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Abstract

Gaussian wavepacket methods have been widely employed for the investiga-

tion of nonadiabatic molecular dynamics. The Direct Dynamics variational Multi-

Configurational Gaussian (DD-vMCG) method provides a fully quantum mechan-

ical solution to the time-dependent Schrödinger equation for the time evolution

of nuclei with potential surfaces calculated on-the-fly using a quantum chemistry

program. The first strand of this research study was to develop new, more efficient

algorithms and improve the existing code for DD-vMCG aiming to increase both

the accuracy and efficiency of this method. Thus, a new, efficient parallel algo-

rithm to control the DD-vMCG database of quantum chemistry points is presented

along with improvements to the interpolation scheme. Benchmark calculations on

butatriene, allene and formamide showed that the new scheme is a very accurate,

efficient and general method to employ for full-dimensional dynamics calculations.

The aforementioned algorithm was then used to describe the photodissociation

dynamics of phenol including all degrees of freedom, as the second strand of this

research work was to explore more complex chemical systems. Full-dimensional

quantum dynamics calculations including for the first time six electronic states,

along with a detailed comparison with existing 3-state and 4-state models are

presented. Including the fifth singlet excited state has been shown to be vital in

unravelling the photodissociation of phenol. State population and flux analysis

provided new insights into the decay mechanism of phenol confirming the idea of

rapid relaxation to the ground state through the 1ππ/11πσ∗ conical intersection.

Finally, an effort to further improve the accuracy of DD-vMCG was made by

employing a state-of-the-art approach where a Gaussian process regression scheme

is introduced and machined-learned potential energy surfaces are obtained. All

the findings suggest that this method could be promising to calculate potential



energy surface matrix elements. However, further development is essential to take

advantage of its benefits and to deal with the computational cost.



Impact Statement

Understanding various chemical phenomena, such as photodissociation, occur-

ring in a molecular system requires us to define the potential energy surfaces.

To this end, the Born-Oppenheimer approximation is employed which enables de-

coupling the electronic and nuclear motions. However, upon consideration of the

molecular dynamics in excited electronic states, this approximation breaks down.

Describing the dynamics of a chemical system when the Born-Oppenheimer ap-

proximation is no longer valid, involves a quantum mechanical description of the

nuclei.

Various methods exist which can describe nonadiabatic dynamics offering dif-

ferent levels of accuracy and flexibility. One of the most accurate methods is

multi-configuration time-dependent Hartree (MCTDH) as it can provide numeri-

cally exact results for molecules. However, this method is not flexible as it requires

precalculated potential energy surfaces. As a solution to overcome the former re-

striction, the variational multi-configurational Gaussian (vMCG) method was de-

veloped where the basis functions of MCTDH are replaced with Gaussian functions.

This thesis is fully focused on the DD-vMCG method which has shown potential

for flexible and accurate simulations of non-adiabatic excited-state molecular dy-

namics.

The original work presented in this thesis has a tangible impact on the area of

molecular quantum dynamics as complex chemical systems can be now efficiently

and accurately treated with DD-vMCG. Moreover, our work can be used from

different research groups designing programs to analytically compute the potential

energy surfaces of a molecule as it has been shown that the new efficient algorithm

for DD-vMCG is able to better describe the dynamics of a molecule with less

computational cost while offering more flexibility. The development work carried



out for DD-vMCG has been published and also accepted in the European HPC

Centre of Excellence (E-CAM) software library.

Moreover, the successful investigation of the dissociation process of the phenol

molecule carried out in this study has an important scientific value. Since phenol

is the chromophore of the amino acid tyrosine and a major component of green

fluorescent protein chromophores, the work in this thesis can reach a wide range of

different researchers especially those focusing on protein investigation and design.

This work has been submitted for publication.

Finally, the findings on machine-learned potentials could lead the way to im-

proving GAP-vMCG and possibly in the future to be the sole method used for

on-the-fly vMCG calculations.
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Chapter 1

Introduction

Photochemistry and more specifically photochemical reactions has a wide range

of applications, with some of them crucial to everyday life such as photosynthesis,

vitamin D synthesis and vision. In simple terms, photochemistry focuses on the

interaction between light and a chemical system and describes the promotion of

this system to an excited state and its subsequent reactions. An excited molecule

has properties, in particular its lifetime and energy, that depend on the nuclear

and electronic configuration of the excited state. In a more general sense, photo-

chemistry is outlined as the investigation of the time evolution of the electronic

and nuclear structure after excitation where a plethora of pathways are available.

These pathways allow transitions between the different electronic states of a chem-

ical system.

The different possible photodynamics processes are illustrated in the Jablonski

diagram, Fig. 1.1. The depicted transitions are divided into two categories, the

radiative where the transition is accompanied with a photon and the non-radiative

where it is not. Phosphorescence and fluorescence are both radiative transitions

that take place between states of different spins, or the same spin, respectively.

Intersystem crossing (ISC) and internal conversion (IC) belong to the non-radiative

category and take place between states of different spin and same spin, respectively.

To unravel the photodissociation of a chemical system, apart from understand-
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Fig. 1.1: The Jablonski diagram showing the possible relaxation pathways following an
excitation to an S1 excited state where IC denotes the internal conversion and ISC the
intersystem crossing. S0 is the ground electronic state, S1 and S2 are excited singlet
states and T1 is the lowest triplet state. Adapted from ref.4

ing the excited-state properties of this system from a static picture that the Jablon-

ski diagram offers, it is also essential to establish the bond breaking and bond

making in these excited states which requires a better understanding of how the

molecule evolves chemically. Hence, obtaining a clear picture of the reaction path-

ways along the potential energy surfaces (PESs) of the photochemically active

electronic states is very important. These ideas are illustrated in Fig. 1.2 where

the mechanistic picture of the photoexcitation process in rhodopsin is illustrated.

This schematic representation of the PESs is crucial as it plays a significant role

in the interpretation of experimental data.

Various spectroscopic techniques exist such as femtosecond spectroscopy where

ultrafast laser pulses are employed to study molecular processes on femtosecond

timescales.5–8 Another important technique which is based on femtochemistry is

attosecond spectroscopy9,10 where the electron dynamics of a chemical system

are studied. These experimental techniques are essential to investigate a system,
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Fig. 1.2: Potential energy surfaces of the S0 and S1 states of the cis-trans isomerization
in rhodopsin. Reprinted with permission from Hahn, S.; Stock, G.J. Phys. Chem. 2000,
104, 1146–1149. Copyright 2000 American Chemical Society.

however, the spectroscopic results are sometimes hard to interpret. Computational

photochemistry with advanced computer simulations plays a key role in answering

why and how these complicated processes occur.

Computational photochemistry is an essential tool for the investigation of pho-

tochemical reaction mechanisms in molecular systems. This is a consequence of the

continuous advance in computational power along with theoretical developments

in the quantum chemistry field. These improvements enabled the investigation of

other regions of the PESs apart from vertical excitations at the Franck–Condon

geometry. Further, nonadiabatic molecular dynamics simulations have enabled

significant breakthroughs in the understanding of photochemical processes. Nowa-

days, computational photochemistry investigations such as photoinduced electron

transfer, photodissociation and photoisomerization are well established.

Describing the aforementioned dynamical processes and studying how quantum

mechanical systems evolve in time, requires solving the time-dependent Schrödinger

equation (TDSE). As it is difficult to solve the Schrödinger equation for complex

systems, the Born-Oppenheimer approximation11 is employed that simplifies the
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eigenvalue problem. Within the Born-Oppenheimer approximation for the sep-

aration of electronic and nuclear motions, the nuclei move on potential energy

surfaces provided by the electrons. In this way, an electronic Schrödinger equa-

tion12 is solved for a set of fixed nuclear arrangements, yielding the potential energy

surface for the nuclei motion through a specific electronic state, to obtain the reso-

lution of the molecular problem within the so-called adiabatic approximation.13–17

In general, for a N atoms molecular system, the potential energy surface is a func-

tion of the 3N nuclear Cartesian coordinates, x = (x1, y1, z1, ..., xN , yN , zN) which

is completely described by 3N − 6 linearly independent coordinates (3N − 5 for

a linear molecule), as the Hamiltonian is invariant to rotation and translation of

the entire system.

Direct Dynamics is the branch of molecular dynamics simulations that solves

the TDSE by allowing the calculation of potential energy surfaces on-the-fly.18,19

This enables the analysis of the influence of quantum effects on reactivity with-

out the time-consuming need to pre-compute potential energy surfaces. One of

the major advantages of this method is that it is feasible to treat any system

available to quantum chemistry as simply as using a modern quantum chemistry

computer program. In this research study the Direct Dynamics variational multi-

configuration Gaussian wavepacket (DD-vMCG) method18,19 is employed, which is

derived from the multi-configuration time-dependent Hartree (MCTDH) method.

DD-vMCG is a fully variational solution to the TDSE, i.e. it can provide a com-

plete representation of the time evolution of the system treating both nuclei and

electrons quantum mechanically. In its present implementation, all energies, gra-

dients and Hessians calculated during a propagation are stored in a database. One

bottleneck of this method is the time needed to continually reread, sort and anal-

yse this database which makes the calculation of a large system very expensive.

To this end, the challenge is to improve the existing method to be more efficient
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so that larger molecules such as the green fluorescence protein can be treated.20

The DD-vMCG method is included in the powerful and flexible Quantics software

package.21

Other methods for non-adiabatic molecular dynamics also exist. Of the most

successful are trajectory surface hopping methods and Ehrenfest dynamics,22–27

which are mixed quantum-classical techniques where quantum mechanical effects

are incorporated into classical molecular dynamics simulations. The basic idea

in surface hopping dynamics is that a set of electronic amplitudes are integrated

with the classical trajectories, and determines the probability of the trajectory

hopping between electronic states. These methods offer the advantage of a less

computationally expensive method compared to DD-vMCG. However these are

approximate methods.

Gaussian-based quantum dynamics methods similar to DD-vMCG where the

electronic structure quantities, energies and gradients, are calculated on-the-fly

include ab initio multiple spawning1–3 (AIMS) which is a time-dependent quan-

tum chemistry formulation, comprising of a simultaneous solution of nuclear dy-

namics and electronic structure problems. Another Gaussian wavepacket (GWP)

method is multi-configurational Ehrenfest dynamics28,29 (MCE) which focuses on

non-adiabatic dynamics and it is someway in-between AIMS and vMCG as an

effort to combine some of the best features of these two techniques has been made.

Both AIMS and MCE are in principle exact, however they have poorer conver-

gence properties than vMCG. A schematic representation of the former direct

non-adiabatic dynamics methods is given in Fig. 1.3.1

The aforementioned methods are not the only ones available for non-adiabatic

dynamics but the ones where the nuclear wave function is expanded as a lin-

ear combination of travelling Gaussian basis functions. Thus, examples such as

the quantum-classical Liouville approaches,30 the exact-factorization-based mixed
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Fig. 1.3: Schematic representation of different methods for non-adiabatic molecular dy-
namics. Reprinted with permission from Curchod, B.; Mart́ınez, T. Chem. Rev. 2018,
118, 3305–3336. Copyright 2018 American Chemical Society.

quantum-classical algorithms31 and Bohmian dynamics32 belong to the bigger

group of nonadiabatic molecular dynamics.

The first part of this thesis, Chapter 2, is focused on setting the theoreti-

cal framework for this research study. Beginning with the Schrödinger equation

that constitutes the key equation to simulate the photo-activated processes from

first principles, along with detailed explanation of the adiabatic and diabatic rep-

resentation and the Born-Oppenheimer approximation. Finally, the concept of

the potential energy surfaces is presented together with the importance of conical

intersections.

In Chapter 3, the different schemes for electronic and nuclear dynamics related

to the scope of this research are described. Since the core subject of this chapter

is the DD-vMCG method, it will be mainly employed and developed.

Further, Chapter 4 includes all the methodological updates to the DD-vMCG

method which deal with the database, and the efficiency and accuracy bottlenecks.
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Firstly, a new, efficient parallel algorithm to control the DD-vMCG database of

quantum chemistry points is described along with improvements to the Shepard

interpolation scheme. Next, benchmark calculations on the butatriene cation,

allene radical cation and formamide including all degrees of freedom are presented.

The application of the developed efficient algorithm for direct dynamics is pre-

sented in Chapter 5 where the photodissociation dynamics of phenol including all

degrees of freedom is examined. A detailed comparison with the existing 4-state

model for the potential energy surfaces along with new insights into the excited

state photochemistry of phenol by including five excited states are presented. In-

cluding more excited states than the target ones, has been shown here to be vital

in order to successfully unravel the non-adiabatic photodissociation of phenol to

the phenoxyl radical and hydrogen atom. All the findings are compared and linked

to each other and to the existing literature.

In Chapter 6, the use of Gaussian process regression to fit on-the-fly the

potential energy surfaces of DD-vMCG is introduced along with its implementation

focusing on the optimisation of the kernel hyperparameters. This approach enables

the exact and efficient analytic calculation of Hamiltonian matrix elements and

consequently removes the accuracy errors of the local harmonic approximation

approach. Test calculations on the multiple-state non-adiabatic dynamics of the

ozone molecule are also presented.

At the closing chapter, Chapter 7, a summary of the main results in this

thesis is presented along with future prospects based on the lines of research that

arose from this research study.
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Chapter 2

Theory

2.1 Introduction

A critical review of the literature associated with the subject area of this research

study will be presented in this chapter. The theories and mathematical principles

of relevance to computational quantum chemistry will be identified and analysed

in depth.

In this chapter, an effort to build an understanding regarding the different

forms of the fundamental Schrödinger equation and the construction of the Hamil-

tonian, subject to the system under examination, is made. The Born-Oppenheimer

Approximation (BOA) will be then presented and cases where this approximation

breaks down will be also discussed. The importance of understanding and visu-

alizing the relationship between molecular geometry and potential energy will be

presented. Finally, the time evolution and the role of conical intersections (CoIs)

in many photochemical transformations will be introduced.

2.2 The Schrödinger Equation

The Schrödinger equation12 is the fundamental equation of non-relativistic quan-

tum mechanics. It describes the temporal evolution of a state of a physical system.

Theory 8



2.2 The Schrödinger Equation

The time-dependent Schrödinger equation is written as

i~
∂

∂t
Ψ (r, t) = ĤΨ (r, t) (2.1)

where i =
√
−1, ~ is equal to h

2π
and denotes the reduced Planck constant, ∂

∂t

represents the partial derivative with respect to time, Ψ is the time-dependent

wavefunction , r is the position vector, t is time and Ĥ is the Hamiltonian which

in its time independent form contains the following kinetic and potential energy

terms

Ĥ = − ~2

2m
∇2 + V (r) (2.2)

where m is the mass for a particle, ∇2 is the Laplacian and V (r) is the time-

independent potential energy.

Eq. 2.1 contains the derivative of Ψ with respect to time which means that

if Ψ is known at time t = 0 then it can be calculated at some later time t. The

physical significance of the wavefunction is that |Ψ|2 dτ = Ψ∗Ψ is the probability

density, where Ψ∗ is the complex conjugate of Ψ. In essence, the probability of

finding a particle in the volume element dτ is proportional to the square of the

wavefunction. For a normalised wavefunction the integral of the probability over

all space takes the value of unity∫ ∞
−∞

Ψ∗Ψdτ = 1 (2.3)

The time-independent Schrödinger equation can be derived from the time-

dependent form. As long as the potential energy, V, is time-independent the time

and space dependent parts of Eq. 2.1 can be separated and the wavefunction

written as

Ψ (r, t) = f (t)ψ (r) (2.4)

Substituting this into Eq. 2.1 gives

i~
∂f (t)

∂t
ψ (r) = − ~2

2m
∇2f (t)ψ (r) + V (r) f (t)ψ (r) (2.5)
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and then dividing both sides by f (t)ψ (r) gives

i~
1

f (t)

∂f (t)

∂t
= − ~2

2m

1

ψ (r)

d2ψ (r)

dr2
+ V (r) (2.6)

The right hand side of Eq. 2.6 is a function of r only and is independent of a

change in t, whereas the left hand side is a function of t only and is independent

of a change in r. As the two sides are equal to one another there has to be some

value which each side equates to that does not depend either on r or on t and

must, therefore, be a constant. This constant has units of energy and is labelled

as E.

Equating first the left hand side of Eq. 2.6 to E and then the right hand side

generates two separate equations

i~
∂f (t)

∂t
= Ef (t) (2.7)

− ~2

2m

d2ψ (r)

dr2
+ V (r)ψ (r) = Eψ (r) (2.8)

Eq. 2.7 has the solution

f (t) = e−iEt/~ (2.9)

and the complete wavefunction, Ψ = ψf can be written

Ψ (r, t) = ψ (r) e−iEt/~ (2.10)

Eq. 2.8 is the time-independent Schrödinger (TISE) equation with a general form

Ĥψ = Eψ (2.11)

Consequently, it can be said that the TISE is an eigenvalue equation which de-

scribes the stationary states of, or definite energy solutions to, the TDSE. Con-

textually these may also be referred to as energy eigenstates or as orbitals.22

Theory 10



2.3 The Hamiltonian

2.3 The Hamiltonian

In quantum theory observable quantities are described by operators.22 As pre-

viously defined, the energy observable is expressed by an operator named the

Hamiltonian operator, Ĥ. For the systems that we shall consider, the classical

Hamiltonian is just the sum of the kinetic and potential energies, T and V respec-

tively, of the system33–35

H = T + V (2.12)

The relation connecting the operators for momentum, energy and position is as-

sumed to be similar to the one between the classical parameters. Particularly, the

Hamiltonian operator of a single particle in one dimension with mass m and a

V (r) potential energy of the system is assumed to be36,37

Ĥ =
p̂2

2m
+ V (r̂) (2.13)

Taking into consideration that momentum and position observables are ex-

pressed in quantum mechanics by operators and extending the Schrödinger Hamil-

tonian further into 3 dimensions, Eq. 2.13 of the Hamiltonian operator becomes

Ĥ = − ~2

2m
∇2 + V (r)

= − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z, t)

(2.14)

which is linear and Hermitian. In the case where there are many particles Eq. 2.14

takes the following form

Ĥ =
N∑
i=1

(
− ~2

2mi

∇2
i + V (ri, t)

)
=

N∑
i=1

ĥi (2.15)

where the total Hamiltonian is the sum of the Hamiltonians for each particle and

mi is the mass of the ith particle and ∇2
i is the Laplacian operator containing the

coordinates of the ith particle.

Finally, the dual role of the Hamiltonian operator, Ĥ, in quantum mechanics

ought to be emphasized.38 Firstly, the Hamiltonian operator describes the energy
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observable; hence the energy expectation value for a particle with wavefunction

Ψ (r, t) at time t is

〈E〉 =

∫
Ψ∗ (r, t) ĤΨ (r, t) d3r (2.16)

Secondly, the time evolution of the wavefunction is determined by the Hamil-

tonian operator since the Schrödinger equation for a particle moving in the three-

dimensional potential energy field V (r) has the following form

ĤΨ =

[
− ~2

2m
∇2 + V (r)

]
Ψ = i~

∂Ψ

∂t
(2.17)

Thus, a fundamental connection between energy and time exists in quantum

mechanics.

2.4 Born-Oppenheimer Approximation

It is difficult to solve the Schrödinger Eq. 2.1, because it contains the enormous

number of variables of the many-body wavefunction, Ψ. Hence, a system has

3n + 3N degrees of freedom, three spatial coordinates for each electron and for

each nucleus when consisting of n electrons and N nuclei. Born and Oppen-

heimer demonstrated in 192711 that to a very good approximation the nuclei in

a molecule are stationary with respect to electrons. Considering that electrons

are much lighter than the nuclei (nuclei are about 103 to 105 times heavier com-

pared to electrons), their motion will be much quicker, resulting in much smaller

characteristic time scales of processes involving the electrons. Consequently, it is

assumed that when a nucleus moves the electrons immediately reorder themselves

around it. The electronic wavefunctions can be constructed by assuming that the

nuclei are fixed in space. The nuclear coordinates are then just parameters in the

electronic Schrödinger equation and the nuclear and electronic motions are thus

said to be decoupled. By separating the kinetic energy and potential terms for the
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nuclei and electrons the Hamiltonian operator takes the following form

Ĥ = T̂N + T̂e + V̂eN + V̂ee + V̂NN (2.18)

where T̂N and T̂e are the kinetic energy operators for the nuclei and electrons

respectively, and V̂eN , V̂ee and V̂NN the potential energy operators for the nuclear-

electron, electron-electron and nuclear-nuclear interactions accordingly. The full

form of the previous equation (2.18) for the Hamiltonian operator is

Ĥ =− ~2

2

∑
α

1

mα

∇2
α −

~2

2me

∑
i

∇2
i

−
∑
α

∑
i

Zαe
2

riα
+
∑
α

∑
β>α

ZαZβe
2

rαβ
+
∑
j

∑
i>j

e2

rij

(2.19)

where m refers to mass, r to distance, Z to atomic number and the subscripts α,

β and i, j refer to nuclei and electrons respectively.

The large number of terms in Eq. 2.19 clearly shows that obtaining an ana-

lytical solution of the Schrödinger equation is impossible for anything apart from

hydrogen molecule. However, this can be addressed by taking advantage of the

large mass difference between the nuclei and the electrons which implies that the

position of the electrons changes instantaneously along with any change in the nu-

clear geometry. Thus, the nuclei can be considered to be fixed and the Schrödinger

equation may be then solved only for the electrons at a fixed nuclear geometry.

The aforementioned concept is demonstrated by expressing the full wavefunction

as a product of the electronic ψ wavefunction and the nuclear wavefunction χ

Ψ(r;R) = ψ(r;R)χ(R) (2.20)

Substituting Eq. 2.20 and 2.18 in Eq. 2.11

[T̂N(R)+T̂e(r)+V̂eN(r, R)+V̂ee(r)+V̂NN(R)]ψ(r;R)χ(R) = Eψ(r;R)χ(R) (2.21)

Considering that Te is independent of the nuclear position the following equation

can be written

Teψχ = χTeψ (2.22)
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However, a similar formula for the nuclear kinetic energy operator cannot be

written since it depends on the nuclear position. For this case, the product rule is

employed

∂2

∂R2
ψχ = ψ

∂2

∂R2
χ+ 2

∂

∂R
ψ
∂

∂R
χ+ χ

∂2

∂R2
ψ (2.23)

The Schrödinger equation now has the form

Hψχ = Teψχ+ VeNψχ+ Veeψχ+ VNNψχ+W = Eψχ (2.24)

where W has the following form

W = −
∑
a

~2

2ma

(ψ
∂2

∂R2
χ+ 2

∂

∂R
ψ
∂

∂R
χ+ χ

∂2

∂R2
ψ) (2.25)

As discussed at the beginning of this section, in the Born-Oppenheimer ap-

proximation the nuclear masses (ma) are assumed to be relatively large thus Eq.

2.25 is considered to be almost zero and all the elements inside this expression

are neglected. This equation acts as a limit for BOA as when it can no longer

be ignored, there is coupling between the electronic and nuclear motion and very

important and interesting quantum dynamical phenomena arise. Consequently,

Eq. 2.24 can be rewritten as

ψTNχ+ (Teψ + VeNψ + Veeψ + VNNψ)χ = Eψχ (2.26)

Moreover, by multiplying Eq. 2.24 on the left by ψ∗ and integrating over electronic

coordinates the nuclear Schrödinger equation is yielded

(TN + V )χ = Eχ (2.27)

where TN is the kinetic energy of the nuclei and V is the potential as a result of

the electronic motion.
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2.5 Adiabatic Representation

The adiabatic representation is based on the Born-Oppenheimer approximation.

This is a fundamental approach and many different research techniques such as

spectroscopy heavily rely on the adiabatic picture. Moving outside the scope of

the BOA, the exact solution in the adiabatic basis can be written as

Ψ (r;R) =
∞∑
n=0

ψn (r;R)χn (R) (2.28)

For simplicity the former sum includes only the bound electronic states, however for

completeness an integral over the unbound states should be included. Substituting

the ansatz 2.28 in Eq. 2.11 and with the Hamiltonian (Eq. 2.18), and projecting

from the left with ψm(r;R) results in

∑
n

{
(TN + En(R) + VN(R))δnm + 2T (1)

mn(R)∇+ T (2)
mn(R)

}
χn(R) = Eχm(R)

(2.29)

The number of T
(1)
mn vector components equals the number of degrees of freedom

(DOFs) and T
(2)
mn is a scalar

T (1)
mn(R) = 〈ψm | ∇ψn〉 (2.30)

T (2)
mn(R) =

〈
ψm | ∇2ψn

〉
(2.31)

When the electronic and nuclear coupling is small, only the diagonal elements of

Eq. 2.29 are kept. Thus, the Schrödinger equation as expressed in Eq. 2.27 with

an additional small but non-vanishing T
(2)
nn becomes

∑
n

(TN + En + VN + T (2)
nn )χn = Eχn (2.32)
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2.6 Non-Adiabatic Corrections

In the event of large non-adiabatic couplings the off-diagonal elements of Eq. 2.29

can no longer be ignored and can be very complex to calculate. To this end, Eq.

2.29 can be simplified so that the wavefunction is written as

(T̂N + Vi) | Ψi〉 −
∑
j

Λij | Ψi〉 = i~
∂

∂t
| Ψi〉 (2.33)

which is a time-dependent form of the Schrödinger equation and j and i denote

the electronic states and Λij is the non-adiabatic coupling matrix which can be

expressed as

Λij =
1

2M
(Gij + 2Fij∇) (2.34)

where Gij is a matrix of numbers which can be expressed as

Gij =
〈
Ψi|∇2Ψj

〉
=

〈
Ψi|

∂2

∂R2
Ψj

〉
(2.35)

and Fij is the non-adiabatic coupling vector.

Fij = 〈Ψi|∇Ψj〉 =

〈
Ψi|

∂

∂R
Φj

〉
=

1

Ej − Ei

〈
Ψi|

∂Ĥel

∂R
Ψj

〉
(2.36)

Hence, Fij inversely depends on the energy gap between the 2 states, in such a way

that as the gap becomes larger the coupling decreases whereas if the two states

become degenerate the non-adiabatic coupling vector will become infinite.

