likely in the next few years.
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Introduction

Developed in the 1980s, the coalescent is a stochastic
process that describes the genealogical history of a sam-
ple of DNA sequences taken from a population [1-3].
Whereas traditional population genetic models of drift
and mutation describe changes in allele frequencies over
generations in the population, the coalescent focuses on
the sample and traces the genealogical history of lineage
joining of the sampled sequences backwards in time.
The coalescent model is in particular suited to inference
using genetic sequence data [4-7].

The multispecies coalescent (MSC) is an extension
of the single-population coalescent to the case of mul-
tiple species [8]. It integrates the process of species
divergences and the within-population process of drift
and mutation. Placing the coalescent in the context of
a species phylogeny makes it possible to use the ever-
increasing genomic sequence data from multiple species
to address a number of important biological questions,
and in the past two decades, the MSC has emerged as
the natural framework for such inferences. These include
estimation of population parameters (such as species
divergence times, population sizes for extant species
and extinct ancestors, and rates of cross-species gene
flow), estimation of species phylogeny accommodating
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heterogeneous gene genealogies across the genome, and
delineation of species boundaries (species delimitation)
[9-12]. In molecular phylogenetics, incorporation of the
MSC to accommodate the so-called gene-tree—species-
tree conflicts has been heralded as a “paradigm shift”
[13]. Stochastic fluctuation in genealogical history of
sequences across the genome, when accommodated in
the model, is not a ‘conflict’ or ‘problem’, but rather
a source of information for important evolutionary
parameters such as ancestral population sizes [14—16]
and rates of cross-species gene flow [17, 18].

The past decade has seen exciting advancements in
the implementation and extension of the MSC model
for inference using genomic sequence data. The data
we consider in this review are sequence alignments at
hundreds or thousands of loci, with the different loci
having independent coalescent histories while all sites
in the sequence at the same locus share the same history.
Ideal data for such analysis are short segments sampled
from the genome that are far apart [16]. While we
use the term gene or locus, the data should ideally
be noncoding DNA, although exonic data have been
successfully used in such analyses [19, 20]. We describe
the major features of the MSC model (in particular,
the probability distribution of gene trees and coalescent
times), and discuss its applications in two major areas:
the estimation of the species phylogeny and the inference
of cross-species gene flow. We focus on full-likelihood
methods (maximum likelihood or ML and Bayesian
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FIG. 1. The Fisher-Wright model for a diploid population of N
individuals or 2N = 20 sequences, with n = 5 sequences sampled
at random from the present generation. The coalescent focuses on
the genealogical relationships among the sampled sequences (in
blue). Coalescent time 7; (during which there are i lineages in the
sample) is in generations.

inference), as they have the best statistical properties,
but include heuristic methods based on summaries of the
data in our discussion. Several comprehensive reviews
on heuristic methods have been published [9, 10, 21-23].
We review recent advances in using the MSC model to
infer ancient gene flow, including models of continuous
migration (the so-called isolation-with-migration or IM
model) and the introgression/hybridization models. We
end the paper with a discussion of the challenges and
perspectives in the field. Our focus in this review is on
MSC-based analyses of multilocus sequence data, and
we do not consider population genetics methods that use
summary statistics such as allele frequencies and single
nucleotide polymorphisms (SNPs) to infer demographic
processes including population structure and admixture
[24, 25].

Multispecies Coalescent

Fisher-Wright model and the coalescent

The Fisher-Wright model [26, 27] in population genetics
describes the biological process of reproduction and
drift in an idealized population of constant size, with
non-overlapping generations, random mating, and no
population structure or selection (fig. 1a). Individuals of
the next generation are generated by random sampling of
gametes from the current population: the frequencies of
alleles at a locus (say, A and a for two alleles) in the next
generation are generated by binomial sampling given the
allele frequencies in the current generation.

The coalescent model describes the same process of
reproduction and drift, with the focus on the sample of
sequences and with time running backwards (fig. 1b)
[1]. When we trace the the genealogical history of the
sample backwards in time, lineages join or coalesce
when we reach their common ancestors. While the
forward Fisher-Wright model and backward coalescent
model are two characterizations of the same process,
the coalescent approach of focusing on the sample
offers major advantages for many inference problems
using genetic sequence data. For example, coalescent
simulation of the genealogy of the sample is often
far more efficient than forward simulation tracking
the whole population. The basic coalescent model has

been extended to accommodate demographic changes,
recombination, population subdivision, and selection
[5, 7]. Here we focus on the basic coalescent and on
the probability distribution of gene tree topologies and
coalescent times generated by the process.

Consider first n = 2 sequences sampled from a diploid
population of size N. With random mating assumed
in the Fisher-Wright model, sequences pick parents at
random when we trace the genealogical history of the
sample to the previous generation. As there are 2N
parental sequences to choose from, the probability that
the two sequences pick the same parent (that is, they
coalesce) in the previous generation is ﬁ In other
words, coalescent occurs as a Poisson process at the rate
of %\, faster in smaller populations, and the coalescent
time (the waiting time until the two sequences find their
common ancestor) has a geometric distribution with the
mean of 2N generations. Thus two sequences sampled at
random are on average separated by 2N x 2 generations
or 6 = 4Nu mutations per site, where [ is the mutation
rate per site per generation. Parameter 6, known as
the population size parameter, is the average distance
between two sequences sampled at random from the
population. It is also known as heterozygosity and can
vary hugely even between close species. Typical values
include 0 ~ 0.1% for the humans [28] and 0.1-5% for
Heliconius butterflies [29].

In analysis of sequence data, it is convenient to
measure time by the mutational distance so that one time
unit is the expected time to accumulate one mutation per
site. With this time unit, the coalescent waiting time for
two sequences (f,) is approximately exponential with the
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If there are n > 2 sequences in the sample, there will

be (5) = "("; Y pairs and each pair coalesce at the rate
of %, with the total rate (g) . %. The time until the next
coalescent event has an exponential distribution with
mean % / (g) = ﬁ. When a coalescent occurs, each

of the (g) pairs has the same probability to join. The
number of lineages is then reduced from n to n — 1,
and the process repeats, until the most recent common
ancestor (MRCA) is reached (fig. 1b).

The n — 1 successive coalescent events generate a
genealogical tree (G) of the sequences in the sample.
This is a rooted tree with the internal nodes ranked by
age, and is called the ranked tree or labelled history [30]
(fig. 1b). The number of possible labelled histories for a
sample of size n is H, =[]\, (é) = "!(2',1;11 ! and each
of them occurs with equal probability, f(G) = 1/H,.
Furthermore, the n — 1 coalescent times t = {#,,, t—1, ...,
f,} are independent exponential variables, with means

E(f;) = g / (5) The joint probability density of the gene
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FIG. 2. A species tree for three species (A, B and C) showing
parameters in the MSC model, and the four possible coalescent
histories for a locus with one sequence from each species, with
probabilities (1—¢, 19,16, 1¢), where ¢ = e=2(Tasc=7sc)/sc s
the probability that sequences b and ¢ do not coalesce in species
BC. Note that the first two histories correspond to the same rooted
gene tree Gy, and there are three gene trees: G, G, and G3.

tree and coalescent times is thus
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Multispecies coalescent: basic features

The extension of the single-population coalescent to
multiple species has been called the interspecific coa-
lescent [31] or censored coalescent [8], and is now
commonly known as the multispecies coalescent (MSC)
[32]. Suppose there are s species, which are related
through a species phylogeny. Instead of a single para-
meter 8, the model now involves two sets of parameters:
s — 1 species divergence times (7s) and 25 — 1 population
size parameters (0s), with a total of 3s — 2 parameters
(fig. 2). Both 7s and Os are measured in the expected
number of mutations per site.

