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Abstract

Background: Clustered data arise in research when patients are clustered within larger units. Generalised
Estimating Equations (GEE) and Generalised Linear Models (GLMM) can be used to provide marginal and cluster-
specific inference and predictions, respectively.

Methods: Confounding by Cluster (CBC) and Informative cluster size (ICS) are two complications that may arise when
modelling clustered data. CBC can arise when the distribution of a predictor variable (termed ‘exposure’), varies
between clusters causing confounding of the exposure-outcome relationship. ICS means that the cluster size
conditional on covariates is not independent of the outcome. In both situations, standard GEE and GLMM may provide
biased or misleading inference, and modifications have been proposed. However, both CBC and ICS are routinely
overlooked in the context of risk prediction, and their impact on the predictive ability of the models has been little
explored. We study the effect of CBC and ICS on the predictive ability of risk models for binary outcomes when GEE
and GLMM are used. We examine whether two simple approaches to handle CBC and ICS, which involve adjusting for
the cluster mean of the exposure and the cluster size, respectively, can improve the accuracy of predictions.

Results: Both CBC and ICS can be viewed as violations of the assumptions in the standard GLMM; the random effects
are correlated with exposure for CBC and cluster size for ICS. Based on these principles, we simulated data subject to
CBC/ICS. The simulation studies suggested that the predictive ability of models derived from using standard GLMM
and GEE ignoring CBC/ICS was affected. Marginal predictions were found to be mis-calibrated. Adjusting for the
cluster-mean of the exposure or the cluster size improved calibration, discrimination and the overall predictive accuracy
of marginal predictions, by explaining part of the between cluster variability. The presence of CBC/ICS did not affect
the accuracy of conditional predictions. We illustrate these concepts using real data from a multicentre study with
potential CBC.

Conclusion: Ignoring CBC and ICS when developing prediction models for clustered data can affect the accuracy of
marginal predictions. Adjusting for the cluster mean of the exposure or the cluster size can improve the predictive
accuracy of marginal predictions.

* Correspondence: m.pavlou@ucl.ac.uk
Department of Statistical Science, UCL, London, UK

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01321-x&domain=pdf
http://orcid.org/0000-0003-1161-1440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:m.pavlou@ucl.ac.uk

Pavlou et al. BMC Medical Research Methodology (2021) 21:135

Background

Clustered data arise in research when members are
clustered within larger units. For example, patients may
be clustered within health institutions, or be treated by
different surgeons. In these situations, the within-cluster
outcomes tend to be correlated, i.e. the outcomes for pa-
tients within a centre are more similar between them than
with patients from other centres, even after accounting for
their patient-specific characteristics. Ignoring this correl-
ation may lead to biased variance estimates for the regres-
sion coefficients in a regression model, but unbiased
estimates for the regression coefficients. The clustering
can be accounted for with the use of Generalised Linear
Mixed Models (GLMM) and Generalised Estimating
Equations (GEE) which provide cluster-specific inference
and marginal inference, respectively.

Confounding by Cluster (CBC) and Informative
Cluster Size (ICS) are two complications that can arise
when data are clustered within larger units. In observa-
tional studies, the distribution of a predictor variable
(‘exposure’) often varies between clusters. Confounding
by Cluster (CBC) [1-3] arises when the outcome for a
member of a cluster given the exposure and other covar-
iates is associated with the values of the exposure of
other members in the cluster. In this case, the cluster is
said to cause confounding of the relationship between
exposure and outcome. If both the exposure and out-
come are binary, CBC may arise if the proportion of ex-
posed individuals varies considerably between clusters
and this proportion relates to the between cluster vari-
ability of the outcome, i.e. the proportion of patients
with the event. For example, in a study with multiple
centres where patients are treated for coronary angio-
plasty, the patients can receive either a staged or com-
bined procedure of angioplasty [1]. When investigating
the effect of a combined procedure on the risk of post-
angioplasty complications, CBC may arise when the pro-
portion of patients who receive a combined procedure
differs between centres and is also related to differences
in the proportion of complications between centres.
Whilst this scenario is not uncommon, it is often over-
looked when developing a risk model using data that are
clustered within larger units.

ICS arises when the number of observations per
cluster, after accounting for the exposure and covari-
ates, is not independent of the outcome [4, 5]. For
example, surgeons who perform more operations may
have better outcomes than surgeons who do fewer
operations perhaps due to job-acquired skills or other
reasons. Similarly, larger hospital units may have
better health outcomes on average than smaller units
because of readily available resources and more train-
ing opportunities for the staff. In these cases, the
cluster size is said to be informative.
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From a modelling point of view, both CBC and ICS
have been viewed as violations of standard assumptions
in a GLMM (2, 6]. In the first, the random effects are
correlated with the exposure, in the second with the
cluster size. Similarly, for marginal models fitted using
GEE, CBC and ICS arise when the expected outcome for
a particular cluster member depends on the covariates
values of other members in the same cluster, and the
cluster size, respectively [4, 7].

The implications of these violations on inference have
been extensively studied [1-3, 8]. Methods reviewed in
detail by Seaman et al. (2010) [9] have been proposed
for handling data which present these complications.
Nevertheless, to our knowledge, CBC and ICS are either
ignored or overlooked when the target of the analysis is
to predict a health outcome rather than estimating the
effect of an exposure variable on the outcome. Previous
authors [10, 11] briefly investigated scenarios where the
random effects were correlated with one of the covari-
ates (the definition of CBC in a mixed model) in the
context of risk prediction. However, in the simulation
studies in these papers it was not recognised that this
scenario is a case of potential CBC. Similarly, a distor-
tion of the usual relationship between marginal and con-
ditional regression coefficients which was present in the
empirical examples was not linked to the possibility of
CBC. ICS has been less considered in the context of risk
prediction, although it is a possibility when dealing with
clustered data. For example, it has been suggested that
there might be a volume-outcome relationship between
cardiac surgical outcomes and the number of procedures
performed within centres, with higher procedure volume
per centre linked to better clinical outcomes [12]. How-
ever, this is typically not accounted for when developing
risk models for surgical outcomes.