Thus, solving Eq. 2.33 implies that the first, ∂
∂R

, and second, ∂2

∂R2 , derivatives

of electronic wavefunctions must be solved. In the adiabatic representation the

coupling can be neglected and the derivatives are small resulting in the following

equation

[T̂N + Vi − E]χi = 0 (2.37)

where there is no coupling and Vi is known as the potential energy surface, also

called the potential because it is the potential energy in the dynamical equation of

nuclear motion, being one of the most important concepts in physical chemistry.
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More detailed description of the adiabatic approximation, such as, its validity, its

generalization, the problem of deriving corrections to it and many other aspects

are thoroughly discussed in the literature.15,39–45

2.7 Vibronic Coupling and Diabatic Representa-

tion

During ultrafast processes, such as those pertaining to the photochemistry of poly-

atomic molecules, the vibronic coupling can become significant when a molecule

reaches a region where PESs are close and separating the electronic and nuclear

motions becomes impossible. Hence, the BOA breaks down. Within the adi-

abatic representation the difficulty arises when trying to calculate the first and

second derivatives in the coupling matrix of the electronic wavefunctions. In order

for these derivatives to be as small as possible or even absent, the electronic basis

functions should not depend on the nuclear coordinates, thereby there is no change

in the electronic wavefunction with nuclear geometry. These electronic basis func-

tions are known as the diabatic basis. For systems with significant non-adiabatic

effects, the diabatic representation is the obvious choice as it eliminates singular-

ities which arise when Ej − Ei → 0 in Eq. 2.36 resulting in smooth and simple

potential energy surfaces.46

Accordingly, the Schrödinger equation in the diabatic basis can be expressed

as

T̃N | Ψi〉+
∑
j

Wij | Ψj〉 = i~
∂

∂t
| χi〉 (2.38)

where Wij denotes the potential matrix and has the following form

Wij =
〈

Φi

∣∣∣H̃el

∣∣∣Φj

〉
(2.39)

Commonly a unitary transformation of the adiabatic states, φ, is employed to

determine the diabatic states, Φ. The orthogonal matrix, S, is used to transform
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2.7 Vibronic Coupling and Diabatic Representation

the operator from adiabatic to diabatic

(|Φ1〉|Φ2〉) = S (|φ1〉|φ2〉) (2.40)

where Φ and φ denote the diabatic and adiabatic electronic wavefunctions respec-

tively. More specifically, the transformation at each fixed geometry for a two-state

system is expressed as (
Φ1

Φ2

)
=

(
cos a sin a
− sin a cos a

)(
φ1

φ2

)
(2.41)

where a is the mixing angle between the two adiabatic states depending on the r

and R coordinates. The diagonal terms of Eq. 2.41 have the following form

W11 =
〈

Φ1

∣∣∣Ĥel

∣∣∣Φ1

〉
= V1 cos2 a+ V2 sin2 a (2.42)

W22 =
〈

Φ2

∣∣∣Ĥel

∣∣∣Φ2

〉
= V1 sin2 a+ V2 cos2 a (2.43)

and the off-diagonal terms

W12 =
〈

Φ1

∣∣∣Ĥel

∣∣∣Φ2

〉
= (V1 − V2) cos a sin a (2.44)

where for this two state system V1,2 are the adiabatic potential energies, W11 and

W22 are the diabatic potential energies and W12 = W21 represent the coupling

between these two states.

The two criteria for selecting the mixing angle, a, are firstly obtaining smooth

surfaces and secondly that the following condition is true47

∇S = −FS (2.45)

where F as earlier described is the non-adiabatic coupling vector. A point where

the diabatic and adiabatic surfaces are the same is selected to initially define the S

matrix, which in most cases is the Frank-Condon point. According to the Frank-

Condon principle, a vertical electronic transition from the minimum of the PES of
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2.8 Potential Energy Surfaces

the ground state occurs without changes in the positions and momentum of the

nuclei. The point of intersection,at which a vertical line cuts through the PES of

the excited electronic state, is called the Franck–Condon point, and the resulting

state is a Franck–Condon (excited) state with the Franck–Condon geometry, which

is the equilibrium geometry of the former ground state. The diabatisation scheme

is defined by the solutions to the differential equation.

A visual example of a two state molecule such as butatriene is depicted in Fig.

2.1 where it can be observed that the diabatic representation has smoother PESs

compared to the adiabatic one and the conical crossing is eliminated.
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Fig. 2.1: The diabatic (a) and adiabatic (b) potential energy surfaces of the butatriene
molecule along the C-C symmetric stretching mode, 14Ag, and the CH2 twisting mode,
5Au.

2.8 Potential Energy Surfaces

Potential energy surfaces are essential in understanding and visualizing the rela-

tionship among molecular geometry and potential energy. The potential energy

surface, which can be a function obtained by fitting to the ab initio energies,

should describe the molecular energy as the internuclear distances change. Ab

initio energies used to map a potential energy surface can be gathered by solving

the electronic problem and obtaining the electronic wavefunction ψ (R, r). Meth-

ods aimed at solving this problem are broadly referred to as electronic structure
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2.8 Potential Energy Surfaces

calculations48 and important improvements have been made49 to allow an accu-

rate ab initio evaluation of the molecular energy within the Born-Oppenheimer

approximation.11

The most important features of PESs for discussing chemical reactions are the

stationary points, which on a PES are points at which the target surface is flat,

i.e. parallel to a horizontal line corresponding to one geometric parameter (or

to the plane corresponding to two geometric parameters, or to the hyperplane

corresponding to more than two geometric parameters). A marble placed on a

stationary point will remain balanced, i.e. stationary. At any other point on a

potential surface the marble will roll toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the po-

tential energy with respect to each geometric parameter is zero50–52

∂V

∂q1

=
∂V

∂q2

= ... = 0 (2.46)

These stationary points can be distinguished by the second derivatives of the

potential energy in terms of the internal coordinates, according to the number

of positive, negative and zero eigenvalues of the (3N-6) x (3N-6) matrix, we can

get:

For a minimum, along all the reaction coordinate q

∂2V

∂q2
> 0 (2.47)

For a transition state, for all q

∂2V

∂q2
> 0 (2.48)

except along the reaction coordinate where

∂2V

∂q2
< 0 (2.49)

Thus, if all of the eigenvalues of the Hessian matrix are positive, the stationary

point is a minimum with all real frequencies, which occupies the lowest-energy
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2.9 Potential Energy Surfaces

point in the region of the PES, corresponding to reactants, products or intermedi-

ates.53 The Hessian matrix is a square matrix of second-order partial derivatives

of a scalar-valued function, or scalar field. It describes the local curvature of a

function of many variables. If the minimum is the lowest-energy minimum on

the entire PES, it is called a global minimum. The transition state linking the

two minima represents a maximum along the direction of the intrinsic reaction

coordinate, yet along the other directions it is a minimum. This is typical for

a saddle-shaped surface, and the transition state is known as saddle point. The

former main features of PESs are visualised in Fig. 2.2.

Fig. 2.2: Schematic two-dimensional representation of (a) a minimum, (b) a maximum
stationary point and (c) a sadle point.

A transition state is a first order saddle point, with only one negative eigen-

value. These are of particular interest in chemical kinetics because they lie on the

paths between points on the surface identified with reactant and points on the

surface identified with product species, offering a practical way of tracing those

paths in a steepest descent manner. Some PESs have points where the second

derivative of energy with respect to more than one coordinate is negative; these

are higher-order saddle points; for instance, a second-order saddle point is a point

on the PES that is a maximum along two paths connecting stationary points,

hence of little relevance in kinetics.46,54,55 The location of a stationary point on

the PES can be achieved by many different methods see Refs.56–59
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2.9 The Role of Conical Intersections

2.9 The Role of Conical Intersections

Initially, a photochemical reaction for any excited molecule was conceptually de-

fined as a decay occurring at an excited state energy minimum with a simultaneous

avoided crossing region between the ground state and the excited state potential

energy surfaces.60 Nevertheless, Michl,61 Teller62 and Zimmerman63 presented the

photochemical funnels concept. In the research work of the aforementioned au-

thors, it was primarily proposed that some photoproducts might be produced by

nonradioactive decay of the excited state molecule via a degeneracy - a crossing

point - between the ground and the excited state potential energy surfaces, instead

of an avoided crossing.

These degenerate points are generally known as conical intersections 50 (CoIs)

or conical crossings .62 Even though CoIs were believed to be an exception instead

of the rule, over two decades of computational Quantum Chemistry research stud-

ies64–66 have confirmed that they are very common in polyatomic systems. Such

crossings give very effective funnels for radiationless deactivation such as internal

conversion.

Given the central role of these CoIs in many photochemical transformations,

we need to explore the conditions for their existence. To this end, let Hel be an

electronic Hamiltonian, via which Φ1 and Φ2 electronic states are interacting.

Hel =

(
H11 (R) H12 (R)
H21 (R) H22 (R)

)
(2.50)

with

Hij =
〈
Φi

∣∣Hel
∣∣Φj

〉
(2.51)

By diagonalizing the two-by-two matrix operator, we obtain the adiabatic poten-

tials:

V± = H̄ ±
√

∆H2 +H2
12 (2.52)
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2.9 The Role of Conical Intersections

where H̄ = (H11 +H22) /2 and ∆H = (H11 −H22) /2. Finally, the requirements

for two adiabatic potentials to cross, are the following two independent conditions:

H11 (R) = H22 (R) (2.53)

H12 (R) = 0 (2.54)

If the wavefuctions of two electronic states have the same symmetry, the H12 (R)

will be zero for any nuclear coordinates. In this case there might be a point or

points where we have degeneracy and these points are CoIs67 or avoiding crossings.

On the other hand, if the wavefuctions of two electronic states have different

symmetries, their PESs will always cross. Von Neumann and Wiger68 established

these two requirements which are known as the non-crossing rule for degeneracy

as in a one-dimensional system the conditions cannot be both fulfilled and the

surfaces do not cross.

Finally, although the role of conical intersections in photochemical reactions

cannot be easily ascertained experimentally, it is now computationally validated.69–71

A particular conical intersection, the symmetry-induced crossings in Jahn-Teller

active molecules, is however an exception, since it has long been investigated by

spectroscopic techniques.72 Laser-induced fluorescence from a non-degenerate ex-

cited electronic state to a degenerate one73 and photoelectron spectroscopy from a

neutral closed-shell species to an open-shell Jahn-Teller active species74 are some

of the most commonly used techniques.
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Chapter 3

Methodology

3.1 Introduction

Following the theories and hypotheses described in Chapter 2, this Chapter fo-

cuses on the different electronic structure and nuclear dynamics methods related

to the scope of this research study. Initially, Section 3.2 outlines the various elec-

tronic structure methods, known as ab initio methods,26,75 employed to solve the

time-independent Schrödinger equation within the limits of the Born-Oppenheimer

approximation (BOA). Subsequently, different existing nuclear dynamics methods

that can be applied to solve the time-dependent Schrödinger equation and thus

cases where the Born-Oppenheimer approximation breaks down are extensively

presented in Section 3.3. The main focus of this chapter is to build an under-

standing regarding the direct dynamics variational multi-configurational Gaussian

(DD-vMCG) method which is the main method used and developed during this

study.

3.2 Electronic Structure

A wide range of different ab initio methods exist where all the information is ob-

tained from theoretical calculations without using any experimental data. The

most simple and well-known electronic structure method is Hartree-Fock,76,77 a

mean-field method where a single determinant is employed to describe the wave-
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3.2 Electronic Structure

function. A ”nontrivial” solution exists only if the determinant is equal to zero and

this determinant is known as secular determinant. Hartree-Fock theory neglects

electron correlation since the electron-electron repulsion is treated as an average.

HF accounts for around 99% of the exact energy of a molecule in its ground state

as ground states are usually very well described by a single electronic configura-

tion. However, to describe any process involving electronic excited states which

are multi-configurational, such as those involved in photodissociation or converted

via a conical intersection, more advanced methods which are briefly discussed in

section 3.2.3 are required.

3.2.1 Hartree-Fock Method

The Hartree-Fock method is the most commonly applied theory to solve the elec-

tronic time-independent Schrödinger equation and has been often used as a starting

stage in a plethora of ab initio quantum chemistry methods. According to this

method, the electron-electron repulsion is averagely treated since every electron

is assumed to move in an average potential based on the other electrons and the

nuclei. Additionally, in the Hartree-Fock method a single particle function can be

used to describe the motion of each electron.

Taking into consideration the Hamiltonian operator, Eq. 2.19 from Chapter 2,

the time independent electronic Schrödinger equation can be expressed as follows

[T̂e(r) + V̂ne(r,R) + V̂nn(R) + V̂ee(r)]Ψ(r,R) = Ee(R)Ψ(r;R) (3.1)

Within the Born-Oppenheimer approximation, a set of electronic wavefuctions

exists for each fixed nuclear geometry that satisfies the following equation

ĤeΨe = EeΨe (3.2)

The kinetic energy of the electrons and the electron-nuclear attraction are a

sum of different terms, each one relying only on the coordinates of one electron
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3.2 Electronic Structure

while the electron-electron repulsion relies on two. At a given fixed geometry, the

nuclear-nuclear repulsion is considered as a constant variable since it is independent

of the electronic coordinates.

T e = −
N∑
i=1

1

2
∇2
i (3.3)

V ne = −
N∑
i=1

∑
a

Za
|Ra − ri|

(3.4)

V ee =
N∑
i=1

N∑
ji

1

|ri − rj|
(3.5)

V nn =
∑
a

∑
ba

Za
Zb
|Ra −Rb| (3.6)

Based on the former terms, the following expressions can be used for the one-

and two-electron operators

hi = −1

2
∇2
i −

∑
a

Za
|Ra − ri|

(3.7)

gij =
1

|ri − rj|
(3.8)

He =
N∑
i=1

hi +
N∑
i=1

N∑
j>1

gij + Vnn (3.9)

where hi denotes the motion of the i electron and gij describes the two-electron

operator. Ignoring the gij coupling, Eq. 3.2 can be written as the sum of the

one-electron terms

hiϕi = εiϕi (3.10)

- where εi denotes the energy of electron i.

A product of one-electron wavefunctions can be employed, known as a Hartree

product in order to solve Eq. 3.10

Ψe = ϕ
(1)
1 ϕ

(2)
2 · · · (3.11)
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3.2 Electronic Structure

By considering the Pauli exclusion principle78 for fermions and the spin of

the electrons, the total wavefuction must, however, be written as a Slater deter-

minant79 and the one-electron wavefunctions can be expressed as spin orbitals,

φα(i). A fermion is any subatomic particle that follows Fermi-Dirac statistics and

complies with the Pauli exclusion principle. The determinant takes the following

form for N spin orbitals and N electrons

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) ... φN(1)
φ1(2) φ2(2) ... φN(2)
. . . .
. . . .
. . . .

φ1(N) φ2(N) ... φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.12)

where

〈φi|φj〉 = δij (3.13)

Eq. 3.12 can be written in a compact notation as follows

Φ = |φ1(1)φ2(2)...φN(N)〉 (3.14)

The time-independent Schrödinger equation is now solved for the determinant

φ by employing the variational principle with Φ being a trial wavefunction. Within

the variational principle, any trial wavefunction has a higher energy compared to

the true energy. As a result, the Hartree-Fock equations are derived.

3.2.2 Basis Sets

Expressing the molecular orbitals which are unknown functions in the form of a

linear combination of atomic orbitals is a standard practice when ab initio methods

are employed

φi =
∑

ciaχa (3.15)
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where c are the coefficients and χ is a sum of known functions such as Gaussian

functions. To overcome the obstacle of the unknown functions, the molecular

orbitals, a set of known functions, called the basis set, is introduced. The level

of accuracy of the employed restricted basis set relies on how well the unknown

function is represented by the basis function and also on the size of the basis set.

A large basis set means more Gaussian or Slater type orbitals are employed to

describe each molecular orbital and thus a better description of it is achieved.

One of the most commonly used functions in ab initio methods are the Slater

Type Orbitals21,80–82 which have the following form

χζ,n,m(r, θ, ϕ) = NYl,m(θ, ξ)rn−1e−ζr (3.16)

where N denotes the normalisation constant, Yl,m are spherical harmonic functions,

r indicates the distance between the electron and the atomic nucleus and lastly ζ

denotes the orbital exponent related to the nucleus effective charge.

Another important known function are the Gaussian Type Orbitals21,80,82 and

can be expressed as a function of cartesian, Eq. 3.17, or polar, Eq. 3.18 coordinates

χζ,lx,ly ,lz(x, y, z) = Nxlx , yly , zlze−ζr
2

(3.17)

χζ,n,m(r, θ, ϕ) = NYl,m(θ, ξ)r2n−2−le−ζr
2

(3.18)

where the type of the orbital is determined by the sum of lx,ly, and lz.

Slater Type Orbitals are more accurate since they are based on the solution

of the Schrödinger equation for the hydrogen atom yet Gaussian type orbitals

are cheaper and behave better numerically. During this research study different

basis sets have been employed and the criteria of choosing a specific function when

dealing with different molecules will be discussed in detail in the following chapters.
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3.2.3 Beyond the Hartree-Fock Method

In the Hartree-Fock method, the electron-electron repulsion is treated as an average

since only a single determinant is selected for the trial wavefunction. The difference

of the exact energy with the Hartree-Fock energy is known as Electron Correlation

energy. Two types of correlation energy are defined, the ”dynamic” which accounts

for the instantaneous movement of the electrons and the ”static” or ”non-dynamic”

which applies to degeneracy near cases which a single determinant cannot describe

correctly. Despite that the Electron Correlation energy is a small fraction of the

total energy, it becomes important in some cases, such as excited state calculations.

Thus, a variety of methods which employ the Hartree-Fock wavefunction as a

starting point (trial wavefunction), consisting of more than one determinant have

been developed

Ψ = c0ΦHF +
∑
i=1

ciΦi (3.19)

where the excited configurations can be obtained from the Hartree-Fock deter-

minant if occupied orbitals are substituted by unoccupied ones. In order to de-

termine the coefficients either perturbation theory83 or the variational principle

can be used. A full configuration interaction (CI) wavefunction that sums all the

possible determinants and describes all the possible excitations has the following

form

ΨCI = c0ΦHF +
∑
S

cSΦS +
∑
D

cDΦD +
∑
T

cTΦT + · · · =
∑
i=0

ciΦi (3.20)

where S, D and T denote the single, double and triple electron excitation respec-

tively.

Although an exact solution of the time-independent Schrödinger equation can

be obtained with the CI method, it is computationally very expensive apart from

the case of small molecules with no more than three atoms. Thus, a further

approximation could be applied where the full CI expansion is truncated at a
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specific excitation level. If only single electron excitations are included then the

configuration interaction singles (CIS) is obtained. Analogously, single and double

electron excitations are included at the configuration interaction singles doubles

(CISD) level of theory and so on. However, truncated CI methods are not suitable

for large molecules since the Electron Correlation energy is not properly scaled.

A very common approach is to use perturbation theory, where a small correc-

tion is added to a known solution of a simpler problem, to develop new methods.

One of the most well-known methods is the Møller-Plesset second order pertur-

bation theory (MP2).84 Other methods are also available such as, coupled cluster

(CC)85 approach where an exponential excitation operator is employed to add cor-

relation. The density functional theory (DFT)85 is another approach, where the

high dimensional electronic wavefunction is replaced by a three-dimensional den-

sity. In general, the aforementioned methods can acceptably calculate ground state

energies and wavefunctions but they cannot describe excited states. Hence, other

developments are needed such as algebraic diagrammatic construction (ADC),86

equation-of-motion coupled-cluster model with single and double substitutions

(EOM-CCSD)87 and time-dependent density functional theory (TDDFT).88

Furthermore, in the cases where the Hartree-Fock wavefunction cannot be used

as a reference, static correlation effects can be added to the reference wavefunction

when more than one electronic configuration is needed to describe the ground state

and therefore as a reference for the excited states leading to the multiconfigura-

tional self-consistent field (MCSCF) method.85 In this method both the orbitals

and the coefficients are iteratively optimized in contrast with the CI method where

only the coefficients are optimized. A very popular variant of the MCSCF method

is the complete active space self-consistent field (CASSCF)89,90 where the orbitals

that contribute most to the target electronic states, known as active orbitals, are

selected and then a full CI calculation is performed in this active space. The
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active orbitals used as a starting point for CASSCF are normally a subset of the

highest occupied and lowest unoccupied orbitals calculated using the Hartree-Fock

method. One bottleneck of this method is that it heavily relies on the knowledge

of the system under investigation in order to choose the appropriate active space.

The missing static correlation energy is addressed by the various methods pre-

sented above but further approaches are needed to approximate the dynamic cor-

relation energy. To this end, a multi-reference configuration interaction (MRCI)85

approach has been developed applying a CI method on a MCSCF wavefunction

resulting in a quite accurate but extremely expensive method. To overcome this

drawback a set of configurations is selected, such as symmetry adapted linear com-

binations of Slater determinant, leading to a multi-reference perturbation theory

(MRPT)85 method where Møller-Plesset perturbation theory is applied on a MC-

SCF reference. This method is mainly used within a reduced active space in order

to still be accurate but also reduce the computational effort, resulting in a method

known as complete active space perturbation theory second order (CASPT2).83,91

It is commonly used in many studies to benchmark the computer simulations of

any molecule under investigation.

3.3 Nuclear Dynamics

As described in Chapter 2, to study the electronic structure of a molecule the time-

independent Schrödinger equation needs to be solved usually within the bounds of

the BOA. Hence, single point calculations are performed at each nuclear geometry

visited during the dynamics. However, molecules are not stationary which lead

to the development of a plethora of dynamics methods focusing on the nuclear

movement. Dynamics methods can be divided into three main categories, classical,

semi-classical and quantum.

The first category is classical dynamics where in computational chemistry the
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molecular mechanics subset is employed. Molecular mechanics employs classical

mechanics in order to model a molecular system. The Born–Oppenheimer approx-

imation is considered valid and the potential energy is calculated as a function

of the nuclear coordinates employing force fields. Molecular mechanics can be

employed to investigate molecule systems with varying size and complexity.

The next category is the semi-classical methods where the simulation of molec-

ular dynamics is accomplished by introducing quantum mechanical corrections into

classical dynamics simulations. In semiclassical methods similarly with classical,

the nuclei move according to the Newton equations of motion. The main reason

that these methods were established was to carry out molecular fragmentation sim-

ulations following electronic decay processes. In these methods the nuclei evolve

classically, while the electrons (or the PES) are calculated with ab-initio methods.

A very popular one, among semi-classical methods was developed by Tully92 to

treat large systems and is known as surface hopping.

Finally, quantum molecular dynamics methods, which is the area under in-

vestigation in this research study, endeavour to characterize at the atomic level a

chemical system’s time-dependent evolution including quantum effects. Thus, a

solution of the time-dependent Schrödinger equation93 is attempted which can be

written as

iΨ̇ = ĤΨ (3.21)

using units in which ~ = 1. In every method that falls into this category a

wavefunction is employed to describe the nuclei instead of describing them as

particles. The system’s energy in the configuration space can be calculated at

different points in time, where a more general picture for the various molecular

configurations is described by a potential energy surface. Areas on these surfaces

where the nuclear wavefunction has a larger amplitude suggest the most likely

position of the molecule.
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3.3.1 Multi-Configuration Time-Dependent Hartree Method

The multi-configuration Time-Dependent Hartree (MCTDH) method is an al-

gorithm for solving the time-dependent Schrödinger equation. This grid-based

method can treat multi-dimensional, non-adiabatic systems in which PESs are

strongly coupled. MCTDH is derived from standard propagation methods, in

which the wavepacket and Hamiltonian are represented by a time-independent

product basis, the calculation becomes computationally unfeasible as the number

of degrees of freedom (DOF) increases. The MCTDH method accounts for this by

representing the wavefunction using a number of so called single particle functions

(SPFs) which may be one- or multi-dimensional and are time-dependent. The

MCTDH wavefunction ansatz to solve the time-dependent Schrödinger equation

can be presented as:

Ψ (q1, ..qf , t) =

n1∑
j1=1

...

nf∑
jf=1

Aj1...jf (t)ϕ
(1)
j1

(q1, t) ...ϕ
(f)
jf

(qf , t) (3.22)

where q1, ..qf are the nuclear coordinates, Aj1...jf are the time-dependent expansion

coefficients and ϕ
(1)
j1
...ϕ

(f)
jf

are the time-dependent SPFs for each DOF. Convergence

for a dynamics calculation is accomplished by increasing the number of SPFs until

the measured value does not change,94,95 as in electronic structure methods. In

a photodissociation reaction, for instance, an absorption spectrum that no longer

changes would show that convergence has been reached.

Using a composite index for simplicity where J = j1...jf and ΦJ = ϕj1 ...ϕjf ,

equation 3.21 can be written:

i
∑
J

ȦJ | ΦJ〉+ i
∑
J

AJ | Φ̇J〉 =
∑
J

HAJ | ΦJ〉 (3.23)

Multiplying from the left by 〈ΦL|

i
∑
J

ȦJ 〈ΦL | ΦJ〉+ i
∑
J

AJ

〈
ΦL | Φ̇J

〉
=
∑
J

〈ΦL | HAJ | ΦJ〉 (3.24)

Methodology 33



3.3 Nuclear Dynamics

where as 〈ΦL|ΦJ〉 = δL,J , it is assumed that a time-independent basis-set, Φ, gives

a solution for A
iȦJ =

∑
J

AJΦJ

=
∑
L

〈ΦJ |H|ΦL〉AL
(3.25)

This is the full solution to the TDSE. For MCTDH Φ depends on time and a

variational solution to the time-dependent Schrödinger equation needs to provide

a coupled set of equations for the expansion coefficients and for the SPFs

iȦ = KA (3.26)

iϕ̇(κ) =
(
1− P (κ)

) (
ρ(κ)

)−1H(κ)ϕ(κ) (3.27)

where K is the Hamiltonian matrix element

KJL = 〈ΦJ |H|ΦL〉 (3.28)

and ρ is a density matrix defined as

ρ
(κ)
ab =

〈
Ψ(κ)
a |Ψ

(κ)
b

〉
(3.29)

where the SPF of the κth mode, φ
(κ)
a are ignored by the single hole functions, Ψ

(κ)
a ,

and integration is over all the DOF apart from κ. P (κ) is the projector onto the

space spanned by the SPFs

P (κ) =
∑
j

∣∣∣ϕ(κ)
j

〉〈
ϕ

(κ)
j

∣∣∣ (3.30)

and the operator
(
1− P (κ)

)
ensures that the time derivative of the SPF is orthog-

onal to the space spanned by the functions. A solution of the integrals of the

following form is essential to solve the equations of motion for the coefficients and

for the SPFs, Eq. 3.25.

K = 〈ΦJ |T + V |ΦL〉

=
〈
ϕ

(1)
j1 ...ϕ

(f)
jf |T + V |ϕ(1)

j1 ...ϕ
(f)
jf

〉 (3.31)
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The multi-dimensional integral can be conveniently evaluated if the SPFs are

represented using a discrete variable representation (DVR)96,97 as a basis set. The

matrix elements of the kinetic energy operator can also be evaluated in the related

finite basis representation (FBR). For full details see reference from Beck and

Meyer.98

MCTDH is a really advantageous method, however in order to treat larger

molecules new approximation pathways should be introduced that remove the

grid restrictions. To that end, a more efficient approach is to employ suitable

parametrized functions to replace some of the SPFs. By choosing Gaussian func-

tions as the parametrized functions, the MCTDH wavefunction ansatz can be

rewritten as follows

Ψ (q1, ..qf , t) =

n1∑
j1=1

...

nf∑
jf=1

Aj1...jf (t)
d∏

k=1

ϕ
(k)
jk

(qk, t)

f∏
k=d+1

gkjk(qk, t) (3.32)

resulting in the G-MCTDH method.82,99

The reason behind choosing Gaussian functions is that initially the G-MCTDH

method was developed for treating system-bath problems and Gaussian functions

can very well describe the bath which is a set of oscillators. This method has

been extensively applied in vibronic coupling models100 and in high-dimensional

system-bath cases.101

3.3.2 Variational Principles

Variational equations of motion, such as those of MCTDH in the previous section

and vMCG in the next, mean that the expansion coefficients and basis functions

evolve to provide the best possible solution to the TDSE. They are derived using

a variational principle. The three best-known variational principles are Dirac-

Frenkel,102 McLachlan103 and Lagrange.104 In all the theories presented in this

research study only the Dirac-Frenkel principle was employed which has the fol-

lowing form
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〈
δΨ

∣∣∣∣H − i ∂∂t
∣∣∣∣Ψ〉 = 0 (3.33)

Theorem

”The equations of motion derived from the Dirac-Frenkel variational principle con-

serve both norm and energy, if the Hamiltonian is Hermitian and time-independent,

∂
∂t
H = 0, and if the model wavefunction Ψ itself is contained in the space of the

allowed variations: Ψ ∈ {δΨ}.” 105

3.3.3 Variational Multi-Configurational Gaussian Method

One of the most significant disadvantages of grid-based methods is the neces-

sity that prior to any calculation being performed, the complete, global potential

energy surfaces must be fitted or computed as the integrals run over the whole

configurational space. To eliminate the aforementioned restrictions the variational

multi-configurational Gaussian (vMCG) method was introduced.19,82,106 In this

method parametrised Gaussian functions are replacing the multi-dimensional ba-

sis functions, which results in a purely Gaussian Wavepacket (GWP)82,100,101,106–108

method.