Given the species tree, coalescent events occur inde-
pendently in different populations, with the coalescent
rate (%) given by the population size. When we trace
the history of the sequences at a locus backwards in
time and reach a speciation event, the coalescent process
and rate are reset, because of the change in population
size and because of sequences coming from the sibling
species. For example, in figure 3, sequences c¢; and
¢y coalesce at the rate 9% in species C. When they
enter species BC at time Tpc, the coalescent rate (for
each pair) is reset to é and the number of lineages
becomes 3. Furthermore, we assume that gene trees at
different loci are independent. One important feature of
the MSC model is that the divergence time between
sequences from two species must be greater than the
species divergence time: sequences split before species
or equivalently the gene tree fits inside the species tree.
This intrinsic constraint between the species tree and the
gene trees is the source of computational challenges in
Bayesian implementations of the MSC model.

There are two important probability distributions
under the MSC model: the (marginal) probabilities
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FIG. 3. A species tree for three species, (A, (B,C)), with a gene
tree for five sequences at a locus to illustrate the MSC density of
the gene tree with coalescent times.

of gene tree topologies [21, 33, 34] and the joint
distribution of the gene tree topology and coalescent
times [8]. The former is useful for two-step methods
of species tree estimation, which use reconstructed gene
tree topologies as data, while the latter is used in full-
likelihood methods, which use information in gene-tree
branch lengths (coalescent times) as well.

Probabilities of gene tree topologies

Under the MSC model, the gene tree topologies and
coalescent times have a joint probability distribution
given the species tree and parameters. For small species
trees, it is easy to derive the marginal probability of gene
tree topologies [2, 33, 35]. This line of work typically
assumes one sequence sampled per species at every
locus, so that there is no coalescent in modern species
at the tips of the species tree. The case of three species
is considered in [2]. Let the three species be A, B and
C, with the phylogeny S = (A, (B,C)) (fig. 2). Let the
divergence times be T = (¢, Tapc) and the population
sizes be O = (0pc,0apc). Suppose three sequences are
sampled from the three species (a, b and c¢). There
are three possible gene tree topologies: G| = (a, (b,¢))
matches the species tree, while G, = (b, (¢,a)) and G3 =
(¢, (a,b)) are the mismatching gene trees.

When we trace the genealogy of the three sequences,
sequences b and ¢ may coalesce in population BC as a
Poisson event at the rate of 9§7 just as in the single-
population coalescent. Note that the probability that a
Poisson event of rate A does not occur in a time interval
t is e~ Thus the probability that sequences b and ¢ do
not coalesce in population BC or over the time interval
AT = TABC — TBC is

6= e~ 2A7/6pc _ o—2(Tapc—T8c)/OBC 3)

Here At/ (9’2’4) is known as the internal branch length
in coalescent units—one coalescent unit in population
BC is 2Npc generations or Opc/2 mutations per site. If
b and c coalesce in population BC, the gene tree must
be G;. Otherwise all three sequences enter species ABC
and coalesce in random order so that the three gene trees
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occur with equal probability. Thus the probabilities for
the three gene trees (G, G2, G3) are
P(Gi)=(1-¢)+30=1-309,
P(Gy) = P(G3) = 39.

For certain species trees and parameter values, a
mismatching gene tree may be more probable than the
matching gene tree. The species tree is then said to be
in the anomaly zone [33, 34]. The anomaly zone does
not exist for species trees of three species — as P(Gy) >
P(G2) = P(G3) in eq. 4, but can occur for asymmetrical
species trees of four species, and for any species tree of
five or more species [34].

Consider the asymmetrical species tree for four spe-
cies S = (A, (B,(C,D))) of figure 4, and suppose the
three divergence times are very close, with Tapcp ~
Taep =~ Tcp. Then all three coalescent events for the four
sequences (a,b,c, and d) will most likely occur in the
root population ABCD, so that the 18 = (2) (g) (%) label-

led histories will have nearly equal probability ﬁ. There
are 15 possible rooted gene trees, 12 asymmetrical and
3 symmetrical. Each symmetrical gene tree (e.g., G> in
fig. 4) corresponds to two labelled histories (G, and Gy
in fig. 4), so that its probability is ~ 1—28 Each of the 12
asymmetrical gene trees (e.g., G in fig. 4) is compatible
with only one labelled history, with probability ~ 11—8.
Thus P(G») ~ 2P(G;). When the divergence times (7s)
are unequal but the internal branches are short enough,
it is possible for the symmetrical mismatching gene
tree G, to have a higher probability than the matching
asymmetrical gene tree G, in which case the species tree
is in the anomaly zone.

If the species tree is in the anomaly zone, the simple
majority-vote approach of using the most commonly
observed gene tree as the estimate of the species tree is
statistically inconsistent: the more gene trees there are,
the more certain that the species-tree estimate will be
incorrect. Note that the existence of the anomaly zone
is not an intrinsic difficulty for species tree estimation;
it instead highlights the importance of adopting a proper
statistical inference framework. Full likelihood methods
are consistent for all species trees both in and outside
the anomaly zone, as they accommodate the probability
distribution of the gene trees under the MSC appro-
priately. The discussion of the anomaly zone typically
assumes true gene trees and ignores phylogenetic recon-
struction errors in estimated gene trees. There have been
only a handful of empirical examples of the anomaly
zone, in African Anopheles mosquitoes [20], skinks [36],
flightless birds [37], and gibbons [19].

The probabilities of gene tree topologies can be used
to calculate the likelihood function for estimating the
species tree using (reconstructed) gene trees as input
data, as in the STELLS program [38]. However, popular
heuristic methods such as MP-EST [39] and ASTRAL
[40] do not use this theory and are instead based on
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FIG. 4. Asymmetrical species tree for four species A, B, C and
D, and three labelled histories (G, Ga,,Gop) for a locus with
one sequence from each species. G; matches the species tree,
while Gy, and Gy, are distinct labelled histories sharing the same
topology ((a,b),(c,d)), which is different from the species tree.

species triplets or quartets. Furthermore, calculation of
the probabilities of gene tree topologies, which involves
summing over all coalescent histories that are compa-
tible with each gene tree, becomes expensive when the
number of species increases [21].

Joint probability distribution of gene trees and
coalescent times

While the marginal probability of the gene tree topology
may be challenging to compute, it is straightforward
to derive the joint distribution of gene tree topologies
and coalescent times. The general form, for an arbitrary
species tree and an arbitrary number of sequences, is
given in [8].

