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Abstract

Population-adjusted indirect comparisons estimate treatment effects when

access to individual patient data is limited and there are cross-trial differences

in effect modifiers. Popular methods include matching-adjusted indirect com-

parison (MAIC) and simulated treatment comparison (STC). There is limited

formal evaluation of these methods and whether they can be used to accu-

rately compare treatments. Thus, we undertake a comprehensive simulation

study to compare standard unadjusted indirect comparisons, MAIC and STC

across 162 scenarios. This simulation study assumes that the trials are investi-

gating survival outcomes and measure continuous covariates, with the log haz-

ard ratio as the measure of effect. MAIC yields unbiased treatment effect

estimates under no failures of assumptions. The typical usage of STC produces

bias because it targets a conditional treatment effect where the target estimand

should be a marginal treatment effect. The incompatibility of estimates in the

indirect comparison leads to bias as the measure of effect is non-collapsible.

Standard indirect comparisons are systematically biased, particularly under

stronger covariate imbalance and interaction effects. Standard errors and cov-

erage rates are often valid in MAIC but the robust sandwich variance estimator

underestimates variability where effective sample sizes are small. Interval esti-

mates for the standard indirect comparison are too narrow and STC suffers

from bias-induced undercoverage. MAIC provides the most accurate estimates

and, with lower degrees of covariate overlap, its bias reduction outweighs the

loss in precision under no failures of assumptions. An important future objec-

tive is the development of an alternative formulation to STC that targets a mar-

ginal treatment effect.
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1 | INTRODUCTION

Evaluating the comparative effectiveness of alternative
health care interventions lies at the heart of health tech-
nology assessments (HTAs), such as those commissioned
by the National Institute of Health and Care Excellence
(NICE), the body responsible for providing guidance on
whether health care technologies should be publicly
funded in England and Wales.1 The randomized con-
trolled trial (RCT) is the most reliable design for estimat-
ing the relative efficacy of new treatments.2 However,
new treatments are typically compared against placebo or
standard of care before the licensing stage, but not neces-
sarily against other active interventions—a comparison
that is required for HTAs. In the absence of data from
head-to-head RCTs, indirect treatment comparisons
(ITCs) are at the top of the hierarchy of evidence when
assessing the relative efficacy of interventions and can
inform treatment and reimbursement decisions.3

Standard ITC techniques, such as network meta-anal-
ysis, are useful when there is a common comparator arm
between RCTs, or more generally a connected network of
studies.3,4 These methods can be used with individual
patient data (IPD) or aggregate-level data (ALD), with
IPD considered the gold standard.5 However, standard
ITCs assume that there are no cross-trial differences in
the distribution of effect-modifying variables (more spe-
cifically, that relative treatment effects are constant) and
produce biased estimates when these exist.6 Popular
balancing methods such as propensity score matching7

can account for these differences but require access to
IPD for all the studies being compared.8

In many HTA processes, there are: (1) no head-to-head
trials comparing the interventions of interest; (2) IPD avail-
able for at least one intervention (e.g., from the submitting
company's own trial), but only published ALD for the rele-
vant comparator(s); and (3) cross-trial differences in effect
modifiers, implying that relative treatment effects are not
constant across trial populations. Several methods, labeled
population-adjusted indirect comparisons, have been intro-
duced to estimate relative treatment effects in this scenario.
These include matching-adjusted indirect comparison
(MAIC),9,10,11 based on inverse propensity score
weighting,12 and simulated treatment comparison (STC),13

based on regression adjustment,14 and require access to IPD
from at least one of the trials.

The NICE Decision Support Unit has published for-
mal submission guidelines for population adjustment
with limited access to IPD.6,15 Various reviews6,15,16,17

define the relevant terminology and assess the theoretical
validity of these methodologies but do not express a pref-
erence. Questions remain about the correct application of
the methods and their validity in HTA.6,15,18 Thus,

Phillippo et al.6 state that current guidance can only be pro-
visional, as more thorough understanding of the properties
of population-adjusted indirect comparisons is required.

Consequently, several simulation studies have been
published since the release of the NICE guid-
ance.19,20,21,22,23,24 These have primarily assessed the per-
formance of MAIC relative to standard ITCs in a limited
number of simulation scenarios. In general, the studies
set relatively low effect modifier imbalances and do not
vary these, even though MAIC is prone to large reduc-
tions in effective sample size and imprecise estimates of
the treatment effect when high imbalances lead to poor
overlap.25 Most importantly, existing simulation studies
typically consider binary covariates at non-extreme
values, not close to zero or one. In these scenarios, MAIC
is likely to perform well as covariate overlap is strong.
Propensity score weighting methods such as MAIC are
known to be highly sensitive to scenarios with poor
overlap,26,27,28 because of their inability to extrapolate
beyond the observed covariate space. Hence, evaluating
the performance of MAIC in the face of practical scenar-
ios with poor covariate overlap is important.

In this paper, we carry out an up-to-date review of MAIC
and STC, and a comprehensive simulation study to bench-
mark the performance of the methods against the standard
ITC. The simulation study provides proof-of-principle for the
methods and is based on scenarios with survival outcomes
and continuous covariates, with the log hazard ratio as the
measure of effect. The methods are evaluated in a wide range
of settings; varying the trial sample size, effect-modifying
strength of covariates, prognostic effect of covariates, imbal-
ance/overlap of covariates and the level of correlation in the
covariates. One hundred sixty-two simulation scenarios are
considered, providing the most extensive evaluation of popu-
lation adjustment methods to date. An objective of the simu-
lation study is to inform the circumstances under which
population adjustment should be applied and which specific
method is preferable in a given situation.

In Section 2, we establish the context and data
requirements for population-adjusted indirect compari-
sons. In Section 3, we present an updated review of
MAIC and STC. Section 4 describes a simulation study,
which evaluates the properties of these approaches under
a variety of conditions. Section 5 presents the results of
the simulation study. An extended discussion of our find-
ings and their implications is provided in Section 6.
Finally, we make some concluding remarks in Section 7.

2 | CONTEXT

HTA often takes place late in the drug development pro-
cess, after a new medical technology has obtained
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regulatory approval, typically based on a two-arm RCT
that compares the new intervention to placebo or stan-
dard of care. At the licensing stage, the question of inter-
est is whether or not the drug is effective. In HTA, the
relevant policy question is: “given that there are finite
resources available to finance health care, which is the
best treatment of all available options in the market?” In
order to answer this question, one must evaluate the rela-
tive effectiveness of interventions that may not have been
trialed against each other.

Indirect treatment comparison methods are used
when we wish to compare the relative effect of interven-
tions A and B for a specific outcome, but no head-to-head
trials are currently available. Typically, it is assumed that
the comparison is undertaken using additive effects for a
given linear predictor, for example, log hazard ratio for
time-to-event outcomes or log-odds ratio for binary out-
comes. Indirect comparisons are typically performed on
this scale.3,4 In addition, we assume that the comparison
is “anchored”, that is, a connected treatment network is
available through a common comparator C, for example,
placebo or standard of care. We note that comparisons
can be unanchored, for example, using single-arm trials
or disconnected treatment networks, but this requires
much stronger assumptions.6 The NICE Decision Support
Unit discourages the use of unanchored comparisons
when there is connected evidence and labels these as
problematic.6,15 This is because they do not respect
within-study randomization and are not protected from
imbalances in any covariates that are prognostic of out-
come (in essence implying that absolute outcomes can be
predicted from the covariates, a heroic assumption).
Hence, we do not present the methodology behind these.

A manufacturer submitting evidence for reimburse-
ment to HTA bodies has access to patient-level data from
its own trial that compares its product A against standard
intervention C. However, as disclosure of proprietary,
confidential patient-level data from industry-sponsored
clinical trials is rare, IPD for the competitor's trial, com-
paring its treatment B against C, are, almost invariably,
unavailable (for both the manufacturer submitting evi-
dence for reimbursement and the national HTA agency
evaluating the evidence). We consider, without loss of
generality, that IPD are available for a trial comparing
intervention A to intervention C (denoted AC) and publi-
shed ALD are available for a trial comparing B to C (BC).

Standard methods for indirect comparisons such as
the Bucher method,4 a special case of network meta-anal-
ysis, allow for the use of ALD and estimate the A versus
B treatment effect as:

Δ̂AB ¼ Δ̂AC� Δ̂BC, ð1Þ

where Δ̂AC is the estimated relative treatment effect of A
versus C (in the AC population), and Δ̂BC is the estimated
relative effect of B versus C (in the BC population). The
estimate Δ̂AC and an estimate of its variance can be calcu-
lated from the available IPD. The estimate Δ̂BC and an
estimate of its variance may be directly published or
derived from aggregate outcomes made available in the
literature. As the indirect comparison is based on relative
treatment effects observed in separate RCTs, the within-
trial randomization of the originally assigned patient
groups is preserved. The within-trial relative effects are
statistically independent of each other; hence, their vari-
ances are simply summed to estimate the variance of the
A versus B treatment effect.

Standard indirect comparisons assume that there are
no cross-trial differences in the distribution of effect-
modifying variables. That is, the relative treatment effect
of A versus C in the AC population (indicated as ΔAC) is
assumed equivalent to the treatment effect that would
occur in the BC population* (denoted Δ*

AC)—throughout
the paper the asterisk superscript represents a quantity
that has been mapped to a different population; for exam-
ple, in our case, the A versus C treatment effect in the AC
population is mapped to the population of the BC trial.

Often, treatment effects are influenced by variables
that interact with treatment on a specific scale (e.g., the
linear predictor), altering the effect of treatment on out-
comes. If these effect modifiers are distributed differently
across AC and BC, relative treatment effects differ in the
trial populations and the assumptions of the Bucher
method are broken. In this case, a standard ITC between
A and B is liable to bias and may produce overly precise
efficacy estimates.30 From the economic modeling point
of view, these features are undesirable, as they impact
negatively on the “probabilistic sensitivity analysis,”31 the
(often mandatory) process used to characterize
the impact of the uncertainty in the model inputs on
decision-making.