The vMCG method employs the wavefunction ansatz :

Ψ (x, t) =
∑
i

Ai (t) gi (x, t) (3.34)

with every part of the wavepacket described as a superposition of frozen GWPs.

Every Gaussian is defined by its position and momentum in phase space.

The equations of motion require the evaluation of matrix elements of the poten-

tial energy function. Local harmonic approximation (LHA)109–111 can be applied

to the potential to make the evaluation of integrals straightforward. As a result,

the potential is expanded around the centre point of every Gaussian function to

the second-order

Vi (x) = V (x0) + qTi V
′ + qTi V

′′qi (3.35)
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where V
′

and V
′′

are the first and second derivatives of the potential energy at

x0, and qi is the displacement coordinates from this point.

The kinetic operator has the following form if rectilinear coordinates are used

T =
∑
i

1

2mi

∂2

∂x2
i

(3.36)

Each Gaussian basis function in the wavefunction ansatz, Eq. 3.34, is a multi-

dimensional parametrised function of a set of coordinates, x, and can be written

as

gi (x, t) = exp
(
xT ς i (t)x+ xTξi (t) + ηi (t)

)
(3.37)

with x a column vector of the coordinates, and xT its transpose. The complex,

time-dependent parameters in this function, represent the widths of the Gaussian

functions with a square matrix (ς), the coordinates of the centre of the Gaussian

functions and the momentum with a vector (ξ) and the remaining parameters of

the functions with a number (η). These parameters are advantageously arranged

into a vector

Λi = {ς i, ξi, ηi} (3.38)

Thus, applying the Dirac-Frenkel variational principle, Eq. 3.33, and in con-

sideration of the variations in the wavefunction (δΨ), regarding both the Gaussian

function and the expansion coefficients parameters, the equations of motion can

be obtained. Using vector notation the former equations of motion can be written

as

iȦ = S−1 (H − iτ )A (3.39)

iΛ̇ = (C)−1 Y (3.40)

where H is the Hamiltonian operator matrix

Hij =
〈
gi

∣∣∣Ĥ∣∣∣ gj〉 (3.41)
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and S is the overlap matrix expressed in the Gaussian function basis set

Sij = 〈gi|gj〉 (3.42)

and τ is differential overlap matrix

τij =

〈
gi|

∂

∂t
gj

〉
(3.43)

Eq. 3.39 is connected to the equations of motion used for the expansion coefficients

in wavepacket dynamics (Eq. 3.26). The vMCG equations have thus some extra

terms as the Gaussian basis set are non-orthogonal.

In Eq. 3.40, the tensor C is considered as a matrix and the matrices Y and Λ

as vectors. Employing the usual nomenclature106 C and Y have the form

Ciα,jβ = ρij

(
S

(αβ)
ij −

[
S(α0) (S)−1 S(0β)

]
ij

)
(3.44)

Yiα =
∑
j

ρij

(
H

(α0)
ij −

[
S(α0)S−1H

]
ij

)
(3.45)

with

ρij = A∗iAj (3.46)

being the density matrix, and the superscripts α, β in the matrix elements indicate

the derivatives of the Gaussian functions regarding the parameters of the Gaussian

form (Eq. 3.37)

S
(αβ)
ij =

〈
∂gi
∂λiα
| ∂gj
∂λjβ

〉
(3.47)

S
(α0)
ij =

〈
∂gi
∂λiα
|gj
〉

(3.48)

H
(α0)
ij =

〈
∂gi
∂λiα

∣∣∣Ĥ∣∣∣ gj〉 (3.49)

If α = 0, then

∂gi
∂λi0

= gi (3.50)
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that is equivalent to setting λi0 = ηi.

Throughout this research work, the single-set formalism was employed to treat

the various non-adiabatic cases where multiple electronic states were involved.

The electronic states in the single-set formalism are incorporated as an additional

DOF outlined by a finite basis labelling the states with only a single set of basis

functions being employed

Ψ(x, t) =
ns∑
s=1

nj∑
j=1

Aj,s(t)gj(x, t)|s〉 (3.51)

The multi-set method also exists where in contrast to the single-set in which the

GWPs have the same position in all the states, each PES has a set of GWPs

where independent movement on other states is allowed. Since in direct dynamics

fewer functions overall are required compared to standard vMCG and thus fewer

evaluations of the PESs, the single-set method is more appropriate.

3.3.4 Direct Dynamics

Direct dynamics is the branch of molecular dynamics simulations that solves the

time-dependent Schrödinger equation by allowing the calculation of potential en-

ergy surfaces on-the-fly .18,19,106,112 The (DD-vMCG) method was developed to go

beyond methods which are limited by the choice of coordinates and the need to

know beforehand the shape of the PESs. Thus, an important advantage is the

straightforward extension to larger systems that undergo long-range dynamics,

and now the only limitation is the need to calculate potential energies with a

quantum chemistry method of choice.

Direct dynamics simulations of photo-excited molecules are becoming the method

of choice and a number of methods and codes have been developed for this, as de-

scribed in detail in a review by Crespo-Otero et al.113 These include surface hop-

ping,22,23,25–27,114 ab initio multiple spawning (AIMS)1–3 and multi-configurational

Ehrenfest (MCE).22,23,25–27,114 DD-vMCG has the potential advantage over all of
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these methods that it converges faster and includes all terms and couplings in the

Hamiltonian.

DD-vMCG builds up the potential energy surfaces by creating a database of

energies, gradients, Hessians and other information which are calculated on-the-

fly through an interface to an external quantum chemistry software package. The

idea of reading all the required information from a database instead of performing

expensive electronic structure calculations for each point reached by the GWPs was

applied previously in classical trajectory115,116 and quantum trajectory methods.117

A major advantage of DD-vMCG is the freedom of choice of coordinates to

avoid complicated expressions for the kinetic energy operator, while in grid-based

methods coordinates must be chosen carefully when potential energy surfaces are

fitted. Therefore, different studies have been performed employing the DD-vMCG

method in normal modes,118–121 Jacobi coordinates122 and atomic Cartesian coor-

dinates.108

Potential Energy Surface Database

When a DD-vMCG calculation is conducted, the nuclear wavepacket is built by

using a linear combination of multi-dimensional GWPs, each placed at the centre

of a specific point in the configuration space. Thus, rather than calling at each

time step the external electronic structure program, all the information needed is

read from the database.

At the beginning of the calculation a parameter (dbmin) which is called the

database minimum distance is defined.122 A detailed explanation of the use of the

dbmin parameter is given below. The choice of the value of database minimum

depends on the system. For each new molecular geometry, the Euclidean norm of

the difference is calculated between the vector of all these new points and all the

points of the geometries existing in the database. Then, if the lowest value of the

aforementioned norm is greater than the database minimum the external program
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is called to compute the energy, gradients and Hessian and everything is saved in

the appropriate database. This stored information is then applied to expand the

potential energy surface to second order of a Taylor series (LHA)

V (x) = V (x0) + V ′ (x0) · (x0) (x− x0) +
1

2
(x− x0) · V ′′ (x0) (x0) · (x− x0)

(3.52)

where the gradient V ′ (x0) and the Hessian V ′′ (x0) are estimated at x0 and are

relative to any alteration in nuclear geometry.

In the case where the lowest norm is less than the database minimum then the

energy, gradient and Hessian needed for LHA are obtained by a Shepard weighted

interpolation117 of existing database points which has the following formula

V (q) =
∑
i

ωi (q)Ti (q) (3.53)

where Ti is the Taylor series expansion of the energy centred at the i th database

entry and wi is a weight function that weights the contribution of this Taylor

expansion

ωi (q) =
νi (q)∑
j νj (q)

(3.54)

and

νi (q) =
1

|q − qi|
2p (3.55)

with 2p > 3N − 3 (3.56)

where N denotes the number of atoms and i the location inside the database. If

the exponent p is sufficiently large then, in the limit, Nd→∞ , Eq. 4.1 converges to

the exact potential.

To be able to use once again the LHA, the expansion is truncated at second or-

der while the energy, gradients and Hessian are saved for each entry. Nevertheless,

the Taylor series in Eq. 3.53 must be truncated to first order to be used for the
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gradients, and to zeroth order for the Hessians. In line with Eq. 3.52, for every

xi point the second-order Taylor series for the PES is formed and the energy is

calculated at the new geometry.

Hessian Matrix Updating

As described above, the potential energy, gradient vector and Hessian matrix must

be included in the database in order that local harmonic approximation can be

employed to calculate matrix elements and extrapolated energies, gradients and

Hessians. However, computing a Hessian at every database point is computation-

ally very demanding, even if computationally cheap methods such as restricted

Hartree-Fock are available.

In the interest of reducing the effort in executing a DD-vMCG calculation, an

approximation method to calculate Hessians is applied which only needs a reference

Hessian and gradient information. A version of the Powell update algorithm117

was introduced to the Quantics program to avoid problems in the case where the

Hessian becomes singular. The equation that gives the Hessian update has the

following form

HSNew = HSOld +
1

δ.δ
(ε⊗ δ + δ ⊗ ε)− ε.δ

(δ.δ)2
HSOld.δ ⊗ δ.HSOld (3.57)

where HSNew is the updated Hessian, HSOld is the reference Hessian, ε is the

vector of gradient difference and δ is the vector of the position difference between

the two examined geometries. The symbol ⊗ denotes the direct sum.

At the beginning of any calculation generally the database is empty, thus the

evaluation of the Hessian matrix for the first GWP at the first point to obtain the

reference Hessian for the later calculations is necessary. If the calculation starts

with a non-empty database the primary entry will play the role of the reference.

So as the propagation progresses, the only change with the former approximation

is that each time a new database point is required, just the calculation of the
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energy and gradient at this point is performed. The distance among the reference

and the new point, and also the distances among the reference point and all points

included in the database are calculated. The database entries are then divided into

two groups; an external part of points that are further away from the reference

point and an internal part that are closer.

A Powell update for the Hessian (HSi) is calculated at any new point by

employing the gradient at this new point, and the gradient and Hessian at any

point in the internal part. The former calculation is performed for all the points

in the internal part. Thus, knowing the distance among the new point and all

the internal points (di), the Hessian at any new point can be obtained from the

following weighted sum

HSnew =

∑
i∈Internal d

−4
i HS

(i)
Old∑

i∈Internal d
−4
i

(3.58)

Moreover, since a new Hessian is included in the database which is close to

the reference point, it is important that the Hessians of all the external points

are updated by using a similar Powell update which in this case includes also the

Hessian at the new point. This procedure is vital to ensure that at each step, the

Hessian of every point is generated via extrapolation of all the points nearer to

the reference point than itself.

The Hessian approximation offers a significant improvement in reducing the

time needed for a DD-vMCG calculation, depending also on the examined system

and is very important especially for high level quantum chemistry methods where

the computational cost of computing Hessians significantly increases. However,

the accuracy of this method needs to be further tested.

Convergence with number of GWPs

In order to explore the relation between the number of Gaussian functions and the

convergence an example computed using Direct Dynamics in a recent review109
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will be followed. The system involves a proton transfer and the property calcu-

lated is the flux over the barrier. As depicted in Fig. 3.1, as the number of the

GWPs increases the flux expectation value converges. It should be noted that for

the first 15 fs the number of the GWPs does not affect the convergence. How-

ever, the 8 GWPs graph is quite inaccurate compared to the rest after 15 fs. As

displayed, with 16 GWPs only quantitative differences exist and minima and max-

ima occurred at the same time during the propagation in comparison with greater

number of GWPs. It is also important to note that the number of GWPs needed

for convergence is also affected by the molecule under investigation.

Fig. 3.1: The flux of the wavepacket over the proton transfer of the salicylaldimine
molecule as the number of GWPs increases. Reprinted with permission from ref. 82.

As the number of GWPs becomes bigger, the fact that there is no orthogonality

condition attached to the GWP basis can result in linear dependency problems

within the basis. The solution to this problem is to remove the offending function

from the basis set while the propagation progresses. This explains the undesirable

fluctuations in the case of 64 GWPs after 60 fs.

In general, for the wavepacket dynamics methods like vMCG to accurately

describe the dynamics of a molecule on a long time scale, a great number of

GWPs is required. The explanation is that as time passes, the wavepacket can

move quite far from its localised starting point thus a bigger number of basis
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functions is required for the representation of the dynamics. At the same time,

a drawback is that as the number of the GWPs is increasing the computational

demand is higher as well. For instance, the direct dynamics calculation presented

for the salicylaldimine molecule using 8 GWPs requires 221 seconds while with 32

GWPs the time was 7929 seconds.

Convergence with dbmin

Another important factor which can affect the convergence during a direct dynam-

ics calculation is how often a computation of a new electronic structure will be

executed. As mentioned before, this parameter is known as dbmin and its value

can be altered in the input file in the Quantics package. As the GWPs move, the

centre of a GWP will reach a new point, which represents a molecular geometry,

where the potential needs to be calculated. If this point has not been examined

before from any other GWP, to obtain the potential either a weighted expansion

of prior calculated energies should be performed by using gradients and Hessians

or a new energy value should be determined by conducting an electronic structure

calculation.

So as to decide which strategy to follow the difference between all the geometries

in the database and the new geometry is evaluated by calculating the Euclidean

norm of the difference vector among all the coordinates. On condition that the

minimum value of the former norm, i.e. the closest point in the database, is greater

than the dbmin parameter, a new point should be calculated, but if it is smaller

then the potential expansion is carried out.

To further understand how dbmin is connected with convergence, the example

of the salicylaldimine molecule is considered again with varying dbmin values, from

0.075 Bohr to 0.75 Bohr, as depicted in Fig. 3.2. During the first 10 fs all the

plots seem to be in agreement. As the time progresses, it is clear that the plots

for higher values of dbmin and especially the one for 0.75 Bohr converge slower
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Fig. 3.2: The flux of the wavepacket over the proton transfer of the salicylaldimine
molecule as the dbmin parameter increases. Reprinted with permission from ref. 82.

to the one with the lowest value, which will be considered as a reference for this

comparison since it is constructed by employing ab initio points that are very

narrowly spaced.

The reason behind all these inaccurate results in the propagation by using

higher dbmin values is mostly connected with the number of points in the database.

If the dbmin value is quite large, as explained above, in most cases when a GWP

reaches a new point the energy will be calculated by weighted expansion and the

previously calculated energies that are important for this approximation will be

quite far from the point under investigation, which involves a higher error and

eventually leads to a high inaccuracy since the harmonic assumption connected

to the extrapolation becomes less valid. Thus, different dbmin values will give

different dynamics in most cases.

Moreover, comparing the 0.1 Bohr dbmin value with the reference the results

from the propagation are quite accurate and in agreement for almost the whole

propagation. Some slight differences can be noticed after 90 fs but apart from the

accuracy in convergence the computational cost should be considered as calculation

of new points in the database is very expensive. For this example, 1262 points were

calculated when dbmin = 0.075 Bohr and only 122 for dbmin = 0.1 Bohr.
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Finally, this parameter is connected with the investigated molecule and the

best practice is always to run different run tests before deciding the dbmin value.

It is important to sensibly decide this value as we want to achieve the best possible

convergence using the least computational effort.

Convergence of the Database

In order to study how the database converges, a first run will start with an empty

database and then a subsequent propagation with the same initial conditions but

with the database from the preceding propagation should be carried out. Consid-

ering only one GWP in a direct dynamics propagation that reaches multiple times

the same point in the configuration space, each time a propagation is performed,

the database is different as it is built and diabatised on-the-fly and therefore the

extrapolated potential will not be the same. Hence, to get the best rendering of

the dynamics, multiple propagations should be executed until no new points are

added to the database. The former process of re-running a calculation aiming to

add more points in the database is a key feature of direct dynamics. As a next

step the final propagation will use this database to read all required information,

energy, gradients and Hessian at each step which requires less computational effort.

Additionally, to ensure that there is no need of a re-run and convergence has

been achieved, another important factor should be checked. No further calculations

are needed only when there is no additional change to our selected expectation

value and no new points added at the database. As depicted in Fig. 3.3, the

salicylaldimine molecule is used again to test the database convergence. For this

example a 32 GWPs basis and a 0.1 bohr dbmin have been used. All the different

parameters in our input files play a crucial role, hence if a different number of

GWPs was used that number of runs needed for the database to converge would

have probably been completely different.

As taking into account the computational cost of on-the-fly quantum chem-
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Fig. 3.3: Total number of points in the database for the salicylaldimine molecule in terms
of the number of the propagations carried out, using as a starting point the database
from the previous run. Reprinted with permission from ref. 82.

istry calculations is crucial, for quite large systems is impossible for the database

to converge. Every time a re-run propagation is carried out, the database gets

larger and the time needed for reading and sorting increases. Besides, different

tests performed, including those on the salicylaldimine molecule, showed that the

integrator’s steps were shorter when changes in the PESs occurred and therefore

the propagation time was longer.

Relaxation

Imaginary time relaxation is a method that can be used within the DD-vMCG

framework, to locate, on a particular potential energy surface, a minimum en-

ergy nuclear eigenfunction.123 This relaxation method is based on expressing the

wavepacket as a set of eigenfunctions

Ψ(x, t) =
∑
i

ciψi(x)e−i
Eit

~ (3.59)

where ci represents the coefficient, Ei the energy and they are both associated with

ψi which represents the eigenfunctions of the time-independent Hamiltonian. Sub-

sequently, if real time is replaced by imaginary time and the energies are rescaled
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allowing the minimum value to be zero

t→ τ = it (3.60)

eigenstates and eigenenergies of ground and/or low lying excited states can be

obtained

Ψ =
∑
i

ciψie
−E

~ τ (3.61)

The higher energy components will decay faster exponentially as the prop-

agation proceeds until only the wavepacket with the lowest energy eigenfuction

remains. Relaxation requires much less computational effort compared to that

needed for real time dynamics as just a small percentage of the configuration

space is required to be sampled.

In relaxation, the PES is created similarly with the real time propagation where

on-the-fly electronic structure calculations are performed. The database and the

integrator’s steps are also smaller compared to propagation which also explains

the time difference between these two calculations. The output file created from

the relaxation is going to be used as the initial wavefunction for the real time

propagation.

3.3.5 The Quantics Package

The QUANTICS package21 was used for the nuclear dynamics throughout this

project. It solves the time-dependent Schrödinger equation for the nuclear motion

by propagating wavepackets. Various algorithms can be employed, depending

on the system of interest and the accuracy required. The focus of the package

is the MCTDH and vMCG algorithms. Numerically exact propagation, as well

as numerically exact diagonalisation of a one-dimensional Hamiltonian to get the

eigenvalues and eigenvectors is feasible for small systems, and also solving the time-

independent Schrödinger equation through Lanczos diagonalisation. The package

also has the capability of generating a ground state or a nuclear excited state
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wavefunction by employing energy relaxation, which is propagation in imaginary

time. The code is Fortran 90 based with full dynamical allocation of memory.

Parallelisation using OpenMP and MPI is made in many parts of the code to speed

up calculations.21 The code along with all the developments and improvements

carried out during this research study is available on request in a private repository

on GitLab.
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Chapter 4

Developing the Direct Dynamics
Variational Multi-Configurational
Gaussian Method

The work of this Chapter has been published as G. Christopoulou, A. Freibert and

G. A. Worth, J. Chem. Phys., 2021, (In Press)

4.1 Introduction

This chapter includes detailed results concerning the development of the direct dy-

namics variational multi-configurational Gaussian method. The main idea was to

improve the existing code to have the best possible performance so that the treat-

ment of complex molecules is feasible. Initially, different methods for interpolation

were investigated and the most successful for direct dynamics is presented.

Computational methods typically have two of the three attributes described

on the vertices of the triangle shown in Fig. 4.1, efficiency, accuracy or generality.

Two are often achieved at the expense of the third attribute that they do not

possess. Generality represents how well the method can adapt to a broad range of

molecules. DD-vMCG calculations have the attributes of accuracy and generality,

but they can be computationally expensive. The amount of time required to

propagate quite complex chemical systems can last from several weeks for very

experienced users, to even months for novice users.
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Efficiency

Accuracy Generality

Fig. 4.1: Attributes of computational methods.

Aiming to increase the speed of the DD-vMCG method, a parallel algorithm fo-

cusing on improving both the efficiency and the accuracy of the currently employed

code has been developed. A new approach for dealing with the computationally

heavy process of continuously reading, sorting and analysing the DB is thoroughly

discussed along with the efficient parallelisation of this part of the code. Finally, all

the aforementioned methodological updates to the DD-vMCG implementation are

described followed by an application of both the original and the updated version

of the program to butatriene, allene and formamide molecules.

4.2 Modified Shepard Interpolation

As discussed in Chapter 3, in cases where there is no need for a new point to

be calculated, a modified Shepard interpolation117 can be employed to obtain the

energies, gradients and Hessian matrix. The first step is to calculate the Euclidean

norm of the difference vector of all atomic coordinates between the new point and

each point inside the DB. The potential energy is then calculated by employing a

weighted average of the Taylor series over the Nd data points.
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V (x) =
∑
i

wi(x)Ti(x) (4.1)

where Ti is the Taylor expansion and wi the function that weights the contribution

of the Taylor expansion terms and has the following form

wi(x) =
vi(x)∑Nd

j=1 vj (x)
(4.2)

In its simplest form, data points that are not close to x are assigned smaller

weights compared to the ones that are very close by employing the primitive weight

function vi

vi(x) =
1

|x− xi|2p
(4.3)

with 2p > 3N − 3 (4.4)

where N is the number of atoms and i the index of the point. If the exponent p is

sufficiently large, then Eq. 4.1 in the limit, Nd→∞ , converges to the exact potential.

To make this procedure more efficient, a maximum weight can be used as a

criterion to exclude from the PES calculation the data points a large distance away

from the new geometry. Together with this selection procedure, the aforementioned

method allows a remarkably accurate calculation of PES for small chemical systems

(N < 4).124

In a series of papers, Collins et al. investigated different forms of the weight

function115–117,125,126 for larger chemical systems (N > 4). It was concluded,124

that a better performance is obtained using the following expression for the weight

function

vi (x) =

{[
‖x− xi‖
radi

]2q

+

[
‖x− xi‖
radi

]2p
}−1

(4.5)
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with 2q > 2 and 2p > 3N − 3 (4.6)

where p and q are positive integers and p >> q ensures that the first term of

this equation is sum-dominant when ‖x− xi‖ < radi whereas the second term is

sum-dominant when ‖x− xi‖ > radi. The radi distance is a type of ”confidence

radius” supplied by a close point in the DB, j

radi = ‖xj − xi‖ (4.7)

and the selection of the point j depends on the number of nearest points to be

included and the molecule under investigation.

4.3 Local Dynamic Database

4.3.1 Conceptual Development

This section describes the methodology behind the improvement of the database

scheme. Currently, the Quantics code is reading, sorting and analysing the whole

database during each propagation step. This approach results in a great increase of

the total calculation time for direct dynamics which is a limitation for successfully

treating more complex chemical systems. While the main focus is to reduce the

time needed for direct dynamics calculations, it is vital to build an algorithm that

maintains a good balance between efficiency, accuracy and generality. Hence, the

following requirements must be taken into consideration:

i. The algorithm should address the time delays caused by reading, sorting and

analysing the database.

ii. The algorithm should have a high degree of accuracy when executing simula-

tions.

iii. The algorithm should have a high computational efficiency with as little as

possible redundant code.
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iv. The algorithm should have the ability to run efficiently on both sequential and

parallel operation

v. The algorithm should be robust with effective error controlling.

This database challenge is addressed by initially understanding the actual dis-

tribution of the data points during each propagation. Fig. 4.2 illustrates the con-

cept employed by DD-vMCG during an excited-state dynamics where the green

dots represent the centre of the GWP, the red ones the database points and the

black lines the fit to these database points. The grey circle around the GWP of

the ground state shows that at each time only a small number of closest points is

required instead of the whole database, which constitutes the key concept of the

development work presented here.

Fig. 4.2: Schematic representation of DD-vMCG method for excited-state dynamics
where the green dots represent the centre of the GWP, the red dots the database energies
and the black lines the fit to those points.

The next step was to determine a local database (DB) containing the ndb closest

points in the database for each GWP by calculating the distances between the new
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point and all the reference points in the database. It is important that the local

databases are updated quite often so there are enough points each time sufficiently

close to the centre of the GWP, allowing an efficient interpolation that does not

lead to integration errors or instabilities. At the same time, updating the local

DBs too often is not efficient, as it will slow down the calculation.

Aiming to find the best timescale for updating the database, the integra-

tion scheme was considered. The DD-vMCG method employs various integration

schemes where the integration time is divided in two different time scales based

on the constant mean-field integrator (CMF) that was developed for MCTDH.98

Larger time steps, tlarge, are used to describe quantities such as density, overlap and

Hamiltonian matrices that generally tend to change slower than functions which

are integrated individually using smaller, tsmall, time steps. Hence the databases

are refreshed every tlarge where typically the movement of the GWP centre is sig-

nificant.

A basic layout of the developed DD-vMCG algorithm is illustrated in Fig. 4.3.

Begin and end time of the propagation is included for illustration purposes only

as the flow chart mainly shows the part of the code where the local database is

evolving. Also, for simplicity the flow chart shows the procedure for one point

and hence one GWP during one propagation cycle. In a full direct dynamics

propagation this process will of course be repeated at each integration step for

each GWP.

Following the flow chart, after initialisation of the starting conditions, where

parameters such as ndb and dbmin are defined, each GWP is going to reach a point

in the configuration space, the reference point. The three different routes denote

the three different options regarding the database existing in Quantics package

and are itemized below:

i. read: the code only reads the database, calculates the PES from the database
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and does not perform further QC calculations (route 1).

ii. read and write: the code reads the database and also performs QC calcula-

tions (route 2).

iii. write: the code performs QC calculations at each step and results are stored

in the database (route 3).

When the read option is selected (route 1), then the local database is refreshed

if the propagation time is equal to tlarge. Subsequently, the local DB is read, sorted

and analysed for the interpolation. In the case of the read and write option

(route 2) there is an additional initial step to the process described for route 1.

The code is searching for a point inside the DB that is at a distance less than dbmin

compared to the reference point. If either the DB is empty or the datapoints are

too far away then a quantum chemistry program will be called to compute the

energy, gradients and Hessian matrix at the new point and then everything will

be stored in the full QC and local DB. In the case of option write (route 3),

most of the steps illustrated in the flow chart are skipped since only the quantum

chemistry calculation is performed and then all information is stored in the local

and full QC DB. The user can select which route the propagation will follow at

the direct dynamics input file.

The role of the DB is quite crucial since the program could read, sort and

analyse the DB three times for one point in the read and write option.
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Fig. 4.3: Flow chart showing the layout of the DB scheme.
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4.3.2 Code Implementation

The Quantics code is for the most part written in Fortran95, while a Fortran77

style is used for some of the older subroutines. The source code is divided into

separate modules which combine interconnected subroutines and functions, such

as one for data input and another for data output subroutines. Table 4.1 lists the

main subroutines and their purpose.