The issues of ICS and CBC were also briefly men-
tioned in recent papers, but their effect on marginal and
cluster-specific predictions was not investigated in depth
[13, 14]. In this work we explore whether ignoring CBC/
ICS has any effect on the predictive ability of risk models
and investigate whether methods that have been pro-
posed for handling these complications, can improve the
predictive accuracy of risk models.

The article is organised as follows. In the next section
we set the framework for the analysis of clustered data
using either a marginal or a cluster-specific approach.
We discuss the categories of methods suggested for
handling CBC/ICS, focusing on those methods that are
best suited to model development for risk prediction.
We design a simulation study to explore the effect of ig-
noring CBC/ICS on the predictive ability of the models
as opposed to using methods that account for these is-
sues. In the ‘Results’ section we summarise the outcomes
from the simulation study and illustrate practical aspects
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of diagnosing and handling CBC/ICS in a multicentre
study where we model the risk of death in patients with
spinal metastases following surgery. We conclude with a
Discussion and recommendations.

Methods

Analysis models for clustered data and their use for
predictions

Let Yj; and Xj; = (Xj;, 1, Xjj, 2, ..., Xjj, p)T denote the binary
outcome and the p-dimensional vector of covariates for
the j# member of the i cluster, i=1, ..., K; j=1, ..., N,
where N, denotes the number of members in the i
cluster.

There are two main categories of methods for the
analysis of clustered data, according to the type of
inference/type of predictions required: cluster-specific or
marginal approaches. These have been discussed exten-
sively in the context of risk prediction [10, 13, 14], and
are here summarised briefly.

Cluster-specific models
Cluster-specific models can be specified by including
cluster-specific terms for each cluster in the form of ran-
dom effects which are assumed to be drawn from a dis-
tribution. Such models are known as Random Effect
models or Generalised Linear Mixed Models (GLMMs).
Most often the random effects are assumed to follow a
Normal distribution. In this work we focus on binary
outcomes modelled using logistic regression.

The commonly used logistic model with random inter-
cepts can be written as follows:

logit (P(Y; = 11Xy = xj,u;)) = acs + u; + X, Bes (1)

where acs and Bcs are the conditional regression
parameters (fixed effects), and u; is the random inter-
cept for the ith cluster. Usually it is assumed that u;
~ N(0,02). The estimated fixed effects have cluster-
specific interpretation, i.e. conditional on the random
intercepts. Model (1) can be fitted using Maximum
Likelihood Estimation (MLE), while Restricted MLE is
used for the estimation of standard errors. Estimates
of the cluster-specific random effects are obtained
using empirical Bayes estimators.

The degree of clustering in the data can be quantified
by the intra-cluster correlation coefficient (ICC), which
indicates the extent of differences between patients in
different clusters, not attributable to patient-level char-
acteristics. For binary outcomes, the ICC can be esti-
mated by ICC = (¢?)/(n?/3+ 0>) [15]. A high ICC
corresponds to a high variance ,oi, in the distribution of
random effects and larger differences in the outcome be-
tween clusters due to the effect of observed or unob-
served cluster-level characteristics. Its range of possible
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values is between 0 and 1 with lower values indicating
less variation across clusters.

Two types of predictions are typically of interest when
a random intercepts model is fitted on the data in hand
(the development sample), conditional and marginal pre-
dictions. Conditional predictions can be obtained using
both estimates of the fixed and random effects

P(YU = 1|Xl1 = x,'j, Lti) = lOgit_l (&CS + I:li + XZ; /.A))CS')

and can be used to predict the risk for an individual who
belongs to a cluster with a known value of the random ef-
fect. If a cluster is part of the development sample, then an
estimate for its random effect would be available. The in-
verse logit function of the predicted probability (calculated
using the estimated regression coefficients, random effects
and values of predictor variables) is called the linear pre-
dictor. Conditional predictions obtained by setting #; = 0 in
the equation above are a special type of conditional predic-
tions for a cluster with random effect zero, representing an
‘average-risk cluster’. Marginal predictions can be obtained
by integrating over the (prior) distribution of the random
effects and are suitable for an individual drawn from the
population of all patients, without an assumption about the
cluster they belong to [13, 16]. An approximation of the
marginal regression parameters to the conditional ones
provided by Zeger (1988) [17] has been seen to perform
equally well and is simpler to calculate and use in practice
to obtain marginal prediction, without the need of numer-
ical integration.

Marginal models
A marginal logistic model (not conditional on random
effects) can be written as:

logit(P(Y;; = 1|X;; = x;)) = au +X; Bu (2)

where a,; and B, are the marginal regression coeffi-
cients. The model above can be fitted using Generalised
Estimating Equations (GEE) with a suitable ‘working
correlation structure’, which may lead to efficient esti-
mates (compared to using the independence working
correlation) that are also robust to the misspecification
of the working correlation when data are missing com-
pletely at random (MCAR). For data clustered within
centres, the exchangeable working correlation is usually
appropriate. GEE can be used to obtain marginal (also
known as population-average) predictions:

Marginal versus cluster-specific predictions

Cluster-specific predictions can be obtained from the fit
of a random effects model while marginal predictions
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can be obtained from the fit of either a random effects
model or a marginal model. Cluster-specific predictions
may be preferred because they are more accurate [18],
as long as the random effects are estimated reasonably
well. Estimates of the random effects are only applicable
to clusters that are part of the model-development sam-
ple. Therefore, for clusters that are not included in the
development sample, marginal predictions may be used
instead.