As a result, population adjustment methodologies
such as MAIC and STC have been introduced. These tar-
get the A versus C treatment effect that would be
observed in the BC population, thereby performing an
adjusted indirect comparison in such population. The
adjusted A versus B treatment effect is estimated as:

Δ̂
*
AB ¼ Δ̂

*
AC� Δ̂BC , ð2Þ

where Δ̂
*
AC is the estimated relative treatment effect of A

versus C (in the BC population, implicitly assumed to be
the relevant target population). Variances are combined
in the same way as the Bucher method.
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Those studying the generalizability of treatment
effects often make a distinction between sample and
population treatment effects.32,33,34,35 Typically,
another implicit assumption made by population-
adjusted indirect comparisons is that the treatment
effects estimated in the BC sample, as described by its
published covariate moments in the case of Δ̂

*
AC, coincide

with those that would be estimated in the target popula-
tion of the trial. Namely, either the study sample on
which inferences are made is the study target population,
or it is a simple random sample (i.e., representative) of
such population, ignoring the sampling variability in the
descriptive characteristics.

The use of population adjustment in HTA, both in
published literature as well as in submissions for reim-
bursement, and its acceptability by national HTA bod-
ies, for example, in England and Wales, Scotland,
Canada and Australia,18 is increasing across diverse
therapeutic areas.18,25,36,37 As of April 11, 2020, a sea-
rch among titles, abstracts and keywords for
“matching-adjusted indirect comparison” and “simu-
lated treatment comparison” in Scopus, reveals at least
89 peer-reviewed applications of MAIC and STC and
conceptual papers about the methods. In addition, at
least 30 technology appraisals (TAs) published by
NICE use MAIC or STC—of these, 23 have been publi-
shed since 2017. Figure 1 shows the rapid growth of
peer-reviewed publications and NICE TAs featuring
MAIC or STC since the introduction of these methods
in 2010. MAIC and STC are predominantly applied in
the evaluation of cancer drugs, as 26 of the 30 NICE
TAs using population adjustment have been in
oncology.

3 | METHODOLOGY

We shall assume that the following data are available for
the i-th subject (i¼ 1,…,N) in the AC trial:

• A covariate vector of K baseline characteristics
X i ¼ Xi,1,…,Xi,Kð Þ, for example, age, gender, comorbidities.

• A treatment indicator Ti. Without loss of generality,
we assume here for simplicity that Ti ∈ 0,1f g for the
common comparator and active treatment, respectively.

• An observed outcome Yi, for example, a time-to-event
or binary indicator for some clinical measurement.

Given this information, one can compute an unadjusted
estimate Δ̂AC of the A versus C treatment effect, and an
estimate of its variance. In the Bucher method, such esti-
mate would be plugged in to Equation (1). On the other
hand, MAIC and STC generate a population-adjusted
estimate Δ̂

*
AC of the A versus C treatment effect that

would be plugged in to Equation (2).
For the BC trial, data available are:

• A vector XBC ¼ XBC,1,…,XBC,K
� �

of published summary
values for the baseline characteristics. For ease of expo-
sition, we shall assume that these are means and are
available for all K covariates (alternatively, one would
take the intersection of the available covariates).

• An estimate Δ̂BC of the B versus C treatment effect in the
BC population, and an estimate of its variance, either
published directly or derived from aggregate outcomes in
the literature.

Each baseline characteristic k¼ 1,…,K can be classed as
a prognostic variable (a covariate that affects outcome),
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an effect modifier (a covariate that interacts with treat-
ment A to affect outcome), both or none. For simplicity
in the notation, it is assumed that all available baseline
characteristics are prognostic of the outcome and that a
subset of these, X EMð Þ

i ⊆ X i, are selected as effect modi-
fiers (of treatment A) on the linear predictor scale. Simi-
larly, for the published summary values, �X EMð Þ

BC ⊆ �XBC.
Note that we select the effect modifiers of treatment A
with respect to C (as opposed to the effect modifiers of
treatment B with respect to C), because we have to adjust
for these to perform the indirect comparison in the BC
population, implicitly assumed to be the target
population.†

3.1 | Matching-adjusted indirect
comparison

Matching-adjusted indirect comparison (MAIC) is a pop-
ulation adjustment method based on inverse propensity
score weighting.12 IPD from the AC trial are weighted so
that the means and, potentially, higher moments of speci-
fied covariates match those in the BC trial. The weights
are estimated using a propensity score logistic regression
model:

ln wið Þ¼ α0þX EMð Þ
i α1,

where α0 and α1 are the regression parameters, and the
weight wi assigned to each individual i represents the
“trial selection” odds, that is, the odds of being enrolled
in the BC trial as opposed to being enrolled in the AC
trial. These are defined as a function of the baseline char-
acteristics modifying the effect of treatment A, X EMð Þ

i for
subject i. Note that in standard applications of propensity
score weighting, for example, in observational studies,
the propensity score logistic regression is for the treat-
ment group assigned to the subject. In MAIC, the objec-
tive is to balance covariates across studies so the
propensity score model is for the trial in which the partic-
ipant is enrolled.

The regression parameters cannot be derived using
conventional methods such as maximum-likelihood esti-
mation because IPD are not available for BC.
Signorovitch et al.9 propose using a method of moments
to estimate the model parameters by setting the weights
so that the mean effect modifiers are exactly balanced
across the two trial populations. After centering the AC
effect modifiers on the published BC means, such that
X

EMð Þ
BC ¼ 0, the weights are estimated by minimizing the

objective function:

Q α1ð Þ¼
XN
i¼1

exp X EMð Þ
i α1

� �
,

where N represents the number of subjects in the AC
trial. Q α1ð Þ is a convex function that can be minimized
using standard algorithms, for example, BFGS,38 to yield
a unique finite solution α̂1 ¼ argmin Q α1ð Þð Þ. Then, the
estimated weight for subject i is:

ŵi ¼ exp X EMð Þ
i α̂1

� �
:

Consequently, the mean outcomes under treatment
t∈ A,Cf g in the BC population are predicted as the
weighted average:

Ŷ
*
t ¼
PNt

i¼1Yi,tŵiPNt
i¼1ŵi

,

where Nt represents the number of subjects in arm t of
the AC trial, and Yi,t denotes the outcome for patient i
receiving treatment t in the patient-level data. Note that
we have summary data from the BC trial to estimate
absolute outcomes under C. However, in the anchored
scenario, we do not focus on the absolute outcomes as
the objective is to generate a relative effect for A versus C
in the BC population.

Such relative effect is typically estimated by fitting a
weighted model, that is, a model where the contribution
of each subject to the likelihood is weighted. For
instance, if the outcome of interest is a time-to-event out-
come, an “inverse odds”-weighted Cox model can be
fitted by maximizing its weighted partial likelihood. In
this case, a subject i from the AC trial, who has experi-
enced an event at time τ, contributes the following term
to the partial likelihood function:

exp βTTið ÞP
j∈R τð Þŵjexp βTTj

� �
 !ŵi

, ð3Þ

where R τð Þ is the set of subjects without the event and
uncensored prior to τ, that is, the risk set. Here, the fitted
coefficient β̂T of the weighted regression (i.e., the value of
the parameter maximizing the partial likelihood in Equa-
tion 3) is the estimated relative effect for A versus C, such
that Δ̂

*
AC ¼ β̂T .

In the original MAIC approach, covariates are bal-
anced for active treatment and control arms combined
and standard errors are computed using a robust
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sandwich estimator, which allows for hetero-
skedasticity.9,39 Typically, implementations of this esti-
mator do not explicitly account for the fitting of the
logistic regression model for the weights, assuming these
to be fixed.

Terms of higher order than means can also be bal-
anced, for example, by including squared covariates in
the method of moments to match variances. However,
this decreases the degrees of freedom and may increase
finite-sample bias.40 Matching both means and variances
(as opposed to means only) appears to result in more
biased and less accurate treatment effect estimates when
covariate variances differ across trials.20,22

A proposed modification to MAIC uses entropy
balancing41 instead of the method of moments to esti-
mate the weights.20,23 Entropy balancing has the addi-
tional constraint that the weights are as close as possible
to unit weights. Potentially, it should penalize extreme
weighting schemes and provide greater precision. How-
ever, Phillippo et al. recently demonstrated that weight
estimation via entropy balancing and the method of
moments are mathematically identical.42 Other proposed
modifications to MAIC include balancing the covariates
separately for active treatment and common comparator
arms,20,23 and using the bootstrap43,44 to compute stan-
dard errors,45 which does not rely upon strong assump-
tions about the estimation of the MAIC weights.
Balancing the covariates separately seems to provide
greater precision in simulation studies.20 However, we do
not recommend this approach because it may break ran-
domization, distorting the balance between treatment
arms A and C on covariates that are not accounted for in
the weighting. If these covariates are prognostic of out-
come, this would compromise the internal validity of the
within-study treatment effect estimate for A versus C.

As MAIC is a reweighting procedure, it will reduce
the effective sample size (ESS) of the AC trial. The
approximate ESS of the weighted IPD is estimated asP

iŵi
� �2

=
P

iŵ
2
i ; the reduction in ESS can be viewed as a

rough indicator of the lack of overlap between the AC
and BC covariate distributions. For relative effects to be
conditionally constant and eventually produce an unbi-
ased indirect comparison, one needs to include all effect
modifiers in the weighting procedure, whether in imbal-
ance or not (see Supplementary Appendix A of the
Supporting Information for a non-technical overview of
the full set of assumptions made by MAIC, and more gen-
erally, by population-adjusted indirect comparisons).15

The exclusion of balanced covariates does not ensure their
balance after the weighting procedure. Including too many
covariates or poor overlap in the covariate distributions
can induce extreme weights and large reductions in ESS.
This is a pervasive problem in NICE TAs, where most of

the reported ESSs are small with a large percentage reduc-
tion from the original sample size.25

Propensity score mechanisms are very sensitive to
poor overlap.26,27,28 In particular, weighting methods are
unable to extrapolate—in the case of MAIC, extrapola-
tion beyond the covariate space observed in the AC IPD
is not possible. Almost invariably, the level of overlap
between the covariate distributions will decrease as a
greater number of covariates are included. Therefore, no
purely prognostic variables should be balanced to avoid
loss of effective sample size and consequent inflation of
the standard error due to over-balancing.6 Cross-trial
imbalances in purely prognostic variables should not pro-
duce bias as relative treatment effects are unaffected in
expectation due to within-trial randomization.15

3.2 | Simulated treatment comparison

While MAIC is a reweighting method, simulated treat-
ment comparison (STC)13 is based on regression adjust-
ment.14 Regression adjustment methods are promising
because they may increase precision and statistical power
with respect to propensity score-based methodolo-
gies.46,47,48 Contrary to most propensity score methods,
regression adjustment mechanisms are able to extrapo-
late beyond the covariate space where overlap is insuffi-
cient, using the linearity assumption or other appropriate
assumptions about the input space. However, the validity
of the extrapolation depends on the accuracy in capturing
the true covariate-outcome relationships.