Table 4.1: Main subroutines in the Quantics program involved in using the DB.

Subroutine Description

prop Controls the propagation of the wavefunction
funkr Calculates the time derivatives of the wavefunction

gh elements
Calculates Gaussian matrix elements of overlap and Hamilto-
nian

poteval Calculates the value of the potential
DBread Reads, sorts and analyses the DB
getddpes Calculates potential energy surface(s) for direct dynamics

The first approach to implement the local DB idea presented in the previous

section was to develop a small copy of the full QC database for each GWP that

contains the energies, gradients and Hessians of the corresponding ndb closest

points inside the full QC database. Every tlarge, a small dynamic copy of the full

QC database was created. Even though this approach was efficient and accurate,

some bottlenecks arose. Between two updates of the local DB there is high chance

that the centre of a GWP will reach a point in the configuration space where a new

point needs to be computed and added both to the local and the full QC database.

As a result, redundant code is created since big memory arrays are created to save

the same data twice, when the local DB is refreshed and also when new points

are added. Additionally, the size of the local DB arrays should be predefined,

consequently the memory allocation always has to be bigger than needed to avoid

the risk of not saving a new point.

Reflecting on the disadvantages of the aforementioned approach leads to a new
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scheme which employs a single-linked list array whose size matches the number of

GWPs and consists of a series of individual node elements pointing to the location

of each of the nth
db closest points in the DB. In other words, instead of copying

all the information, the location of the closest points inside the full QC database

is tracked and copied using pointers that do not need to have predefined size

as shown in Listing 4.1 where nGWP denotes the total number of the Gaussian

wavepackets. A linked list is a linear data structure with its elements linked using

pointers and are not stored at a contiguous location. Computationally, with this

approach the upper limit on the number of elements is not fixed and does not

need to be predefined which offers greater flexibility. Also, it is cheaper to use

linked lists instead of arrays when possible as inserting a new element in an array

of elements requires a space that is created for this new element by shifting the

existing ones.

1 type ptr

2 integer :: locDB

3 type (ptr), pointer :: next

4 endtype ptr

5

6 type list

7 type (ptr), pointer :: locpt

8 endtype list

9

10 type (list), dimension(nGWP), allocatable , save :: ngp_loc

Listing 4.1: Definition of the ”ptr” and ”list” data types.

Apart from the linked-list arrays, some additional parameters shown in Listing

4.2 have been employed. These local DB parameters are the total number of closest

locations inside each local DB, dbnrec gp, a logical variable lgpupdate which holds

the value false but will become true every tlarge so the code knows when to update

each local DB and the GWP number, num gp, to inform the code which DB to

access. All these parameters are global variables which are stored in a separate

module that only contains variable definitions and initialisations.

In terms of the Quantics code, the advantage of the local DB approach is
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twofold. During the integration steps the computational effort is remarkably less

and thus the DD-vMCG method can be used for more complex processes, and also

a higher number of GWPs to describe the wavefunction can be used. Further, the

local DBs are all independent so the code can be efficiently parallelised.

1 integer , dimension(nGWP), save :: dbnrec_gp

2 logical , dimension(nGWP), save :: lgpupdate = .false.

3 integer , save :: num_gp

Listing 4.2: Definition of the parameters employed for the local DB version of DD-vMCG.

Distance Criterion

Following the concept of the modified Shepard interpolation presented in section

4.2, in the DD-vMCG implementation two different parameters are employed for

this step which are both user defined. The first one, ndb, as has been mentioned

above is the number of closest points inside the full QC database which are going

to be included in the local DB for each GWP. Further, the confidence radius is

defined as the nconf closest point inside the local DB. The nconf number has to be

less than or equal to ndb and both are numbers based on the distribution of the

data points in the DB. At the moment, both local DB parameters depend on the

molecule under investigation and require some initial test calculations so that the

best combination can be chosen.

The local DB development accompanied with the implementation of the mod-

ified Shepard interpolation scheme yielded a more efficient way with respect to

the computational time but not an energetically conserved system. After carefully

testing various parts of the original Quantics code with different molecules an error

in the distance criterion was discovered.

Since the quantum chemistry calculation is one of the most expensive tasks

during a DD-vMCG calculation, whenever the centre of the GWP reaches a new

point in the configuration space that is far away from all the other known points

in the DB, it must be checked that no other GWPs are close to this point at
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the same propagation time. This is very important to avoid calculation of the

potential multiple times which would significantly decrease the efficiency of the

execution. Previously, to overcome this obstacle the distance between the GWPs

was calculated by employing the following code (Listing 4.3).

1 integer :: e,e1

2 ! lrddb = if true do not calculate the point for this GWP.

3 logical , dimension(nGWP) :: lrddb

4 ! ndofddpes = number of degrees of freedom for direct dynamics PES

5 ! xgp = geometry of the GWPs

6 real, dimension(ndofddpes ,nGWP) :: xgp

7 ! gwpdist = distance between the GWPs

8 real, dimension(nGWP ,nGWP) :: gwpdist

9 ! dbmin = if a geometry is greater than dbmin from any point in

the DB a new point is created

10 rea :: dbmin

11 ! distgwp = gets the distances between a set of GWPs

12 call distgwp(xgp ,gwpdist ,nGWP)

13 do e=2,nGWP

14 do e1=1,e-1

15 if (gwpdist(e1 ,e) .lt. dbmin) lrddb(e) = .true.

16 enddo

17 enddo

Listing 4.3: Code to calculate the distance between the GWPs centres.

This approach was really efficient but as thorough testing of code showed, it

was not accurate and led to significant instabilities. As depicted in Fig. 4.4, where

for illustration purposes a problem with four GWPs is employed, if the distance

for the first two GWPs was less than dbmin then for the second GWP the program

would not compute any new point. It would then check the distance between the

second and the third and again if the distance is less compared to dbmin, the

program would not compute any new point for the third GWP. This way a chain

of GWPs can be created where one GWP is close to another but not close to the

point which will be computed or close to any existing point in the DB.

Similarly to most computational accuracy errors occurring during the develop-

ment of a program, it was much harder to locate and understand the source of the

error than writing a piece of code to correct the error. Thus, an if statement was

added to check that when a GWP is close to another, the logical variable for the
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Fig. 4.4: Distance criterion for calculating a new point.

one has to be true and false for the other one to avoid the chain problem described

above (Listing 4.4).

1 integer :: e,e1

2 ! lrddb = if true do not calculate the point for this GWP

3 logical , dimension(nGWP) :: lrddb

4 ! ndofddpes = number of degrees of freedom for direct dynamics PES

5 ! xgp = geometry of the GWPs

6 real, dimension(ndofddpes ,nGWP) :: xgp

7 ! gwpdist = distance between the GWPs

8 real, dimension(nGWP ,nGWP) :: gwpdist

9 real, dimension(nGWP ,nGWP) :: gwpdist

10 ! dbmin = if a geometry is greater than dbmin from any point in

the DB a new point is created

11 ! distgwp = gets the distances between a set of GWPs

12 call distgwp(xgp ,gwpdist ,nGWP)

13 do e=2,nGWP

14 do e1=1,e-1

15 if (lrddb(e1)) cycle GWP

16 if (gwpdist(e1 ,e) .lt. dbmin) lrddb(e) = .true.

17 enddo

18 enddo

Listing 4.4: New code to calculate the distance between the GWPs centres.

This important correction lead to better energy conservation and a faster and

more stable integration. Together with the local DB approach it resulted in a

competitive, efficient, and accurate DD-vMCG method for serial operation. Thus,

the next step was to focus on the parallel operation of the code dealing with the

DB to further speed-up the code.
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4.4 Parallelisation

4.4.1 Parallel Environments in High Performance Com-
puting

In various applications and especially large programs such as the Quantics package,

limiting the execution to a single processor increases the total time of the compu-

tation. Further, employing a single processor is a waste of resources as nowadays

all computer systems contain many cores. To build a powerful and efficient code,

either a shared memory system like Open Multi-Processing (OpenMP) or a dis-

tributed memory system like Message Passing Interface (MPI) has to be employed

to benefit from a simultaneous use of multiple processors.127

OpenMP is a multi-threading system where the shared memory architecture is

employed, allowing sections of a code to be run simultaneously on different parallel

threads. As depicted in Fig. 4.5, in lieu of sequential sections, parallel sections

are introduced which are split by forks, then the jobs in each section are executed

and finally recombined at joins128.

Fig. 4.5: Illustration of a) a sequential program in comparison with b) a program using
the fork/join parallel function of OpenMP.

There is no need for communication among the threads, meaning that the

execution of each thread is independent of the rest. Certainly, if a number of jobs

are depending on each other then this part has to be sequential or parallelised in
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an outer layer. Hence, most of the large programs, especially the ones that were

originally written for serial operation, have both sequential and parallel regions.

As illustrated in Fig. 4.6, in the shared memory architecture employed by

OpenMP the processors assigned for an execution are all attached to the same

physical memory chip. This is a key feature of OpenMP as the cache for multiple

processors can have a copy of data from the same memory address and hence

various processing threads can use these data without needing message passing.

The former feature together with the independent nature of the parallel threads

in OpenMP leads to a parallel environment with little overhead.128,129

Fig. 4.6: Schematic of a single shared memory multiple processor node where Ci denotes
the corresponding cache and Pi a processor.

However, if a program needs to perform a large number of parallel calcula-

tions, OpenMP is not suitable since the number of parallel operations cannot be

larger than the number of logical processors sharing the memory chip. In these

cases, a distributed memory system such as MPI is a far better approach. MPI

employs a system where the communication between separate processes in a code

is achieved by explicit messages. This requires the existence of a master process

that distributes data to the slave processes. The latter then perform calculations,

regularly interacting, and yield an outcome.

As depicted in Fig. 4.7, when MPI is employed, the restrictions coming from

the single physical memory block are eliminated which is very beneficial for the

code. Hence, the communication between the local cache memory of a single
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Fig. 4.7: Schematic of a cluster computer with multiple nodes, where Cii denotes the
cache assigned to the Pii processor.

processor and a memory address having a location in a physical memory block

on a separate node is feasible through the interconnect which exists between the

nodes. For instance, the outcome of a calculation from the P22 processor can be

passed to the P14 processor in the form of a message through the interconnect.

4.4.2 Running Quantics on Parallel Architectures

Quantics is a program that was originally written for serial operations and for

relatively small chemical systems. The natural extension to larger systems created

the need for parallel execution to respond to the more demanding calculations. In

parallel computing, granularity or grain size of a process measures the amount of

computational work performed by that process. Three categories exist regarding

granularity. In fine-grained parallelism, a code is split into a high number of smaller

processes which are allocated individually to many processors. The amount of work

assigned to a parallel process is low and the computation is evenly spread between

the processors. In coarse-grained parallelism, the code is broken down to large

processes. Hence, a large amount of work occurs in the processors. This may lead

to load imbalance and also most of the computational work operates sequentially.

This approach benefits from synchronization overhead and low communication.
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The definition of the last category, medium-grained parallelism, can be found in

between fine-grained and coarse-grained parallelism where the communication time

and task size are lower compared to coarse-grained parallelism and greater than

fine-grained parallelism.130,131

The structure of the Quantics code does not allow the application of fine-

grain parallelisation. As an example, for some integration schemes employed by

Quantics, as for instance the Runge-Kutta, parallelisation is not possible in any

accurate and sensible way since every calculation depends on the previous one and

hence independent processes or threads cannot be constructed. Moreover, another

impediment to parallelisation is due to the matrix operations where basic linear

algebra subprograms (matrix-vector) operations are used. These operations even

with the parallel basic linear algebra subprograms do not show a lot of improvement

except for significantly large matrices. Therefore, coarse-grain parallelisation is

applied to the Quantics code.

The Quantics code can be compiled to run on multiple processors using either

the OpenMP or MPI protocols. It is important to note that parallelisation in the

code is made over terms in the Hamiltonian, thus it is only efficient if the Hamil-

tonian has a long expansion.132 During all the parallel developments conducted in

this research project, the OpenMP approach was employed to parallelise various

sections of the code dealing with the DB. For that parallelisation to be efficient,

load balancing is critical. Thus, the efficient task distribution is based on the

number of the Gaussian wavepackets. The local DB concept was to use as few

variables as possible that do not rely on each other so that OpenMP can be suc-

cessfully applied. The local DB approach is designed to speed up both the serial

and the parallel calculations and a demonstration of its efficiency and capabilities

is presented in the following section.
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4.5 Test Cases

In this section, benchmark calculations on three model systems, butatriene, allene

and formamide are presented. The aim is to test the accuracy, efficiency and gen-

erality of the newly developed DD-vMCG version. At the beginning, a comparison

between the original DD-vMCG implementation and the developed version is con-

ducted by exploring the PESs, the state population and energy conservation. The

efficiency of the developed code is further examined by testing the total elapsed

time for the propagation when using the full quantum chemistry (QC) database

and the local DB versions to perform the same direct dynamics calculations in

sequential operation. The parallel performance for the local DB version is also

examined.

4.5.1 Butatriene Cation

Introduction

Butatriene (C4H+
4 ) is a linear planar molecule belonging to the D2h point group

at the neutral ground state equilibrium geometry as depicted in Fig. 4.8. It

has 18 normal vibrational modes that are classified by the following irreducible

representations

Γ = 4Ag + Au + 3B2g + 2B3g + 3B1u + 2B2u + 3B3u (4.8)

The electronic ground state of the singly charged butatriene cation is denoted

as X2B2g and has a B2g symmetry while the first excited state has a B2u symmetry

and is represented as A2B2u. In an early research work,133 due to different choice

of the main axis these two states were labeled as B3g and B3u. In this study,

the contemporary standard notation is employed. Considering that the energy

separation between these two (X2B2g and A2B2u) lowest energy states and the

next ionic state (B2B3u) is significant, the investigation and testing on butatriene

can be reduced to a two-state problem.134
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Moreover, the dominant electronic configurations of the ground and first ex-

cited state are b2
2ub

1
2g and b1

2ub
2
2g, respectively. The formation of the first two

electronic states is a result of the removal of an electron from the two highest-

occupied orbitals, b2g and b2u. Torsional motion around the carbon axis has Au

symmetry and leads to vibronic coupling between these two ionic states. Thus, due

to symmetry the possible candidates for the formation of a conical intersection are

the totally symmetric modes. Apart from the central C-C stretching mode that

is excited significantly, the other three totally symmetric modes are excited very

weakly.133 Butatriene was the first example of propagation diabatisation,109 and

thus it is always used as a standard test in DD-vMCG. It is an ideal test case

due to its clearly defined conical intersection between the ground and first excited

states.106,112

Fig. 4.8: The equilibrium ground state structure of butatriene.

Results and Discussion

Prior to the direct dynamics calculation, it is important to obtain the electronic

structure of the molecule under investigation. In this case, calculations were con-

ducted by using the GAUSSIAN 03 package.135 The normal modes were evaluated

at the neutral ground state geometry employing the state-averaged complete active

space self-consistent field (CASSCF) method with 6 electrons in 6 orbitals cover-

ing the π-system, where each state was weighted equally. For all the calculations

presented for the butatriene cation the 3-21G* basis set was selected for speed.

The potential energies, gradients and Hessian matrices of the cation were obtained
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applying the former level of theory by only including 5 electrons in 6 orbitals. The

direct dynamics calculations were then conducted on the ground and first excited

state of the cation. The wavefunction was centered initially at the Franck-Condon

point and placed on the potential energy surface of the first excited state. The

ground state normal modes of the molecules were used for the propagation with

the frequencies defining the widths of the Gaussian wavepackets. The dynamics

were then run for 100 fs with data output every 0.5 fs. For comparison purposes

the number of GWPs and the dbmin parameter, which controls how often new

electronic structure calculations are performed, were varied. The nconf and ndb

parameters are kept in most calculations equal to 4 and are stated if altered at

any point during the study of the butatriene cation.

Fig. 4.9 shows the adiabatic and diabatic potential surfaces obtained employing

both the previous DD-vMCG implementation and the developed version. For both

versions, the crucial conical intersection is located at the same geometry and the

shapes of the adiabatic surfaces are basically the same. However, the diabatic

surfaces generated using the previous DD-vMCG implementation show points of

discontinuity in the vicinity of the conical intersection. This issue is overcome

while generating the diabatic surfaces with the developed version.

To verify that the actual nuclear dynamics are also reasonable, the normalised

wavepacket population of the two diabatic states for DD-vMCG using both the

original and developed versions is shown in Fig. 4.10. Starting from the fully

populated first excited state (yellow line), for the first 10 fs both plots follow similar

behaviour where an extremely fast depopulation is occurring. Here, the wavepacket

moves to the ground states by passing the surface crossing seam. The DD-vMCG

calculation using the original code shows a less clear structure of increasing and

decreasing populations, especially during the first 40 fs, compared to the local DB

version. Moreover, Fig. 4.10(b) is in a good agreement with other studies of the
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Fig. 4.9: Two-dimensional cuts through the a) adiabatic and c) diabatic potential energy
surfaces employing the original DD-vMCG version, and the b) adiabatic and d) diabatic
potential energy surfaces employing the developed DD-vMCG version for butatriene
cation along the ν5(B1) and ν11(B2) normal modes.

Developing DD-vMCG 71



4.5 Test Cases

Fig. 4.10: Normalised diabatic state population from DD-vMCG simulations of buta-
triene cation using a) the original DD-vMCG version and b) the developed local DB
DD-vMCG version.

butatriene cation.106,134

Further, a comparison of the total energy of the system during direct dynamics

with the original and the developed local DB version is presented in Fig. 4.11.

The results are impressive with respect to the energy conservation since using the

local DB version leads to a totally energetically conserved system. This significant

change in total energy conservation is related mostly with the correction of the

distance criterion error and the implementation of the new interpolation scheme.

Fig. 4.11: Total energy for butatriene as a function of time using a) the original and b)
the improved interpolation scheme for direct dynamics.

To explore the speed-up and the performance of the new code in comparison

with the full QC database a series of calculations have been conducted. The

speedup is defined as the ratio of the serial runtime of the full QC database to the

serial runtime of the local DB to perform the same direct dynamics calculation.
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Our aim was to create DBs with an increasing number of total data points so

that the comparison offers a clear picture of the speed improvement. Initially,

a set of calculations with decreasing dbmin value was conducted where the code

performed only QC calculations at each step and results were stored in the DB.

Since the dbmin parameter, the distance criterion for adding new structures to

the QC database, controls how often a QC calculation is performed, decreasing its

value leads to databases with a higher number of data points. For each of these

databases created from the aforementioned step, serial calculations employing both

the full QC database and the local DB implementation were performed. In these

calculations, the code only reads the DB, calculates the PES from the DB and does

not perform further QC calculations. During all these serial calculations most of

the variables, such as the number of GWPs (10), the total propagation time (200

fs) and the interpolation confidence radius nconf (6) have been kept constant. The

number of points in the local databases, the ndb parameter, is affected by dbmin

as when dbmin is reduced more points are needed to cover the space required for

the interpolation. Hence, the various dbmin values together with the suitable ndb

parameter are listed in Table 4.2.

As Table 4.2 demonstrates, the total elapsed time needed for all calculations

regardless of the version employed increases when the number of points in the

DB increases. In all cases the local DB code is faster than the full QC database

code. In the case of the large database with 4907 points the local DB version

is 40 times faster than employing the full QC database which validates the idea

and the successful implementation of this local DB. Moreover, another advantage

of the local DB approach is that the time needed for the same calculation is

almost independent of the total number of points in the DB since the total wall

times for the calculations using the local DB version are fairly similar. However,

when the full QC database version is employed the total time required for the
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Table 4.2: The total elapsed time for serial DD calculations for the local DB and the
full QC database when varying the number of points in the full QC database by using
different distance criteria (dbmin values). For all calculations the nconf parameter was
equal to 6.

Distance criterion 0.25 0.20 0.15 0.10 0.05
ndb 10 10 20 20 40

Number of Data points
86 115 458 1242 4907

Full QC DB (sec) 2012 2819 6292 15222 124941
Local DB (sec) 1548 1566 1573 2003 3108
Speedup 1.3 1.8 4.0 7.6 40.2

same calculation drastically changes as the DB evolves which indicates the impact

of dealing with the full QC database on the total calculation time. Moreover,

it is important to note that using the local DBs has an additional advantage

of quicker convergence during the propagation which results in fewer integration

steps. Hence, the total amount of time needed for a full propagation is further

reduced compared to the one when the full QC database approach is employed.

At the same time, the choice of the parameter ndb is potentially crucial as,

in addition to the time and efficiency, it will also affect the dynamics and hence

the accuracy of the calculation. To further understand the impact of ndb on the

dynamics, the second example of the DD-vMCG calculation from Table 4.2 (dbmin

= 0.2, 115 points) was employed as a starting point. Serial calculations where

no new points are added in the DB but only the existing ones are read were

then performed using local databases with different values of ndb. Additionally,

a similar calculation only reading the current database was conducted employing

the full QC DB version. As Fig. 4.12 shows, changing the number of points

does not significantly change the population over time. Identical results with

those employing the full DB, Fig. 4.12(a), can be achieved with local databases

containing 10 points, as depicted in Fig. 4.12(d). As explained above, the number

of points inside the local DB affects the interpolation and thus the integration
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of the DD-vMCG calculation which explains the behaviour in Fig. 4.12(b) and

(c) where the population is somewhat different compared to the full QC database

calculation. Since for the allene cation a quite small ndb can be used as shown

in Fig. 4.12, altering the nconf parameter did not have any impact on the results.

Potentially, for molecules that require more points in the local DBs and thus a

larger ndb value, changing nconf will also affect the dynamics.

Fig. 4.12: The population of S0 (blue line) and S1 (orange line) states for the same
DD-vMCG calculation of butatriene cation employing a) the full DB with 115 points
and the local DB with b) 4 points, c) 6 points and d) 10 points .

The most accurate method of evaluating parallel performance is to run the

same problem on 1 CPU and on n CPUs, and compare the total elapsed time for

the iteration. The aim is to explore how scalable the parallel algorithm is, as a

way to assess its capacity to efficiently use increasingly more processors. Thus,

the parallel speed-up and efficiency of the new code is examined. The definition of

Amdahl’s law129 was employed for the speedup ratio which is determined as the

ratio of the total sequential time for finding the solution to a given problem to the
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Table 4.3: The total wall-clock time for a parallel implementation of DD-vMCG using
local DBs, with different number of cores1 for butatriene cation.

Number of Processors
1 5 10 15 20

4097 DB points - 10 GWPs
Total Calculation
Total Time (sec) 3108 1243 1072 1295 1351
Parallel Speedup 1.0 2.5 2.9 2.4 2.3
Database code
Total Time (sec) 2067 559 369 422 440
Parallel Speedup 1.0 3.7 5.6 4.9 4.7
Efficiency 1.0 0.7 0.6 0.3 0.2
7847 DB points - 20 GWPs
Total Calculation
Total Time (sec) 12432 4440 4010 3657 3099
Parallel Speedup 1.0 2.8 3.1 3.4 4.0
Database code
Total Time (sec) 6403 1779 1423 1164 736
Parallel Speedup 1.0 3.6 4.5 5.5 8.7
Efficiency 1.0 0.7 0.5 0.4 0.4

1 Performed on a single node with 2 x 10 core Xeon 2.3GHz CPUs

time the parallel algorithm needs on n processors for the same problem.

Test calculations were carried out using the newly developed algorithm for the

butatriene system. The computational cost for the local DB approach employing

different number of processors is summarised in Table 4.3. Since the main coding

development was focused on the DB, separate time data accompanied with the

parallel speedup and efficiency are presented for both the part of the code that

deals with the DB and for the total calculation. Comparison of the data only

for the parallel code that deals with the DB reveals that in both examples the

speedup increases with the number of processors, showing that the new local DB

approach has a great impact on the efficiency of the method. For the second

example (20 GWPs) a parallel process run on 20 processors was almost 9 times

faster, which reveals a very good parallel performance even though for this example

the advantage of a parallel calculation is quite small. The parallel speedup seems
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to follow a similar pattern for both cases and a linear scaling with the number of

cores is achieved which is in accordance with Amdahl’s law.

Parallel efficiency is defined as the ratio of speedup to the number of processors.

In this way a good estimate of the fraction of time for which a processor is usefully

utilized can be determined. A program that scales linearly has parallel efficiency

close to 1. Usually a task-parallel program is more efficient than a data-parallel

program. Parallel codes can - more rarely - achieve super linear behaviour as a

result of an efficient cache usage per worker. The overall efficiency of the parallel

program decreases as the number of processors increases for the same problem.

This is the case for all parallel programs. Moving to more complex calculations

the efficiency will increase, as shown in Table 4.3 where the second test with more

GWPs and more data points has a better performance.

Moving to the comparison of the total calculation, Table 4.3 shows that the

speedup for the two parallel calculations of the butatriene cation follows Amdahl’s

law, achieving a speedup of 3 (10 GWPs) and 4 (20 GWPs) in the case where

the number of nodes matches the number of GWPs. Further, for the first sets

of calculations with 10 GWPs the speedup for both the total calculation and the

DB code decreases when the number of processors exceeds the number of GWPs.

This might seem odd, but it is in fact an expected behaviour as the part of the

code dealing with the DB is parallelised based on the number of GWPs. The

communication of the extra processors is causing more delays so it is better to

keep the number of processors always less or equal to the number of GWPs.

As the total wall-clock time demonstrates, the largest memory and disc spaces

are required for dealing with the DB when the number of data points is large as

in these examples. The improvement of the parallelisation in the case of the total

calculation will be moderated by the performance of the hardware communication

subsystem and the overhead of the parallel process, which explains why the total
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gain from serial to parallel is not massive. Additionally, it must be noted that only

some bits of the total code are parallelised which also indicates that the speedup

for the parallel calculations of butatriene cation will not be so substantial but may

be for the calculations of much larger molecules. In general, if the parallelisable

component of a code is 90% of total computation time the highest possible speedup

is ten with many workers. The speedup drops to two for a 50% parallelisable

code.136

4.5.2 Allene Radical Cation

Introduction

Moving towards more complex molecules to test the performance of the new code,

the allene radical cation is chosen (C3H+
4 ). The equilibrium structure of neutral

allene belongs to the point group D2d as shown in Fig. 4.13. It has 15 normal

vibrational modes which are classified by their irreducible representations

Γ = 3A1 +B1 + 3B2 + 4E (4.9)

The allene cation can be considered as a quite complex system resulting from the

electronic ground state which is doubly degenerate at the Franck-Condon point,

denoted by X̃2E and provides a representative example of the E ⊗ β Jahn-Teller

effect, where the symmetry of the state is lowered by coupling to pairs of modes

with B1 and B2 symmetry. Theoretical work on the Jahn-Teller effect in the allene

cation by Cederbaum et al.137 showed that the only modes that strongly couple

the components of the ionic ground state are the ν5(B1) torsional and ν11(B2)

antisymmetric C − C stretching mode. The conical intersection formed by these

two modes takes place exactly at the Franck-Condon point. In the area around

that point the next energetically higher electronic states are well separated. Thus,

as a starting point the investigation of the allene cation can be reduced to a system

involving only two modes and two states.
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Fig. 4.13: The equilibrium ground state structure of allene.