Relationship between marginal and cluster-specific
coefficients

For linear models, marginal and conditional regression
coefficients coincide due to the use of the identity link
function (model-collapsibility), whereas for logistic re-
gression they do not. Nevertheless, in the special case of
logistic regression with random intercepts, the marginal
regression parameters are in magnitude closer to zero
than the corresponding conditional ones, and an ap-
proximate relationship between the two exists [17, 19].
The random effects model assumes that the exposure is
independent of the random effects. Violation of this as-
sumption can distort the relationship between marginal
and conditional coefficients [2]. Any departures from
this relationship for the estimated coefficients should
trigger further investigations for the cause of these
departures.

Confounding by cluster and informative cluster size
are two complications likely to arise separately or even
concurrently when modelling clustered data. They can
both be viewed as violations of standard assumptions of
both random effects and marginal models. Several modi-
fications of GLMM and GEE have been proposed to
handle data with CBC/ICS and were previously reviewed
in detail [9]. Here we discuss the potential impact of ig-
noring CBC/ICS on the accuracy of predictions, and
focus on identifying proposed methods that are appro-
priate for prediction.

Confounding by cluster (CBC)

When the distribution of a cluster-varying predictor
variable termed as exposure and denoted by R differs be-
tween clusters (for example the mean exposure or the
proportion of exposed individuals), then the cluster may
confound the association between exposure and out-
come causing confounding by cluster (CBC). For a ran-
dom intercepts model this means that the random
intercepts are not independent of the exposure variable.
Similarly, for a marginal model fitted using GEE, CBC
arises when the expected outcome for a particular clus-
ter member depends on the covariate values of other
members of the same cluster, E(Y ;| X;)=E(Y 5| X, Xo, ...,
Xin,) [7]. Ignoring CBC in fitting a marginal or a cluster-
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specific model, results in bias in the estimated regression
coefficients of the exposure, which may have impact on
the predictive ability of the model.

Two categories of methods have been proposed for
handling CBC, primarily focusing on the estimation of
the ‘within-cluster’ effect of the exposure. In the first ap-
proach, the exposure variable is decomposed into
the within-cluster and between-cluster components, R;—
R; and R; respectively, where R; = >_;Rij/Ni. More gen-
eral cases have also been considered where R; is re-
placed by another cluster-level summary of R; rather
than the average, for example max(R;) [8, 20].

This decomposition approach can be applied both for
GLMM and GEE as below:

logit (P(Yy = 11Xy = a5, Ry = ry, ;)
= acs + i + X Bes + (Rj=Ri) Y .cs + Ry cs
(3)
logit (P(Yij = 1|X; = x;, Rjj = ri/))
= au + X Bur + (Rj=R:) Y+ Riy g )

where yw s and yp s denote the within- and
between-cluster effects, respectively (and analogously for
yw, s and yg ar). When CBC is not present, the within-
and between-cluster effects are equal. However, they dif-
fer when there is CBC, and scientific interest most often
lies on the within-cluster-effects. The possible implica-
tions of CBC on prediction are discussed below. Note
that an alternative parameterization of (3) and (4) uses
just R; in place of (R;—R;).

The second category of methods is based on ‘Condi-
tional Maximum Likelihood’ estimation (CML), where
all cluster differences in the outcome and exposure are
removed by conditioning out all cluster-level informa-
tion. The result is unbiased inference about the within-
cluster effect of the exposure. CML is appealing because
it protects against confounding and requires weaker as-
sumptions than the decomposition approach [9]. How-
ever, it cannot estimate the effect of any cluster-constant
variables and is generally less efficient than the decom-
position approach described above.

Among these two approaches, the decomposition
method is the one most suited for prediction because it
allows the estimation of the between-cluster effect of the
exposure , R;. This can itself be of scientific interest but
importantly can also be a predictor of the outcome on
its own right [2]. When using a GLMM as in (3) above,
adjustment for the cluster-level covariate R; (as with any
other cluster-level variable that associates with the out-
come) can explain at least part of the between-cluster
variability, thus reducing the estimated variance of o?
compared to the standard GLMM that does not adjust
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for R;. This can have important implications when CBC
is present. Suppose that predictions are sought for indi-
viduals who belong in new clusters (not part of the de-
velopment dataset). In this case, estimates of the random
intercepts for the new centres are not available. Marginal
predictions obtained from models (3) and (4) are ex-
pected to be more accurate than the corresponding
models which do not adjust for R;. CML does not offer
this advantage as it does not allow estimation of effects
for cluster-level variables, nevertheless it can still be a
useful tool to assess the presence of CBC.

Detecting CBC

Several approaches have been proposed for formally or
informally testing for CBC [1]. Necessary conditions for
CBC are the between cluster-variation in the distribution
of the covariate and in the distribution of the outcome
given the covariate. As an informal diagnostic for the
presence of CBC, the cluster-specific coefficient
estimates (from a standard GLMM under non-ICS or
Conditional ML in general) and the population-average
estimates (from GEE with independence working correl-
ation) are compared. In the absence of CBC, the mar-
ginal regression coefficients are in magnitude closer to
zero than the corresponding conditional ones [2]. A dis-
tortion of this relationship for the estimated marginal
and conditional coefficients is suggestive of CBC [8].