The joint density of gene trees and coalescent times
is a product over the populations on the species tree,
and as a result we focus on the contribution from one
population. A population is represented by a branch
on the species tree (say XY) or by the daughter node
of the branch (say X). Let 7y and 7y be node ages
or divergence times, and Ox be the population size.
Suppose m sequences enter the population at time Ty and
[ sequences leave the population at time Ty, with 1 <
[ < m. For example, in the gene tree of figure 3, m = 3
lineages enter population BC while [ = 2 lineages leave
it. Unlike the single-population coalescent, under the
MSC, lineages entering a population do not necessarily
find their common ancestor in that population, and the
coalescent process may be ‘censored’ [8]. Note that if X
is the root of the species tree, / must be 1.

The MSC density for the part of the gene tree residing
in population XY is the product of three components.
The first is the joint density of the m — [ independent
exponential coalescent waiting times {zx,tX ...,/ }.
The second component is for the gene tree topology in
XY, and is a product of m — [ probabilities, each being
the probability, 1/ (é) of choosing two out of i lineages
to join, fori =m,m—1,--- ,[+ 1. These two components
are the same as in the single-population coalescent. The
third component is the probability that no coalescent
events occur in the last time interval before reaching 7y.
Multiplying the three components, we obtain the MSC

4



density of the gene tree in XY as
m
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For example, the contribution of species BC to the MSC
density of the gene tree in figure 3 is

%Cexp{f&tgcfé (TABC*TBC*Z'?C)}. (6)

As coalescent processes in different populations ope-
rate independently, the MSC density for the whole gene
tree at a locus is the product of the contributions across

all populations. For the gene tree of figure 3, this is
_2 _Z
£(G,1]5,0) = {%e eA’?} % [e GCTBC}

6 BC?L(

BC)
t TABC—TRC—!
sc3 ~ Bpe \TABCTTBC13 ] (7
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The four pairs of brackets correspond to species A, C,
BC and ABC, respectively. Coalescent is not possible in
species B as only one sequence is sampled from that
species.

With multiple loci in the data, the joint MSC density
of the gene trees is a product across all loci, because
the genealogical histories at different loci are assumed
to be independent. The formulation allows the loci to
have different sampling configurations. For example, the
number of sequences from each species may vary among
loci and some species may be missing at some loci.

Species Tree Inference under the MSC

Species-tree — gene-tree conflicts

The gene tree representing the coalescent history of
the sequences at a locus may not match the species
tree. Such a discordance may occur because when we
trace the history of the sample backwards in time,
sequences from different species may not coalesce as
soon as they reach the most recent common ancestor
on the species tree but instead coalesce in more ancient
ancestors (e.g., gene trees Gyp, Go, G3 in fig. 2). This
delayed coalescence or deep coalescence is also known
as incomplete lineage sorting (ILS). While several bio-
logical processes, including gene duplication followed
by gene loss or horizontal gene transfer [41, 42], can
cause the gene tree to differ from the species tree as
well, deep coalescence is more fundamental because
coalescent is simply biological reproduction and drift
and thus may affect every species. Deep coalescence is
more common when multiple species arose through a
rapid succession of speciation events resulting in very
short internal branches on the species tree relative to the
coalescent waiting time (note that ¢ in eq. 3 is greater for
smaller AT and larger Op¢). The existence of the anomaly
zone is an extreme case of deep coalescence. Deep
coalescence is related to how short the internal branches
are, rather than how deep they are on the species tree,

and may thus occur in both shallow and deep species
trees [43].

Full likelihood methods

ML methods [44, 45] and Bayesian inference [46—49]
use the joint distribution of gene trees and coalescent
times [8] and operate on multilocus sequence data
directly. Let the sequence data be X = {X;}, where X;
is the alignment of n; sequences at the jth locus, for j =
1,2,---,L.Let S be the species tree and ® = {7, 0,1} be
the vector of parameters, including species divergence
times (7), population sizes (0), and parameters in the
mutation model (17). The likelihood of the sequence data
given the MSC model has the form

L
f(X18,0) = HZ/tvf(leijtj,n)f(Gj,tj|S,®)dtj,

J=1G; 7%

(®)
where f(X;|Gj,t;,n) is the phylogenetic likelihood
given the gene tree G; and branch lengths #; at locus j
[50], while f(Gj,t;|S,®) is the MSC density of the gene
tree described above [8]. As the genealogical histories
at different loci are independent, the likelihood of the
sequence data is a product across all loci. The summation
in eq. 8 is over all possible gene tree topologies for
the sequences, and the integral is (n; — 1)-dimensional,
over the n; — 1 coalescent times on each gene tree. The
gene trees and coalescent times are not observed, and the
likelihood function averages over them, accommodating
their uncertainties.

The species tree S and the MSC parameters ®@ can
be estimated using ML by maximizing eq. 8. Both
the phylogenetic likelihood f(X;|G;,t;,) and MSC
density f(Gj,t;|S,0) are straightforward to calculate,
but averaging over all the possible gene tree topologies
and coalescent times at each locus is computationally
infeasible except for small data sets. The only ML
implementation available is the 3S program [44, 45],
which enumerates the gene trees and uses numerical inte-
gration (Gaussian quadrature) to calculate the integrals.
Although limited to three species and three sequences
per locus, 3s can handle tens of thousands of loci.

With more than three species, the Bayesian method
has a computational advantage over ML, with the Mar-
kov chain Monte Carlo (MCMC) algorithm averaging
over the gene trees and coalescent times. We assign prior
distributions to the species tree and model parameters.
For example, the species tree can be assigned a uniform
prior over all rooted trees, while the population-size
parameters (0s) can be assigned gamma or inverse-
gamma priors. The inverse-gamma priors for Os are
conjugate (so that both the prior and posterior for 6s
are inverse-gamma), allowing the 0s to be integrated out
analytically [51], which helps with MCMC mixing. The
age of the species-tree root can be assigned a gamma
or inverse-gamma prior, while the other node ages
can be constructed using a Dirichlet distribution [52].
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The MCMC algorithm samples from the joint posterior
distribution of the species tree, the MSC parameters, and
the gene trees at all loci

f(S7 G)? G7t|X)

L
o< f(S5,0) [T/ (X;1Gj1;,m)f(Gy,11S.0). (9
j=1

In particular the samples of (S,0) generated by the
algorithm are from the marginal posterior f(S,0|X),
and the frequency at which a species tree is visited
is an estimate of its posterior probability. In this way,
MCMC averages out the gene trees and coalescent times
numerically.

The first implementation of the Bayesian approach is
the program BEST [53]. This uses the samples of gene
trees with branch lengths produced by MRBAYES [54]
and applies an importance-sampling correction because
MRBAYES does not assume that the gene trees are
distributed according to the MSC density. This strategy
does not work well, as the species tree and the gene trees
place tight constraints on each other in the MSC model.
Currently two Bayesian programs under the MSC are
in common use: *BEAST [46] and BPP [47-49], both
of which explicitly use the MSC model. The algorithm
in BPP for species tree inference goes through several
proposal steps in each MCMC iteration, as follows.