Woywod and Domcke138 reproduced the lower energetic part of the X̃2E - Ã2E

states including the Jahn–Teller effect by employing a two-state four-mode linear

vibronic coupling model Hamiltonian. Later, more precisely conducted studies

were presented by Mahapatra et al.139 and Worth et al.140 on the higher lying

Ã2E - B̃2B2 manifold where a three-state fifteen-modes Hamiltonian model was

applied within the linear vibronic coupling scheme.

Results and Discussion

DD-vMCG nuclear dynamics were performed on the degenerate ground state of

the ionic allene molecule including all degrees of freedom. The electronic structure

calculations on the allene cation were performed using MOLPRO 2015.1141 at a

CASSCF(4,3)/6-31G* level of theory. The normal modes were obtained from a

CASSCF(4,4)/6-31G* calculation at the neutral ground state geometry.

The GWPs used for the basis functions have a width 1/
√

2 along all normal co-

ordinates. In the mass-frequency scaled coordinate system used, this is the width

of the neutral ground-state vibrational eigenfunction in the harmonic approxima-

tion. To form the desired initial wavepacket, one of these functions is placed at

the Franck-Condon point with zero momentum and a coefficient of 1.0 for the

configuration including the second state. All other GWPs are then displaced in

phase space and given coefficients of 0.0, i.e. the initial wavepacket is an exact

representation of the neutral ground-state eigenfunction placed vertically into the

ion manifold.
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To circumvent numerical problems coming from excitation into a point of de-

generacy, the initial reference geometry for the DB was defined by a displacement

of 0.4 units along the antisymmetric C −C stretching mode, where the states are

close to the conical intersection but not degenerate. Moreover, properties of the

D2d point group were applied to guarantee the correct symmetry of the potential

energy surfaces.142 The simulation was then carried out using 15 GWPs and a

running time of 100 fs with data output every 0.5 fs.

Similarly to the first test system of butatriene, a comparison between the de-

veloped version and the previous DD-vMCG implementation is presented. The

adiabatic and diabatic potential energy surfaces in the ν5, ν11 branching space of

the allene cation generated from the direct dynamics calculation are shown in Fig.

4.14. Employing the previous DD-vMCG version, both adiabatic (Fig. 4.14(a))

and diabatic (Fig. 4.14(c)) surfaces are not smoothly varying in the locality of

the conical intersection, showing a lot of discontinuities. On the other hand, both

the adiabatic (Fig. 4.14(b)) and diabatic (Fig. 4.14(d)) surfaces using the new

developed version are perfectly smoothly varying along the two important modes.

Moreover, the adiabatic surfaces feature a very well defined conical intersection at

the Franck-Condon point as a result of the development work accompanied with

a new diabatisation scheme employed for DD-vMCG.143

The normalised diabatic state populations, using both DD-vMCG versions are

shown in Fig. 4.15. Employing the local DB version shows clearly defined periods

of increasing and decreasing population over the entire time period in contrast to

the initial calculations. As displayed in Fig. 4.15(b), an extremely fast decrease

of the excited state population (yellow line) during the first few femtoseconds is

followed by a rapid depopulation over the next 20 fs. That immediate population

transfer is a result of the Franck-Condon point exactly meeting the CoI seam.

A key feature of an accurate simulation is that the energy and norm are con-
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Fig. 4.14: Two-dimensional cuts through the a) adiabatic and c) diabatic potential en-
ergy surfaces employing the old DD-vMCG version, and the b) adiabatic and d) diabatic
potential energy surfaces employing the new DD-vMCG version for allene cation along
the ν5(B1) and ν11(B2) normal modes.
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Fig. 4.15: Normalised diabatic state populations from DD-vMCG simulations of allene
cation using a) the original and b) the developed DD-vMCG version

served. The total energy over the simulation is shown in Fig. 4.16 for both versions.

The energy conservation for the previous version is very poor immediately after

the calculation has started reaching a 200 eV energy difference around 50 fs. In

contrast, during the simulation with the local DB version the energy is totally

conserved throughout the calculation.

Fig. 4.16: Total energy for allene cation as a function of time using a) the original and
b) the improved interpolation scheme for direct dynamics.

Moreover, to explore the speed-up and the performance of the new code in

comparison with the full QC DB a series of calculations have been conducted.

During these serial calculations all the variables, such as the number of GWPs

(10), the total propagation time (200 fs) and the nconf parameter (6) have been

kept constant. Again, the ndb parameter is altered as presented in Table 4.4.

In Table 4.4, the total elapsed time for all calculations is listed along with
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Table 4.4: The total elapsed time for serial DD-vMCG calculations with 10 GWPs
using the full QC database and local databases, varying the number of points in the
QC database by using different distance criteria (dbmin values). For all calculations the
nconf parameter was equal to 6.
Distance criterion 0.25 0.20 0.15 0.10 0.05
ndb 10 10 20 20 40

Number of Data points
215 317 665 1292 5094

Full QC DB (sec) 3033 3226 4613 18833 125374
Local DBs (sec) 2766 2771 2756 3196 4723
Speedup 1.1 1.2 1.7 5.9 26.5

the speedup. It can be seen that the time required for a calculation is greater

when the number of points in the QC database increases. Moreover, using local

DB is always faster compared to using the full QC database and in the last case,

with 5094 points, using the local database is 27 times faster. This confirms the

idea that larger systems can be successfully treated with DD-vMCG. Another

interesting result is that the total time needed for the local DBs when the number

of data points are similar, e.g. 215, 317 and 665 points, is almost constant in

contrast with the full QC database, breaking the negative dependence between

the total propagation time and the number of points in the DB occurring during

a full QC database calculation.

Similarly with the approach followed for the butatriene cation, the role of ndb is

further explored for the allene cation. Here, the second example of the DD-vMCG

calculation from Table 4.4 (dbmin = 0.2, 317 points) was employed as a starting

point. As Fig. 4.17 depicts, serial calculations of the allene cation employing 20

GWPs show that the number of points (ndb) does not considerably change the

population over time. Identical results with those of employing the full DB, Fig.

4.17(a), could be achieved with a 10 points local DB as depicted in Fig. 4.17(d).

For all calculations nconf was equal to 6.

Next, the parallel performance of the developed local DB algorithm is evalu-

ated by running direct dynamics propagations using serial (1 CPU) and parallel
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Fig. 4.17: The population of S0 (blue line) and S1 (orange line) states for the same
DD-vMCG calculation of allene cation employing a) the full DB with 317 points and the
local DB with b) 4 points, c) 6 points and d) 10 points.

(n CPUs) operation, and comparing the total elapsed time for the iteration in all

cases. Benchmark calculations on the allene cation are shown in Table 4.5. Once

more, considering that the main coding development was focused on the DB, sepa-

rate time data accompanied with the parallel speedup and efficiency are presented

for both the part of the code that deals with the DB and for the total calculation.

The total propagation time (200 fs), the interpolation confidence radius nconf (6)

and the total number of points in the local databases, ndb = 40, have been kept

constant.

Comparing initially the timings for the DB code, for both examples with 10 and

20 GWPs, the speedup increases with the number of processors. This validates

the results using the butatriene cation and shows clearly that irrespective of the

molecule under investigation, the new local DB approach has a great impact on the

efficiency of the method. For the second example (20 GWP) a parallel process run
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Table 4.5: The total wall-clock time for a parallel implementation of DD-vMCG using
local DBs, with different number of cores.1

Number of Cores
1 5 10 15 20

5094 DB points - 10 GWPs
Total Calculation
Total Time (sec) 4723 2050 1511 1599 1623
Parallel Speedup 1.0 2.3 3.2 3.0 2.9
Database code
Total Time (sec) 3724 1033 587 598 604
Parallel Speedup 1.0 3.6 6.3 6.2 6.2
Efficiency 1.0 0.7 0.6 0.4 0.3
9797 DB points - 20 GWPs
Total Calculation
Total Time (sec) 18016 8903 5459 5004 4504
Parallel Speedup 1.0 2.0 3.3 3.6 4.0
Database code
Total Time (sec) 11120 2926 1544 1463 1112
Parallel Speedup 1.0 3.8 7.1 7.6 10.0
Efficiency 1.0 0.8 0.7 0.5 0.5

1 Performed on a single node with 2 x 10 core Xeon 2.3GHz CPUs

on 20 processors was 10 times faster which reveals a very good parallel performance.

The parallel speedup seems to follow a similar pattern for both cases and a linear

scaling is achieved which is in accordance with Amdahl’s law. The efficiency of the

parallel operation decreases as expected with the number of processors. However,

for the second example where 20 GWPs are employed, the efficiency is higher.

The efficiency will increase when moving to more complex calculations; this also

applies here, as shown in Table 4.5, where the second test with more GWPs and

more data points has a better performance.

The parallel performance of the total calculation follows the same pattern as

with butatriene since a parallel speedup greater than two is achieved in both cases.

As mentioned above the architecture of the main code does not allow a greater

parallel performance of the total calculation. However, taking into account that for

a DB containing around 5000 points, the speedup using the local DB algorithm is

27 (Table 4.4) and the speedup using the local DB algorithm in parallel operation
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on n number of processors that matches the number of GWPs is 3 (Table 4.5),

thus the total speedup is 81 which is a significant improvement.

4.5.3 Formamide

Introduction

Formamide (CH3NO), also known as methanamide, is an amide derived from

formic acid (Fig. 4.18). The water-assisted tautomerization of formamide to for-

mamidic acid has attracted a lot of scientific attention from both experimentalists

and theoreticians.144–151 The NCO backbone of the formamide molecule can be

found in DNA bases, and especially in thymine, cytosine and guanine. Thus, it

can be used as a model for tautomerization in DNA bases.

Fig. 4.18: The equilibrium ground state structure of formamide.

Theoretical investigation of formamide80 using quantum dynamics simulations

showed that the minimum ground state structure is non-planar and thus, for-

mamide does not belong to any non-trivial symmetry point group. Since molecu-

lar symmetries can often be used to simplify quantum chemistry calculations, the

planar structure was selected as the initial reference geometry in both electronic

structure and direct dynamics calculations considering that the energy difference

between the planar and non-planar geometry is small enough to be neglected. The

planar formamide molecule possesses the identity operation E and a mirror plane

σ, in which the C-N bond lies, as symmetry elements and thus belongs to the Cs

point group. Its 12 normal vibrational modes can consequently be classified by
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two irreducible representations, A′ and A′′, where properties symmetric to both

symmetry elements correspond to A′ and the rest corresponds to A′′.

Results and Discussion

DD-vMCG nuclear dynamics simulations on formamide were conducted including

eight electronic states and the ground state normal modes of the planar molecule,

treated at a CASSCF(10,8)/6-31G* level of theory. The dynamics calculations

were then propagated using 8 GWPs, a dbmin value of 0.1 and a running time

of 150 fs with data output every femtosecond. These initial conditions match

the ones used during the work of Spinlove et al.80 with the original DD-vMCG

implementation. The aim is to use the new developed version to compare with the

results from Spinlove et al.80 extracted with the original direct dynamics version.

Fig. 4.19 shows one-dimensional cuts through the adiabatic and diabatic poten-

tial energy surfaces along the ν11 symmetric (a and b) and the ν12 antisymmetric

(c and d) N-H2 stretching mode generated using the original DD-vMCG imple-

mentation. The main product channel, namely the NH dissociation, is provided

by a combination of these two modes. In Fig. 4.19(a) and (b), it can be seen that

a dissociative channel exists along the ν11 mode. Besides, in the vicinity of the

Franck-Condon point along the ν12 mode in Fig. 4.19(c) and (d), the second (light

blue) and third (orange) excited state are very close in energy and surface crossing

occurs.

The recalculation of this particular system with the developed scheme indeed

leads to much smoother surfaces (Fig. 4.20). The surface crossings of the third

excited state (orange) along both modes, which are crucial for the NH dissocia-

tion channel, are still located at very similar displacements to the previous ones.

However, the energy barrier of the dissociative channel along the ν11 mode is sig-

nificantly higher than predicted before. Moreover, as a consequence of the larger

energy barrier, seen in Fig. 4.20(a) and (b), the NH dissociation channel is less
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Fig. 4.19: One-dimensional cuts through a) the adiabatic and b) the diabatic potential
energy surfaces of formamide along the ν11 N-H2 symmetric stretching mode, and c)
adiabatic and d) diabatic potential energy surfaces along the ν12 N-H2 antisymmetric
stretching mode employing the original DD-vMCG implementation.

probable than previously predicted from Fig. 4.19(a) and (b). An important

difference relies on the dissociation occurring along the ν11 symmetric stretching

mode, which is visible in Figs. 4.19(a) and (b), and not in Figs. 4.20(a) and (b)

where the new developed DD-vMCG implementation was employed. This is more

attributable to the way vMCG works and is not connected with the different im-

plementations used for this comparison. Areas that are not sampled with vMCG

give harmonic surfaces which explains why we do not get flatter asymptotic sur-

faces as expected from the ones reproduced from the Spinlove et al.152 paper. In

this paper different calculations starting on S1, S2 and S3 states and with varying

GWPs were performed, and the various databases created from these calculations
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were then merged to a final one. Thus, larger areas were explored which explains

the better description of the dissociation.

Fig. 4.20: One-dimensional cuts through a) the adiabatic and b) the diabatic potential
energy surfaces of formamide along the ν11 N-H2 symmetric stretching mode and c)
adiabatic and d) diabatic potential energy surfaces along the ν12 N-H2 antisymmetric
stretching mode employing the new developed DD-vMCG implementation.

The normalised diabatic state population as a function of time after excitation

into the first excited state S1 from direct dynamics calculations using both DD-

vMCG versions is shown in Fig. 4.21. Employing the local DB the timescale for

the decay is faster and compared to the original DD-vMCG implementation where

even after 30 fs the higher percentage of the population is still in the S1 state which

is the fully populated first excited state. It is also apparent that the population

transfer is quite uniformly distributed across the excited electronic states in the

calculation in the case of the original DD-vMCG implementation. However, as seen
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in Fig. 4.21(b), at the end of the propagation approximately around 15% of the

population has been transferred to the S3 state in the case of the new DD-vMCG

implementation.

Fig. 4.21: Normalised diabatic state population from DD-vMCG simulations of for-
mamide using a) the original and b) the developed DD-vMCG version: S0: purple; S1:
green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6: red; S7: black.

To examine the accuracy of the simulation the energy conservation is plotted for

formamide for both the original and developed direct dynamics implementations

as illustrated in Fig. 4.22. The energy for the original DD-vMCG version is again

very poor immediately after the calculation has started and can be attributed

to the previously applied interpolation scheme in DD-vMCG. However, as Fig.

4.22(b) depicts, the energy is totally conserved throughout the calculation using

the developed interpolation scheme.

Fig. 4.22: Total energy for formamide as a function of time using a) the original and b)
the improved interpolation scheme for direct dynamics.

As with previous test cases, a performance comparison between the local DB
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and the full QC database has been conducted where the speedup is examined. Dur-

ing these serial calculations all the variables, such as the number of GWPs (10),

the total propagation time, (100 fs) and the nconf (6) have been kept constant. For

this example molecule finding the appropriate values for the ndb and nconf param-

eters was not straightforward. Thus, multiple tests that are relatively quick have

been conducted to determine the best combination that works for both versions

allowing a sensible comparison. For instance, if the number of points included in

the local DB are not enough to cover the movements of the GWPs’ centres in the

configuration space, then the points that will be included in the interpolation will

be quite far apart leading to significant integration instabilities, as the integrator

takes a large number of tsmall steps every tlarge. Therefore, the program will need

more time for the same execution than with the full QC database and in some

cases will even terminate unexpectedly. Hence, the various dbmin values together

with the suitable ndb parameter for each case are listed in Table 4.6.

The efficiency results shown in Table 4.6, follow similar patterns to the ones

from butatriene and allene cations. Thus, the total elapsed time for all calculations

regarding both the local DB and the full QC database versions increases with the

number of points in the DB. Moreover, the local database approach is always more

efficient compared to the full QC database reaching a speedup of 24 in the last

example with 6021 points. Again, the different times needed for a full propagation

with various total data points are relatively close to each other when using the

local DB. On the other hand, in the case of the full QC database it is again

confirmed that dealing with the database dominates the calculation when no new

points are added. Additionally, the speedups for formamide are lower compared

to the ones from the two previous test molecules. This variation can be explained

by considering the higher value of the ndb parameter and also the larger full DBs.

Next, direct dynamics calculations were conducted on formamide employing the
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Table 4.6: The total elapsed time for serial DD-vMCG calculations with 10 GWPs using
the full QC database and local databases, varying the number of points in the QC DB by
using different distance criteria (dbmin values). For all calculations the nconf parameter
was equal to 6.
Distance criterion 0.25 0.20 0.15 0.10 0.05
ndb 20 20 40 40 60

Number of Data points
267 442 715 1496 6021

Full QC DB (sec) 3601 6919 7376 16201 126139
Local DBs (sec) 3001 3145 3207 3522 5234
Speedup 1.2 2.2 2.3 4.6 24.1

local DB approach aiming to compare the sequential with the parallel operation for

different numbers of processors. Table 4.7 demonstrates the outcomes for 10 and

20 GWPs focusing on the total time for the calculation and also the time for the

code dealing with the DB. The total propagation time, (200 fs), the interpolation

confidence radius nconf (6) and the total number of points in the local DBs, ndb =

60, have been kept constant.

For both examples with 10 and 20 GWPs the speedup values of the total

calculation and the DB code accelerate when switching to parallel operation and

with the number of processors, following the same pattern as in the other two

test cases. As stated above, the higher value of the ndb parameter affects the

integration and the dynamics, resulting in similar timing outcomes. In essence,

the parallel speedup seems to follow a similar pattern for both examples and a

linear scaling is achieved which is in accordance with Amdahl’s law.

In this case an effort to better understand the correlation of the DB and the

time needed for a full propagation has been made, hence a quite large DB (13516)

has been employed for the second case (20 GWPs). Dealing with a very large

DB implies that even for the local DB approach some time delays will occur as

the refresh of the local DBs for each GWP will take significantly more time than

with a smaller total DB. However, it is important to note that still the parallel

performance is very efficient since for the 20 GWPs example the parallel operation

Developing DD-vMCG 92



4.6 Summary

Table 4.7: The total wall-clock time for a parallel implementation of DD-vMCG using
local DBs, with different number of cores.1

Number of Cores
1 5 10 15 20

6021 DB points - 10 GWPs
Total Calculation
Total Time (sec) 5234 2492 1377 1414 1416
Parallel Speedup 1.0 2.1 3.8 3.7 3.7
Database code
Total Time (sec) 3778 1672 990 1000 1001
Parallel Speedup 1.0 2.3 3.8 3.8 3.8
Efficiency 1.0 0.5 0.4 0.3 0.2
13516 DB points - 20 GWPs
Total Calculation
Total Time (sec) 22436 9755 7011 6063 4233
Parallel Speedup 1.0 2.3 3.2 3.7 5.3
Database code
Total Time (sec) 17345 7541 5256 4447 2891
Parallel Speedup 1.0 2.3 3.3 3.9 6.0
Efficiency 1.0 0.5 0.3 0.3 0.3

1 Performed on a single node with 2 x 10 core Xeon 2.3GHz CPUs

on 20 processors was 6 times faster. For the 10 GWPs case when the number

of processors is greater than the number of GWPs the speedup goes down as

expected. The efficiency of the parallel operation when treating the same problem

decreases with the number of processors as expected but seems to follow a more

stable behaviour compared to butatriene and allene.

4.6 Summary

Within this Chapter the conceptual development and its implementation to the

direct dynamics variational multi-configurational Gaussian method were presented

along with benchmark calculations on three chemical systems. Initially, the inter-

polation scheme was updated aiming to improve both the efficiency and accuracy

of the code.

A parallel algorithm has also been established leading to a developed DD-

vMCG method. A detailed comparison between the new developed DD-vMCG
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and the original implementation on butatriene cation, allene cation and formamide

reveal smoother adiabatic and diabatic potential energy surfaces, better defined

population transfers and total energy conservation for all investigated molecules.

Further, the efficiency is examined by performing test calculations employing

both the local DB and the full quantum chemistry DB approaches. Outcomes

on the three aforementioned molecules showed that the local DB implementation

is always significantly faster regardless of the molecule and the initial conditions

which overcomes the main bottleneck that DD-vMCG was encountering when

treating complex chemical systems. Additionally, the parallel performance is very

efficient and particularly when more GWPs were employed the speedups were

higher.

On a final note, the newly developed DD-vMCG method has been proved to be

a very accurate, efficient and general method to employ in order to perform full-

dimensional dynamics calculations on different molecules and it is very promising

to move further to higher dimensional investigations.
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Chapter 5

Applying DD-vMCG to Study
the Photodissociation of Phenol

The work in this study has been submitted for publication in Phys. Chem. Chem.

Phys. The electronic structure calculations reported in section 5.4 were conducted

by Thierry Tran.

5.1 Introduction

In this chapter, the developed efficient algorithm for the direct dynamics varia-

tional multi-configurational Gaussian (DD-vMCG) method (Chapter 4) has been

used to describe the multidimensional photodissociation dynamics of phenol in-

cluding all degrees of freedom. Full-dimensional quantum dynamic calculations

including for the first time six electronic states (1ππ, 11ππ∗, 11πσ∗, 21πσ∗, 21ππ∗,

31ππ∗) along with a detailed comparison with the existing 4-state model for the po-

tential energy surfaces are presented. The scope of this chapter is twofold. First to

explore the applicability of the improved DD-vMCG method which was presented

in Chapter 4, and also to add new insights into the photochemistry of phenol.

Initially, a review of the relevant literature on the phenol molecule including

the most recent research studies is presented. Exploring the dynamics of phenol

with DD-vMCG requires the employment of quantum chemistry programs devel-

oped in different studies, as one of the goals is to compare our work with other
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research studies. Hence, a new interface that enables the employment of any ex-

ternal molecular potential program by DD-vMCG to calculate the energy and the

gradients is described along with an implementation for calculating the Hessian

matrix. An in-depth comparison of the different methods and the quantum chem-

istry programs is also included.

Aiming to investigate the photodissociation, electronic structure calculations

were firstly performed, followed by a detailed computational design and testing

of the different parameters and initial conditions which should be employed for

the chosen methods. DD-vMCG was employed for all the calculations to obtain

potential energy surfaces, state populations and dissociation flux.

5.2 Phenol

Amino acids are among the most essential biomolecules. Aromatic amino acids

such as phenylalanine, tryptophan and tyrosine have broad UV absorption cross

sections. Nevertheless, the fluorescence quantum yield produced from these molecules

is quite small. The existence of fast non-radiative processes, that effectively quench

the fluorescence is indicated in the literature.153–156 Other research studies sug-

gested that the non-radiative process is ultrafast internal conversion where the

electronic energy turns into vibrational energy.154–157 Immediately after the inter-

nal conversion, through intermolecular energy transfer this vibrational energy is

rapidly dissipated from the highly vibrationally excited molecules to the surround-

ing molecules prior to chemical reactions occurring. The prevention of photochem-

ical reactions upon UV radiation is known as photostability.

Phenol C6H5OH is an aromatic organic compound where subject to the orien-

tation and arrangement of the C-Ô-H bond with respect to the benzene ring which

is planar, phenol demonstrates the following three point group symmetries (Figure

5.1 shows the atom numbering) :
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Fig. 5.1: The equilibrium ground state structure of phenol.

• C2v when C1O7H13 is collinear with the C4C1 axis

• Cs−planar when C1O7H13 is planar and in the benzene plane

• Cs−bijct when C1O7H13 is planar, in a plane perpendicular to the benzene

ring and including the C4C1 axis

Phenol is the chromophore of the amino acid tyrosine and a major compo-

nent of green fluorescent protein chromophores.158 It has thus been extensively

studied from both experimentalists159–162 and theoreticians.163–165 The delocalised

electrons in the benzene ring interact with one of the oxygen lone pairs, affecting

the properties of both the ring and the -OH group. This interaction, effectively a

donation of the oxygen lone pair into the ring system, leads to an increase of the

electron density around the ring making it much more reactive than in benzene

itself. It also results in the hydrogen of the -OH group being a lot more acidic

than it is in alcohols. This will be investigated further in the electronic structure

section.

Despite the fact that this research study is a purely computational approach,

it is important to understand both the role of experimental work and their com-

bination with ab initio electronic-structure calculations of excited states and their

potential energy surfaces in order to study the photodynamics of phenol in depth.

As experimental results and computational quantum chemistry calculations indi-
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cate, phenol has a low fluorescence quantum yield attributable to the dissociative

character of the electronic excited state potential energy surface, rather than in-

ternal conversion to the electronic ground state.164,166,167 Also, the important co-

ordinates which are fundamentally involved in the dynamics are the O-H distance,

the C-Ô-C bond angle and the CCOH torsion angle.
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Fig. 5.2: Potential energy curves of the (a) adiabatic and (b) diabatic picture for the
ground and excited singlet states as a function of R, the O-H bond distance.

Furthermore, the PESs change as the O-H bond stretch increases. As shown

in Figure 5.2, two conical intersections are observed for the potential energy sur-

faces of phenol in which the 1πσ∗ state which is a dark repulsive state is involved:

one with the 1ππ∗ strongly absorbing bound state, and the other with the 1ππ

ground state. These conical intersections govern the photodissociation dynamics,

determining the reaction pathway and the branching rates of photodissociation

products as a function of UV wavelength (λ). The photodissociation dynamics of

phenol have been experimentally studied through the relative kinetic energy dis-

tribution of photofragments, using techniques such as high-resolution H Rydberg

atom translational spectroscopy, multimass ion imaging and time-resolved velocity

map ion imaging.159,160,162,168–172

The relative kinetic energy distribution of photofragments is bimodal for exci-

tation in the range 279.145 ≥ λ ≥ 193 nm. Clear resolved peaks with a maximum
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at ∼ 6000 cm−1 can be observed for λ =275.113 nm, attributed by researchers to

two possible mechanisms. One is internal conversion to excited vibronic levels of

the 1ππ state with the O-H bond stretch as the main accepting mode, followed by

dissociation through the 1ππ/1πσ∗ conical intersection. A quite popular approach

suggests the H tunnelling under the 1ππ∗/1πσ∗ CoI to the 1πσ∗ state is a dissocia-

tion pathway for phenol.173 This is supported by analysis of kinetic energy spectra

for excitations of certain vibrational modes of the 2B1 phenoxyl radical.159–161 The

observed active modes, and especially the ν16a ring torsional mode, were deemed

responsible for enabling the coupling between the 1ππ∗ and 1πσ∗ states. As a

result, the energy of S1 state decreases, making the system more adiabatic and

facilitating tunnelling through the barrier on the S1 surface.160,174

On excitation to λ < 248 nm, the vibrational structures at ∼ 6,000 cm−1

gradually diminish as the wavelength decreases, while a new set of resolved peaks

grows in a region centred around 12,000 cm−1.173,175 The latter was linked to the

very fast dissociation through the 1πσ∗ state which follows passing via the 1ππ∗ /

1πσ∗ conical intersection. Moreover, the centre of this set of peaks does not shift as

λ is further reduced, but the structure becomes broader and gradually disappears.