Informative cluster size (ICS)

ICS may arise when the number of members per cluster
varies and the outcome is not independent of the cluster
size, even after adjusting for covariates, E(Y;| X;;) # E(Y;|
X N [4, 21]. In dental studies, the effect of lifestyle
and other factors on periodontal disease (a gum disease
the severity of which is measured by the gum detach-
ment) may be of interest. The number of teeth per pa-
tient may vary because of lifestyle exposures or genetic
characteristics, may have already lost some of their teeth
to the disease. So, the number of teeth within a patient
may not be independent of the disease status. In studies
investigating the association between the volume of pro-
cedures carried out per surgeon, the performance of sur-
geons performing a specific operation assessed by the
proportion of successful operations, may be associated
with the number of operations performed [22].

Both the standard GLMM and models based on GEE
are affected when the cluster size is informative. For
GLMM previous authors primarily focused on models
with random intercept terms only, and not random slope
terms. Depending on the scientific question and the type
of model used (marginal versus conditional) various
methods have been used for dealing with ICS. In most
cases considered in the literature, the target of the
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analysis has been the unbiased estimation of the effect of
a cluster-constant or a cluster-varying exposure (or pre-
dictor for risk model). For GEE, various weighting
schemes depending on the type of the exposure (cluster-
constant or cluster varying) have been proposed, all of
which require that GEE be fitted with the independence
working correlation [9]. In the simplest scenario with
ICS, the predictors are assumed to be either cluster-
constant or their distribution be independent of the
cluster size. In this case, the contribution of the mem-
bers who belong to the same cluster in the estimating
equations is divided by the number of members in the
cluster to provide unbiased inference [4]. For more com-
plex schemes, e.g. cluster-varying predictor whose distri-
bution is not independent of the cluster sizes, different
types weights have been used [23]. For GLMM, where
the random intercepts are assumed to be independent of
the predictors but non-independent of the cluster size,
the standard GLMM results in unbiased estimation of
covariate effects but biased estimation of the intercept
term. The joint modelling approach, where a separate
model for the cluster-size (e.g. continuation ratio joint
model) having shared random effects with the main out-
come model has been proposed for these cases [24].
However, this has been of limited use due to its com-
plexity, since unbiased estimation of the covariate effects
can be obtained using simpler methods.

When the aim of the analysis is the unbiased estima-
tion of the effects of predictors, adjusting for cluster size
(or a function of cluster-size) in a regression model is
generally not appropriate because researchers are inter-
ested in the overall effect of a predictor, rather than con-
ditional on cluster size, or because the cluster size lies in
the causal pathway between outcome and exposure [9].
However, when the target of the analysis is prediction
rather than estimation of predictor exposure effects, the
reasons for avoiding the inclusion of cluster size as a co-
variate become less relevant. In this case, interest also
lies directly on the effect of the cluster size on the out-
come and its role as a potential predictor.

Detecting ICS

A straightforward approach to detect ICS, and relevant
in the context of risk prediction, is to fit a regression
model for the outcome, such as (1) or (2) above, but in-
cluding N (and/or functions of N such N?, log(N)),
alongside the other predictor variables and test whether
the effect of N is zero [9]. A significant effect would indi-
cate that the cluster size is informative, and therefore in-
cluding cluster size (or functions of it) in the developed
risk model is likely to result in improved marginal pre-
dictions. Other approaches for detecting ICS, which do
not require specifying a functional form for the depend-
ence of the outcome on cluster size, after accounting for
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other predictor variables [25]. Exploratory analysis using
summary statistics on the prevalence of outcome across
clusters of different sizes may also provide some evi-
dence about the possibility of ICS.

Handling clustered data with ICS/CBC in the context of
risk prediction

CBC and ICS may arise separately but in more complex
scenarios combinations of ICS and CBC are also pos-
sible. In the context of risk prediction, adjusting for
functions of cluster size and/or the mean of the expos-
ure is recommended, as below:

logit (P(Yi,» = 1|Xinzj,Ni7ui))
=acs+u + X; Bes + v1csRi+ vacs f(R:)
+ 6cs g(Ni) (5)

logit (P(Yi,» = 1|Xini/7Niv>)
= am + X By + V1R + Vo (R)
+ 0um g(Ni) (6)

In the simplest of scenarios where either ICS or CBC is
present, adjusting for either g(N) =N or f(R) =R in the
regression model for the outcome is sufficient. In more
general scenarios the outcome may depend on N or R in a
non-linear manner. In these scenarios, suitable functions
of Nand R may be chosen instead, provided that there is a
large enough sample size to unveil these relationships
without inducing model overfitting. For example, if a U-
shape is suspected for the relationship between the cluster
size and the outcome, polynomial terms of N can be in-
cluded in the model. Alternatively non-linearity may be
more flexibly accommodated by the inclusion of dummy
variables based on a categorisation of cluster sizes into a
number of categories that are likely to capture the non-
linearity. Care should be taken with this latter approach
when the number of events is small, because it increases
the number of regression coefficients to be estimated and
the danger of model-overfitting.

In practice, it is possible that both ICS and CBC are
present and adjustment for both N and R will be neces-
sary. If the mechanisms giving rise to CBC and ICS are
closely linked, adjusting for one of N or R in a regression
model could remove or reduce the need for adjusting for
the other. For example, suppose that the proportion of
exposed individuals varies across clusters and there is
CBC. We assume further than the cluster sizes vary and
are related to the outcome, and also that the higher the
proportion of exposed individuals the smaller the size of
the cluster. For a model that adjusts neither for N nor
for R there will be both ICS and CBC. However, adjust-
ing for R alongside the other predictors to handle CBC
may also make the cluster size non-informative as the
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two are so closely related, and vice versa; adjusting for N,
may remove CBC.