1. Update the coalescent times #; on the gene tree at
each locus jj;

2. Update the gene tree topology G; at each locus
Jj through a subtree-pruning-and-regrafting (SPR)
algorithm;

3. Update the population sizes (0s);
4. Update the species divergence times (7s);

5. Update the species tree topology S through
an NNI (nearest-neighbour interchange) or SPR
move, which may change the gene trees to avoid
conflicts;

6. Use a multiplier to rescale all node ages on the
species tree and on all gene trees.

Perhaps the greatest challenge in such MCMC algo-
rithms comes from the constraint between the species
tree and the gene trees. Consider step 4 for changing
species divergence time Tup, the age of the ancestral
node for two sister species/clades A and B. Let 7, be
the sequence divergence time for two sequences from A
and B. Then T4p < t,,. If the dataset includes thousands
of loci and many sequences from A and B at each locus,
the smallest of #,, among all loci may be almost identical
to the current 745. Then when we use a sliding window
to change T4p, the window size will have a width near
zero, and the MCMC is virtually stuck. A “rubber-band”
algorithm was proposed in [8], which changes 7 and
the affected node ages on gene trees jointly. Similarly,

in step 5, it is very inefficient to change the species
tree when all gene trees are fixed. A breakthrough was
to make coordinated changes to the gene trees when
an NNI algorithm is used to change the species tree
[47]. The algorithm has since been extended to SPR
[48, 55] and ported to *BEAST as well [55, 56]. Those
improvements have pushed the limit of datasets that
can be analyzed using Bayesian MCMC programs from
~100 to ~10,000 loci [19, 20].

Heuristic or summary methods

Many heuristic methods for species tree estimation have
been developed, which use summaries of the data rather
than the original mutlilocus sequence alignments. For
extensive reviews, see [9, 10, 22, 23]. Here we mention
four commonly used ones: MP-EST [39], ASTRAL [40],
NJ-ST [57], and SVDQUARTETS [58].

MP-EST [39] estimates triplet gene trees under the
molecular clock (rate constancy among lineages), and
then uses a composite likelihood function, treating the
frequencies of the triplet gene trees as input data from a
trinomial distribution (with probabilities given in eq. 4).
A composite or pseudo-likelihood is constructed by
multiplying those probabilities for all possible triplets,
ignoring lack of independence among them. This com-
posite likelihood is maximized to estimate the species
tree.

ASTRAL [40] uses a phylogenetic method to infer
unrooted gene trees, and extracts the quartets from them.
It then finds the species tree that is most compatible
with the quartets in the set. A procedure has also been
developed to attach local support values for nodes on the
inferred species tree [59].

NJ-sT [57] uses a distance method to estimate an
unrooted species tree from a collection of unrooted gene
trees. The species tree estimate is the neighbor-joining
tree built from a distance matrix where the distance
between two species is defined as the average number
of internal nodes on the gene tree between the species.

All those three methods are two-step methods, treating
estimated gene tree topologies as data. They are consi-
stent, with the probability to recover the correct species
tree approaching one when the number of gene trees
increases. As discussed above, the anomaly zone does
not exist for rooted triplets or equivalently for unrooted
quartets. However, the argument for consistency is based
on the assumption that the input gene trees are known
without error. Phylogenetic reconstruction errors are
known to affect the performance of two-step methods
[60]. Furthermore, as those two-step methods uses gene
tree topologies but not branch lengths or coalescent
times, they suffer from unidentifiability issues. They can
estimate the species tree topology but not all parameters
in the MSC model.

Another summary method is called SVDQUARTETS
[58]. This is a quartet method, designed for data of
coalescent-independent sites, sites that have independent
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FIG. 5. A simulation experiment to compare four methods of species tree estimation: ML analysis of concatenated data, ASTRAL, MP-EST
and BPP. (a) Species tree used in the simulation. Two sets of parameter values are used: Tapcpo = 360, Tapcp = 1.2560, Tapc = 1.1256, and
Tap = O inset 1, and Tapcpo = 36, Tapcp = 1.050, Topc = 1.02560, and 745 = 0 in set 2, with 6 = 0.01. (b&c) Proportion of replicates in
which the estimated species tree is the true tree (blue) or the mismatching tree S = (((4, B), (C, D)), O) (red). Data of multi-locus alignments
were simulated using the simulate option of BPP [49] under the JC69 model [66], with one sequence sampled per species at each locus, and
with sequence length to be 500 sites. The outgroup sequence (O) is used to root the tree by concatenation/ML and ASTRAL, but not used
by BPP or MP-EST. The number of replicates is 100 for BPP and 500 for the other methods.

histories. Such sites are similar to SNPs but include
constant sites as well. Genome sequencing projects do
not generate such data. When the method is applied
to multilocus sequence alignments, sites are pooled
across loci, as in the concatenation method, so that the
data are the counts of 256 (= 4%) site patterns for the
species quartet. Note that the site-pattern counts pooled
across loci are summaries of the original multilocus
alignments. When all sites have independent histories,
the summation over gene trees and the integral over
coalescent times under the MSC model (eq. 8) are
analytically tractable [58, 61]. Pooling sites across loci
causes information loss and identifiability issues so
that the method is unable to identify all parameters in
the MSC model even if the species tree topology is
identifiable [9, 62].

Some two-step methods use both gene tree topologies
and branch lengths (coalescent times) [63]. However,
those methods were found to have poorer performance
than methods based on topologies alone [64, 65]. This is
because the methods ignore random sampling errors in
branch-length estimates. It is easy to see that sampling
errors in branch lengths may have a major impact on
estimation of the species tree and the MSC parameters.
For example, if two sequences from two species are
identical at a locus so that the estimated coalescent
time is #,, = 0, the species divergence time T4p will
be forced to be 0 as well (since Typ < ), which may
have a dramatic effect on species tree estimation. While
coalescent times or branch lengths on gene trees contain
much information [62], it is important to accommodate
their uncertainties.

Comparison between full-likelihood and heuristic
methods
Figure 5 shows results from a small simulation to
illustrate the different performance of a full likelihood
method (BPP), two summary methods (ASTRAL and
MP-EST), and ML analysis of concatenated data. The
species tree is challenging with short internal branches in
both sets of simulations. BPP recovered the true species
tree with higher probability than the two summary
methods and concatenation. For set 1, all four methods
are consistent, with the probability of recovering the
true species tree approaching 1 for every method when
the number of loci increases. For set 2 the species
tree is in the anomaly zone, and concatenation/ML is
inconsistent, with the probability for the mismatching
balanced tree approaching 1, while the other three
methods are consistent. Note that the ML method applied
to concatenated data assumes one tree and one set of
divergence times for all loci and can be inconsistent [67].

Heuristic methods based on data summaries have
a huge computational advantage over full-likelihood
methods. For large datasets with hundreds or thousands
of species and thousands of loci, they may be the
only methods that are currently feasible computationally.
Heuristic methods have poorer statistical performance
than full-likelihood methods, and the difference can be
large for challenging species trees with short internal
branches [9, 19, 62, 64, 68]. As two-step methods typi-
cally ignore phylogenetic reconstruction errors in gene
trees, their performance may suffer from uncertainties in
the gene trees [60, 64]: for those methods, species trees
are only as good as the gene trees on which they are built
[9, 23].