An unresolved component is observed in the kinetic energy spectra at lower

frequencies (centred at ∼ 1,500-2,000 cm−1) and does not significantly change

with wavelength.160,176 This feature arises from unimolecular decay of the S0 state

to H atoms and phenoxyl 2B1 ground state radicals after internal conversion, and

from multiphoton processes.165

The dissociation lifetime of a molecule like phenol with many vibrational de-

grees of freedom can span from several hundred nanoseconds to sub second.177–179

For instance, a dissociation lifetime of 62 µs was experimentally determined180

for vibrationally excited phenol in the electronic S0 state, produced by internal

conversion after excitation to the first excited state band origin. Increasing the
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pumping photon energies leads to a decreased overall lifetime of S1 at the excited

Franck-Condon window (which contains modes orthogonal to the O-H stretch),

since the ability for the S1 → S∗0 internal conversion increases. However, an

analogous increase of the O-H fission rate is absent for the H transients. Since

these only depend on the decay along S2, there is a strong suggestion that the

S1 → S∗0 → S2 → C6H5O(X̃) +H dissociation mechanism is inactive.159

Employing theoretical methods, Sobolewski and Domcke181 were the first to

introduce the phenol nonadiabatic dissociation pathways. Their innovative work

disclosed that since the 1πσ∗ character state, a dark and strongly repulsive state,

crosses both the S1 and S2 states, the dissociation from the 1ππ∗ character state

involves two seams of conical intersections. Recently, significant efforts have been

made to map out the full-dimensional potential energy surfaces for this system.

Three full-dimensional coupled potential energy surfaces were reported174 employ-

ing the anchor-points reactive potential (ARPR) method to a large number of

points determined using multi-configuration quasi-degenerate perturbation theory.

Moreover, full-dimensional coupled PESs based on multi-reference CISD excitation

expansions have been also reported by Zhu, Yarkony and co-workers.163,182,183 It

is worth indicating that atomic tunnelling in molecular systems such as phenol

is frequently treated within the BO approximation, defined by a barrier on an

adiabatic PES.

5.3 External Molecular Potential Program

Direct dynamics employs various known quantum chemistry programs such as

Gaussian0981 to run either HF or CASSCF calculations, Molpro141 and Molcas184

to compute the energies, gradients and Hessian matrices at each point reached by

GWPs. However, it is important for DD-vMCG to be a flexible method that gives

the opportunity to the user to explore any molecule with any available external
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program and also offers unlimited customisation where the user can create a new

program or modify an existing one to fit the needs of the molecule under investiga-

tion. Hence, the primary step was to develop the existing code by creating a new

interface so that the Quantics package can call any available external programs

that calculates the energies and gradients for any molecule under investigation and

store all the data.

If the Hessians are not provided by the external program they need to be

calculated; a flexible method, which can be used for any external program, was

developed to determine the Hessian matrix from known gradients. The following

proof in which the development of the existing programs was based on to calculate

the Hessian is written for simplicity for a three-dimensional system but can be

easily extended to higher dimensions.

Let f be a continuous and infinitely differentiable function in some open neigh-

bourhood around ~a = (xa, ya, za)

f (x, y, z) =f (xa, ya, za) + (x− xa)fx + (y − ya)fy + (z − za)fz+
1

2
(x− xa)2fxx +

1

2
(y − ya)2fyy +

1

2
(z − za)2fzz+

(x− xa)(y − ya)fxy + (x− xa)(z − za)fxz + (y − ya)(z − za)fyz + ...

(5.1)

where

fx =
∂f

∂x

∣∣∣∣
a

, fxx =
∂2f

∂x2

∣∣∣∣
a

and fxy =
∂2f

∂x∂y

∣∣∣∣
a

= fyx (5.2)

likewise fy, fz, fxz and fyz can be defined.

The first derivative of function f from Eq. 5.1 with respect to x, y and z can be

written as follows

∂f(x, y, z)

∂x
= fx + (x− xa)fxx + (y − ya)fxy + (z − za)fxz + ... (5.3)

∂f(x, y, z)

∂y
= fy + (y − ya)fyy + (x− xa)fxy + (z − za)fyz + ... (5.4)

∂f(x, y, z)

∂z
= fz + (z − za)fzz + (y − ya)fzy + (x− xa)fyz + ... (5.5)
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Taking Eq. 5.3 about the points (xa + h, ya, za) and (xa − h, ya, za) where h is a

real step

∂f(xa + h, ya, za)

∂x
= fx + hfxx +O(h) (5.6)

∂f(xa − h, ya, za)
∂x

= fx − hfxx +O(h) (5.7)

where O(h) is the truncation error and the subtractive cancellation error that affect

these derivative approximations. Then if we subtract Eq. 5.6 and Eq. 5.7

fxx =
1

2

[
∂f(xa + h, ya, za)

∂x
− ∂f(xa − h, ya, za)

∂x

]
+O(h2) (5.8)

O(h2) is again the error of the approximation but in this case has a smaller value.

Likewise fyy and fzz can be defined.

fyy =
1

2

[
∂f(xa, ya + h, za)

∂y
− ∂f(xa, ya − h, za)

∂y

]
+O(h2) (5.9)

fzz =
1

2

[
∂f(xa, ya, za + h)

∂z
− ∂f(xa, ya, za − h)

∂z

]
+O(h2) (5.10)

If we take again Eq. 5.3 but now about the point (xa, ya+h, za) and (xa, ya−h, za)

∂f(xa, ya + h, za)

∂x
= fx + hfxy +O(h) (5.11)

∂f(xa, ya − h, za)
∂x

= fx − hfxy +O(h) (5.12)

Then by subtracting 5.11 and Eq. 5.12

fxy =
1

2

[
∂f(xa, ya + h, za)

∂x
− ∂f(xa, ya − h, za)

∂x

]
+O(h2) (5.13)

In the same way

fxz =
1

2

[
∂f(xa, ya, za + h)

∂x
− ∂f(xa, ya, za − h)

∂x

]
+O(h2) (5.14)

fyz =
1

2

[
∂f(xa, ya + h, za)

∂z
− ∂f(xa, ya − h, za)

∂z

]
+O(h2) (5.15)

Therefore all the second derivatives, Hessians, can be obtained if first deriva-

tives can be calculated at the required points. This scheme to obtain Hessians
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was tested in different functions with known derivatives for various points and it

was proved accurate. It has been found that setting h = 1× 10−5 yields the best

results.

5.4 Electronic structure and geometry optimisa-

tions

For the definition of the normal mode displacement, the optimization of the ground

state S0 geometry and the frequency calculation were carried out with state-average

CASSCF/6-311+G** level of theory with an active space of 10 electrons in 10

orbitals as depicted in Fig. 5.3. The active space comprises of the one oxygen

lone pair, three π, three π∗, one 3s and the O-H σ and σ∗ orbitals. The choice of

CASSCF was based on several criteria. Firstly, the need to be able to calculate

energies at ground and excited states, and be applicable to scans along normal

modes to create PESs. Given the non-adiabaticity observed in the excited states,

a method with multireference description is desirable. This is even more essential

if the surfaces cross. The analytical energy gradients available for CASSCF allow

crossing points to be located and derivative couplings to be calculated. CASSCF

provides qualitatively correct energies and allows a reasonable model to be built

without the need to resort to more demanding levels of theory. All electronic

structure calculations were run using the OpenMolcas program.184
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Fig. 5.3: Molecular orbitals used for the CASSCF calculation with phenol for the 10
electrons in 10 orbitals.

5.5 Computational Details

5.5.1 DD-vMCG Protocol

All the nuclear dynamics calculations were carried out using the DD-vMCG im-

plementation in the QUANTICS package.21 To investigate the phenol molecule,

potential energy surfaces were generated where the calculations were performed

for a state-average of up to 6 states with the ground (S0) and the first excited

states (S1 - S5), including all degrees of freedom. For all the calculations Open-

Molcas184 at a CASSCF(10,10)/6-311+Gpp level of theory was employed as the

external quantum chemistry program. The initial wavepacket was a Gaussian

function of width 1/
√

2 along all normal coordinates. An initial calculation was

conducted with a vertical excitation to the first excited state using 20 Gaussian

basis functions, with a propagation time of 200 fs with data output every 0.5 fs.

In addition, direct dynamics calculations were also carried out employing the

potential energy surface model for phenol from Zhu and Yarkony163,182,183 (PESZY )

which is a full dimensional four states scheme and also the Xu, Zheng, Yang and

Applying DD-vMCG to Study the Photodissociation of Phenol 104



5.5 Computational Details

Truhlar174,185,186 model (PESXZY T ) which incorporates three states, as external

molecular potential programs. For dynamics employing the PESzy external pro-

gram, the molecule geometry had to be re-optimized by aligning the molecule in

the XZ plane employing the state average CASSCF(10,10)/6-311+G(pp) level of

theory with three states. In this research work, four full-dimensional coupled PESs

based on multi-reference configuration interaction single and double CISD excita-

tion expansions are reported. The various parameters used in these DD-vMCG

calculations along with the level of theory have been kept the same as before with

the OpenMolcas propagation and therefore a sensible comparison can be made.

Initially, for all the calculations presented here, a direct dynamics run was

conducted with an empty database and then a second propagation with the same

initial conditions but with the database from the first propagation was carried

out. Considering a direct dynamics propagation with only one GWP that reaches

multiple times the same point in the configuration space, each time the database

is different as it is built on-the-fly and therefore the extrapolated potential will

not be the same. Hence, to get the best representation of the dynamics, multiple

propagations were performed until no new points were added to the database.

The former process of re-running a calculation aiming to add more points in the

database is a key feature of DD-vMCG. As a next step, the final propagation will

use this database to read all required information, energy, gradients and Hessian at

each step which requires less computational effort than running expensive quantum

chemistry calculations. For all the aforementioned re-runs of the same DD-vMCG

calculation the new efficient algorithm of Chapter 4 was employed which uses a

local dynamic version of the full database for each GWP each time the code needs

to read, sort and analyse the database. In the following analysis the results of this

final set of calculations were employed.
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5.5.2 Complex Absorbing Potential (CAP) and Flux Op-
erator

After analysis of the initial phenol results, complex absorbing potentials (CAPs)

were selected and employed. In grid based methods like MCTDH, a CAP is defined

as a negative, imaginary potential which absorbs the parts of the wavepacket reach-

ing the end of the grid and hence the reflection of the wavepacket is avoided.187,188

In DD-vMCG, CAPs are used as a cut-off point to the dissociative motion along

normal mode coordinates. More specifically, upon a rapid dissociation, the disso-

ciating atom obtains momentum as it moves further apart from the molecule. As a

result, the integrator will quickly decrease the size of the time step that enables an

accurate description of the overall system. These rapidly changing geometries will

additionally lead into the need for electronic structure calculations for substan-

tially more points. These calculations, at widely spaced geometries, will require

much more time, and may eventually fail. The CAPs are defined as

− iηW (x) = −iη(k(x− x0))nΘ(x− x0) (5.16)

where W(x) denotes a real low order monomial, η is the strength, n is the order,

k = ±1 denotes the direction (positive or negative) of the CAP positioned at x0

along a normal mode coordinate and Θ is a step function. The modification of

the Hamiltonian in this way means that it is non-Hermitian and the norm is not

conserved, i.e. the norm will decrease upon the entrance of the wavefunction in the

CAP region. The dependence of the norm on the Hamiltonian can be expressed

as follows

d

dt
‖Ψ‖2 =

d

dt
〈Ψ|Ψ〉 =

〈
Ψ̇|Ψ

〉
=
〈

Ψ|Ψ̇
〉

= 〈−iHΨ|Ψ〉+ 〈Ψ| − iHΨ〉 = i
〈
Ψ|H† −H|Ψ

〉 (5.17)

when Ĥ is Hermitian, the norm is conserved, but when Ĥ = Ĥ0 − iηW (x)

d

dt
‖Ψ‖2 = 2 ‖Ψ‖ · d

dt
‖Ψ‖ = −2η 〈Ψ|W |Ψ〉 (5.18)
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Thus

d

dt
‖Ψ‖ = −η 〈Ψ|W |Ψ〉

‖Ψ‖
(5.19)

with the more compact solution

‖Ψ(t)‖ ∝ e−ηW ‖Ψ(0)‖ (5.20)

Once the CAP is reached by the Gaussian, the motion is set to continue classi-

cally and stops when the population of the Gaussian becomes zero. For this study,

the values of x0 = 10, η = 0.1, n = 3, k = 1 were selected along the ν33 which is

the O-H stretch mode.

Moreover, the flux operator is also calculated to evaluate the probability density

change rate over some arbitrary subspace. If Θ denotes a Heaviside step function

projecting onto the sub-space of interest, then the flux has the following form

F̂ =
∂

∂t
〈Ψ |Θ|Ψ〉 =

〈
Ψ |Θ| Ψ̇

〉
+
〈

Ψ̇ |Θ|Ψ
〉

= −i 〈Ψ |ΘH|Ψ〉+ i 〈Ψ |HΘ|Ψ〉 = i 〈Ψ |[H,Θ]|Ψ〉
(5.21)

The flux through a channel for a Hamiltonian with a CAP determining the

channel can be obtained as follows

F̂ = i [H,Θ] = i [H0 − iW,Θ] = i(H0Θ−ΘH0) + 2W (5.22)

Thus the total flux into the channel can be written as∫ ∞
0

dt
〈

Ψ|F̂ |Ψ
〉

=

∫ ∞
0

dti 〈Ψ|[H,Θ]|Ψ〉+ 2

∫ ∞
0

dt 〈Ψ|W |Ψ〉 (5.23)

Considering the following∫ ∞
0

dt 〈Ψ|Θ|Ψ〉 = 〈Ψ(∞)|Θ|Ψ(∞)〉 − 〈Ψ(0)|Θ|Ψ(0)〉 = 0 (5.24)

Eq. 5.23 can be simplified and hence the total flux has the following form∫ ∞
0

dt
〈

Ψ|F̂ |Ψ
〉

= 2

∫ ∞
0

dt 〈Ψ|W |Ψ〉 (5.25)

and can be obtained by integrating the expectation value of the CAP.
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5.6 Quantum Dynamics Calculations

In this section, the results from the computational study of up to 6-state photodis-

sociation of the phenol molecule by employing DD-vMCG including all degrees of

freedom is presented. The diabatic and adiabatic potential energy surfaces, and

also the conical intersections have been calculated and characterised along the O-

H bond stretch (Fig. 5.4(a)) which corresponds to the ν33 vibrational mode, the

C-Ô-C bend angle which corresponds to the ν24 vibrational mode (Fig. 5.4(b))

and the CCOH torsion angle which corresponds to the ν2 vibrational mode (Fig.

5.4(c)) as evaluated at a CASSCF/6-311+G** level of theory. Additionally, the

diabatic state populations and the integrated flux is employed to unravel the decay

pathways of phenol.

(a) O-H bond stretch (b) ˆC-O-H bend angle (c) CCOH torsion

Fig. 5.4: The three main coordinates of phenol accompanied with the associated normal
modes during the DD-vMCG propagation. Reprinted with permission from Xie, C.; Ma,
J.; Zhu, X.; Yarkony, D. R.; Xie, D.; Guo, H. J. Am. Chem. Soc. 2016, 138, 7828–7831.
Copyright 2016 American Chemical Society.

5.6.1 Potential Energy Surfaces

Initially, a computational study including three states to describe the phenol pho-

todissociation was performed by employing the DD-vMCG method including all

degrees of freedom. This is the model that has been widely and most commonly

employed to study the dynamics of phenol. Here, the Xu, Zheng, Yang and Truh-

lar174,185,186 scheme (PESXZY T ) and OpenMolcas have been employed as external

programs for computing the energies, gradients and Hessians. Fig. 5.5(a) and Fig.
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5.5(b) show the adiabatic and diabatic potential energy surfaces along the O-H

stretching coordinate generated from the direct dynamics calculation using Open-

Molcas. The 3-state model incorporates the two main conical intersections which

are both experimentally and theoretically proven to be responsible for the photo-

induced hydrogen elimination reaction in phenol but are not properly described.

It is worth noting that it was computationally harder to run 3-state direct dynam-

ics calculations, as it was difficult to converge and it was taking more integration

steps compared to the four-state calculations.
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Fig. 5.5: Cuts through the potential energy surfaces of phenol obtained from a DD-
vMCG simulation employing OpenMolcas with a three states averaging, (a) adiabatic
and (b) diabatic, and employing the 3-state PESXZY T model for phenol as the external
quantum chemistry program, (c) adiabatic and (d) diabatic, in the space of the O-H
bond stretch, ν33, normal mode. All other coordinates have a value of zero.

Applying DD-vMCG to Study the Photodissociation of Phenol 109



5.6 Quantum Dynamics Calculations

The diabatic potentials consist of the ground state (X̃) and two singlet excited

states. The first singlet state (Ã) has a ππ∗ character and is bound along the O-H

stretching coordinate, and the second (B̃) state has a πσ∗ character and is disso-

ciative along the O-H stretching coordinate. The corresponding diabatic potentials

in Fig. 5.5(b) include two conical intersections. As expected, the first crossing is

occurring when the first excited 11ππ∗ character state crosses the strongly repul-

sive with respect to the O-H bond 1πσ∗ state. Transfer of the population from

the bright state to the dark state can be possible through this conical intersection.

Furthermore, at larger O-H distance, a second conical intersection is occurring

when the repulsive state, 1πσ∗, crosses the 1ππ ground state. The role of this con-

ical intersections in the photodissociation of phenol has been extensively studied

as it has a great impact on the probabilities of transitions.186

Moving to the surfaces of the PESXZY T model, again the two important conical

intersections are present as described above. Despite the fact that running DD-

vMCG calculations was very efficient, the PESs have some fluctuations and also

the S1 and S2 states in the adiabatic representation (Fig. 5.5(c)), which in the

diabatic representation (Fig. 5.5(d)) become the Ã (green line) and X̃ (red line)

respectively, are at high energy levels at the end of the propagation while a flatter

shape such as the one of the remaining state and the ones in Figs. 5.5(a) and

5.5(b) would be expected showing the dissociation. The energy levels and the

overall shape of the PESs are in good agreement with the ones presented in various

papers174,185,186 employing the PESXZY T model.

Taking advantage of the flexibility the DD-vMCG method offers, a 4-state

problem was then selected to examine the photodissociation of phenol. During this

research work the number of the excited states included in the quantum dynamical

simulations is of great interest as it can reveal important information about the

photochemical dissociation of phenol. In this case, the Zhu and Yarkony163,182,183
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scheme and OpenMolcas have been employed as external programs for computing

the adiabatic energies, gradients and Hessians.
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Fig. 5.6: Cuts through the potential energy surfaces of phenol obtained from a DD-
vMCG simulation employing OpenMolcas with a four states averaging, (a) adiabatic
and (b) diabatic, and employing the 4-state PESZY program as the external program,
(c) adiabatic and (d) diabatic, and obtained directly from the diabatic representation
generated by the PESZY program (e) diabatic, in the space of the O-H bond stretch,
ν33, normal mode. All other coordinates have a value of zero.
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Fig. 5.6(a) and Fig. 5.6(b) show the adiabatic and diabatic potential energy

surfaces along the O-H stretching coordinate generated from the direct dynamics

calculation using OpenMolcas. The surfaces are very smooth with well defined

CoIs. The additional third (C̃) state, has a πσ∗ character and is dissociative

along the O-H stretching coordinate. The corresponding diabatic potentials in

Fig. 5.6(b) include three CoIs. An additional CoI between the third repulsive

excited 1πσ∗ state and the first 11ππ∗ state is taking place in this 4-state model

which will be proved to be crucial for the dissociation of phenol.

Comparing these results with the ones obtained by employing the PESZY

model, the adiabatic surfaces as shown in Fig. 5.6(c) are a good match also

to those presented in the Zhu et al.163 paper. All the conical intersections, S2/S1,

S3/S2 and S1/S0, are found at the same positions. However, the diabatic surfaces

generated using the diabatisation scheme of the DD-vMCG method as shown in

Fig. 5.6(d), are not matching the ones in the paper and thus new calculations

were run where the potential energy matrix elements are obtained directly from

the diabatic representation generated by the PESZY program (Fig. 5.6(e)). One

major difference here is that the diabatic potential energy surfaces employing the

PESZY model (Fig. 5.6(e)) present multiple conical intersections along the ν33

coordinate and especially the ground state that crosses all the excited states. The

differences here depend on how the couplings are defined and connected and also

on the shifting approach that has been followed in the PESZY model to match

experimental data. More specifically, during the construction of the analytical

potential energy surfaces in the PESZY model, the diabatic potential energy func-

tions were forced to match the experimental data by shifting down in energy both

the Ã and B̃ diabatic states. DD-vMCG offers a more flexible and general picture

of the PESs of phenol. Thus, employing a quantum chemistry program to address

this complicated problem, is a much more efficient approach which matches the
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accuracy of this well constructed analytical potential energy surfaces model for the

adiabatic picture.

Including more states during direct dynamics calculations is vital not only

to understand the behaviour, such as the possible conical intersections of these

particular states, but also to better define the target states such as the S0, S1

and S2 for the phenol molecule. The adiabatic (Fig. 5.7(c)) and diabatic (Fig.

5.7(d)) cuts of the five lowest potential energy surfaces of phenol along the ν33

normal mode are shown, characterised as the O-H stretching mode. Here the

extra state (D̃) has a ππ∗ character and is thus bound to the O-H coordinate.

The target states along with their conical intersections are well defined, yet the S4

state unexpectedly crosses both the S3 and S2 multiple times. As a final step and

to better understand the effect of the fifth state, another state has been added (Ẽ)

with a ππ∗ character which is again bound to the O-H coordinate (Figs. 5.7(a) and

5.7(b)). Smooth potential energy surfaces are observed, with the diabatic states

crossing between states as expected. We can observe here that the shape of the

lower three states is affected by adding more states.

Fig. 5.8 shows the adiabatic and diabatic potential energy surfaces in terms

of the vibrational mode closest to the C-Ô-C bond angle. Comparing both the

adiabatic (Figs. 5.8(g), 5.8(e), 5.8(c) and 5.8(a)) and the diabatic (Figs. 5.8(h),

5.8(f), 5.9(d) and 5.8(b)) potential energy surfaces of the ν24 normal mode, it

can be noted that the surfaces are quite smooth apart from the 5-state model.

However, the 6-state approach is the smoothest with very well defined conical

intersections. It is, however, difficult to unravel the role of the C-Ô-C bond angle

in the dissociation of phenol via the S1/S2 conical intersection in these calculations

as it can be associated to more than one mode where also activity from other parts

of the molecule is involved.
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Fig. 5.7: Cuts through the (a,c) adiabatic and (b,d) diabatic 6- and 5-state potential
energy surfaces, in the space of the O-H bond stretch, ν33, normal mode employing
DD-vMCG method with OpenMolcas. All other coordinates have a value of zero.

In the case of the CCOH torsion coordinate, the ν2 mode describes a linear approx-

imation to the rotation of the bond, thus the PESs are expected to be symmetrical.

As depicted in Fig. 5.9, by employing the different state models, PESs are rea-

sonably symmetrical apart from the case of the 5-state model where again in the

PESs a lot of fluctuations are seen. Furthermore, it is important to note that the

ν2 mode does not follow the expected behaviour of a torsional mode where the

torsional potential, due to the rotation of bonds is periodic. The explanation lies

in the strong coupling between the torsional mode with the stretching mode which

also explains the very high and steep potential for the ν2 mode.

Again, as depicted in Fig. 5.6, when only three states were used to describe

the dynamics of phenol, quite poor results were generated with only a narrow well.
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Table 5.1: Summary of state characters and symmetries (in Cs) and comparison of
experimental and theoretical excitation energy (in eV) with those obtained by employ-
ing a CASSCF(10,10)/6-311+Gpp level of theory at the Franck–Condon point and for
different state-averaging.

St. Ave. St. Char. Sym. ∆E Exp. Theo.

3 states S1 ππ∗ A′ 4.90 4.51189/4.58190 4.82191/4.85192

/4.86161

S2 πσ∗ A” 5.72 5.12189 5.37161/5.48192

/5.70191

4 states S1 ππ∗ A′ 4.95 4.51/4.58 4.82-4.86
S2 πσ∗ A” 5.59 5.12 5.37-5.70
S3 πσ∗ A” 6.59 6.42193

5 states S1 ππ∗ A′ 4.86 4.51/4.58 4.82-4.86
S2 πσ∗ A” 5.74 5.12 5.37-5.70
S3 πσ∗ A” 6.68 6.42
S4 ππ∗ A′ 7.59

6 states S1 ππ∗ A′ 4.80 4.51/4.58 4.82-4.86
S2 πσ∗ A” 5.67 5.12 5.37-5.70
S3 πσ∗ A” 6.56 6.42
S4 ππ∗ A′ 7.61
S5 ππ∗ A′ 7.80

Overall, from a practical perspective both Fig. 5.8 and Fig. 5.9 offer a chance to

compare the different state models that have been employed during this study and

also to further examine the accuracy of the DD-vMCG propagation when a more

complex molecule like phenol is used.

Finally, a comparison of the vertical excitation energies obtained in this study

by employing a CASSCF(10,10)/6-311+Gpp level of theory at the Franck–Condon

point and for different state-averaging with those in prior experimental189,190 and

theoretical studies161,191–193 is presented in Table 5.1. The calculated energies are in

agreement with the theoretical results and a quite good match with the experimen-

tal values. Theoretical results that have a better agreement with experimental can

be achieved with energy optimisation.161 For the different state models presented
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in this comparison, the 6-state model yields the closest values to the experimental

data available.
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Fig. 5.8: Cuts through the (a,c,e,g) adiabatic and (b,d,f,h) diabatic 6-, 5-, 4- and 3-
state potential energy surfaces, in the space of the C-Ô-C bond angle, ν24, normal mode
employing DD-vMCG with OpenMolcas. All other coordinates have a value of zero.
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Fig. 5.9: Cuts through the (a,c,e,g) adiabatic and (b,d,f,h) diabatic 6-, 5-, 4- and 3-state
potential energy surfaces, in the space of the CCOH torsion, ν2, normal mode employing
DD-vMCG with OpenMolcas. All other coordinates have a value of zero.
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5.6.2 State Population Analysis

Studying the state populations sheds light on how the total wavepacket is dis-

tributed, into the different states included in the calculation during the propa-

gation period. Here, the diabatic state populations as a function of time for the

phenol molecule are presented, after vertical excitation to the Ã, B̃, C̃, D̃ and Ẽ

states for the 3-, 4-, 5- and 6-state models. The thick black line in all the popu-

lation figures corresponds to the total density which reveals the percentage of the

dissociation. Also, the strong dissociative behaviour of the πσ∗ state is displayed

in all the different state averaging models used in this study for phenol apart from

the 3-state model.

The populations for the 3-state model after excitation to the Ã (Fig. 5.10(a))

and to the B̃ (Fig. 5.10(b)) show a small amount of population transfer but no

dissociation. The diabatic population results for the 3-state model are in agree-

ment with the PESs, confirming our initial impression that this 3-state model

cannot successfully describe the photodissociation dynamics of phenol and thus

more states should be included.
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Fig. 5.10: Diabatic state populations from DD-vMCG simulations of phenol starting
with a vertical excitation to Ã and B̃ states for the 3-state model.

Fig. 5.11 shows that when employing a 4-state model the diabatic population

dynamics are quite different from the 3-state model and that including more states
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than the target ones has a significant effect on the population transfer and the

percentage of dissociation as they have both considerably increased. Fig. 5.11(a)

depicts the diabatic state populations for the 4-state model after excitation to the

Ã state. The population transfer starts immediately and mostly to the B̃ state

and approximately 30% of the population remains in the Ã state at the end of

the propagation. The population transfer occurring to the rest of the states is

relatively small. The population decay starts at 10 fs and is complete by around

140 fs. Moreover, for excitation to the B̃ state (Fig. 5.11(b)), a fast population

transfer mostly to the Ã state is observed, but also a small amount to the C̃ state.