In the typical version of STC, IPD from the AC trial
are used to fit a regression of the outcome on the baseline
characteristics and treatment. Following the NICE Deci-
sion Support Unit Technical Support Document 18,6,15

the following linear predictor is fitted to the IPD:

g η*i
� �¼ β0þ X i�XBC

� �
β1

þ βT þ X EMð Þ
i �X

EMð Þ
BC

� �
β2

h i
1 Ti ¼ 1ð Þ, ð4Þ

where η*i is the expected outcome on the natural outcome
scale, e.g. the probability scale for binary outcomes, of
subject i, g �ð Þ is an appropriate link function (e.g., logit
for binary outcomes), β0 is the intercept, β1 is a vector of
K regression coefficients for the prognostic variables, β2
is a vector of interaction coefficients for the effect modi-
fiers (modifying the effect of treatment A vs. C) and βT is
the A versus C treatment coefficient. The covariates are
centered at the published mean values from the BC
population, XBC and X

EMð Þ
BC , respectively. Hence, the esti-

mated β̂T is directly interpreted as the A versus C treat-
ment effect in the BC population, such that Δ̂

*
AC ¼ β̂T .
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The variance of said treatment effect is derived directly
from the fitted model (see Phillippo et al6,15 for a break-
down of uncertainty propagation in the estimates
resulting from MAIC and STC). In a Cox proportional
hazards regression framework, a log link function could
be employed in Equation (4) between the hazard function
and the linear predictor component of the model.

For relative effects to be conditionally constant across
studies, one needs to include in the model the effect mod-
ifiers that are imbalanced. In addition, the relationship
between the effect modifiers and outcome must be cor-
rectly specified; in the case of this article, the effect modi-
fiers must have an additive interaction with treatment on
the linear predictor scale. It is optional to include (and to
center) imbalanced variables that are purely prognostic.
These will not remove bias further but a strong fit of the
outcome model may increase precision. NICE guidance15

suggests adding purely prognostic variables if they
increase the precision of the model and account for more
of its underlying variance, as reported by model selection
criteria (e.g., residual deviance or information criteria).
However, such tools should not guide decisions on effect
modifier status, which must be defined prior to fitting the
outcome model. As effect-modifying covariates are likely
to be good predictors of outcome, the inclusion of appro-
priate effect modifiers should provide an acceptable fit.

Alternative “simulation-based” formulations to STC
have been proposed.16,49 These are outlined as follows.
The joint distribution of BC covariates is approximated
under certain parametric assumptions to characterize the
BC population, for example, simulating continuous
covariates at the individual level from a multivariate nor-
mal with the BC means and the correlation structure
observed in the AC IPD. A regression of the outcome on
the predictors is fitted to the AC patient-level data (this
time, the covariates are not centered at the mean BC
values). Then, the coefficients of this regression are
applied to the simulated subject profiles and the linear
predictions for patients under A and under C in the BC
population are averaged out. The treatment effect for A
versus C is given by subtracting the average linear predic-
tion under C from the average linear prediction under A.
Neither the original conceptual publications nor NICE
guidance provide detailed information about variance
estimation, which is likely to be complicated and proba-
bly requires bootstrapping or similar approaches.

It is worth noting that, in the linear predictor scale,
the arithmetic mean of the average linear predictor (the
average linear predictor for patients sampled under the
centered covariates) and its geometric mean (the linear
predictor evaluated at the expectation of the centered
covariates) coincide. Therefore, provided that the number
of simulated subjects is sufficiently large (i.e., in

expectation or ignoring sampling variability), the “covari-
ate simulation” approach generates estimates that are
equivalent to those of the “plug-in” methodology adopted
in this article.

3.3 | Clarification of estimands

In an indirect treatment comparison, the objective is to
emulate the analysis of a head-to-head RCT between A
and B. However, RCTs have two potential target
estimands: marginal and/or conditional treatment effects.
In MAIC, as is typically the case for propensity score
methods, Δ̂

*
AC targets a marginal treatment effect.7,50,51

In biostatistics52,53,54,55 and epidemiology,56,57,58 this mar-
ginal effect is also known as a population-average or pop-
ulation-level treatment effect, as it measures the average
treatment effect for A versus C at the population level
(conditional on the entire population distribution of
covariates, such that the individual-level covariates have
been marginalized over). This denotes the average out-
come between two identical populations, except that in
one population all subjects are under A, while in the
other population all subjects are under C,59 and where
the difference is taken on a suitable transformed scale,
for example, the linear predictor scale. MAIC targets a
marginal treatment effect because it performs a weighted
regression of outcome on treatment assignment alone.
Therefore, assuming a reasonably large sample size and
proper randomization in the AC trial, the fitted coeffi-
cient β̂T in Equation (3) estimates a relative effect
between subjects that have the same distribution of base-
line characteristics (corresponding to the BC population).

In HTA and health policy, interest typically lies in the
impact of a health technology on the target population
for the decision problem, which MAIC and STC implic-
itly assume to be the BC population. Where making deci-
sions at the population level, the effect of interest is a
marginal treatment effect: the average effect, at the popu-
lation level, of moving the target population from treat-
ment B to treatment A.7,60 The majority of trials report an
estimate Δ̂BC that targets a marginal treatment effect. It is
likely derived from a RCT publication where a simple
regression of outcome on a single independent variable,
treatment assignment, has been fitted.

In the version of STC outlined by the NICE Decision
Support Unit, Δ̂

*
AC targets a conditional treatment effect.

The conditional treatment effect denotes the average
effect, at the individual level, of changing a subject's
treatment from C to A.7,59 STC targets a conditional treat-
ment effect because the estimate is obtained from the
regression coefficient of a multivariable regression (β̂T in
Equation 4), where the baseline covariates included as
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predictors are also adjusted for. Hence, the relative effect
is an average at the subject level, fully conditioned on the
covariates of the average subject.‡ Conditional measures
of effect are clinically relevant as patient-centered evi-
dence in a clinician–patient context, where decision-
making relates to the treatment benefit for an individual
subject with specific covariate values. Conditional treat-
ment effects are typically not of interest when making
decisions at the population level in HTA and health pol-
icy, as they are unit-level measures of effect.

A measure of effect is said to be collapsible if marginal
and conditional effects coincide in the absence of con-
founding bias.56,62 The property of collapsibility is closely
related to that of linearity,63,64 for example, mean differ-
ences in a linear regression are collapsible.7,59,56,62 How-
ever, most applications of population-adjusted indirect
comparisons are in oncology and are typically concerned
with time-to-event outcomes, or rate outcomes modeled
using logistic regression.25 These yield non-collapsible
measures of treatment effect such as (log) hazard
ratios7,59,56,65 or (log) odds ratios.7,59,56,62,65,66,55

With non-collapsible measures of effect, marginal and
conditional estimands do not coincide due to non-
linearity,63 even if there is covariate balance and no con-
founding.56,62 With both collapsible and non-collapsible
measures of effect, estimators targeting distinct estimands
will have different standard errors. Therefore, marginal
and conditional estimates quantify parametric uncer-
tainty differently, and conflating these will lead to the
incorrect propagation of uncertainty to the wider health
economic decision model, which will be problematic for
probabilistic sensitivity analyses.

Therefore, the relative effect estimate Δ̂
*ð Þ
AC in STC is

unable to target a marginal treatment effect and the com-
parison of interest, a comparison of compatible marginal
effects, cannot be performed. A comparison of condi-
tional effects is not of interest, and also, cannot be carried
out. A compatible conditional effect for B versus C is
unavailable because its estimation requires fitting the
non-centered version of Equation (4), adjusting for
the same baseline characteristics, to the BC patient-level
data. Such data are unavailable and it is unlikely that the
estimated treatment coefficient from this model is avail-
able in the clinical trial publication.

Hence, Δ̂
*
AC is incompatible with Δ̂BC in the indirect

comparison (Equation 2) for STC, even if all effect modi-
fiers are accounted for and the outcome model is cor-
rectly specified. If we intend to target a marginal
estimand for the A versus C treatment effect (in the BC
population) and naively assume that STC does so, Δ̂

*
AB

may produce a biased estimate of the marginal treatment
effect for A versus B, even if all the assumptions in Sup-
plementary Appendix A of the Supporting Information

are met. On the other hand, Δ̂
*
AC targets a marginal treat-

ment effect in MAIC. There are no compatibility issues in
the indirect comparison as Δ̂

*
AC and Δ̂BC target compati-

ble estimands of the same form. In the Bucher method, if
the estimate Δ̂AC is derived from a simple comparison of
group means or from an univariable regression of out-
come on treatment in the AC IPD, this targets a marginal
effect and there are no compatibility issues in the indirect
treatment comparison either.

4 | SIMULATION STUDY

4.1 | Aims

The objectives of the simulation study are to compare
MAIC, STC and the Bucher method across a wide range
of scenarios that may be encountered in practice. For
each estimator, we assess the following properties67:
(1) unbiasedness; (2) variance unbiasedness; (3) randomi-
zation validity§; and (4) precision. The selected perfor-
mance measures evaluate these criteria specifically (see
Section 4.5). The simulation study is reported following
the ADEMP (Aims, Data-generating mechanisms,
Estimands, Methods, Performance measures) structure.67

All simulations¶ and analyses were performed using R
software version 3.6.3.68 Example R code implementing
MAIC, STC and the Bucher method on a simulated
example is provided in Supplementary Appendix D of the
Supporting Information.