Simulation study
Aims
The aims of the simulation study are to:

1) Assess how the predictive performance of the basic
model (B) that ignores CBC/ICS is affected when CBC/
ICS are present, and whether it differs depending on the
type of model (cluster-specific/marginal) and type of
predictions (cluster -specific/marginal).

2) Assess whether simple adjustments to account for
CBC/ICS when they are present can also improve the
predictive performance of risk models.

Simulation parameters

Clustered data are simulated considering the following
two parameters: the presence of CBC/ICS and the degree
of clustering in the data:

a) Complication in the data: None, CBC or ICS
b) Degree of clustering: ICC= 0.1 or 0.2.

We consider cluster-specific and marginal models

a) Random effects models with random intercepts for
the cluster (GLMM) which can provide either
conditional or marginal predictions

b) Marginal models fitted using Generalised
Estimating Equations with exchangeable working
correlation (GEE) and marginal model fitted by
MLE or equivalently GEE with independence
working correlation (IEE) which can only provide
marginal predictions.

Adjustment for CBC/ICS
Depending on whether we wish to handle ICS/CBC we
consider the following three models

a) A basic model that adjusts for a set of predictors X
and the exposure variable R, ignoring the possible
presence of CBC/ICS (‘Basic’ or just ‘B’ for the figures)

b) The basic model with additional adjustment for the
cluster-mean of the exposure (‘ R )

c) The basic model with additional adjustment for the
cluster size (‘N’).

Measures of predictive performance

The cluster-specific and marginal models are fitted in train-
ing datasets generated under a given data generating mech-
anism (see below). We examine the predictive performance
of the models for marginal and conditional predictions in
terms of calibration, discrimination, and overall predictive
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accuracy on separate validation datasets, generated under
the same mechanism. Calibration in the large and calibra-
tion slope can be estimated by fitting two separate regres-
sion models to the validation data. Calibration slope is the
slope term in a logistic regression model where the
estimated linear predictor is regressed on the outcome.
Calibration in the large can be obtained using a logistic
regression model with a single intercept term, and the esti-
mated linear predictor included as an offset term (i.e. its re-
gression coefficient is fixed to the value 1). The calibration
in the large is the estimated intercept. A value of 0 for the
calibration in the large, meaning that the average predicted
probability is equal to the observed proportion of events,
and a value of 1 for the calibration slope, correspond to a
perfectly calibrated model. A calibration slope <1 is an in-
dicator of model-overfitting, suggesting that shrinkage of
the regression coefficients may be necessary [26]. Model
discrimination is assessed using the C-Statistic which takes
values 0.5 to 1, with higher values indicating higher
discriminatory ability. Overall predictive accuracy can be
assessed using either the Root Predictive Mean Square
Error (RPMSE) or the Brier Score. The Root Predictive
Mean Square error is defined as the square root of the aver-
age of the squared differences between the true and esti-
mated probabilities across patients. Similarly, the Brier
Score is defined as the square root of the average of the
squared differences between the outcome and the estimated
probabilities across patients.

Data generating mechanisms

Correlated clustered outcomes are generated using an
underlying random effects model with random intercepts
for the cluster. The random intercepts are allowed to be
correlated with an exposure variable and/or the number of
members in the cluster to induce CBC/ICS, respectively [3].

The simulation steps 1-6 generate clustered training
datasets with CBC and/or ICS.

1. Generate three correlated normal variables Z,;, Z,;,
Zwi i=1, ..., K from a multivariate normal distribution
with mean zero, variance one and pairwise correl-
ation py,, Puws Pvw = 0, where K is the number of clusters.
By design, a non-zero pairwise correlation between Z,
and Z, will induce CBC and a non-zero correlation be-
tween Z, and Z,, will induce ICS (see steps 3, 5 and 6
below).

2. Generate a random effect for cluster, u; = UimeN (
0,02), where 02 >0 reflects the degree of clustering,

. oy
with an ICC = m .

3. Generate cluster sizes, N, for the i cluster from a
Poisson distribution:

N; ~ Poisson( exp(ao + ayw;) +5),i =1,...,.K

where w; = 0%2Z,,~N (0, 02).
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3a. For non-ICS: 02W =0, so N is independent of u.

3b. For ICS: afv > 0, and p,,, >0, so N is not independ-
ent of u and hence ICS is present.

4. Generate predictors for the i cluster that are inde-
pendent of N; and U;: three continuous predictors from
a Normal distribution with mean zero and variance 0.37,
0.4% and 0.5 respectively, and two binary predictors with
prevalence 0.1 and 0.2, respectively. We let X; denote
the vector of covariate values for the j member of the
i™ cluster.

5. Generate the binary exposure

Ri]wBernoulli(logit’1 (yo + Vi)), =1,..K,j=1,.,N;

where v; = 62Z,;,~N(0,0?) .

5a. For no CBC: ¢2 =0, so R is independent of u. 5b.
For CBC: 02 > 0 so R is not independent of # and hence
CBC is present.

6. Generate binary outcomes from a random intercepts
model with linear predictor

T
1y = Bo + (Xi, Ry) " By
+ u;,and Y ;~Bernoulli (logit‘l (zylj) ) Vi
= 17 "'7K7j = la "aNi

The three random effects, u, v, and w are used to regu-
late the degree/presence of clustering, CBC and ICS, re-
spectively. By setting values for the correlations p,,,
Puw, Pvw and the variances o2 and o2, generation of data
with CBC and/or ICS can be flexibly accommodated. If
u and v are uncorrelated (p,, = 0) or 6 = 0 then there is
no CBC. If  and w are uncorrelated (p,,, = 0) or 62, =0
there is no ICS. If both p,,, p,,, >0 and 02,02 > 0 there
is both ICS and CBC arising from either two independ-
ent mechanisms (if p,,, = 0) or from two related mecha-
nisms (if p,,, > 0).