An important strength of full-likelihood methods is
that they can provide estimates of parameters in the MSC



model when the species tree is fixed [16, 56]. The MSC
model for a species tree of s species has s — 1 divergence
times (7s) and 2s — 1 population sizes (6s) (fig. 2), all of
which can be identified and estimated by full likelihood
methods using multilocus sequence data. In contrast,
summary methods use only a portion of information in
the data and are unable to identify all parameters in
the model. For example, in the case of three species,
the MSC model involves seven parameters (two Ts and
five Os), but there are only two distinct frequencies
of gene trees (eq. 4), so that two-step methods using
gene tree topologies alone can identify only the internal
branch length in coalescent units: ¢ or 2AT/Opc of
eq. 3. For large datasets for which species tree estimation
using full-likelihood methods is too expensive, it may be
advisable to use summary methods to infer the species
tree, and then full likelihood methods to estimate the
population parameters on the species tree.

Multispecies Coalescent with Migration or
Introgression

In the past two decades, analyses of genomic data
have highlighted the prevalence of cross-species gene
flow [69-71]. Ancient gene flow has been detected in
a variety of species, from mosquitoes [20, 72] and
butterflies [73] to hominins [74]. Like deep coalescence,
gene flow causes genealogical fluctuations across the
genome, posing challenges to species tree estimation
[75-78]. Perhaps more importantly, hybridization can
lead to rapid genomic changes, leading to beneficial
new phenotypes and ecological adaptations. Inferring
the mode and timing of gene flow may help us to
achieve a better and richer understanding of the process
of speciation and adaptation [70, 71].

Two types of models of gene flow have been develo-
ped, both as extensions to the MSC model. The first is the
migration model (MSC+M), also known as the isolation-
with-migration (IM) model [17, 79], which assumes that
gene flow occurs at a certain rate every generation. The
second is the hybridization/introgression model (MSC+I
or MSci) [80, 81], in which hybridization occurs at
a fixed time point in the past. Here we discuss the
distribution of the gene trees under those models of gene
flow. ML and Bayesian methods of inference proceed as
before (egs. 8 & 9), except that the model may involve
parameters that measure the timing and strength of gene
flow and the gene tree may include the migration or
introgression history, as well as the tree topology and
coalescent times. We will also mention a few heuristic
methods for testing for the presence of gene flow and
estimating its rate.

Isolation-with-migration (IM)

Consider two populations A and B with population sizes
64 and Op that have been exchanging migrants at the
rates of Myp and Mpy since their divergence at time Tg
(fig. 6a). The parameter vector in the IM model for two

species is thus ® = {64, 0p, Or, Tr, Map, Mp4 }. Here the
population migration rate Myp = mapNp is the expected
number of migrants from A to B (in the real world with
time running forward) per generation, with msp to be
the proportion of individuals in population B that are
immigrants from population A. The rate Mgy = mpaNy
is defined similarly. Note that migration rates in the IM
model reflect the long-term effects of migration, genetic
drift, recombination, as well as natural selection purging
introduced alleles [71]. We consider the probability
density of the gene trees under the IM model. There are
two formulations, depending on whether the gene tree at
a locus includes the migration history.

In the first formulation, the gene tree includes the tree
topology and coalescent times, but not the migration
history (or with the migration history integrated out).
This relies on the theory developed in the structured
coalescent framework in which the backwards-in-time
process of coalescence and migration is described using
a continuous-time Markov chain [82-84]. The state of
the chain is specified by the number of sequences in the
sample and their population IDs [18, 45, 61]. Consider
the IM model for two species (A and B) of figure 6a and
suppose two sequences (a and b) are sampled at locus
j (fig. 6b), so that the gene tree is just the sequence
divergence time ¢; (we suppress the subscript and write
tj as t hence). When we trace the genealogy of the
two sequences backwards in time, the sequences may
move between populations and they may coalesce. The
possible states are sg4, Sap, Spp, S4 and sp. Here sqq
means that both sequences are in population A, spp
means both are in B, while s4p means one is in A and
the other in B. With only two sequences in the sample,
there is no need to distinguish s4p and sps. If the two
sequences have coalesced, the state becomes s4 or sp,
and these are lumped into one artificial absorbing state,
sa|g> since there is no need to trace the history any
further. Let Q = {qu } be the generator matrix for the
Markov chain over the time interval (0,7g), where g,
is the instantaneous rate of transition from states u to v.
This is

| SAA SAB SBB SA|B
SAA —2(m1 + é) 2my 0 é
Q = SAB ny _(ml +m2) my 1 (2) (10)
SBB 0 2m2 72(”12 + 9*3) 05
SAlB 0 0 0 d
Here the time unit is one mutation per site, m; = 41‘92’*‘ =
m#iA is the mutation-scaled migration rate into species

A and mp = 4}‘642‘3 = % is the rate into B. Note that

the Markov chain runs backwards in time while the
migration rates (e.g., Map and my) are defined under
the real-world forward-in-time view. For example, in
the first row, the transition from ss4 to sqp represents
migration from B to A in the real world, and either
sequence in A can be the migrant, so that the rate is
2mpa per generation or 2mps /U = 2m; per mutational
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FIG. 6. (a) Migration (MSC+M) or isolation-with-migration
(IM) model for two species (A and B) showing the parameters.
(b) A gene tree for two sequences (a and b) with divergence time
t and four migration events, with t = Zg:l sr. The migration rates
(per mutational time unit) are shown beneath the horizontal lines
representing migration events. Note that time runs forward in (a)
when we define migration rates (Myp or my) and backward in (b)
when we trace the genealogical history at the locus.

time unit. The transition from sa4 to s4)p means that the
two sequences coalesce in A, with rate %. State sgp is
not reachable from s44 instantaneously.

The transition probability matrix over any time 0 < ¢ <
g = Tis then P(t) = {pu(t)} = e, where p,,(t) is the
probability that given state u at time 0, the chain will be
in state v at time ¢. P(¢) is analytically tractable in special
cases (e.g., when the model is symmetrical with Myp =
Mgy and 64 = Op, [18]) but can be calculated in general
using efficient algorithms for matrix exponentiation. Let
so be the initial state, which is one of ss4, Sag, and sgg,
depending on which species each sequence is sampled
from (s9 = s4p in the gene tree of fig. 6b). The density of
the divergence time ¢ is

2 2
Psosan (1) 8 T Psosss (z) B

[1 - pSOSA|B (T)] % e %

ifr <7,

f(t|®) =

w0 ifr > 1
(1)
Recall that the probability density f(¢) means that f(¢)Az
is the probability that the divergence time is in the
small interval (¢,z + At). In the case of < 7, the two
sequences coalesce before reaching 7. The probability
f(t)Ar is a sum of two terms, corresponding to the
coalescent occurring in either A or B. The first term,
Psosan (t)%At, is the probability that both sequences are
in species A right at ¢, times the probability, %At, that
they coalesce during (7,7 + At). Similarly the second
term is the probability of coalescent occurring in B. In
the case of t > 7, the two sequences do not coalesce in
either A or B before time 7 and both enter the ancestral
species R. Here 1 — ps, () is the probability that the
Markov chain is in any of the two-sequence states at time
T (in other words, sequences a and b have not coalesced
by time 7). Inside species R, the two sequences coalesce
at the rate 9273’ with the waiting time (# — 7) exponentially
distributed.
Note that calculation of P(¢) for the Markov chain
integrates out the migration history at each locus analyti-
cally, so that eq. 11 is a function of divergence time ¢ but

not of the migration events or times. Even in the case of
two sequences (fig. 6b), there are an infinite number of
migration histories that give rise to the same ¢, and eq. 11
averages over all of them.