4.2 | Data-generating mechanisms

As most applications of MAIC and STC are in oncology,
the most prevalent outcome types are survival or time-to-
event outcomes (e.g., overall or progression-free sur-
vival).25 Hence we consider these using the log hazard
ratio as the measure of effect.

For trials AC and BC, we follow Bender et al.69 to
simulate Weibull-distributed survival times under a pro-
portional hazards parameterization.** Survival time τi
(for subject i) is generated according to the formula:

τi ¼ �lnUi

λexp X iβ1þ βT þX EMð Þ
i β2

� �
1 Ti ¼ 1ð Þ

h i
0
@

1
A

1=ν

, ð5Þ

where Ui is a uniformly distributed random variable,
Ui � 0,1ð Þ. We set the inverse scale of the Weibull distri-
bution to λ¼ 8:5 and the shape to ν¼ 1:3 as these param-
eters produce a functional form reflecting frequently
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observed mortality trends in metastatic cancer patients
(as illustrated in Figures 2 and 3, which display the sur-
vival curves implied by the parameters).22 Four correlated
or uncorrelated continuous covariates X i are generated
per subject using a multivariate Gaussian copula.71 Two
of these are purely prognostic variables; the other
two (X EMð Þ

i ) are effect modifiers, modifying the effect of
both treatments A and B with respect to C on the log haz-
ard ratio scale, and prognostic variables.

We introduce random right censoring to simulate
loss to follow-up within each trial. Censoring times τc,i
are generated from the exponential distribution
τc,i �Exp λcð Þ, where the rate parameter λc ¼ 0:96 is
selected to achieve a censoring rate of 35% under the
active treatment at baseline (with the values of
the covariates set to zero), considered moderate censor-
ing.72 We fix the value of λc before generating the
datasets, by simulating survival times for 1,000,000 sub-
jects with Equation (5) and using the R function optim
(Brent's method73) to minimize the difference between
the observed and targeted censoring proportion.

The number of subjects in the BC trial is 600, under a
1:1 active treatment versus control allocation ratio. This
sample size corresponds to that of a reasonably large
Phase III RCT.74 Different values are not explored as pre-
liminary results showed that these drive performance less
than the number of subjects in the AC trial. While the
number of subjects in BC contributes to sampling vari-
ability, the reweighting or regressions are performed in
the AC patient-level data. For the BC trial, the
individual-level covariates and outcomes are aggregated
to obtain summaries. The continuous covariates are sum-
marized as means—these would typically be available to
the analyst in the published study as a table of baseline
characteristics. The marginal B versus C treatment effect

and its variance are estimated through a Cox propor-
tional hazards regression of outcome on treatment. These
estimates make up the only information on aggregate
outcomes available to the analyst.

The simulation study examines five factors in a fully
factorial arrangement with 3�3�3�2�3¼ 162 scenar-
ios to explore the interaction between factors. The sim-
ulation scenarios are defined by varying the values of
the following parameters, which are inspired by appli-
cations of MAIC and STC in NICE technology
appraisals:

• The number of patients in the AC trial,
N∈ 150,300,600f g under a 1:1 active intervention ver-
sus control allocation ratio. The sample sizes corre-
spond to typical values for a Phase III RCT74 and for
trials included in applications of MAIC and STC sub-
mitted to HTA authorities.25

• The strength of the association between the prognostic vari-
ables and the outcome, β1,k∈ �ln 0:67ð Þ,�ln 0:5ð Þ,�ln 0:33ð Þf g
(moderate, strong and very strong prognostic variable
effect), where k indexes a given covariate. These regression
coefficients correspond to fixing the conditional hazard
ratios for the effect of each prognostic variable at approxi-
mately 1.5, 2 and approximately 3, respectively.

• The strength of interaction of the effect modifiers,
β2,k∈ �ln 0:67ð Þ,�ln 0:5ð Þ,�ln 0:33ð Þf g (moderate,
strong and very strong interaction effect), where k
indexes a given effect modifier. These parameters have a
material impact on the marginal A versus B treatment
effect. Hence, population adjustment is warranted in
order to remove the induced bias.

• The level of correlation between covariates,
cor Xi,k,Xi,lð Þ∈ 0,0:35f g (no correlation and moderate
correlation), for subject i and covariates k≠ l.
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• The degree of covariate imbalance.†† For both trials, each
covariate k follows a normal marginal distribution. For the
BC trial, we fix Xi,k �Normal 0:6,0:22ð Þ, for subject i. For
the AC trial, the normal distributions have mean μk, such
that Xi,k �Normal μk,0:2

2ð Þ, varying μk∈ 0:45,0:3,0:15f g.
This yields strong, moderate and poor covariate overlap,
respectively, corresponding to average percentage reduc-
tions in ESS across scenarios of 19%, 53% and 79%. These
percentage reductions in ESS are representative of the range
encountered in NICE TAs (see below).

Each active intervention has a very strong conditional
treatment effect βT ¼ ln 0:25ð Þ versus the common com-
parator. The covariates may represent comorbidities,
which are associated with shorter survival and, in the
case of the effect modifiers, which interact with treat-
ment to render it less effective. Figure 2 shows the
Weibull-distributed survival curves for patients under
the active treatment (A and B) with varying levels of the
covariates. Figure 3 shows the Weibull-distributed sur-
vival curves for subjects under the common comparator
(C). In Figures 2 and 3, the strength of each prognostic
term and each effect-modifying interaction is moderate.

The varying degrees of covariate overlap are inspired
by applications of MAIC in technology appraisals submit-
ted to the NICE. Only 13 of the 27 appraisals carrying out
a MAIC have effective sample sizes available, albeit some
appraisals contain multiple comparisons for different
endpoints. In most applications, weighting considerably
reduces the effective sample size from the original AC
sample size. The median percentage reduction is 58%
(range: 7.9%–94.1%; interquartile range: 42.2%–74.2%).
The final effective sample sizes are also representative of
those in the technology appraisals, which are also small
(median: 80; range: 4.8–639; interquartile range: 37–174).

4.3 | Estimands

The estimand of interest is the marginal A versus B treat-
ment effect in the BC population. The treatment coeffi-
cient βT ¼ ln 0:25ð Þ is identical for both A versus C and B
versus C. Hence, the true conditional effect for A versus
B in the BC population is zero (subtracting the treatment
coefficient for A vs. C by that for B vs. C). Because the
true unit-level treatment effects are zero for all subjects,
the true marginal treatment effect in the BC population
is zero (Δ*

AB ¼ 0), which implies a “null” simulation setup
in terms of the A versus B contrast, and average marginal
and conditional effects for A versus B in the BC popula-
tion coincide by design.

The simulation study meets the shared effect modi-
fier assumption,15 that is, active treatments A and B
have the same set of effect modifiers and the interaction
effects β2,k of each effect modifier k are identical for both
treatments. Hence, the A versus B marginal treatment
effect can be generalized to any given target population
as effect modifiers are guaranteed to cancel out (the mar-
ginal effect for A vs. B is conditionally constant across all
populations). If the shared modifier assumption is not
met, the true marginal treatment effect for A versus B in
the BC population will not be applicable in any target
population (one has to assume that the target population
is BC), and the average marginal and conditional effects
for A versus B will likely not coincide as the measure of
effect is non-collapsible.

4.4 | Methods

Each simulated dataset is analyzed using the following
methods:
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• Matching-adjusted indirect comparison, as originally
proposed by Signorovitch et al.,9 where covariates are
balanced for active treatment and control arms com-
bined and weights are estimated using the method of
moments. To avoid further reductions in effective sam-
ple size and precision, only the effect modifiers are bal-
anced. A weighted Cox proportional hazards model is
fitted to the IPD using the R package survival.75 Stan-
dard errors for the A versus C treatment effect are
computed using a robust sandwich estimator9,39 by
setting robust=TRUE in coxph. Given the often arbi-
trary factors driving selection into different trials, the
data-generating mechanism in Section 4.2 does not spec-
ify a trial assignment model. Nevertheless, the logistic
regression model for estimating the weights is considered
approximately correct in that it selects the “right” subset
of covariates as effect modifiers. The estimated weights
are adequate for bias removal because the balancing
property holds,76,77,78,79 that is, conditional on the
weights, the effect modifier means are balanced between
the two trials, and one can potentially achieve unbiased
estimation of treatment effects in the BC population.

• Simulated treatment comparison: a Cox proportional
hazards regression on survival time is fitted to the IPD,
with the IPD effect modifiers centered at the BC mean
values. The outcome regression is correctly specified.
We include all of the covariates in the regression but
only center the effect modifiers.

• The Bucher method4 gives the standard indirect compari-
son. We know that this will be biased as it does not adjust
for the bias induced by the imbalance in effect modifiers.

In all methods, the variances of the within-trial rela-
tive effects are summed to estimate the variance of the
A versus B treatment effect, V̂ Δ̂

*
AB

� �
. Confidence inter-

vals are constructed using normal distributions:

Δ̂
*
AB�1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ Δ̂

*
AB

� �r
, assuming relatively large N .

4.5 | Performance measures

We generate and analyze 1000 Monte Carlo replicates of

trial data per simulation scenario. Let Δ̂
*
AB,s denote the

estimator for the s-th Monte Carlo replicate and let

 Δ̂
*
AB

� �
denote its mean across the 1000 simulations.

Based on a test run of the method and simulation sce-
nario with the highest long-run variability (MAIC under

Scenario 109), we assume that SD Δ̂
*
AB

� �
≤ 0:45 and that,

conservatively, the variance across simulations of the esti-
mated treatment effect is always less than approximately

0.2. Given that the Monte Carlo standard error (MCSE) of

the bias is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Δ̂

*
AB

� �
=Nsim

r
, where Nsim is the

number of simulations, it is at most 0.014 under 1000
simulations. We consider the degree of precision pro-
vided by the MCSE to be acceptable in relation to the size
of the effects. If the empirical coverage rate of the
methods is 95%, N sim ¼ 1000 implies that the MCSE of

the coverage is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95�5ð Þ=1000p ¼ 0:69%, with the worst-

case MCSE being 1:58% under 50% coverage. We also con-
sider this degree of precision to be acceptable. Hence, the sim-
ulation study is conducted under Nsim ¼ 1000.