Validation data are generated in an analogous manner.
For a given training dataset, the same set of random ef-
fects is used to generate the corresponding validation
dataset with the same number of clusters, and thus, both
cluster-specific and marginal predictions can be obtained.
For cluster-specific predictions, the covariate values of the
validation dataset and both the estimates of the fixed and
the random effects from the fit of the model are used, cor-
responding to a prediction for a new member of an exist-
ing cluster. For marginal predictions, the covariate values
in the validation data and the estimated marginal regres-
sion coefficients only are used. For non-ICS in step 3, we
generate larger cluster sizes (for the performance mea-
sures to be calculated accurately) for the validation data
from a Poisson distribution with mean A =exp(a), a~
Normal(5.7,0.3%) that is unrelated to # or v. For ICS, we
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generate cluster sizes from the same distribution as in
step 3b.

When ¢2 >0 there is a variability in the outcomes
between clusters, as reflected by the random intercept .
We consider two scenarios of clustering taking o2 = 0.8
2 and 0.37 which correspond to ICCs of 0.2 and 0.1, re-
spectively. We also take 02 = 02 and 02, = ¢2/2.

The proportion of between-cluster variance that is either
due to differences in the proportion of individuals with the
exposure or the cluster size can be controlled by p,, and
Puw- If either p,,, >0 or p,,, >0, the random intercept terms
are associated either the cluster mean of the exposure or
the clusters size, inducing CBC or ICS. Thus, the between-
cluster variability is not entirely due to unobserved charac-
teristics, but it can be partly explained by two relevant
observed cluster-level characteristics: the cluster size and
the proportion of members with the exposure per cluster.
We use p,, =0.70 or p,,, =0.70 which correspond to ap-
proximately half of the between-cluster variability 6> being
due to either CBC or ICS. We also consider a scenario with
both ICS and CBC, where p,,, = 0 for the mechanisms that
cause ICS and CBC to be independent or p,,, = 0.5, for the
mechanisms that cause CBC and ICS to be related. The R
code for the simulation studies is provided in Supplemen-
tary Material 2.

Results
Simulation
We simulated 500 training and validation datasets. The
ICC was initially fixed to 0.2 corresponding to true vari-
ance of the random intercepts of o¢2,,. = 0.82. Each
training dataset consisted of 30 clusters. In step 3 we
chose ap=4.5 and a; =1 corresponding to an average
cluster size of approximately 100. In step 5, we chose
Yo = logit(0.4) so the prevalence of the exposure was ap-
proximately 40%. The intercept term was set to —1.5
and all regression coefficients to 1, which correspond to
an outcome prevalence of 40%, for both training and val-
idation data. Four different scenarios were mainly con-
sidered depending on whether ICS/CBC were present:

S1: Non-ICS and no-CBC (‘NONE’),

S2: CBC and non-ICS (‘CBC’),

S3: ICS and no-CBC (‘ICS)).

S4: Both ICS and CBC (‘ICS + CBC’) caused by inde-

pendent or related mechanisms

Below we refer to results and present Figures for
ICC=0.2. Results for ICC =0.1 were analogous and are
presented in the Supplementary Material 1.

Aim 1: assessing the predictive performance of the basic
model which ignores CBC/ICS

We firstly fitted the Basic model (i.e. not handling CBC
and ICS when present) to assess its performance for all
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scenarios. The assumption of non-ICS and no-CBC
holds true for S1 but not for S2-S4. In Fig. 1 we examine
how the presence of CBC/ICS (S2-S3) affects the accur-
acy of predictions from the Basic Model, in comparison
to their accuracy when CBC/ICS are absent (S1).

The predictive performance of the Basic model, fitted
by all three methods was to some extent affected for
S$2-S3, in comparison to S1, for both marginal and
conditional predictions.

Marginal predictions

In the presence of ICS/CBC there was evidence of model
miscalibration, with the marginal predictions from
GLMM and GEE being more affected than IEE. In par-
ticular, when there was ICS, the average calibration in
the large for marginal predictions was 0.20 and 0.17
[these are minor typos not corrected in last revision]for
GLMM and GEE, respectively, suggesting that the pre-
dictions were consistently low. When there was CBC,
the average calibration slope was slightly high, 1.10 for
GLMM and 1.09 for GEE, suggesting that the range of
predictions was slightly narrow. Notably, marginal pre-
dictions form IEE were well calibrated in all three scenar-
ios. The C-statistic and the RPMSE were similar for all
three scenarios.

Conditional predictions
The C-statistic and the RPMSE were similar for all three

=2 .
scenarios. Letting ¢, ¢(B) denote the average of the esti-

mated variances of the random intercepts for Basic
model (B) under scenario s S1, S2, S3 over the simulated

datasets, we obtained 5;51 (B) = 0.77,53{’52(3) = 0.75,

and gi,ss (B) = 0.74, corresponding to an estimated ICC
of approximately 0.19.

Aim 2: assessment of improvement after accounting for
CBC and/or ICS

We then focused on Scenarios 2, 3 and 4 where either
CBC or ICS are present. In addition to the Basic model
(B), we fitted models that also adjust for the cluster
mean of the exposure (B + R) or the cluster size (B + N)
or both (B+ R+ N). We explored whether accounting
for CBC/ICS can improve the accuracy of marginal pre-
dictions in comparison to the Basic model and address
the miscalibration issues. Results for S2 and S3 are pre-
sented in Figs. 2 and 3.