The Markov chain (Q) specified above applies to two
species and two sequences. A different Markov chain
has to be constructed if there are more species or more
sequences. The theory is general and works for arbitrary
numbers of species and sequences. For a tree of s extant
species, we divide the timeline into s epochs according
to the (s — 1) species divergence times. In each epoch,
the populations are fixed so that the coalescent and
migration rates stay the same, and a Markov chain can
be constructed [18, 61]. With the MSC density of gene
trees calculated this way, the likelihood under the IM
model is given by eq. 8, although the parameter vector
® includes the migration rates as well. This strategy
of integrating out the migration history may offer a
huge computational advantage. However, the number
of states in the Markov chain grows explosively with
the increase in the number of species and the number
of sequences [61]. The formulation is feasible for very
small numbers of species and sequences only. The only
implementation of this strategy appears to be the ML
program 3S [18, 45], which is limited to three species
and three sequences, although tens of thousands of loci
can be handled.

In the second formulation, the gene tree at a locus
includes the tree topology, coalescent times, and the
full migration history including the number, times and
directions of migration events (fig. 6b). The probability
density for such a gene tree is easy to compute because
both coalescent and migration are Poisson events with
exponential waiting times [85-87]. In the gene tree of
figure 6b, the time period (0,7) is broken into six time
segments by the coalescent, migration, and speciation
events, and within each segment, the number of lineages
is constant, as are the coalescent and migration rates.
Then the probability density of the gene tree (G) is given
by the rates for the coalescent and migration events times
the probability of no events over the whole time period

f(G|®) = [m% 67%S2*MI(81+2S2+53+55)]

2 2
% [m% e—@&;—mz(ﬂ+S3+2S4+S5)] % [9% e_ﬁ(t_f)]. (12)

The three pairs of brackets represent contributions to the
gene-tree density from species A, B, and R, respectively.
For species A, there are 2 migration events into A (with
rates m%), coalescent does not occur over time segment
52, and migration does not occur over segments s1, 53, 53,
or 55, during which the number of lineages is 1, 2, 1, and
1, respectively. Hence the term for species A. Note that
the probability of no events, or the probability that none
of multiple independent Poisson events with a total rate
of A occurs, over time ¢ is e~ M. The contribution from
species B is given similarly. In species R, a coalescent
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FIG. 7. (a) MSci models A, B, C, and D implemented in BPP
[81], showing the parameters. In model A, two parental species
SH and TH merge to form a hybrid species H at time 7y, but
both parental species become extinct (see fig. 8a&b for alternative
interpretations). In model B, there is introgression from species RA
to T'C at time 75 = Ty. In model C, species RA and RB come into
contact to form hybrid species HC at time Tg = Ty = Tr. Model
D assumes bidirectional introgression between species RA and RB
at time Ty = Ty. Here the introgression probability (¢) is assigned
to the horizontal (introgression) branch at each hybridization node
whereas in [81] it is sometimes assigned to the vertical branch.

occurs after the waiting time sq = ¢ — T, so the rate is %
and the probability of no event is e_ég_r).

Unlike eq. 11 in which the gene tree means divergence
time ¢, here G represents the full coalescent and migra-
tion history at the locus, such as the (backwards-in-time)
transitions of sequence b from B into A at time s; and
back to B at time s; + 52, and so on. If we sum over all
possible histories which have divergence time ¢ (one of
which is that of fig. 6b), the marginal density f(¢) will
be given by eq. 11.

Eq. 12 is easily generalizable to more species and
sequences. For a general gene tree, one can break the
time period from the present time to the root of the gene
tree into time segments by the coalescent and migration
events at the locus and by the speciation events. Then the
probability density of the gene tree is simply given as the
product of rates for the coalescent and migration events
that occurred times the probability of no events over the
whole time period.

This formulation is used in Bayesian implementations
of the IM model such as IMA [88, 89] and G-PHOCS
[90]. The posterior is given by eq. 9 except that the
gene tree G; includes the migration history. G-PHOCS
is an extension of an earlier version of BPP [8, 16]
and is computationally more efficient than IMA and can
deal with a few thousand loci. The algorithm averages
over the migration history at every locus and becomes
inefficient at high migration rates, as there will be many
migration events to average over. Note that the sequence
likelihood depends on the gene tree and coalescent times
but not migration events.

Multispecies coalescent with introgression (MSci)
The introgression or MSci model assumes that gene
flow occurs between species at fixed time points in
the past (fig. 7). There are two types of nodes on the
species tree: speciation nodes and hybridization nodes.
While a speciation node (if it is not the root) has

(a) Model A, (b) Model A, (c) Model B, (d) Model B,
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FIG. 8. (a&b) Two interpretations of model A, alternative to
figure 7a, involving a ghost species X. In model A,, species SUX
contributes migrants to species THC at time Ty and has since
become extinct or unsampled in the data, while in model Aj,
TUX is the ghost species. Models A; (fig. 7a), Ap, and Az are
indistinguishable using genetic data. (c&d) Two versions of model
B, which are identifiable using genetic data.

one parent, a hybridization node has two parents, with
their contributions to the hybrid species represented by
probabilities ¢ and 1 — ¢. When we trace the history of
sequences backwards in time and meet a hybridization
node, each sequence picks one of the two parents
according to probabilities ¢ and 1 — ¢. The parameters
in the model includes the introgression probabilities
as well as the species divergence/introgression times
(ts) and population sizes (6s), with ® = {7,0,}.
The introgression probability ¢, also written as 7, has
been called (inappropriately) ‘inheritance probability’
or ‘heritability’. Like the migration rate in the IM
model, the introgression probability reflects the long-
term effects of drift and selection on introgressed alleles.
The MSci model has been referred to as the network
multispecies coalescent (NMSC) [91, 92] or multispe-
cies network coalescent (MSNC) [93, 94]. We avoid the
term ‘network’ as it has been used to refer to a variety of
processes including gene-tree reconstruction errors [95].

Four types of MSci models are implemented in BPP
(fig. 7) [81]. In model A, two species SH and TH
merge to form a hybrid species HC. This scenario may
be rare, but the model can be used to accommodate
introgressions involving ghost or unsampled species
(fig. 8a&b). Model B assumes introgression from species
RA to TC at time Tg = Ty. This is distinguishable using
genetic data from the alternative model in which there
is introgression from RB to SC (B,, fig. 8d). Model C
(fig. 7¢) is a case of hybrid speciation. Model D assumes
that two species RA and RB came into contact at time
Tx = Ty and exchanged migrants.

The two parental branches are sometimes called
the ‘major hybrid edges’ and ‘minor hybrid edges’,
according as ¢ > % and the binary species tree that
remains after all minor hybrid branches are removed is
called the ‘major species tree’ [95]. This characterization
is useful if gene flow occurs in pulses as assumed by
the MSci model but may be misleading if gene flow is
continuous. For example, continuous migration at a low
rate per generation can drastically change the gene tree
distribution so that when the MSci model is fitted to the
data, the major species tree may reflect gene flow, rather
than species divergences [20, 72, 78].
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FIG. 9. (a) MSci model B for three species (fig. 7b) and (b) a
gene tree for four sequences for illustrating the gene-tree density
under the MSci model.