The following criteria are considered jointly to assess the
methods' performances. MCSEs are estimated for each per-
formance metric in order to quantify the simulation uncer-
tainty due to using a finite number of simulation replicates.

• To assess aim 1, we compute the bias in the estimated
treatment effect

 Δ̂
*
AB�Δ*

AB

� �
¼ 1
1000

X1000
s¼1

Δ̂
*
AB,s�Δ*

AB:

As Δ*
AB ¼ 0, the bias is equal to the average estimated

treatment effect across the simulations. The MCSE of the

bias is estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000�999

P1000
s¼1 Δ̂

*
AB,s� Δ̂

*
AB

� �� �r
.

• To assess aim 2, we calculate the variability ratio of the
treatment effect estimate, defined80 as the ratio of
the average model standard error and the observed
standard deviation of the treatment effect estimates
(empirical standard error):

VR Δ̂
*
AB

� �
¼

1
1000

P1000
s¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ Δ̂

*
AB, s

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
999

P1000
s¼ 1 Δ̂

*
AB, s� Δ̂

*
AB

� �� �2r : ð6Þ

VR being greater than (or smaller) than one suggests

that, on average, standard errors overestimate (or under-

estimate) the variability of the treatment effect estimate.

It is important to note that this metric assumes that the

correct estimand and corresponding variance are being

targeted. A variability ratio of one is of little use if this is

not the case, for example, if both the model standard
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errors and the empirical standard errors are taken over

estimates targeting the wrong estimand. The MCSE of

the variability ratio is approximated as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

P1000
s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ Δ̂AB,s
� �q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ Δ̂AB
� �q� �� �2

999�ESE Δ̂
*
AB

� �2 þ
1

1000

P1000
s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ Δ̂

*
AB,s

� �r� �2

2�999�ESE Δ̂
*
AB

� �2
vuuuuut ,

where ESE Δ̂
*
AB

� �
is the estimated empirical standard

error, which is the denominator in Equation (6).

• Aim 3 is assessed using the coverage of confidence
intervals, estimated as the proportion of times that the
true treatment effect is enclosed in the
100� 1�αð Þð Þ% confidence interval of the estimated
treatment effect, where α¼ 0:05 is the nominal signifi-
cance level. The MCSE of the coverage is computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cover Δ̂
*
AB

� �
� 1�Cover Δ̂

*
AB

� �� �
1000

r
, where Cover Δ̂

*
AB

� �
is the

estimated coverage percentage.

• We use empirical standard error (ESE) to assess aim
4 as it measures the precision or long-run variability of
the treatment effect estimate. The ESE is defined
above, as the denominator in Equation (6). The MCSE
of the empirical standard error is estimated

as
ESE Δ̂

*
AB

� �ffiffiffiffiffiffiffiffiffiffi
2�999

p .

• The mean square error (MSE) of the estimated treat-
ment effect

MSE Δ̂
*
AB

� �
¼ Δ̂

*
AB�Δ*

AB

� �2	 


¼ 1
1000

X1000
s¼1

Δ̂
*
AB,s�Δ*

AB

� �2
,

provides a summary value of overall accuracy (effi-
ciency), integrating elements of bias (aim 1) and variabil-
ity (aim 4). The Monte Carlo standard error of the MSE is

computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1000

s¼1
Δ̂

*
AB,s�Δ*

AB

� �2
�MSE Δ̂

*
AB

� �h i2
1000�999

s
, where

MSE Δ̂
*
AB

� �
is the estimated mean square error.

5 | RESULTS

The performance measures across all 162 simulation sce-
narios are illustrated in Figures 4–8 using nested loop

plots,81 which arrange all scenarios into a lexicographical
order, looping through nested factors. In the nested
sequence of loops, we consider first the parameters with
the largest perceived influence on the performance met-
ric. Notice that this order is considered on a case-by-case
basis for each performance measure. Given the large
number of simulation scenarios, depiction of Monte
Carlo standard errors, quantifying the simulation uncer-
tainty, is difficult. The Monte Carlo standard errors of
each performance metric are reported in Supplementary
Appendix C of the Supporting Information. In MAIC,
1 of 162,000 weighted regressions had a separation issue,
that is, there is a total lack of covariate overlap (Scenario
115, with N ¼ 150). Results for this replicate were dis-
carded. The outcome regressions converged for all repli-
cates in STC and the Bucher method.

5.1 | Unbiasedness of treatment effect

The impact of the bias will depend on the uncertainty in
the estimated treatment effect,82,83 measured by the
empirical standard error. To assess such impact, we con-
sider standardizing the biases83 by computing these as a
percentage of the empirical standard error. In a review of
missing data methods, Schafer and Graham82 consider
bias to be troublesome under 1000 simulations if its abso-
lute size is greater than about one half of the estimate's
empirical standard error, that is, the standardized bias
has magnitude greater than 50%. Under this rule of
thumb, MAIC does not produce problematic biases in
any of the simulation scenarios. On the other hand, STC
and the Bucher method generate problematic biases in
71 of 162 scenarios, and in 147 of 162 scenarios, respec-
tively. The biases in MAIC do not appear to have any
practical significance, as they do not degrade coverage
and efficiency.

Figure 4 shows the bias for the methods across all sce-
narios. MAIC is the least biased method, followed by STC
and the Bucher method. In the scenarios considered in
this simulation study, STC produces negative bias when
the interaction effects are moderate and positive bias
when they are very strong. In addition, biases vary more
widely when prognostic effects are larger. When interac-
tion effects are weaker, stronger prognostic effects shift
the bias negatively. This degree of systematic bias arises
from the non-collapsibility of the (log) hazard ratio (see
Section 3.3).

In some cases, for example, under very strong prog-
nostic variable effects and moderate effect-modifying
interactions, STC even has increased bias compared to
the Bucher method. In other scenarios, for example,
where there are strong effect-modifying interactions and
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moderate or strong prognostic variable effects, STC esti-
mates are virtually unbiased. This is because, in these
scenarios, the average conditional and marginal treat-
ment effects for A versus C are almost identical and
hence the non-collapsibility of the measure of effect is
not an issue. It is worth noting that conclusions arising
from the interpretation of patterns in Figure 4 for STC
are by-products of non-collapsibility. Any generalization
should be cautious.

As expected, the strength of interaction effects is an
important driver of bias in the Bucher method and the
incurred bias increases with greater covariate imbal-
ance. This is because the more substantial the imbal-
ance in effect modifiers and the greater their interaction
with treatment, the larger the bias of the unadjusted
comparison. The impact of these factors on the bias
appears to be slightly reduced when prognostic effects
are stronger and contribute more “explanatory power”
to the outcome. Varying the number of patients in the
AC trial does not seem to have any discernible impact on
the bias for any method. Biases in MAIC seem to be unaf-
fected when varying the degree of covariate imbalance/
overlap.

5.2 | Unbiasedness of variance of
treatment effect

In the Bucher method, the variability ratio is close to one
under the vast majority of simulation scenarios
(Figure 5). This suggests that standard error estimates for
the methods are unbiased, that is, that the model stan-
dard errors coincide with the empirical standard errors.
In STC, variability ratios are generally close to one under
N ¼ 300 and N ¼ 600, and any bias in the estimated vari-
ances appears to be negligible. However, the variability
ratios decrease when the AC sample size is small
(N ¼ 150). In these scenarios, there is some underestima-
tion of variability by the model standard errors. It is
important to recall that this metric assumes that the cor-
rect estimand and corresponding variance are being
targeted. This is not the case in our application of STC, in
the sense that both model standard errors and empirical
standard errors are taken over an incompatible indirect
treatment comparison. MAIC standard errors underesti-
mate variability when N ¼ 150, and also when covariate
overlap is poor, in which case underestimation under
N ¼ 150 is exacerbated. Under the smallest sample size
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and poor covariate overlap, variability ratios are often
below 0.9, with model standard errors underestimating
the empirical standard errors. This is likely due to the
robust sandwich estimator used to derive the standard
errors. In the literature, this has exhibited an underesti-
mation of variability in small samples.84,85 The under-
stated uncertainty is an issue, as it will be propagated
through the cost-effectiveness analysis and may lead to
inappropriate decision-making.86

5.3 | Randomization validity

From a frequentist viewpoint,87 95% confidence intervals
are randomization-valid if these are guaranteed to
include the true treatment effect at least 95% of the time.
This means that the empirical coverage rate should be
approximately equal to the nominal coverage rate, in this
case 0.95 for 95% confidence intervals, to obtain appropri-
ate type I error rates for testing a “no effect” null hypoth-
esis. Theoretically, the empirical coverage rate is
statistically significantly different to 0.95 if, roughly, it is less
than 0.9365 or more than 0.9635, assuming 1000 indepen-
dent simulations per scenario. These values differ by
approximately two standard errors from the nominal

coverage rate. When randomization validity cannot be
attained, one would at least expect the interval estimates to
be confidence-valid, that is, the 95% confidence intervals
include the true treatment effect at least 95% of the time.

In general, empirical coverage rates for MAIC do not
overestimate the advertised nominal coverage rate. Only
4 of 162 scenarios have a rate above 0.9635. On the other
hand, empirical coverage rates are significantly below the
nominal coverage rate when the AC sample size is low
(N ¼ 150) and under poor covariate overlap. With
N ¼ 150, 24 of 54 coverage rates are below 0.9365. When
covariate overlap is poor, 38 of 54 coverage rates are
below 0.9365—18 of these under N ¼ 150. When there is
both poor overlap and a low AC sample size, coverage
rates for MAIC are inappropriate: these may even fall
below 90%, that is, at least double the nominal rate of
error. Poor coverage rates are a decomposition of both
the bias and the standard error used to compute the
width of the confidence intervals. It is not bias that
degrades the coverage rates for this method but the stan-
dard error underestimation mentioned in Section 5.2.
Poor coverage is induced by the standard errors used in
the construction of the confidence intervals.

Confidence intervals from the Bucher method are not
confidence-valid for virtually all scenarios. Coverage rates
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deteriorate markedly under the most important determi-
nants of bias. When there is greater imbalance between
the covariates and when interaction effects are stronger,
the induced bias is larger and coverage rates are
degraded. Under very strong interactions with treatment,
empirical coverage may drop below 50%. Therefore, the
Bucher method will incorrectly detect significant results
a large proportion of times in these scenarios. Such over-
confidence will lead to very high type I error rates for
testing a “no effect” null hypothesis.