Scenario 2: CBC

We initially focus on marginal predictions. Adjusting for
the cluster mean of the exposure (Fig. 2) addressed the
mild miscalibration problem for the calibration slope.
However, the most important finding is the
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improvement in the marginal predictions in terms of
overall accuracy (RPMSE) and discrimination (C-Statis-
tic) after adjusting for R, in comparison to the Basic
model. This can be attributed to the fact that the adjust-
ment for the cluster-level predictor R explains a portion
of the between cluster-variability in the outcome that
was previously unexplained. Indeed, after adjusting for R
the average of the estimated variance of the random in-

tercepts was gi.sz(B +R) =0.39 corresponding to an
ICC of approximately 0.11, which is substantially lower
than the estimated ICC of 0.19 for the Basic model. For
conditional predictions the performances of the Basic
model and the model adjusting for R are very similar.
An example of the effect of CBC on the regression coef-
ficients in models with and without adjustment for R is
shown in the Supplementary Material 1.

Scenario 3: ICS

The results for ICS (Fig. 3) are analogous to Scenario 2
and can be interpreted in a similar manner. The minor
miscalibration problem seen in the calibration in the
large of marginal predictions obtained from the Basic
model is addressed after adjusting for cluster size. The

overall predictive accuracy and discrimination of mar-
ginal predictions are improved compared to the Basic
model. In terms of conditional predictions, the perform-
ance of the Basic model and the model adjusting for
cluster size are very similar.

Scenario 4: ICS and CBC

In practice, ICS and CBC can arise concurrently, either
through two related mechanisms (for example when
clusters with lower proportion of exposed individuals,
also have smaller size) or through two independent
mechanisms. Adjusting for both N and R improves the
predictive ability of marginal predictions more than
adjusting only for either N or R. This improvement, as
expected, is more pronounced when ICS and CBC arise
through independent mechanisms (Figures S1 and S2 in
Supplementary Material 1).

Real data illustration

Surgery is used to improve pain and maintain ambula-
tion in patients with spinal tumour metastases. There is
a considerable risk of complications associated with the
surgical procedure and often the type of operation is also
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an individualised patient decision. Data from a multicen-
tre study of 17 surgical centres in Europe, Asia and
United States including 1179 patients with spinal metas-
tases, who underwent surgery were available. The num-
ber of patients per centre varied between 19 and 194
with an average of 69. The average age at the time of
surgery was 61 years (SD =12.5) and 681 of the patients
were men (58%).

In this illustration we aim to develop a risk model
for the short-term risk of death (within a year from
the date of surgery) using 4 key pre-operative factors
of the patients at the time of surgery: secondary
tumour type (renal-baseline, breast, lung, prostate,
gastric/sarcoma, other), ASA physical status classifica-
tion system (score 0-baseline, 1, 2 and 3/4) with O be-
ing best and 4 being the worst and bone metastases
(0-baseline, 1-2 sites, or more than 2 sites). Death
was treated as a binary outcome and modelled using lo-
gistic regression. The categorical predictors were modelled
using dummy variables giving rise to 11 regression

coefficients including the intercept term, and there were
424 death events.

Since data were available from 17 participating centres,
we considered the random intercepts model (GLMM) as
the appropriate cluster-specific model and GEE with in-
dependence correlation structure (IEE) as a population-
average approach.

There was considerable variability in the proportion of
events and the proportion of patients with Secondary
Prostate Tumour (SPT) across centres. The proportion
of patients within a centre that had a SPT (exposure)
ranged from 0 to 0.37 (median 0.1), while the proportion
of deaths varied from 0.12 to 0.59 (median 0.37). These
two conditions together suggest that confounding by
cluster is a possibility in these data. In Fig. 4 we show
the proportion of deaths per centre against, a) the pro-
portion of patients with SPT and b) the number of pa-
tients per centre. We observe that the proportion of
deaths per centre tends to increase with an increasing
proportion of patients with SPT (with the exception of
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two small centres), suggesting that CBC might be
present. We note that the proportion of men did not dif-
fer substantially between centres and thus the variation
in SPT across centres cannot be attributed to gender im-
balance between centres. A reason for the variation in
the proportion of exposed individuals could be that spe-
cific centres are specialised in treating patients with spe-
cific tumour types. Another reason could be that in
certain areas, patients are more susceptible to specific
tumour types than to others. On the other hand, the
proportion of deaths per centre does not seem to be as-
sociated with the centre size in this exploratory analysis,
and therefore it does not seem likely that the centre size
is informative.

We initially fitted marginal and cluster-specific models
using the IEE and the GLMM, respectively, and obtained
estimates for the fixed and the random effects for each
method. The estimated variance of the random effects
was 0.43 corresponding to an ICC of 0.12. We then

compared the regression coefficients based on marginal
and cluster-specific models. We observed that there was
a distortion of the usual relationship between marginal
and conditional coefficients for the variable SPT. The
cluster-specific coefficient for SPT from conditional ML
was 0.59 (SE =0.25), from the GLMM 0.64 (SE =0.25),
closer to zero than the estimated coefficient of 0.80
(SE =0.29) for IEE. This is suggestive of CBC.

We then adjusted for the proportion of patients in
each cluster with SPT R, both for IEE and GLMM. The
estimated coefficients for the within-cluster effect of R
from IEE were 0.53 (SE =0.254) and from GLMM 0.59
(SE =0.25), both very close to the estimate from condi-
tional ML. The between-cluster effect of R was 5.15
(SE=1.64; p<0.01) and 5.81 (SE=1.96; p<0.01), for
GLMM and IEE, respectively, confirming its role as a
cluster-level predictor in the risk model. Indeed, the esti-
mated ICC after adjusting for R dropped to 0.08, con-
firming that that part of the between-cluster variability
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was explained by R. We also adjusted for cluster size in
the GLMM to test for informative cluster size. The effect
of cluster size was not statistically significant (p = 0.24).