L

Below we consider the probabilities of gene tree
topologies under the MSci model. These can be used
in the two-step methods to estimate the introgression
probabilities or to infer the introgression model using
reconstructed gene trees as input data, as in the PHYLO-
NET/ML program [96].

The calculation is very similar to that under the simple
MSC model (eq. 4). Consider model B (fig. 9a), with
three sequences at the locus (a,b,c) [78]. If sequences
b and c coalesce in species 7, the gene tree will be
G1 = (a,(b,c)), while if a and c coalesce in species S, the
gene tree will be Gy = (b, (c,a)). If neither event occurs,
the two coalescent events for the three sequences will
occur in species R and the three gene trees will occur
with equal probabilities. Thus G3 = (c, (a,b)) must be
the least probable gene tree. We have

P(G1) = 3095+ (1— @) (1 —¢r + 30r),

P(Gy) = @ (1—¢s+30s5) + 1(1—)¢r,
P(G3) = 3[99s+ (1 —@)¢r] = 1 —P(G1) —P(Gn),
(13)
— 4 (tr—7s) — ¢ (r—7r)
where ¢g = e % and ¢y =e °r are the

probabilities that two sequences entering species S or T
do not coalesce in that species (cf. ¢ of eq. 3). Consider
gene tree G, which means that sequences b and c
coalesce first. If sequence c enters S (which happens
with probability ¢), G| can occur only if sequences ¢
and a do not coalesce in S. Hence the first term, @@s %
If sequence ¢ enters H (which happens with probability
1 — @), sequences b and ¢ can coalesce in T or R. Hence
the second term, (1 — @) (1 —¢r + %¢T).

The gene tree probabilities (eq. 13) are functions of ¢,
@s and @7, while ¢s and ¢ are simple functions of the
internal branch lengths in coalescent units on the species
tree. We have P(G) <P(Gy) if (1—¢)(1—¢7) < @(1—
@s), or if b and ¢ are more likely to coalesce in T than
are a and c¢ to coalesce in S [78].

Next we consider the joint density of (Gj,t;), the
gene tree with the complete history of coalescence and
introgression events at locus j, including the parental
path taken by each sequence at each hybridization node.

This is used in full-likelihood implementations of the
MSci model. This joint density is very similar to that
under the MSC without gene flow (eq. 7), with the
only modification that each time a sequence passes a
hybridization node, there is a probability ¢ or 1 — ¢
depending on the parental path taken. Thus

£(Gj,1)l8,0) = [e_%rﬁ} « [<p9%e‘92*s<’2—fs>}

x[1-g] x[ge oy (e W

% [é_ 92R e — g (11— TR) — g (10— fl)]
The five pairs of brackets correspond to species C, S, H,
T and R (fig. 9b). For species S (i.e., SR), sequence c|
picks parental path S and coalesces with sequence a at
time 7, so that the contribution to the gene-tree density

&(n—15)

from S is (pe% e % . Introgression is counted as an
event in the receiving population (rather than the source
population) when we trace the lineages backwards in
time and reach a hybridization node.

Bayesian implementations of the introgression model
can then proceed as before, with the joint posterior of
the MSci model and parameters given by eq. 9, except
that S now represents the MSci model, the parameter
vector ® includes the introgression probabilities (@s)
as well as the divergence/introgression times (7s) and
population sizes (6s), and the gene tree G; includes the
introgression history at the locus. There are currently
three Bayesian MCMC implementations of the MSci
model: PHYLONET/MCMC-SEQ [93], *BEAST [94,
97], and BPP [81] (table 1). PHYLONET and *BEAST
can allow changes to hybridization events in the MCMC
and can infer the introgression model from the data.
Those programs appear to reach their limits with ~ 100
loci. BPP assumes that the MSci model is specified and
fixed and the program estimates the parameters under
the model. It has been applied to datasets of over 10,000
loci [29, 81]. Also BPP implements four different types
of introgression models (fig. 7), while only model A is
available in PHYLONET and *BEAST.

Binary species trees generated by taking different
parental paths at hybridization nodes are called “displa-
yed species trees” [92] or “parental species trees”. An
interesting formulation of the MSci model specifies the
distribution of the gene trees as a mixture over the displa-
yed species trees, with the mixing probabilities given by
the introgression probabilities at the hybridization nodes
(fig. 10) [e.g., 98, 99]. To simulate a gene tree, one would
sample a displayed species tree first and then generate
the gene tree according to the simple MSC model.
This is in general incorrect as it forces all sequences
at the locus to take the same parental path at each
hybridization node, whereas correctly there should be a
binomial sampling process when two or more sequences
reach a hybridization node. In the model of figure 10, if
sequences b and ¢ reach species Y, it should be possible
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FIG. 10. Displayed species trees are binary trees that result from
removing one of the two parental branches at each hybridization
node in the MSci model. With k hybridization nodes, there are
2K displayed species trees. Their probabilities are given by the
introgression probabilities at the hybridization nodes: o3, ot(1 —

B), (1—a)B, and (1 —a)(1 = B).

for one of them to take the left parent and the other the
right parent. In the special case where each hybridization
node on the species tree has at most one sequence from
all its descendant populations, the formulation is correct
and can be used to derive the probability distribution
of gene trees. For example, eq. 13 for the case of three
species and three sequences (fig. 9a) can be derived this
way. It is also interesting to note that under the MSci
model, the most probable gene tree may have a topology
that is different from all of the displayed species trees
[100].

Heuristic methods for inferring gene flow

A number of heuristic methods have been developed
to test for the presence of gene flow and to estimate
its strength. Here we mention a few briefly. The most
popular method is the D-statistic or ABBA-BABA test
[101]. This uses the species tree (((A,B),C), O) for three
species A, B, and C, with the outgroup species O, and is
based on the counts of site patterns when one sequence
or genome is available from each species [102]. There
are three parsimony-informative site patterns: AABB
matches the species tree, while ABBA and BABA are the
mismatching patterns, where A and B are any two distinct
nucleotides. The probabilities for the two mismatching
site patterns ABBA and BABA should be equal if there
exists deep coalescence but no gene flow, but they are
different if there is gene flow between the non-sister
species (A and C or B and C) in addition to deep
coalescence. Thus gene flow can be tested by using the
site-pattern frequencies to examine the deviation of
_ JaBBA — fBABA
JaBBa + fBABA
from 0. The D-statistic has been extended to the case of
five species, assuming a symmetric species tree in the so-
called Dgop test [103]. The site pattern frequencies can

(15)

Table 1. A partial list of computer programs implementing the
MSC model with and without gene flow

Method MSC IM & MSci
Full likelihood  3S 3s
BPP IMA3
*BEAST G-PHOCS
BPP
*BEAST
PHYLONET
Two-step ASTRAL PHYLONET
MP-EST PHYLONETWORKS
NJ-sT

also be used to estimate the introgression probability, as
in the program HYDE [104, 105]. From

il _ PAABB — PABAB _ @

; (16)
fo paBea —Paap 1—@
one gets the estimate
fi+r

This is based on the hybridization model with 75 = 77
and g = Or (fig. 7c). The estimate should be biased if
this symmetry does not hold.