5.4 | Precision and efficiency

Several trends are revealed upon visual inspection of the
empirical standard error across scenarios (Figure 7). As
expected, the ESE decreases for all methods (i.e., the estimate
is more precise) as the number of subjects in the AC trial
increases. The strengths of interaction effects and of prog-
nostic variable effects appear to have a negligible impact
on the precision of population adjustment methods.

The degree of covariate overlap has an important influ-
ence on the ESE and population adjustment methods incur
losses of precision when covariate overlap is poor. When
overlap is poor, there exists a subpopulation in BC that

does not overlap with the AC population. Therefore,
inferences in this subpopulation rely largely on extrapola-
tion. Regression adjustment methods such as STC require
greater extrapolation when the covariate overlap is
poorer.15 In reweighting methods such as MAIC, extrapo-
lation is not even possible. When covariate overlap is
poor, observations in the AC patient-level data (those
that are not covered by the range of the effect modifiers
in the BC population) are assigned very low weights (low
odds of enrollment in BC vs. AC). On the other hand, the
relatively small number of units in the overlapping
region of the covariate space are assigned very large
weights, dominating the reweighted sample. These
extreme weights lead to large reductions in ESS and to
the deterioration of precision and efficiency.

In MAIC, the presence of correlation mitigates the
effect of decreasing covariate overlap on a consistent
basis. This is due to the correlation increasing the
overlap between the joint covariate distributions of
AC and BC, lessening the reduction in effective sample
size and providing greater stability to the estimates. ESE
for the Bucher method does not vary across different
degrees of covariate imbalance, as these are not consid-
ered by the method, and overprecise estimates are
produced.
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Contrary to ESE, MSE also takes into account the
true value of the estimand as it incorporates the bias.
Hence, main drivers of bias and ESE are generally key
properties for MSE. Figure 8 is inspected in order to
explore patterns in the mean square error. Estimates
are less accurate for MAIC when prognostic variable
effects are stronger, AC sample sizes are smaller and
covariate overlap is poorer. As bias is negligible for
MAIC, precision is the driver of accuracy. On the con-
trary, as the Bucher method is systematically biased and
overprecise, the driver of accuracy is bias. Poor accuracy
in STC is also driven by bias, particularly under low sam-
ple sizes and strong prognostic variable effects. STC was
consistently less accurate than MAIC, with larger mean
square errors in all simulation scenarios. In some cases
where the STC bias was strong, for example, very strong
prognostic variable effects and moderate effect-modifying
interactions, STC even increased the MSE compared to
the Bucher method.

In accordance with the trends observed for the ESE,
the MSE is also very sensitive to the value of N and
decreases for all methods as N increases. We highlight
that the number of subjects in the BC trial (not varied in
this simulation study) is a less important performance
driver than the number of subjects in AC; while it

contributes to sampling variability, the reweighting or
regressions are performed in the AC patient-level data.

6 | DISCUSSION

In this section, we discuss the implications of, and recom-
mendations for, performing population adjustment,
based on the simulation study. Finally, we highlight
potential limitations of the simulation study, primarily
relating to the extrapolation of its results to practical
guidance. We have seen in Section 5 that the typical use
of STC produces systematic bias as a result of the non-
collapsibility of the log hazard ratio. The estimate Δ̂

*
AC

targets a conditional treatment effect that is incompatible
with the estimate Δ̂BC . This leads to bias in estimating
the marginal treatment effect for A versus B, despite all
assumptions for population adjustment being met. Given
the clear inadequacy of STC in this setting, we focus on
MAIC as a population adjustment method.

An important future objective would be the develop-
ment of an alternative formulation to STC that estimates
a marginal treatment effect for A versus C. A crucial
additional step, missing from the current implementa-
tion, is to integrate or average the conditional effect
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estimates over the BC covariates. Then, STC could poten-
tially obtain a marginal treatment effect estimate that is
comparable to the marginal B versus C
estimate published in the BC study. This would avoid the
bias caused by incompatibility in the indirect comparison
and provide inference for the marginal treatment effect
for A versus B in the BC population. During the prepara-
tion of this manuscript, a novel regression adjustment
method named multilevel network meta-regression
(ML-NMR) has been introduced.88,89 ML-NMR targets a
conditional treatment effect but directly avoids the com-
patibility issues of STC and is also applicable in treatment
networks of any size with the two-study scenario as a
special case. Using an averaging or integration step,
ML-NMR could also be adapted to target a marginal
treatment effect.90

6.1 | Bias-variance trade-offs

Before performing population adjustment, it is important
to assess the magnitude of the bias induced by effect
modifier imbalances. Such bias depends on the degree of
covariate imbalance and on the strength of interaction
effects, that is, the effect modifier status of the covariates.

The combination of these two factors determines the
level of bias reduction that would be achieved with popu-
lation adjustment.

Inevitably, due to bias-variance trade-offs, the
increase in variability that we are willing to accept with
population adjustment depends on the magnitude of the
bias that would be corrected. Such variability is largely
driven by the degree of covariate overlap and by the AC
sample size. Hence, while the potential extent of bias cor-
rection increases with greater covariate imbalance, so
does the potential imprecision of the treatment effect esti-
mate (assuming that the imbalance is accompanied by
poor overlap).

In our simulation study, under no failures of assump-
tions, this trade-off always favors the bias correction
offered by MAIC over the precision of the Bucher
method, implying that the reductions in ESS based on
unstable weights are worth it, even under stronger covar-
iate overlap. Across scenarios, the relative accuracy of
MAIC with respect to that of the Bucher method
improves under greater degrees of covariate imbalance
and poorer overlap. It is worth noting that, even in sce-
narios where the Bucher method is relatively accurate, it
is still flawed in the context of decision-making due to
overprecision and undercoverage.
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The magnitude of the bias that would be corrected
with population adjustment also depends on the strength
of interaction effects, that is, the effect modifier status of
the covariates. In the simulation study, the lowest effect-
modifying interaction coefficient was �ln 0:67ð Þ¼ 0:4.
Despite the relatively low magnitude of bias induced in
this setting, MAIC was consistently more efficient than
the Bucher method. Larger interaction effects warrant
greater bias reduction but do not degrade the precision of
the population-adjusted estimate. Hence, the relative
accuracy of MAIC with respect to the Bucher method
improves further as the effect-modifying coefficients
increase.

6.2 | Justification of effect modifier
status

In the simulation study, we know that population adjust-
ment is required as we set the cross-trial imbalances
between covariates and have specified some of these as
effect modifiers. Most applications of population adjust-
ment present evidence of the former, for example,
through tables of baseline characteristics with covariate
means and proportions (“Table 1” in a RCT publication).
However, quantitative evidence justifying the effect mod-
ifier status of the selected covariates is rarely brought for-
ward. Presenting this type of supporting evidence is very
important when justifying the use of population
adjustment.

Typically, the selection of effect modifiers is
supported by clinical expert opinion. However, clinical
expert judgment and subject-matter knowledge are falli-
ble when determining effect modifier status because:
(1) the therapies being evaluated are often novel; and
(2) effect modifier status is scale-specific—clinical experts
may not have the mathematical intuition to assess
whether covariates are effect modifiers on the linear pre-
dictor scale (as opposed to the natural outcome scale).

Therefore, applications of population adjustment
often balance all available covariates on the grounds of
expert opinion. This is probably because the clinical
experts cannot rule out bias-inducing interactions with
treatment for any of the baseline characteristics. Almost
invariably, the level of covariate overlap and precision
will decrease as a larger number of covariates are
accounted for in the analysis. Presenting quantitative evi-
dence along with clinical expert opinion would help
establish whether adjustment is necessary for each
covariate.91

As proposed by Phillippo et al.,6 we encourage the
analyst to fit regression models with interaction terms to
the IPD for an exploratory assessment of effect modifier

status. One possible strategy is to consider each potential
effect modifier one-at-a-time by adding the corresponding
interaction term to the main (treatment) effect model.47

Then, the interaction coefficient can be multiplied by the
difference in effect modifier means to gauge the level of
induced bias.15 This analysis should be purely explor-
atory, since individual trials are typically underpowered
for interaction testing.92,93 The dichotomization or cate-
gorization of continuous variables, the poor representa-
tion of a variable, for example, a limited age range, and
incorrectly assuming linearity may dilute interactions
further.

Meta-analyses of multiple trials, involving the same
outcome and similar treatments and conditions, provide
greater power to detect interactions, particularly using
IPD.93,94 With unavailable IPD, it may still be possible to
conduct an IPD meta-analysis if the owners of the data
are willing to provide the interaction effects,95 or one
may conduct an ALD meta-analysis if covariate-
treatment interactions are included in the clinical trial
reports.92 In any case, the identification of effect modi-
fiers is in essence observational,96,97 and requires much
more evidence than demonstrating a main treatment
effect.98 Therefore, it may be reasonable to balance a vari-
able if there is a strong biological rationale for effect mod-
ification, even if the interaction is statistically weak, for
example, the p-value is large and the null hypothesis of
interaction is not rejected.98

6.3 | Nuances in the interpretation of
results

It is worth noting that the conclusions of this simulation
study are dependent on the outcome and model type. We
have considered survival outcomes and the Cox propor-
tional hazards model, as these are the most prevalent out-
come type and modeling framework in MAIC and STC
applications. However, further simulation studies are
required with alternative outcome types and models. For
example, exploratory simulations with binary outcomes
and logistic regression have found that the performance
of MAIC is more affected by low sample sizes and poor
covariate overlap than seen for survival outcomes. This is
likely due to logistic regression being less efficient99 and
more prone to small-sample bias100 than Cox regression.