Density begins to flow into the CAPs after around 10 fs and a steady dissociation

continues until the end of the propagation. For excitation to the C̃ state (Fig.

5.11(c)), the rate of the population transfer is considerably slower compared to

the two other states. As it is also depicted, the population transfer is evenly

distributed across all of the remaining states. Following the same pattern the

amount of dissociation is much less compared with Figs. 5.11(a) and 5.11(b).

In the 5-state model, relaxation from the Ã state (Fig. 5.12(a)) shows a similar

behaviour with the 4-state model while here the presence of the D̃ state increases

the total transfer to B̃ and also to C̃. In Fig. 5.12(b) again the principal population

transfer from the B̃ state is occurring immediately into the Ã state. After around

140 fs about 15% of the population has been transferred to the Ã state, with

around 10% of the population being transferred to the C̃ and D̃ states. Fig. 5.12(c)

shows that after excitation to the C̃ state almost immediately the population is

transferred mostly to the D̃ state while 60% of the initial population remains in

the C̃ state when the end of the propagation is reached. A similar pattern can

be noticed in Fig. 5.12(d) where a greater amount of population transfer takes

place going from the D̃ to C̃ state. The decrease in total density after excitation

to the Ã state (Fig. 5.12(a)) and C̃ state (Fig. 5.12(c)) takes more time to start
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Fig. 5.11: Diabatic state populations from DD-vMCG simulations of phenol starting
with a vertical excitation to Ã, B̃ and C̃ states for the 4-state model.

compared to the other two states for which it is taking place in the first 20 fs (Figs.

5.12(b) and 5.12(d)). The amount of total dissociation is greater for excitation to

the Ã(25%) and B̃(40%) states compared to excitation to the C̃(10%) and D̃(15%)

states.

Moving to the 6-state model, the rate of population transfer is slower compared

to the 4- and 5-state models for propagation after vertical excitation both in the

Ã and B̃ state. Apart from the slower relaxation from Ã (Fig. 5.13(a)), including

Ẽ results in a significant reduction in the amount of dissociation that is now

close to 10%, which is in accordance with experimental results.162,172,173,194–196 In

particular, all the figures in Fig. 5.13 follow the same trend where more time is

needed for the density to begin to flow in the CAPs as we move to a higher initial
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Fig. 5.12: Diabatic state populations from DD-vMCG simulations of phenol starting
with a vertical excitation to Ã, B̃, C̃ and D̃ states for the 5-state model.

excitation state, notwithstanding that Ẽ in Fig. 5.13(e) seems to slightly diverge.

In Fig. 5.13(c), it appears that the population is relatively evenly distributed

across all of the excited states and almost 40% of the population is still in the C̃

state. The strong D̃-Ẽ coupling has affected the populations in both Fig. 5.13(d)

and Fig. 5.13(e) where the main population transfer is occurring between these

two states and is more clearly illustrated in the Ẽ example.

The 6-state model shows that the inclusion of the D̃ and Ẽ led to a better

realisation of the couplings between the states and thus the population transfer

and the rates of the dissociation. The 5-state model gives a poor description while

the 6-state model is more like the 4-state model. The strong D̃-Ẽ coupling that

is seen in the 6-state model, cannot be reproduced by the 5-state and eventually
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leads to a spurious C̃-D̃ coupling. This poor description of the couplings also

caused the incorrect CoIs at the PESs as depicted at Figs. 5.7(c) and 5.7(d). The

above results showed the importance of conducting further analysis besides the

PESs in order to understand the complex dissociative behaviour of phenol.
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Fig. 5.13: Diabatic state populations from DD-vMCG simulations of phenol starting
with a vertical excitation to Ã, B̃, C̃, D̃ and Ẽ states for the 6-state model.
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5.6.3 Flux Analysis

A computational analysis of the PESs together with the state populations gives

a very good description of the dissociative behaviour of the different states, the

connection between these states and more importantly the significance of includ-

ing more states for the description of the dynamics for phenol. Moreover, it is

important to unravel the probability of the different decay pathways in order to

understand the dynamic mechanisms of the photodissociation of phenol. To this

end, the integral of the flux into each dissociation channel was analysed. It is ob-

tained using Eq. 5.25 by integrating the expectation value of the CAP using the

density projected onto each state to give the probability of decay via that channel

as a function of time. It is important to note that considering the outcomes of Fig.

5.10 - Fig. 5.13 only the integrated flux for the 4- and 6-state models was plotted

for the X̃, Ã and B̃ states as flux was very close to zero for the rest of the states.

Fig. 5.14 shows that the flux across dissociation channels (X̃ and B̃) increases

significantly for both the 4- and 6-state models and the dissociation occurs after 50

fs. After excitation to Ã for the 4-state model, Fig. 5.14(a), a first significant rise

on the B̃ state is taking place around 100 fs and then the majority of the flux is

going into the X̃ state at around 125 fs. For the 6-state model (Fig. 5.14(c)), the

flux follows the same pattern while the flux distribution into B̃ is about double the

one to X̃, and also the proportion of the flux going into the Ã state is increased.

In the case of excitation to B̃, in both Figs. 5.14(b) and 5.14(d) the flux

distribution into the three target states follows a very similar pattern. The amount

of flux in both X̃ and B̃ gradually increases with an analogous rate, while in the

case of the 6-state model the amount of flux into B̃ after 175 fs is greater compared

to the one into X̃. It can be noted that after excitation to the B̃ state for the

4-state model, there is more energy and thus more dissociation in the Ã state is

possible. Fig. 5.14(b) shows that the percentage of the total flux going out of Ã
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Fig. 5.14: Normalised integrated flux as a function of time from DD-vMCG simulations
of phenol starting with a vertical excitation to Ã and B̃ states for the 4- and 6-state
models.

has been doubled compared to Fig. 5.14(a). In the case of the 6-state model the

in which state the excitation is conducted does not seem to affect the results since

the percentage of the total flux going out of Ã stays almost constant.

As literature shows the dissociation mechanism of phenol is a controversial sub-

ject. In some research studies it is indicated that an ultrafast internal conversion

from the bright 1ππ∗ state to the dark 1πσ∗ state through their CoI seam, leading

to the formation of the phenoxyl radical after hydrogen dissociation is the main

dissociation mechanism.173,192 In this study, as all the above outcomes suggest,

the timescales are probably too short for the O-H dissociation through hydrogen

tunnelling as in all cases the lower X̃-B̃ channel is more favorable. Thus, the

conical intersection between the 1πσ∗ and the X̃ state which provides an alter-
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native pathway of rapid relaxation to the electronic ground state is suggested to

be the primarily dissociation pathway. This outcome is strongly supported by

experimental studies.159,160

5.7 Discussion

In this Chapter, the improved algorithm for DD-vMCG197 has made possible the

successful study of the full dimensional photo-dissociation dynamics of phenol.

Thus the goal was twofold, firstly to unravel the complicated full dimensional dis-

sociation dynamics of phenol and especially the decay pathways and further to test

the efficiency and accuracy of the new DD-vMCG algorithm in a more complex

chemical system such as phenol. Initially the development of the existing code by

creating a new interface so that Quantics can call any available external program

to compute the energies, gradients and Hessians of a given molecular system and

then store all the data in the quantum chemistry database was presented. An

electronic structure analysis was then conducted at a CASSCF/6-311+G** level

of theory with an active space of 10 electrons in 10 orbitals. All electronic structure

calculations were done with the OpenMolcas program. The DD-vMCG protocol

was then established, including the number of states, GWPs and the total prop-

agation time along with the strategy followed to converge the database. Finally,

the theory around using a CAP to calculate the dissociation flux was presented.

The results of DD-vMCG calculations were analysed by plotting the PESs, the

diabatic state populations and the integrated flux. The potential energy surfaces

were firstly presented for the 3-, 4-, 5- and 6-state models. The 4-state and 6-state

models where the ones with the smoothest PESs and well defined conical intersec-

tions between the ground state and the first three excited states. At the same time,

the 5-state model could not successfully describe the dynamics of phenol as not in-

cluding Ẽ, which is strongly coupled with the D̃ state, lead to meaningless conical
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intersections and fluctuations in the PESs. Finally, the 3-state model was quite

computationally hard to run direct dynamics calculations and also to converge

even compared to the 6-state model which obviously is a harder computational

problem. This theoretical study by including for the first time five excited states

showed the importance of designing models with more states than the target ones

in order to have a better description for the molecule under investigation. It has

been shown that for phenol the 3-state model has to be completely abandoned and

even the 4-state model that clearly offers a significantly better description of the

dynamics is still not enough to match the experimental findings. This outcome is

especially important for the dynamics of molecules which are strongly affected by

conical intersections.

A direct dynamics comparison analysis was also presented by employing the 3-

state model with OpenMolcas and the PESXZY T model and also the 4-state model

with OpenMolcas and the PESZY model for phenol. The comparison results not

only suggested that DD-vMCG with OpenMolcas can reproduce the PESs ob-

tained analytically in the aforementioned studies but also to generate smoother

surfaces with better defined states and conical intersections between them. Addi-

tionally, the advantage of using DD-vMCG over analytically calculated PESs to

study the molecular dynamics of a compound has been proved relying on the less

computational effort, the higher accuracy and the significant flexibility.

Additionally, a comparison of the vertical excitation energies obtained in this

study for different state-averaging with those in prior experimental and theoretical

studies showed that the calculated energies are in agreement with the theoretical

results and a quite good match with the experimental values and the 6-state model

yields the closest values to the experimental data available.

The state population analysis showed that both the 4-state and the 6-state

model can accurately describe the state population transfer. However, the 6-state
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model after excitation to the Ã state best describes the population transfer and

distribution between the states which matches experimental findings. Here, the

reason behind the poor description of the PESs when the 5-state model is employed

becomes more clear. The strong D̃-Ẽ coupling that is seen in the 6-state model, but

cannot be reproduced, is leading to a spurious C̃-D̃ coupling. The populations for

the 3-state model showed a small amount of population transfer but no dissociation

regardless of the initial excitation state which again confirms the idea that more

states should be included for the description of phenol. Important conclusions

regarding the decay mechanism have also been presented by computing the flux

distribution into the different states. It is clear that the dissociation pathway

provided by the conical intersection between the 11πσ∗ and the 1ππ state is more

favourable during the phenol dynamics by offering a rapid relaxation to the ground

state.

Beyond the successful description of the photodissociation of phenol, this study

illustrates the possibilities of the DD-vMCG method as it is capable of capturing

the complete quantum picture of the coupled nuclear and electronic motions after

photo-excitation into multiple states for a molecule like phenol with 33 vibrational

modes. A natural extension of this work will be to perform quantum dynamics

simulations with DD-vMCG to the phenoxyl radical in order to further unravel

the photodissociation dynamics of phenol.
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Chapter 6

Direct Dynamics using Gaussian
Process Regression

6.1 Introduction

After dealing with the main bottleneck besides quantum chemistry calculations

that DD-vMCG was encountering, namely the time needed to reread, sort and

analyse the database as presented in Chapter 4, it is appropriate to check for other

possible sources of errors and time time consuming tasks. As discussed in Chapter

3, solving the time-dependent Schrödinger equation for DD-vMCG by employing

a linear combination of Gaussian wavepackets (GWPs), a computationally expen-

sive evaluation of integrals is needed to compute the potential energy surfaces of

the target molecule. The computational tractability of direct dynamics led to a

standard approach which was a Taylor expansion to the second order.18,112,117,121

The aforementioned expansion of the PES is known as local harmonic approxima-

tion (LHA). The fact that the potential energy matrix elements are expanded to

the second order limits the range over which the interpolation may be considered

as accurate enough for quantum chemistry simulations. Additionally, it is compu-

tationally very expensive to calculate the electronic gradients and Hessians at the

centre of each Gaussian wavepacket at every time-step of the propagation.

A successful solution to various problems in Quantum Chemistry (QC) has

been found by employing machine learning ML algorithms. As depicted in Fig.
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6.1, machine learning can be used as a powerful prediction tool, subject to certain

conditions, such as good machine learning algorithms and training data. The

advantages of machine learning techniques in quantum chemistry rely on the speed

which is comparable to molecular mechanics and on the accuracy when predicting

the required property. Thus, having a tool that offers significantly quicker and

more accurate performance than traditional quantum chemistry methods is a great

advantage and can be very beneficial both in improving existing and developing

new methods and also in unraveling the behaviour of different molecular systems.

Fig. 6.1: Schematic representation of accuracy of different quantum chemistry methods
and machine learning approximations as a function of timing (computational cost). SQC
denotes the semiempirical quantum chemistry methods. Adapted with permission from
ref. 198.

In this chapter, a different approach for approximating the potential energy sur-

face matrix elements relying on PES interpolation employing machine learning is

described and compared to LHA. More specifically, a nonparametric, Bayesian ap-

proach to regression that has received considerable attention in the area of machine

learning is employed which is known as Gaussian process regression (GPR).199 In
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this machine learning method, in each time-step, solely single-point evaluations

of the potential energy surfaces at a finite number of configurations are required.

Thus, there is no need for performing expensive evaluations of gradients and Hes-

sians. Benchmark calculations have been performed on the ozone molecule em-

ploying both DD-vMCG and DD-vMCG using Gaussian-approximation potentials,

called GAP-vMCG,200 to directly compare these two methods. The advantages

of GPR over LHA are examined and discussed in detail along with a future work

section where the possibility for further developments of GAP-vMCG are high-

lighted.

6.2 Local Harmonic Approximation

In this section, the second order Taylor expansion is described in more detail, which

together with the Shepard interpolation201 constitutes the foundation of the local

harmonic approximation as used in DD-vMCG. The Shepard interpolation scheme

employed by direct dynamics and its theory have been extensively discussed in

section 4.2.

For an f-dimensional system, the GWPs in Heller form have the following form

gi(q, t) =

f∏
k=1

(
2aki
π

)1/4

e−a
k
i (q̂k−qki (t))2+ipki (t)(q̂k−qki (t)) (6.1)

where the parameters of the GWPs for each DOF are q which denotes the position

and thus q̂ is the position operator, p the momentum and α the width parameter.

As mentioned before, in DD-vMCG the width parameters are fixed since “frozen”

GWPs are employed. Hence, the potential energy matrix elements for the gi(q, t)

and gj(q, t) basis functions can be written as

Vij =

∫
dq g∗i (q, t)V̂ gj(q, t) (6.2)

Integration is over all the space dimensions (f) of the target molecule. However,

it is generally impossible to exactly evaluate this integral unless a simple analytical

Direct Dynamics using Gaussian Process Regression 131



6.2 Local Harmonic Approximation

form of the PES is available. This applies to on-the-fly methods such as DD-

vMCG where the evolution of the time dependent Schrödinger equation is linked

to the PES evaluation by employing ab initio electronic structure calculations.

In these cases where the analytical PES is not available, the most widely used

approach for the calculation of PES matrix elements, Vij, is to employ a Taylor

expansion. Usually, this expansion is taken around either the position of the GWP

calculated from the product of the two separate GWPs or the position q of one

of the GWPs. For DD-vMCG, the second-order Taylor expansion requires the

evaluation of energies, gradients and Hessians.

One of the most prominent and broadly used properties of Gaussian basis

functions is that the product of two of them is again a Gaussian function. Thus,

in the GWPs case, applying Eq. 6.1, the product of two GWPs where the one is

defined as the complex conjugate can be written as

g∗i (q)gj(q) =

f∏
k=1

(
4aki a

k
j

π2

)1/4

e−a
k
i +akj (q̂k−q̄k)2+i(pki−pkj )q̂k+ipki q

k
i −ipkj qkj−aki (qki )2−akj (qkj )2

(6.3)

which is a complex Gaussian function centred at

q̄k =
aki q

k
i + akj q

k
j

aki + akj
(6.4)

For frozen GWPs with equal widths,202 the mean value of the two constituent

GWPs coordinates is equal to the product centre q̄k.

Since the Gaussian wavepacket products in Eq. 6.2 are localised around q̄ =

(q̄1, q̄2, ..., q̄f ), major progress can be achieved in evaluating PES matrix elements

employing a Taylor expansion around q̄

V (q) ' V (q̄) +

f∑
k=1

(q̂k − q̄k)∂V
∂qk

+
1

2

f∑
k,µ=1

(q̂k − q̄k) ∂2V

∂qk∂qµ
(q̂µ − q̄µ) (6.5)

where the gradients and the Hessians are computed at q̄. By substituting Eq. 6.5
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into Eq. 6.2, the PES takes the following form

Vij =
〈
gi

∣∣∣V̂ ∣∣∣ gj〉 ' V (q̄)Sij +

f∑
k=1

(
〈
qk
〉
ij
− q̄kSij)

∂V

∂qk

+
1

2

f∑
k,µ=1

[〈
qkqµ

〉
ij
− q̄k 〈qµ〉ij − q̄

µ
〈
qk
〉
ij

+ q̄kq̄µSij

] ∂2V

∂qk∂qµ

(6.6)

where 〈
qk
〉
ij

=
〈
gi
∣∣q̂k∣∣ gj〉 (6.7)

and 〈
qkqµ

〉
ij

=
〈
gi
∣∣q̂kq̂µ∣∣ gj〉 (6.8)

Alternatively to the aforementioned mid-point Taylor expansion method, a

Taylor expansion around one of the GWP basis functions can be considered which

is the approach employed by DD-vMCG. Moving the centre of the Taylor expansion

to qi(t), and once again truncating up to the second-order results in three additional

potential energy surface approximation methods, Gaussian-based Taylor expansion

to the zeroth order

Vij ' V (qi)Sij (6.9)

where Sij is the overlap matrix

Sij = 〈gi|gj〉 (6.10)

Gaussian-based Taylor expansion to the first order

Vij ' V (qi)Sij +

f∑
k=1

(
〈
qk
〉
ij
− qki Sij)

∂V

∂qki
(6.11)

Gaussian-based Taylor expansion to the second order

Vij ' V (qi)Sij +

f∑
k=1

(
〈
qk
〉
ij
− qki Sij)

∂V

∂qki

+
1

2

f∑
k,µ=1

[〈
qkqµ

〉
ij
− q̄k 〈qµ〉ij − q

µ
i

〈
qk
〉
ij

+ qki q̄
µSij

] ∂2V

∂qki ∂q
µ
i

(6.12)
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The zero-order approximation is known as the saddle-point approximation and

it is employed in AIMS. If the second-order Taylor expansion is used like in vMCG,

then the energy, gradients and Hessian matrix have to be computed at each point.

The second-order approximation requires n evaluations of the potential for n GWPs

rather than n(n+1)/2 that the midpoint approach needs. Also, it is essential for

the ”CX” formalism which enables the division of the equations of motion into

“classical” and “non-classical” parts.

Although this is a very beneficial approach that takes advantage of the locality

of GWPs, it faces some bottlenecks. For instance, the computational effort needed

for the calculation of the Hessians using ab initio methods is quite demanding.

As previously discussed in 3.3.3, in direct dynamics a Hessian update approach

is applied which has the risk of introducing more inaccuracies and cost in our

calculations. However, the main disadvantage of employing LHA is that vMCG

does not converge on the exact result.

6.3 Gaussian Process Regression

6.3.1 Introduction

The use of machine learning techniques to fit molecular potential energy surfaces

has been steadily gaining interest; such a technique is Gaussian process regres-

sion199,203–206 which is sufficiently simple and robust to be a viable alternative to

artificial neural networks207 (ANNs) for solving general problems. Applications of

GPR on small molecular systems have demonstrated that high quality PESs can

be achieved with a remarkably small number of data points and that this num-

ber scales almost linearly with the size of the system.208–211 It remains to be seen

if larger and more complex systems still show this scaling. Also, strategies for

training points selection still need to be optimised.

Gaussian process regression is a machine learning technique which is based on
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statistical learning theory and Bayesian theory. It is highly adaptable and can be

easily generalised to solve complicated regression and classification problems, such

as high dimensions, small samples, and non-linearity problems.207 Successful ap-

plications of GPR are varied and include dynamic system model identification,212

time series prediction analysis,213 system control214 and quantum chemistry.215

There are however some drawbacks to GPR such as the limitation of the Gaussian

noise distribution hypothesis and the need to use all the available data in order to

perform the required prediction. Additionally, the performance of GPR is heavily

dependent on how the hyperparameters are selected. The number of GPR learning

iterations is reduced and the accuracy of the fitting and the ability of the model to

be general are enhanced if suitable hyperparameter values are selected. Therefore,

a crucial topic in machine learning is hyperparameter optimization.216,217

Koch and Zhang218 were the first to report the use of machine learned po-

tentials for on-the-fly GWP-based molecular dynamics simulations; they obtained

analytic potential energy matrix elements by employing multiplicative ANN to fit

potential energy surfaces on-the-fly with good performance and accuracy. In a

later study, the Gaussian approximation potential (GAP)200 method was applied

to direct dynamics with classically propagated GWPs. The authors reported po-

tential energy matrix elements with higher accuracy when compared with LHA and

based on these findings proposed that GPR should replace LHA in direct quantum

dynamics. Hyperparameters for GPR were not optimised in this work, making its

predictions analogous to kernel ridge regression (KRR).219 Subsequently, the same

GPR technique was successfully employed with the MCTDH method by Richings

and Habershon,220,221 establishing this approach as a direct dynamics MCTDH

without the need for a global PES to be pre-fitted. Moreover, GAP-vMCG was

firstly introduced by Polyak et al.222 but was limited to ground state calculations.

In ref. 223, the case of the proton transfer isomerisation of salicylaldimine was
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studied and it was proved that multi-dimensional direct quantum dynamics is

possible with this method.

6.3.2 The General Algorithm

Gaussian process (GP) which is also termed as normal stochastic process, is a

probabilistic kernel machine that is based on the statistical learning theory and the

Bayesian theory.199 In terms of function space, GP corresponds to any set of finite

random variables with a joint Gaussian distribution, such as Q = [q1,q2, · · · ,qn]T ,

whose properties are defined through the mean function µ(q) and covariance func-

tion a(q,q′). GP is thus defined as follows

f(q) ∼ GP (µ(q), a(q,q′)) (6.13)

where q,q′ ∈ Rd refer to two stochastic variables. Normally, the mean value of

sample data is originally set to zero. The standard linear regression model with

Gaussian white noise is then given by

y = f(q) + ε , f(q) = qT ·w (6.14)

where, q refers to an input vector, y is the noisy output vector such as the observed

value, f(q) is the value of the objective function, w is the weight vector and ε

is the noise which obeys a Gaussian distribution.The normal distribution is often

referred to as N(µ, σ2). Thus when a random variable X is normally distributed

with mean µ and standard deviation σ, it can be expressed as X ∼ N(µ, σ2).

w ∼N
(
0,
∑

P

)
(Σp is covariance) (6.15)

ε ∼N(0,σ2
n) (σ2

n is variance) (6.16)

The prior distribution of the observed values y can then be written as

y ∼ N(0,A(Q,Q) + σ2
nIn) (6.17)
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Joint distributions of the observed value y and the predicted value f ∗ are written

as [
y
f ∗

]
∼ N

(
0 ,

[
A(Q,Q) + σ2

nIn A(Q, q∗)
A(q∗, Q) a(q∗, q∗)

])
(6.18)

where A(Q,Q) = An = (aij) is the n × n symmetric positive definite covari-

ance matrix, In denotes the n dimensional identity matrix, A(Q, q∗) the n × 1

order covariance matrix of the new input test points q∗ and all input points set

Q,A(Q, q∗) = A(q∗, Q)T , and a(q∗, q∗) is the covariance matrix of the test point

q∗.

The posterior distribution of the predicted value f ∗ is thus obtained through

regression as per Eqs. 6.19-6.21

f ∗|Q,y, q∗ ∼ N(f̄ ∗, cov(f ∗)) (6.19)

where f̄ ∗ is the mean value and cov(f ∗) the variance of the predicted value f ∗

determined as

f̄ ∗ =A(q∗, Q)[A(Q,Q) + σ2
nIn]−1y (6.20)

cov(f ∗) =a(q∗, q∗)−A(q∗, Q)[A(Q,Q) (6.21)

+ σ2
nIn]−1A(Q, q∗)

The covariance function, also known as kernel function, has various differential

forms in GPR. One such form is, the heterogeneous square exponential kernel

function

a(q,q′) = θ exp(−γ ‖q− q′‖2
) (6.22)

where θ and γ are the parameters of the kernel function.

Due to the introduction of noise, the variance function in GPR contains addi-

tional parameters called hyperparameters. Hyperparameters in Gaussian process

regression contain the following
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i. The first hyperparameter is the variance σ2
n of noise ε (Eq. 6.16) and includes

two hyperparameters (u, v).

ii. The second hyperparameter refers to the covariance
∑

P of weight vector w

(Eq. 6.15). Particularly,
∑

P includes two hyperparameters (α, β).

iii. The third hyperparameter refers to the θ and γ parameters included in the

kernel function a (Eq. 6.22).

As mentioned in section 6.3.1, using optimum hyperparameters in GPR is

conducive to fitting accuracy and generalization ability.216,217,224–227

6.3.3 Calculation of Potential Energy Surface Matrix Ele-
ments

Employing Gaussian process regression,200 the interpolated potential energy sur-

face can be written as a linear combination of Gaussian terms,

V (q) '
M∑
k=1

wke
−γ|q−qk|2 (6.23)

where M is the number of reference configurations, where the value of PES is

assumed to be calculated, and γ determines the length-scale of the Gaussian func-

tions. The exponential term is the kernel function. Considering M values of the

potential energy surface, to determine the values of M unknown weights (wk) in

the interpolated potential energy surface, M equations have to be solved simulta-

neously

Aw = b (6.24)

where A denotes an M ×M covariance matrix with the following elements

Aij = e−γ|q−qk|2 + σ2δij (6.25)

and b denotes the vector of known potential energy surface values at the reference

configurations

bi = V (qi) (6.26)
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The hyperparameters σ and γ are considered in this work as simple variables

which have fixed values during direct dynamics calculations. A better approach

would be to minimise the prediction error in order to optimise them.

Applying GPR in direct dynamics, it is assumed that the GWP basis set em-

ployed is time-dependent and that at each time-step the value of the PES is calcu-

lated at the qi(t) positions of the GWP centres. The data generated will work as

M reference points from which the GPR interpolation surface will be constructed.

In Quantics the energy is calculated at the centre of the GWP if the variance is

large enough (only when using random sampling) and then at a range of points

around the centre of each GWP (done when using both random or Sobol sequence

sampling), again if the variance at each point is large enough.

After the weights have been evaluated (Eq. 6.24), the potential energy matrix

elements are then determined employing the GPR surface

Vij =

∫
dq g∗i (q, t)V̂ gj(q, t) =

M∑
k=1

wi

∫
dq g∗i (q, t)e

−γ|q−qk|2gj(q, t)

=
M∑
k=1

wi

f∏
κ=1

∫
dqk(gki (qk, t))∗e−γ(q−qk)2(gkj (qk, t)) =

M∑
k=1

wi

f∏
κ=1

Ikκ

(6.27)

The Gaussian terms of Eq. 6.23 and the GWPs conveniently are both a simple

product of one-dimensional terms, i.e. one for each of the f DOF. For a reference

point κ and DOF k, the one-dimensional Gaussian integral I can be evaluated

analytically

Ikκ = N
(π
a

)1/2

e
(b+ic)2

4a
+(d+ie) (6.28)
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the coefficients can be further expanded as follows

a =aki + akj + γ

b =2aki q
k
i + 2akj q

k
j + 2γqkκ

c =pkj − pki

d =− aki (qki )2 − akj (qkj )2 − γ(qkκ)2

e =pki q
k
i − pkj qkj

N =

(
2aki
π

)1/4
(

2akj
π

)1/4

(6.29)

In general, after determining the GPR weights, the entire potential energy ma-

trix is analytically evaluated by employing the GPR approximation of Eq. 6.23.