A similar argument may be applied to gene tree
topologies instead of site patterns. The probabilities of
the two mismatching gene trees ((b,¢),a) and ((c,a),b)
are equal if there exists deep coalescence but no gene
flow, but different if there is in addition gene flow
between the non-sister species (A and C or B and C).
Thus the observed frequencies of gene tree topologies
can be used to estimate the introgression probability, as
in the SNAQ method [95, 106]. Assume ¢s = ¢7r = @
ineq. 13 and let o =P(Gy) = 10+ (1 —¢) and f3 =
P(G3) = 1¢ be the probabilities of the two mismatching
gene trees. Then

p=L"0
1-3f5

The D-statistic cannot be used to detect gene flow
between sister species or to estimate the time of
introgression. Such unidentifiability issues also exist in
other methods which detect hybridization events using
genome-wide averages, such as the average interspecies
sequence divergence [107] or the joint allele frequency
spectrum [108].

(18)

Unidentifiability, low information content, and
challenges of identifying the mode of gene flow
One area where more research is urgently needed is the
identifiability of introgression models. If the probability
distributions of the data are identical for two sets of
parameter values (@ and @), with f(X|@) = f(X|®’) for
essentially every dataset X, then ® is unidentifiable given
data X. Several studies have examined identifiability
issues of summary methods that use gene tree topologies
as data [76, 80, 91, 109], but little research has been done
on full likelihood methods.
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(a) Model D
Rl

(b) Parameters © (c) Parameters ©'

FIG. 11. MSci model D (bidirectional introgression) (fig. 7d) has
an identifiability issue. (a) Model D showing the definitions of
parameters. (b & ¢) Two sets of parameter values ® and @' that
are unidentifiable. The dotted lines indicate the main routes taken
by sequences sampled from species A and B, if the introgression
probabilities ¢ and f3 are < %

Some cases of unidentifiability are easy to identify.
If it is impossible for two or more sequences to be
in one species when we trace the genealogical history
of the sample backwards in time, the population size
(0) for that species will be unidentifiable, since it takes
two sequences to define a distance. For example, in the
MSC model with no gene flow (fig. 2), the population
sizes for the extant species are unidentifiable if only one
sequence is sampled from each species per locus, but this
unidentifiability disappears when multiple sequences are
available from each species. Furthermore parameters or
models that are unidentifiable using gene tree topologies
alone may become identifiable when both gene trees and
branch lengths (coalescent times) are used. In the case of
three species, there are only three gene trees, so that use
of gene tree topologies can identify only one (under the
MSC model) or two (under the MSci model) parameters,
whereas there are 7 (fig. 2) and 13 (fig. 7a) parameters in
those two models respectively, which are all identifiable
when information from both gene trees and coalescent
times is used.

The identifiability of full-likelihood methods applied
to data of multilocus sequence alignments, with multiple
sequences per species, is the most interesting case,
because full-likelihood methods are expected to be
optimal from a statistical point of view and because
multilocus alignments are the dominating data form
in such analyses. Flouri et al. [81] conjectured that
the MSci model is identifiable on multilocus sequence
alignments as long as it is identifiable on data of gene
trees with coalescent times. Given this, the problem of
identifiability can be studied by considering the gene
trees with coalescent times (G; and £ ) as the input data.

It is noted that MSci model D (fig. 7d) has an
unidentifiability issue of the label-switching type [81]
(fig. 11). For every set of parameters, ® = (6g, 84, 0p, Ox,
Oy, Tr, Tx, Px, @y), there is a “mirror” point @', which
has identical parameter values as ® except that 0y =
By, 0, = Ox, @y =1 —@x and @, = 1 — ¢y. Both ®
and @' have exactly the same likelihood, f(X|S,®) =
f(X|S,0') for all possible data X. This is a label-
switching issue, and does not affect the utility of the

model: one may apply a constraint such as ¢y > % to
remove the unidentifiability or apply more sophisticated
post-processing of the MCMC sample if the “twin tow-
ers” are not well separated [110]. The cases where the
bidirectional introgression involves non-sister species or
where there are multiple introgression events are yet to
be studied.

Even if all parameters are identifiable, typical datasets
may lack information for their reliable estimation. For
example, typical datasets may be highly informative
about species divergence times, but not about population
sizes for ancestral species, especially if those species
correspond to very short branches on the species tree
[111]. In the case of three species both gene flow
between non-sister species and population structure in
the ancestral species can cause the asymmetry in the
probabilities of the two mismatching gene trees [112],
so that the two models are unidentifiable using gene
tree topologies alone. In general it may be hard to
distinguish the different models of gene flow, such as
the complete isolation model (MSC with no gene flow),
the migration (IM) model, the isolation-with-initial-
migration (IIM) model [113], and the introgression
(MSci) model. Simulation may be useful to evaluate
the power to distinguish such models using genomic
datasets.

Conclusion

The multispecies coalescent model provides a powerful
framework for analysis of genomic sequences sampled
from multiple species to extract the rich information
about the evolutionary history of the species. Incorpo-
rating species phylogeny in population genetic models
of population subdivision opens up opportunities for
addressing many exciting questions in evolutionary bio-
logy, such as detecting gene flow during and after species
formation and delineating species boundaries, as well
as inferring demographic changes and estimating popu-
lation sizes for extinct ancestral species. As discussed
in [92], the basic MSC model accommodating species
phylogeny and coalescent is in effect a null model, which
can be extended to include other important biological
processes, leading to models such as

e Hjy : MSC (null model)

e H; : MSC + migration (MSC+M or IM model)

* H, : MSC + introgression (MSC+I or MSci model)
* H; : MSC + population structure

e H,: MSC + recombination

e etc.

Currently, large differences exist between full-
likelihood methods and heuristic methods. The former
have higher statistical efficiency while the latter are
orders-of-magnitude faster computationally. There is
thus much room for improvement for both classes of
methods. For the present, a pragmatic approach to
analyzing large datasets may be to use summary methods
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to estimate the species tree and then full likelihood
methods to estimate the parameters.

Analysis of the simple three-species case [62] sug-
gests that there is rich historical information both in
gene-tree branch lengths (which 2-step methods such
as ASTRAL, MP-EST, and SNAQ ignore) and in the
stochastic fluctuation of genealogical history across loci
(which genome-averaging approaches such as SVDQU-
ARTETS and D-statistic ignore). Heuristic methods that
make use of both kinds of information may thus have
much improved power. For Bayesian implementations
of the MSC model, mixing inefficiency of the MCMC
algorithm appears to be a far more serious problem
than the increase in computational cost for each MCMC
iteration [48]. Developing smart proposal algorithms
that respect and accommodate the mutual constraints
between the species tree and the gene trees is likely to
bring dramatic improvement to the capacity of the full-
likelihood methods. To empirical biologists the MSC
framework makes it possible to ask exciting evolutionary
questions; to method developers it offers rich opportuni-
ties for testing cutting-edge algorithms in computational
statistics (in particular, trans-model MCMC algorithms).
With the advancements of sequencing technologies and
rapid accumulation of genomic sequence data as the
driving force, the field will in all likelihood continue to
be a research hotspot in the coming years.
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