Furthermore, we have only considered and adjusted
for two effect modifiers that induce bias in the same
direction, that is, the effect modifiers in a given study
have the same means, the cross-trial differences in means
are in the same direction, and the interaction effects are
in the same direction. In real applications of population
adjustment, it is not uncommon to see more than

REMIRO-AZÓCAR ET AL. 767



10 covariates being balanced.25 As this simulation study
considered percentage reductions in effective sample size
for MAIC that are representative of scenarios encoun-
tered in NICE TAs, real applications will likely have
imbalances for each individual covariate that are smaller
than those considered in this study. In addition, the
means for the effect modifiers within a given study will
differ, with the mean differences across studies and/or
the effect-modifying interactions potentially being in
opposite directions. Therefore, the induced biases could
cancel out but, then again, this is not directly testable in
a practical scenario.

6.4 | Potential failures in assumptions

Most importantly, all the assumptions required for indi-
rect treatment comparisons and valid population adjust-
ment hold, by design, in the simulation study. While the
simulation study provides proof-of-principle for
the methods, it does not inform how robust these are to
failures in assumptions. Population-adjusted analyses
create additional complexity since they require a larger
number of assumptions than standard indirect compari-
sons. The additional assumptions are hard to meet and
most of them are not directly testable. It is important that
researchers are aware of these, as their violation may lead
to biased estimates of the treatment effect. In practice, we
will never come across an idealistic scenario in which all
assumptions perfectly hold. Therefore, researchers should
exercise caution when interpreting the results of
population-adjusted analyses. These should not be taken
directly at face value, but only as tools to simplify a com-
plex reality.

Firstly, MAIC, STC and the Bucher method rely on
trials AC and BC being internally valid, implying appro-
priate designs, the absence of non-compliance, proper
randomization and reasonably large sample sizes. Sec-
ondly, all indirect treatment comparisons (standard or
population-adjusted) rely on consistency under parallel
studies, that is, potential outcomes are homogeneous for
a given treatment regardless of the study assigned to a
subject. For instance, treatment C should be adminis-
tered in the same setting in both trials, or differences in
the nature of treatment should not change its effect. This
means that MAIC and STC cannot account for cross-trial
differences that are perfectly confounded with the nature
of treatments, for example, treatment administration or
dosing formulation. MAIC and STC can only account for
differences in the characteristics of the trial populations.

In practice, the additional assumptions made by
MAIC and STC may be problematic. Firstly, it assumed
that all effect modifiers for treatment A versus C are

adjusted for.‡‡ By design, the simulation study assumes
that complete information is available for both trials and
that all effect modifiers have been accounted for. In prac-
tice, this assumption is hard to meet—it is difficult to
ascertain the effect modifier status of covariates, particu-
larly for new treatments with limited prior empirical evi-
dence and clinical domain knowledge. Hence, the analyst
may select the effect modifiers incorrectly. In addition,
information on some effect modifiers could be
unmeasured or unpublished for one of the trials. The
incorrect omission of effect modifiers leads to the wrong
specification of the trial assignment logistic regression
model in MAIC, and of the outcome regression in STC.
Relative effects will no longer be conditionally constant
across trials and this will lead MAIC and STC to produce
biased estimates.

In the simulation study, we know the correct data-
generating mechanism, and are aware of which
covariates are purely prognostic variables and
which covariates are effect modifiers. This is something
that one cannot typically ascertain in practice. Explor-
atory simulations show that the relative precision and
accuracy of MAIC deteriorate, with respect to STC and
the Bucher method, if we treat all four covariates as effect
modifiers. This is due to the loss of effective sample size
and inflation of the standard error due to the over-
specification of effect modifiers.

Alternatively, it is more burdensome to specify the
outcome regression model for STC than the propensity
score model for MAIC; the outcome regression requires
specifying both prognostic and interaction terms, while
the trial assignment model in MAIC only requires the
specification of effect modifiers. The relative precision
and accuracy of STC deteriorate if the terms
corresponding to the purely prognostic covariates are not
included in the outcome regression. Nevertheless, this
does not alter the conclusions of the simulation study:
the other terms in the outcome regression already
account for a considerable portion of the variability of
the outcome and relative effects have very similar accu-
racy in any case.

Another assumption made by MAIC and STC, that
holds in this simulation study, is that there is some over-
lap between the ranges of the selected covariates in AC
and BC. In population adjustment methods, the indirect
comparison is performed in the BC population. This
implies that the ranges of the covariates in the BC popu-
lation should be covered by their respective ranges in the
AC trial. In practice, this assumption may break down if
the inclusion/exclusion criteria of AC and BC are incon-
sistent. When there is no overlap, weighting methods like
MAIC are unable to extrapolate beyond the AC popula-
tion, and may not even produce an estimate. However,
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STC can extrapolate beyond the covariate space observed
in the AC patient-level data, using the linearity assump-
tion or other appropriate assumptions about the input
space. Note that the validity of the extrapolation depends
on accurately capturing the true covariate-outcome rela-
tionships. We view extrapolation as a desirable property
because poor overlap, with small effective sample sizes
and large percentage reductions in effective sample size,
is a pervasive issue in health technology appraisals.25

MAIC and STC make certain assumptions about the
joint distribution of covariates in BC. Where no correla-
tion information is available for the BC study, both
methods seem to assume that the joint BC covariate dis-
tribution is the product of the published marginal distri-
butions. The implicit assumptions are, in fact, more
nuanced. In MAIC, as stated in the NICE Decision Sup-
port Unit Technical Support Document,15 “when covari-
ate correlations are not available from the (BC)
population, and therefore cannot be balanced by inclu-
sion in the weighting model, they are assumed to be
equal to the correlations among covariates in the pseudo-
population formed by weighting the (AC) population.” In
the typical usage of STC, the correlations between the BC
covariates are assumed to be equal to the correlations
between covariates in the AC study. In the “covariate
simulation” approach to STC, discussed in Section 3.2,
this assumption is also made, albeit more explicitly, if the
correlation structure observed in the AC IPD is used to
simulate the covariates. In an anchored comparison, only
effect-modifying covariates need balancing, so the
assumptions can be relaxed to only include effect modi-
fiers. This set of assumptions will only induce bias if
higher-order interactions (involving two or more
covariates) are unaccounted for or misspecified. If these
interactions are not included in the weighting model for
MAIC or in the outcome regression for STC, the specifi-
cation of pairwise correlations will not make a difference
in terms of bias, as observed in a recent simulation study
that investigates this set of assumptions.88

All indirect treatment comparisons should be per-
formed and are typically conducted on the linear predic-
tor scale,15 upon which the effect of treatment is assumed
to be additive. We have assumed that the effect modifiers
have been defined on the linear predictor scale and are
additive on this scale. In the simulation study, it is
known that effect modification is linear on the log hazard
ratio scale. A central component of population-adjusted
indirect comparisons is the specification of a model that
is typically parametric. That is the propensity score model
for the weights in MAIC or the outcome regression in
STC. Parametric modeling assumptions may not be
appropriate in real applications, where there is a danger
of model misspecification. This is more evident in a

regression adjustment method like STC, where an
explicit outcome regression is formulated. The parametric
model depends on functional form assumptions that will
be violated if the covariate-outcome relationships are not
correctly captured.

Even though the logistic regression model for the
weights in MAIC does not make reference to the out-
come, MAIC is also susceptible to model misspecification
bias, albeit in a more implicit form. The model for esti-
mating the weights is approximately correct in the simu-
lation study because the right subset of covariates has
been selected as effect modifiers and the balancing prop-
erty holds for the weights, as mentioned in Section 4.4. In
practice, the model will be incorrectly specified if this is
not the case, potentially leading to a biased estimate.
Scale conflicts may also arise if effect modification status,
which is scale-specific, has been justified on the wrong
scale, for example, when treatment effect modification is
specified as linear but is non-linear or multiplicative, for
example, age in cardiovascular disease treatments. Note
that, in practice, we find that it may be more difficult to
specify a correct parametric model for the outcome than
an approximately correct parametric model for the trial
assignment weights.

Finally, population-adjusted indirect comparisons
only produce an estimate Δ̂

*
AB that is valid in the BC pop-

ulation, which may not match the target population for
the decision unless an additional assumption is made.
This is the shared effect modifier assumption,15 described
in Section 4.3. This assumption is met by the simulation
study and is required to transport the treatment effect
estimate to any given target population. However, it is
untestable for MAIC and STC with the data available in
practice. Shared effect modification is hard to meet if the
competing interventions do not belong to the same class,
and have dissimilar mechanisms of action or clinical
properties. In that case, there is little reason to believe
that treatments A and B have the same set of effect-
modifying covariates and that these interact with active
treatment in the same way in AC and BC. It is worth not-
ing that the target population may not match the AC and
BC trial populations and may be more akin to the joint
covariate distribution observed in a registry/cohort study
or some other observational dataset. Policy-makers could
use such data to define a target population for a specific
outcome and disease area into which all manufacturers
could conduct their indirect comparisons. This would
help relax the shared effect modifier assumption.

Given the large number of assumptions made by
population-adjusted indirect comparisons, future simula-
tion studies should assess the robustness of the methods
to failures in assumptions under different degrees of data
availability and model misspecification.
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6.5 | Variance estimation in MAIC

MAIC was generally randomization-valid, except in situa-
tions with poor covariate overlap and small sample sizes,
where robust sandwich standard errors underestimated
empirical estimates of the standard error and, conse-
quently, there was undercoverage. MAIC exhibited vari-
ability ratios below 0.9 in scenarios with the smallest
sample size and poor covariate overlap. In these scenar-
ios, confidence intervals were narrow, achieving coverage
rates which were statistically significantly below 95% and
sometimes dropping below 90%. As mentioned in Sec-
tion 5.2, this is probably due to the robust sandwich esti-
mator used to derive the standard errors, which has
previously underestimated variability in small samples in
simulation studies.84,85 It is worth noting that this estima-
tor is based on large-sample (asymptotic) arguments and
infinite populations. Therefore, it is not surprising that
performance is poor under the smallest effective sample
sizes, which occur where the AC trial sample size is small
and covariate overlap is poor. Where effective sample
sizes are small, confidence intervals derived from robust
sandwich variance estimators should be interpreted cau-
tiously, as these may understate uncertainty and this
underestimation will be propagated through the cost-
effectiveness analysis, potentially leading to inappropri-
ate decision-making.