In internal validation using bootstrapping, the marginal
predictions from IEE and a model that adjusts for R, were
more accurate (C-statistic = 0.68 and Brier Score = 0.2056)
than from a model that does not adjust for R (C-statistic =
0.65 and Brier Score=0.2112). The corresponding esti-
mates for conditional predictions obtained from the
standard GLMM ignoring CBC were C-statistic = 0.69 and
Brier Score=0.1844. Conditional predictions after ac-
counting for CBC were very similar in accuracy (C-statis-
tic = 0.69 and Brier Score = 0.1863). These results confirm
the conclusions of the simulation study.

Discussion

Accounting for the clustered feature of the data when
developing prediction models from multicentre studies
can result in more accurate cluster-specific predictions,
in comparison to approaches that ignore clustering [27].
However, this opportunity is often missed, as the over-
whelming majority of prediction models developed on
clustered data actually ignore clustering [28]. This is
partly because the degree of clustering is small, and
partly due to the higher complexity of the methods to

develop a model for clustered data. Also, part of the rea-
son is that cluster-specific predictions are typically ap-
plicable to clusters which are part of the model-
development sample and for which the estimated ran-
dom effects are known. For patients from clusters that
do not form part of the development sample, marginal
predictions may be used instead.

ICS and CBC are two complications that may be en-
countered when dealing with clustered data. ICS does
not arise when the cluster size is constant, while CBC
does not arise when the predictor of interest is either
cluster-constant or mean-balanced across clusters. Previ-
ous research focused on the adaptation of the standard
GLMM and standard GEE to provide unbiased estima-
tion for exposure effects under CBC or ICS, and various
methods have been proposed. In this paper we studied
the effect of CBC and ICS on the predictive ability of
models developed using clustered data. We have shown
that ignoring these complications can affect the predict-
ive accuracy of marginal predictions.

We have identified two simple approaches for hand-
ling CBC and ICS that are relevant when developing
prediction models with clustered data: adjusting for the
cluster-mean of the exposure and the cluster-size, re-
spectively, in addition to the other predictors of interest.
Both approaches effectively adjust on cluster-level
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summaries of the data and can explain part of the
between-cluster variability. As a result they can provide
more accurate marginal predictions compared to those
obtained from a model that ignores CBC/ICS. This is
important because even for clusters whose estimated
random effects are unknown because they were not part
of the development sample, and thus only marginal pre-
dictions can be readily obtained, adjusting for ICS/CBC
when present can improve the accuracy of marginal pre-
dictions. In particular, the higher the proportion of the
between-cluster-variability explained the higher the ac-
curacy gained by accounting for CBC/ICS. When either
the degree of clustering in the data is small (e.g. ICC <
0.1) and/or the proportion of the between -cluster-
variability explained by N and/or R is small, accounting
for CBC/ICS will offer minimal improvement in the
accuracy of marginal predictions. On the other hand,
ignoring the presence of CBC/ICS has no impact on the
accuracy of conditional predictions.

The sample size for the application of the methods de-
scribed in this paper for the purposes of risk prediction
should abide by the rules for the required sample size,
events per variable (EPV) and numbers of clusters for
risk prediction as outlined by previous authors [11, 29].
A sufficiently large number of EPV and a large number
of clusters would ensure that both the fixed and random
effects are estimated well, and hence the predictions are
reliable. So, depending on the prognostic strength of the
model, the EPV should be large-enough to avoid model-
overfitting (EPV at least 10 as a rough guide) [29] and
the number of clusters should not be too small [18] (> 5,
but close to 50 when possible, in order for the random
effects and coefficients of cluster-level variables to be
estimated well). In Supplementary Material 1 we
present a simulation example where the number of
clusters was 15, the average cluster size 50 and the
prevalence 15%, all smaller than the values considered
in the main simulation scenarios, showing that the
methods described in this paper also perform well in
this scenario (Figure S3).

It should be noted that the requirement for the
availability of information for the whole cluster may
sometimes pose challenges in the applicability of
these two approaches. For example, to obtain predic-
tions for a single patient who belongs to a hospital
that is not part of the development sample, we would
need to know the characteristics of the patient but
also the predictor values (or the size) of that entire
hospital, information that may not be readily avail-
able. In the complete absence of such cluster-level in-
formation, a reasonable approach would be to assume
an ‘average’ exposure level (or size) for the hospital.
In this article we focused on scenarios where there is
one level of clustering, e.g. patients within hospitals.
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In principle, more levels of clustering may be present,
for example when patients are treated by specific sur-
geons, who operate within specific hospitals. In such
scenarios, the clustering in GLMM can be readily
handled by using additional random effects, although
care should be taken in assessing ICS/CBS in the
levels of these more complex structures and obtaining
marginal and conditional predictions from a GLMM.

Conclusion

To our knowledge, ICS and CBC have been generally
overlooked in the context of risk prediction. Departures
from the usual relationship between marginal and condi-
tional coefficients when developing risk models with clus-
tered data in practice have been reported in the literature
[27]. Even though such departures can be symptoms of
CBC, the issue has been routinely ignored in the process
of developing a risk model. Using simple diagnostic proce-
dures to detect and handle these complications is import-
ant and should be part of the model-development process
when developing models for clustered data. Any source of
cluster-level information that reduces the unexplained
between-cluster variability should be utilised to obtain
more accurate marginal predictions.
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