This is just a simple sum-of-product terms evaluation. GAP-vMCG employs po-

tential energy surface evaluations at the position of the GWP centre at each time-

step, builds the GPR weights and Eqs. 6.23, 6.27 and 6.28 are then employed in

order to determine the full potential energy matrix. Nevertheless, this is one of the

simplest ways that GPR can be implemented for quantum dynamics simulations

and further possible improvements will be discussed and suggested as future work.

Moreover, the kernel employed in GPR can be expanded as a sum of lower

dimensional Gaussian functions which is known as additive kernel and can be

expressed as

aADD(q,qn) =

f∑
k=1

a(qk, q
n
k ) +

f∑
k,l

a(qk, q
n
k )a(ql, q

n
l ) + · · ·+ a(q,qn) (6.30)

where a is a one-dimensional kernel function (Eq. 6.22). This is a successful ap-

proach when fitting multi-dimensional PESs. The advantage of this approximation

is that each Gaussian function used in the expansion now depends on only a subset

of the energy points in the database which work as the input variables.

Finally, it is worth comparing GPR with the second-order Taylor expansion and

more specifically LHA as a tool to determine the potentials. The main difference

Direct Dynamics using Gaussian Process Regression 140



6.4 Results

is the calculation of the gradients and Hessian matrix needed in LHA while GPR

only needs the potential energy values. Additionally, apart from assuming that

PES smoothly varies along the chosen coordinates, no presuppositions about the

local shape of the PES are made in GPR. To sum up, GPR has a lot of advantages

with respect to machine learned PESs suitable for molecular dynamics simulations.

A simple question to be answered is how much better it performs relating to the

accuracy and the efficiency in comparison with LHA. An attempt to address this

question is made in the next section of this chapter.

6.4 Results

6.4.1 Computational Details

All the nuclear dynamics calculations were performed using the DD-vMCG imple-

mentation in the QUANTICS package.21 To investigate the ozone molecule, direct

dynamics were performed on the ground and first two excited electronic states of

this molecule including all degrees of freedom as mass-frequency scaled normal

modes. The electronic structure calculations were carried out employing MOL-

PRO 2015.1141 at the SA-CASSCF(12,9)/6-31++G* level of theory. The initial

wavepacket was a Gaussian function of width 1/
√

2 along all normal coordinates.

The GWPs were initially distributed in momentum space which is the default is

vMCG. An initial calculation was conducted with a vertical excitation to the first

excited state using 20 Gaussian basis functions, with a propagation time of 100 fs

with data output every 0.1 fs.

Initially, a DD-vMCG run was conducted with an empty database and then

multiple propagations were performed until no new points were added to the

database, with the database from the previous step employed each time. After-

wards, this final database was employed by both DD-vMCG and GAP-vMCG to

read all required information in order to fit the PESs. In the case of GAP-vMCG
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only energies were taken from the database, while in DD-vMCG the gradients and

the Hessian matrix were also used. The various common parameters used in these

propagations along with the level of theory have been kept constant, thus sensible

conclusions from these comparisons can be drawn.

It is worth noting that similarly with the approach followed in Chapter 4 where

benchmark calculations on butatriene were conducted, here the same test molecule

was initially employed to validate the accuracy and efficiency of GAP-vMCG.

Since a detailed analysis for butatriene was already presented in Chapter 4, it was

decided to include only the analysis of the ozone molecule in this chapter.

6.4.2 Ozone

The ozone molecule, O3, has been proved to be vital in the life process of the

upper atmosphere. Additionally, it has a wide range of applications in different

scientific areas such as physics, environmental studies, synthetic biology and chem-

istry.228–230 Thus, different chemical and physical properties of the ozone molecule

have been examined in great detail. In this work, ozone has been used as a test

molecule for benchmark calculations in order to unravel the differences and simi-

larities in efficiency and accuracy of DD-vMCG and GAP-vMCG, and to further

obtain useful conclusions from the comparison of LHA with GPR potentials.

The equilibrium structure of ozone, shown in Fig. 6.2, belongs to the C2v

point group. Experimental and computational studies have mostly been focused

on the higher energetic triplet spin states.231–234 Three low lying triplet states

exist, 3B2, 3A2, and 3B1, which were firstly confirmed,235 when an absorption

spectrum experiment in the 10,000-22,000 cm−1 band was carried out using ozone.

Subsequently, the O2+O dissociation limit and the spin–orbit interaction of these

lowest excited triplet states were addressed in a theoretical study.233 Two different

studies236,237 led to the development of a PES for the ground state ozone molecule

along with its eight low lying triplet states. Finally, computational calculations
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suggested that no triplet states are considered to be located below the molecular

dissociation limit, thus O2 and radical O cannot be formed.238

Fig. 6.2: The equilibrium ground state structure of ozone.

A number of studies on ozone have been focused on obtaining potential energy

surfaces with various levels of accuracy and theory. Efforts to construct analyt-

ical PESs have been presented and also molecular dynamics simulations such as

MCTDH have been used to study the dissociation and the transition process of the

ozone molecule.239 Overall, two different potential energy surface fits have been

reported, one for the low-lying singlet–triplet transition and the other one for the

near-equilibrium ground state of ozone molecule.240–245

6.4.3 Analysis

Fitted Potential Energy Surfaces

The study of the lowest three energy PESs in ozone was one of the first cases

revealing that in molecules with little or no symmetry CoIs can still occur and they

are known as accidental CoIs. Ozone features two minima with different symmetry

which are separated by a transition state found close to the Ã(1A2)-B̃(1B1) CoI.246

Here, ozone is considered to have C2v symmetry in the ground state. The results

from the computational study employing a 3-state model with DD-vMCG and

GAP-vMCG methods including all degrees of freedom are presented. The diabatic

and adiabatic potential energy surfaces, and also the CoIs have been calculated and

characterised along the symmetric stretching coordinate which corresponds to the

ν1 vibrational mode, the asymmetric stretching coordinate which corresponds to

the ν3 vibrational mode and the bond angle which corresponds to the ν2 vibrational
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mode as evaluated at a SA-CASSCF/6-311+G* level of theory. The PESs of ozone

are quite complex, especially those of the symmetric stretching coordinate (ν1) as

changes in the symmetry can vary the position of the crossings.

Fig 6.3 shows one-dimensional cuts of the PESs along the ν1 mode. A crossing

between the 1B1 and the more optically active 1A2 state is taking place just before

the Franck–Condon point, and can be observed both in the adiabatic and the

diabatic PESs by employing the two methods under investigation. The PESs

results when the GAP-vMCG method is employed, Figs. 6.3(c) and 6.3(d), are

identical to those obtained when DD-vMCG is employed.
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Fig. 6.3: One-dimensional cuts through the a) adiabatic and b) diabatic potential energy
surfaces employing DD-vMCG, and the c) adiabatic and d) diabatic potential energy
surfaces employing the GAP-vMCG method for ozone, in the space of the symmetric
O-O bond stretch, ν1, normal mode. All other coordinates have a value of 0.

It is worth noting that the symmetric mode is coupled to the asymmetric and
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thus different values could affect the PESs and a possible CoI. As appeared in

the work of Batista and Miller247 the gap between the states will increase as the

value of the asymmetric stretch coordinate rises. In the case where, similarly to

the approach in our study, the rest of the coordinates are set equal to zero, the

aforementioned CoI occurs. This is ascribed to the small coupling between the sym-

metric and asymmetric stretch coordinates leading to vibronic coupling between

the two electronic excited states. The ground state (11A′) is quite well separated

from the electronic excited states. However, in the positive displacement direction

a crossing occurs at high energies and small angles according to literature.248 Thus,

here that the angle is zero some crossings that are not experimentally observed

are expected.

Plotting the asymmetric coordinate ν3 for the adiabatic picture, Figs. 6.4(a)

and 6.4(c), the topology of the 1A2 state is quite different compared to the 1B1

state which has a shape of a double well with a barrier at the Franck–Condon point

controlling the point of maximum proximity between these two electronic excited

states and equilibrium positions that lead to dissociation of the molecule that are

symmetrically located on both sides of the barrier, progressively farther away from

the origin and further stabilized as the molecule is extended along the symmetric

stretch coordinate. The equilibrium positions that can result in a possible dissoci-

ation of ozone are symmetrically located about the barrier. The adiabatic surfaces

are in agreement with other computational work.247 The diabatic PESs using both

methods show the strong coupling between the two excited states. Once more the

results prove that GAP-vMCG can successfully describe the dynamics of ozone.

It is worth noting that similarly with the formamide example in Chapter 4, areas

that are not sampled with vMCG give harmonic surfaces which explains why we

do not get flat asymptotic surfaces as expected along the dissociative asymmetric

coordinate.
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Fig. 6.4: One-dimensional cuts through the a) adiabatic and b) diabatic potential energy
surfaces employing DD-vMCG, and the c) adiabatic and d) diabatic potential energy
surfaces employing the GAP-vMCG method for ozone, in the space of the asymmetric
O-O bond stretch, ν3, normal mode. All other coordinates have a value of 0.
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As it has been proved in different studies,245–248 the bend angle coordinate does

not take part in the photodissociation dynamics of ozone. The PESs along this

mode are generally considered to be bound for a broad range of configurations.

Comparing both the adiabatic, Figs. 6.5(a) and 6.5(c), and the diabatic, Figs.

6.5(b) and 6.5(d), potential energy surfaces it is again obvious that highly accurate

results can be obtained by employing GAP-vMCG.
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Fig. 6.5: One-dimensional cuts through the a) adiabatic and b) diabatic potential energy
surfaces employing DD-vMCG, and the c) adiabatic and d) diabatic potential energy
surfaces employing the GAP-vMCG method for ozone, in the space of the O-O-O bond
angle, ν2, normal mode. All other coordinates have a value of 0.

Moreover, in the available literature both in some experimental and theoretical

studies, the coordinate and energy axes are limited to a small area of the PESs

which makes it harder to compare results. Thus, the adiabatic PESs for the three

modes and for GAP-vMCG method were plotted by employing narrower axes. As

Direct Dynamics using Gaussian Process Regression 147



6.4 Results

it can be seen in Figs. 6.3 - 6.5, the two methods produce identical PESs and thus

only one method was used to compare with existing results. As Fig. 6.6 shows,

the results from this study agree well with an existing theoretical study247 where

a semiclassical algorithm was employed which was claimed to be able to describe

a nonadiabatic process. In the aforementioned paper, ozone was considered to

have a Cs symmetry and only the two first excited states were plotted. As it can

be seen, the results from GAP-vMCG are in great agreement with the existing

outcomes. The ground state is well separated from the two excited states and also

the position and energy of the occurring CoIs are consistent with literature. Small

differences, like for example the avoided crossing between the S1 and S2 states in

Fig. 6.6(a) occurring later compared to Fig. 6.6(b), are possibly due to the dif-

ference in symmetry in the two studies, and also that in the paper the rest of the

coordinates have a non-zero value while in this study all other coordinates have

a value of zero. Still, the figures selected for comparison were the ones with the

rest of the coordinates being almost zero so that a more meaningful comparison

could be achieved. The wider picture of the PESs presented in Figs. 6.3-6.5 is not

extensively explored and thus apart from comparing the two methods under inves-

tigation, this section also offers the chance to further explore the photodissociation

of ozone.

State Population Analysis

The diabatic state populations after excitation to the second excited state, B̃(1B1),

have been also plotted in an effort to examine the distribution of the total wave-

packet and to further compare the two methods. As depicted in Fig. 6.7, a fast

population transfer is taking place within the first 5 fs where almost 50% of the

population is transferred to the 1A2 state. Overall, the two methods have managed

to accurately describe the state populations which is in accordance with the exper-

imental finding as presented by Flöthman and coworkers.249 Furthermore there is
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Fig. 6.6: One-dimensional cuts through the adiabatic potential energy surfaces along var-
ious coordinates obtained from DD-vMCG calculations (a,c,e) and (b,d,f) reprinted from
Batista, V. S.; Miller, W. H.J. Chem. Phys. 1998, 108, 498–510, with the permission of
AIP Publishing.
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no population transfer to the ground state. The main difference is that when the

DD-vMCG method was employed (Fig. 6.7(a)) the amount of the total population

transfer at the beginning and more significantly at the end of the propagation is

higher compared to Fig. 6.7(b) with the GAP-vMCG method. As a final note,

the results above suggest that GAP-vMCG can efficiently and accurately generate

diabatic state populations which are a good match to those with direct dynamics.
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Fig. 6.7: Normalised diabatic state populations from (a) DD-vMCG and (b) GAP-vMCG
simulations of ozone starting with a vertical excitation to the B̃(1B1) state for a 3-state
model.

Moreover, a key feature of an accurate simulation is that the energy is con-

served. During the simulation with both DD-vMCG and GAP-vMCG the energy

was almost totally conserved throughout the calculation. More specifically for the

case of LHA the maximum energy difference was 0.10 eV and for GAP was 0.12

eV. For this example the LHA approach seems to be more accurate but the dif-

ference is extremely small and it would be thus more accurate to say that the two

methods had the same performance in terms of total energy conservation.

Hyperparameters

In this work the hyperparameters have been adjusted in the input file of the GAP-

vMCG calculation to attain the best possible performance. To illustrate the im-

portance of hyper-parameter selection, the effect of the hyperparameters and more
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specifically the α parameter which controls the length-scale is now examined. The

choice of the length-scale affects the kernel employed to determine the prior normal

distribution in the functional space and to efficiently expand the potential energy

surface.

In order to examine the effect of the α parameter on the PESs, the same cal-

culations with varying α parameter were conducted. During these calculations,

quantum chemistry calculations were excluded so that the code only reads the

database which includes 2841 points and calculates the PESs from the database.

All the remaining parameters have been kept constant. Moreover, for this compar-

ison the adiabatic surfaces for the bond angle coordinate were plotted. As it can

be seen in Fig. 6.8, smaller α values which means a much wider Gaussian kernel

lead to smoother PESs. However, GAP-vMCG faces problems in describing the

potentials at very high displacements even for small values of α. This failure was

also observed in the case of butatriene. This feature is attributed to the fact that

GAP employs Gaussian functions. Additionally in the case of α equal to 5 and

1, the Gaussians are narrower which makes the covariance matrix approach the

unit matrix; there would likely be more problems with matrix becoming singular

for small α. With large α the Gaussians decay to zero quickly so this is why the

potential lacks smoothness; there need to be more DB points between the ones

already there.

These results strongly indicate that the α parameter significantly affects the

shape of the PESs and shows how important it is for it to be properly optimized

and not manually selected; the purpose of a computational method is to be able

to explore areas of the dynamics that are unknown and thus no validation results

will exist like in this case where it was possible to rerun calculations with different

parameters to match the results obtained from DD-vMCG. In other words, this

optimisation at each step will give great flexibility to the method.
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Fig. 6.8: One-dimensional cuts through the adiabatic potential energy surfaces varying
the α hyperparameter and employing the GAP-vMCG method for ozone, in the space
of the O-O-O bond angle, ν2, normal mode. All other coordinates have a value of 0.
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Efficiency Analysis

Finally, the code dealing with the GAP-vMCG method was developed in order to

benefit from the local DBs presented in Chapter 4. The results were not successful

as GAP needs significantly more points compared to LHA as just the energies

are going to be used. The way the GAP-vMCG method is structured could not

benefit from the local DBs approach since the shape of the PESs that each GWP

needs to describe at a specific time interval is more complicated and the points at

each local DB cannot be defined as a circle of closest points like in the case of the

DD-vMCG method. A direct comparison of the different total timings needed for

each method for the same propagation is very difficult to conduct since different

databases are used.

The DD-vMCG method was always significantly faster compared to the GAP

scheme when calculations with the same number of GWPs and total propagation

time were used. Especially when the local DBs approach is employed then the

computational cost significantly drops. For the results presented in this chapter

using 20 GWPs for 100 fs, the total computation time for GAP-vMCG was 3,746

minutes with 2841 points in the database, for DD-vMCG was 449 minutes with

the full DC database and for DD-vMCG with local DBs was 117 minutes with 984

total points in the database. It is important to note that these timings refer to

the serial calculations where no new points were added in the database but only

the existing ones were read, and all the remaining common parameters between

the methods have been kept constant.

However, these time differences do not principally depend on the number of

total points in the two databases which is quite a small number in both cases, but

mostly on the way GAP-vMCG works. More specifically, GAP-vMCG offers the

option to use kernel functions that are localised, which corresponds to standard

GAP, or kernel functions that are spread out where a manually selected order of
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additive GAP is employed. When the second option is used, for example if a second

order additive kernel is selected, the total time of the calculation is severely affected

as there are 6 integrals per datapoint, 1 each per DOF and per pair of DOFs due

to the form of the GAP kernel, compared to just 1 for the first option and thus

the calculation would take about 6 times longer. In our case the only way to get

state populations and sensible PESs was by using a second order which played a

crucial role in the computational cost of ozone propagation when GAP-vMCG was

employed.

6.5 Discussion and Future Work

In this chapter, the theoretical framework around Gaussian process regression has

been presented along with its implementation to the DD-vMCG method which

led to the GAP-vMCG method. Benchmark calculations on ozone have been

performed aiming to compare the efficiency and accuracy of these two methods.

To examine the accuracy, the results from the fitting of adiabatic and diabatic

PESs and the diabatic state populations using both the DD-vMCG and the GAP-

vMCG methods were investigated. GAP results are in great agreement with the

ones generated by employing the LHA approach and also experimental findings.

Thus, it can be concluded that the GAP approach can be employed in order to

approximate potential energy surface matrix elements, which are fundamental for

vMCG calculations, in a very straightforward way.

In an effort to further unravel the performance of GAP, the role of the α

hyperparameter was examined by altering its value and running identical GAP-

vMCG calculations. It was proved that this parameter has a high impact on the

dynamics where the shape of the PES was severely changed and sometimes lead to

completely unreliable results. The results showed the most important drawback

of this approach is that hyperparameters are manually selected at the current
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implementation.

With regards to efficiency, DD-vMCG and especially the small DBs approach

requires significantly less computational effort compared to GAP-vMCG. This

time difference depends on the fewer database points in DD-vMCG for the same

molecule and with the same settings, but most importantly on the way GAP-

vMCG works and the selection of the additive kernel which in the ozone case was

the only way to get sensible results.

Despite the issues, GPR could be a promising approach to replace LHA in

order to improve the accuracy of the DD-vMCG method. However, it should be

noted that important strategies should be pursued in various directions. Firstly,

the most important step is to optimise the hyperparameters. Various studies have

claimed that an appropriate selection of the kernel hyperparameters has a signif-

icant effect on the performance of the GPR algorithm. More specifically, tuning

of the hyperparameters improves the fitting of the target model, the ability to

be a generally applicable method and its accuracy, and minimizes the number of

iterations needed for GPR learning. Thus, this optimisation constitutes a key el-

ement for successful GPR quantum dynamics simulations. One option to achieve

optimisation is by employing cross-validation where the hyperparameters are op-

timized by minimising the errors.199 Instead, the log marginal likelihood250 can be

maximized, which has the following form

Θ = −1

2
yTw − 1

2
log
∣∣A + σ2I−

∣∣− M

2
log2π (6.31)

Moreover, it will be of a great benefit to take advantage of the error estimation

that GPR offers. At every prediction, the algorithm can produce an error of the

prediction that in the case of DD-vMCG, the prediction is the PES at a point

qi(t) of the configuration space. The user can then define a threshold up to which

this prediction can be trusted or a new quantum chemistry calculation should be

performed instead.
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Currently, the GWP weights include only the potential energy values. These

weights could be modified in order to also include the forces without additional cost

regarding the PES calculation, as at the centre of a GWP the forces are already

available. This approach should further improve the accuracy of the GAP-vMCG

results.

Additionally, another important point is to include the gradients and Hessians

from the quantum chemistry calculations as additional training data instead of

just using the energies. Machine learning heavily relies on the amount and quality

of data, thus a better description of the PES when our model is being trained

will result in more accurate prediction of the PESs of unknown points in the

configuration space.

Finally, one could think beyond GPR and the GAP-vMCG method and maybe

try different machine learning algorithms as a way to eliminate the limitations

introduced in DD-vMCG when the LHA scheme is employed. As an example,

ANNs have been proved to be an excellent approach for fitting global PESs.251
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Conclusions and Future Work

This chapter presents the main outcomes of this research study. All the key find-

ings are summarised along with future work recommendations based on the re-

sults. In this thesis, the results reflect the two main strands of this research work.

Firstly, to improve the Direct Dynamics Variational Multi-configurational Gaus-

sian method and test its limitations for different molecules. Further, the ultimate

aim was to carry out investigations on molecules hitherto unfeasible by employing

the improved DD-vMCG method.

Aiming to firstly improve the efficiency and the accuracy of DD-vMCG, an effi-

cient parallel algorithm using local databases for the potential surfaces around each

basis function has been established, which leads to an improved implementation

of the method in the Quantics package. Benchmark calculations on butatriene

cation, allene cation and formamide proved that the DD-vMCG method were

able to provide good quality diabatic surfaces for multi-dimensional non-adiabatic

simulations directly from a set of quantum chemistry calculations. Within the

improvements, the update of the interpolation by employing a modified Shepard

interpolation scheme was also carried out. Total energy and norm conservation

are both adequate, demonstrating the stability of the interpolation scheme used.

Moreover, both the efficiency and accuracy of the new algorithm were exam-

ined by performing test calculations employing local databases of different sizes
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and the full quantum chemistry database. Test calculations showed that including

only the closest points during the propagation of each basis function leads to a

significant speed up, solving a major bottleneck encountered by the DD-vMCG

method when treating complex chemical systems. The speed up becomes even

larger when using a parallel version of the algorithm, as well as more Gaussian

wavepackets to describe the molecule under investigation. Smooth adiabatic and

diabatic potential energy surfaces are produced, as well as smooth couplings be-

tween the diabatic states. The novelty of this development work is in making

DD-vMCG a competitive, efficient and accurate method for nonadiabatic direct

quantum dynamics simulations. Systems that were not computationally feasible

can be now efficiently treated with the improved implementation.

Following the aforementioned improved algorithm for DD-vMCG has made

possible the successful study of the full dimensional photo-dissociation dynamics of

phenol. This theoretical study by including for the first time five excitation states

showed the importance of designing models with more states than the target ones

in order to have a better description for the molecule under investigation. It has

been shown that for phenol the 3-state model has to be completely abandoned and

even the 4-state model that clearly offers a significantly better description of the

dynamics is still not enough to match the experimental findings. This outcome

is especially important for the dynamics of molecules which are strongly affected

by conical intersections. Moreover, the analysis of the diabatic state population

results suggest that the 6-state model after excitation to the Ã state can best

describe the population transfer and distribution between the states and also the

rate of the dissociation which matches the experimental findings.

Important conclusions regarding the decay mechanism have also been presented

by computing the diabatic state populations and the flux distribution into the

different states. It is clear that the dissociation pathways provided by the conical
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intersections between the 11πσ∗ and the 1ππ∗ and 1ππ states is accessible during

the phenol dynamics, offering a rapid relaxation to the ground state.

Beyond the successful description of the photodissociation of phenol, this study

illustrates the potential of the DD-vMCG method as it is capable of capturing the

complete quantum picture of the coupled nuclear and electronic motions after

photo-excitation into multiple states for a molecule like phenol with 33 vibrational

modes. Additionally, a comparison analysis with existing models where the PESs

were obtained analytically showed that DD-vMCG can not only reproduce these

PESs but also generate smoother surfaces with better defined states and conical

intersections between them. The less computational effort combined with the

higher accuracy and the significant flexibility over analytically calculated PESs

confirmed the great advantage of using DD-vMCG.

After dealing with the time needed to read, sort and analyse the database

which was the main bottleneck that DD-vMCG was encountering, the LHA ap-

proach for calculating the potential energy surface matrix elements was found to

be responsible for accuracy errors and computational delays. Benchmark calcu-

lations on ozone showed that results when GAP-vMCG is employed are in great

agreement with the ones generated by employing the LHA approach and also ex-

perimental findings. Thus, it can be concluded that the GAP approach can be

employed instead of LHA in order to approximate potential energy surface matrix

elements, which are fundamental for vMCG calculations, in a very straightforward

way. There are however some drawbacks to this approach such as the manual

selection of the hyperparameters resulting in a less flexible method and also an

increase in the computational effort compared to DD-vMCG.

A natural extension of this work will be to treat larger chemical systems with

the developed DD-vMCG version and further to compare the outcomes and per-

formance with other available quantum molecular dynamics methods such as tra-
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jectory surface hopping.252 Moreover, the photodissociation dynamics of phenol

can be further studied by conducting quantum dynamics simulations with DD-

vMCG to the phenoxyl radical. Also, since phenol is a major component of the

green fluorescent protein chromophore, the successful characterization of the pho-

todissociation of phenol accompanied with the methodological improvements of

DD-vMCG offers the appropriate knowledge and confidence to study and apply

this method to green fluorescent protein. Finally, future work should focus on the

improvement and development of the existing code dealing with the very promising

GAP approach. The implementation is at an initial stage and important strategies

should be pursued in various directions to improve the performance of GAP-vMCG

in order to completely abandon the LHA approach. The most important step to-

wards the latter improvement is to optimise the hyper-parameters.
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[251] Cooper, A.; Hallmen, P.; Kästner, J. J. Chem. Phys. 2018, 148, 094106.

[252] Tully, J. C.; Preston, R. K. J. Chem. Phys. 1971, 55, 562–572.

Bibliography 181


	List of Figures
	List of Tables
	Glossary
	Introduction
	Theory
	Introduction
	The Schrödinger Equation
	The Hamiltonian
	Born-Oppenheimer Approximation
	Adiabatic Representation
	Non-Adiabatic Corrections
	Vibronic Coupling and Diabatic Representation
	Potential Energy Surfaces
	The Role of Conical Intersections

	Methodology
	Introduction
	Electronic Structure
	Hartree-Fock Method
	Basis Sets
	Beyond the Hartree-Fock Method

	Nuclear Dynamics
	Multi-Configuration Time-Dependent Hartree Method
	Variational Principles
	Variational Multi-Configurational Gaussian Method
	Direct Dynamics
	The Quantics Package


	Developing DD-vMCG
	Introduction
	Modified Shepard Interpolation
	Local Dynamic Database
	Conceptual Development
	Code Implementation

	Parallelisation
	Parallel Environments in High Performance Computing
	Running Quantics on Parallel Architectures

	Test Cases
	Butatriene Cation
	Allene Radical Cation
	Formamide

	Summary

	Applying DD-vMCG to Study the Photodissociation of Phenol
	Introduction
	Phenol
	External Molecular Potential Program
	Electronic structure and geometry optimisations
	Computational Details
	DD-vMCG Protocol
	Complex Absorbing Potential (CAP) and Flux Operator

	Quantum Dynamics Calculations
	Potential Energy Surfaces
	State Population Analysis
	Flux Analysis

	Discussion

	Direct Dynamics using Gaussian Process Regression 
	Introduction
	Local Harmonic Approximation
	Gaussian Process Regression
	Introduction
	The General Algorithm
	Calculation of Potential Energy Surface Matrix Elements

	Results
	Computational Details
	Ozone
	Analysis

	Discussion and Future Work

	Conclusions and Future Work
	Bibliography