This robust variance estimator is easy to use by ana-
lysts performing MAIC (and propensity score weighting,
in general) because it is computationally efficient and is
typically implemented in standard routines in statistical
computing software such as R. For instance, in R, by set-
ting robust = TRUE in the coxph function, built in the
survival package75 for survival analysis, or using the
sandwich package102 for the treatment coefficient of a
weighted generalized linear model. It is worth noting that
these readily available implementations assume that the
weights are fixed or known and do not account for
the uncertainty in the estimation of the weights.

In principle, one could circumvent this issue by using
the bootstrap to obtain the variance and confidence inter-
vals of the A versus C treatment effect, as in the simula-
tion study by Petto et al.20 or in the article by Sikirica
et al.45 Bootstrap methods are beneficial because they can
account for the variability of the estimated weights and
are straightforward to implement, potentially providing
unbiased variance estimators with a large number of
resamples. However, bootstrapping is orders of magni-
tude more expensive computationally than applying the
closed-form sandwich variance estimator. In addition,
bootstrap resampling procedures are inherently random
and exhibit some seed-dependence, which is only miti-
gated by increasing the number of resamples and

computational demand. Future simulation studies should
compare different approaches to variance estimation and
assess whether implementations of the bootstrap can
compete with the robust sandwich estimator.

Another alternative to variance estimation is the
development of closed-form robust sandwich estimators
that properly account for the uncertainty in estimating
the propensity score logistic regression for the weights.
These have been explicitly derived for accurate variance
estimation in the causal inference literature,103,104,105,106

but not for MAIC. This is a priority for future research.

6.6 | Unanchored comparisons

Finally, it is worth noting that, while this article focuses
on anchored indirect comparisons, most applications of
population adjustment in HTA are in the unanchored
setting,25 both in published studies and in health technol-
ogy appraisals. We stress that RCTs deliver the gold stan-
dard for evidence on efficacy and that unanchored
comparisons make very strong assumptions which are
largely considered impossible to meet (absolute effects
are conditionally constant as opposed to relative
effects being conditionally constant).6,15 Unanchored
comparisons effectively assume that absolute outcomes
can be predicted from the covariates, which requires
accounting for all variables that are prognostic of
outcome.

However, the number of unanchored comparisons is
likely to continue growing as regulators such as the
United States Food and Drug Administration and
the European Medicines Agency are, increasingly, and
particularly in oncology, approving new treatments on
the basis of observational or single-armed evidence, or
disconnected networks with no common compara-
tor.107,108 As pharmaceutical companies use this type of
evidence to an increasing extent to obtain accelerated or
conditional regulatory approval, reimbursement agencies
will, in turn, be increasingly asked to evaluate interven-
tions where only this type of evidence is available. There-
fore, further examinations of the performance of
population adjustment methods must be performed in
the unanchored setting.

6.7 | Areas of debate

Population-adjusted indirect comparisons make up a
major area of methodological developments in evidence
synthesis, with applications in HTA worldwide. We
acknowledge that there is still debate in some areas,
which may require further study. It is claimed that, for
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the (log) hazard ratio, marginal treatment effects may
vary across different distributions of the purely prognos-
tic covariates. Hence, these covariates can still modify
marginal treatment effects, even in the absence of inter-
action effects, and cross-trial differences in these can
potentially induce bias. In our simulation study, MAIC
does not account for imbalances in purely prognostic var-
iables (these are the covariates with only main effects,
not interaction effects, in the Cox model) and remains
unbiased. Nevertheless, this remains a topic for further
investigation.

Another area of debate is whether marginal or con-
ditional effects are more appropriate target estimands
for population-level decision-making in HTA.90,109,110

We endorse the use of marginal effects as population-
level estimates, required for reimbursement decisions at
the population level.109 Nevertheless, conditional treat-
ment effect estimates, adjusted for prognostic factors,
have been termed “population-average” effects,90,110

and recommended on the grounds of: (1) providing
more statistically precise and efficient decision-making;
and (2) the clinical trials literature preferring “covari-
ate-adjusted” over “unadjusted” analyses in order to
account for the distribution of covariates.90 We note that
these conclusions are based on covariate adjustment
using linear regression and continuous outcomes, and
on conflating the terms “marginal” and “unadjusted”.
Firstly, when working with non-collapsible effect mea-
sures such as odds ratios in logistic regression with
binary outcomes, or hazard ratios in Cox regression
with survival outcomes, conditional covariate-adjusted
treatment effect estimates actually reduce precision and
efficiency with respect to unadjusted marginal esti-
mates, in the “ideal RCT” analysis.111,112,113,114 Sec-
ondly, it is worth noting that marginal need not mean
unadjusted.111 Marginal effects can also be covariate-
adjusted and, in fact, population-adjusted indirect compari-
sons should ultimately produce covariate-adjusted marginal
effect estimates, that account for the relevant covariate dis-
tribution and, for non-collapsible effect measures, can
potentially increase precision and efficiency with respect to
both conditional and unadjusted marginal effect
estimates.111,115,116,117,118

7 | CONCLUDING REMARKS

In the performance measures we considered, MAIC was the
least biased and most accurate method under no failures of
assumptions. We therefore recommend its use for survival
outcomes, provided that its assumptions are reasonable.
MAIC was generally randomization-valid, except in situations
with poor covariate overlap and small sample sizes (small

effective sample sizes), where robust sandwich standard errors
underestimated variability and there was undercoverage.

The typical usage of STC produced systematic bias
because it targeted a conditional treatment effect for A
versus C, where the target estimand should be different,
a marginal treatment effect. Note that STC is not intrinsi-
cally biased; it simply targets the wrong estimand in this
setting. If we intend to target a marginal treatment effect
for A versus C and naively assume that this version of
STC does so, there will be bias because this effect is
incompatible in the indirect comparison due to the non-
collapsibility of the log hazard ratio. This bias could have
considerable impact on decision making and policy, and
could lead to perverse decisions and subsequent misuse
of resources. Therefore, the typical use of STC should be
avoided, particularly in settings with a non-collapsible mea-
sure of effect. An important future objective would be the
development of an alternative formulation to STC that
estimates a marginal treatment effect for A versus C. A
crucial additional step, missing from the current implemen-
tation, is to integrate or average the conditional effect esti-
mates over the BC covariates. Then, STC could potentially
obtain a marginal treatment effect estimate that is com-
patible with the marginal B versus C estimate published
in the BC study.

The Bucher method is systematically biased and over-
precise when there are imbalances in effect modifiers and
interaction effects that induce bias in the treatment
effect. Future simulation studies should evaluate popula-
tion adjustment methods with different outcome types
and when assumptions fail.
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ENDNOTES

* In fact, standard ITC methods do not typically specify their target
population explicitly (whether this is AC, BC or otherwise),
regardless of whether the analysis is based on ALD or on IPD
from each study.29

† If we had IPD for the BC study and ALD for the AC study, we
would have to adjust for the covariates that modify the effect of
treatment B versus C, in order to perform the comparison in the
AC population.

‡ While the treatment coefficient β̂T is an average treatment effect,
it is not a population-level measure, contrary to the marginal or
population-average treatment effect, which is the effect of moving
the entire population from one treatment to the other. Firstly,
while there is only one marginal effect for a specific population
(as described by its covariate distribution), there may be many
average conditional effects for a given population, one for every
possible combination of covariates and model specification con-
sidered for adjustment. Secondly, conditioning on covariates
changes the nature of the effect, so that it is no longer a
population-level effect but an effect with a subject-level interpre-
tation. Note that, with non-collapsible effect measures, marginal
effects may not be equal to a weighted average of the conditional
effects under any weighting scheme, even under no confounding
bias.61

§ In a sufficiently large number of repetitions, 100� 1�αð Þð Þ% con-
fidence intervals based on normal distributions should contain
the true value 100� 1�αð Þð Þ% of the time, for a nominal signifi-
cance level α.

¶ The files required to run the simulations are available at http://
github.com/remiroazocar/population_adjustment_simstudy. Sup-
plementary Appendix B of the Supporting Information lists the
specific settings of each simulation scenario.

** At baseline, this formulation has a hazard function
h0 τð Þ¼ λντν�1, a cumulative hazard function H0 τð Þ¼ λτν, a den-
sity function f 0 τð Þ¼ λντν�1exp �λτνð Þ and a survival function
S0 τð Þ¼ exp �λτνð Þ at time 0≤ τ<∞, where λ>0 is a positive
inverse scale (rate) parameter, and ν>0 is a positive shape
parameter. This follows the proportional hazards parameteriza-
tion of the Weibull distribution in NICE guidelines, where λ is
referred to as a scale parameter.70

†† Due to the simulation study design, where the covariate distribu-
tions are symmetric, covariate balance is a proxy for covariate
overlap in this parameter setting. Imbalance refers to the differ-
ence in covariate distributions across studies, as measured by the
difference in (standardized) average covariate values. Overlap
describes the degree of similarity in the covariate ranges across

studies—there is complete overlap if the ranges are the same. In
real scenarios, lack of complete overlap does not necessarily imply
imbalance (and vice versa). Imbalances in effect modifiers across
studies bias the standard indirect comparison, motivating the use of
population adjustment. Lack of complete overlap hinders the use of
population adjustment, as the covariate data may be too limited to
make any conclusions in the regions of non-overlap.

‡‡ In the anchored scenario, we are interested in a comparison of
relative outcomes or effects, not absolute outcomes. Hence, an
anchored comparison only requires conditioning on the effect
modifiers, the covariates that explain the heterogeneity of the A
versus C treatment effect. This assumption is denoted the condi-
tional constancy of relative effects by Phillippo et al.,6,15 that is,
given the selected effect-modifying covariates, the marginal A
versus C treatment effect is constant across the AC and BC
populations. There are analogous formulations of this
assumption,32,33,34,101,35 such as the conditional ignorability,
unconfoundedness or exchangeability of trial assignment for
such treatment effect, that is, trial selection is conditionally inde-
pendent of the treatment effect, given the selected effect modi-
fiers. One can consider that being in population AC or
population BC does not carry any information about the mar-
ginal A versus C treatment effect, once we condition on the treat-
ment effect modifiers. This means that after adjusting for these
effect modifiers, treatment effect heterogeneity and trial assign-
ment are conditionally independent.
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