
remote sensing  

Article

Towards Streamlined Single-Image Super-Resolution:
Demonstration with 10 m Sentinel-2 Colour and 10–60 m
Multi-Spectral VNIR and SWIR Bands

Yu Tao 1,* , Siting Xiong 2, Rui Song 1 and Jan-Peter Muller 1

����������
�������

Citation: Tao, Y.; Xiong, S.; Song, R.;

Muller, J.-P. Towards Streamlined

Single-Image Super-Resolution:

Demonstration with 10 m Sentinel-2

Colour and 10–60 m Multi-Spectral

VNIR and SWIR Bands. Remote Sens.

2021, 13, 2614. https://doi.org/

10.3390/rs13132614

Academic Editors: Cheng-Chien Liu,

Wei Luo and Yi-Chin Chen

Received: 8 June 2021

Accepted: 1 July 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Imaging Group, Mullard Space Science Laboratory, Department of Space and Climate Physics,
University College London, Holmbury St Mary, Surrey RH5 6NT, UK; j.muller@ucl.ac.uk (J.-P.M.);
rui.song@ucl.ac.uk (R.S.)

2 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;
xiongsiting@szu.edu.cn

* Correspondence: yu.tao@ucl.ac.uk

Abstract: Higher spatial resolution imaging data are considered desirable in many Earth observation
applications. In this work, we propose and demonstrate the TARSGAN (learning Terrestrial image
deblurring using Adaptive weighted dense Residual Super-resolution Generative Adversarial Net-
work) system for Super-resolution Restoration (SRR) of 10 m/pixel Sentinel-2 “true” colour images
as well as all the other multispectral bands. In parallel, the ELF (automated image Edge detection
and measurements of edge spread function, Line spread function, and Full width at half maximum)
system is proposed to achieve automated and precise assessments of the effective resolutions of the
input and SRR images. Subsequent ELF measurements of the TARSGAN SRR results suggest an
averaged effective resolution enhancement factor of about 2.91 times (equivalent to ~3.44 m/pixel
for the 10 m/pixel bands) given a nominal SRR upscaling factor of 4 times. Several examples are
provided for different types of scenes from urban landscapes to agricultural scenes and sea-ice floes.

Keywords: super-resolution restoration; SR; SRR; Sentinel-2; Sentinel; multispectral; sharpness;
effective resolution assessment; image quality

1. Introduction

Very high spatial resolution imaging data play an important role in many fields of
Earth Observation (EO) applications, such as precision agriculture, forestry, urban planning,
city intelligence, cartography, geology, oceanography, and energy and utility maintenance.
Although there are very high spatial resolution imaging sensors, e.g., the 31 cm/pixel
Digital Globe® WorldView-3 images, the cost of such very high spatial resolution images is
generally high, especially when and where large spatial-temporal volumes are required.
On the other hand, while improvements in the spatial resolution are gaining priority in the
design of new optical-electronic sensors onboard EO satellites, we still need to trade-off
spatial resolution against spectral resolution, swath-width, signal-to-noise ratio of the
sensor, launch mass, and requested telecommunications bandwidth. Subsequently, using
super-resolution restoration (SRR/SR) to enhance existing EO data, especially those open
access data, such as the European Space Agency’s Copernicus Sentinel systems, is becoming
an increasingly attractive alternative, especially if the resultant products can be employed
to derive higher spatial resolution products like reflectance and derivatives of reflectance.

SRR refers to the process of enhancing (or increasing) the spatial resolution of im-
ages (or video frames) by exploiting non-redundant information from a set of repeat
observations, or through a deep learning-based training and inference process. The grow-
ing technology interest in SRR, over the past 20 years, has led to the development and
subsequent applications of many new algorithms, networks, and/or optimisations [1–4].
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Classically, SRR was based on the idea of combining non-redundant information
from multiple overlapping lower resolution (LR) images to produce the best estimation
of a higher resolution (HR) image. This process was done either via image sub-pixel
stacking [5,6], exploring the shifting and aliasing properties of the frequency domain [7–9],
image degradation modelling [10–12], or multi-angle view modelling [13–15].

Over the past ten years, deep learning techniques have been very successful in the
field of SRR due to their performance in terms of processing speed and flexibility over
different input data. A variety of deep networks have been proposed over this time period
to address the SRR problem. This includes the use of residual networks [16–18], recursive
networks [19,20], selective attention networks [21,22], and Generative Adversarial Net-
works (GANs) [23–27]. Among these, the most recent works include Wide Activation Deep
Residual SR network (WDSR) [17], the Residual Channel Attention Network (RCAN) [22],
and the Multi-scale Adaptive weighted dense Residual SR GAN (MARSGAN) [27].

In particular, WDSR [17] improves the Enhanced Deep residual SR network (EDSR) [16],
using slim residual blocks that have wider channels (2 to 9 times), while keeping the same
parameter complexity. WDSR uses linear low-rank convolutions that factorise large convo-
lutional kernels into two low-rank convolutional kernels, and use weight normalisation, to
tackle the issues of slimmed layer pathway and training of very deep networks, respec-
tively. RCAN [22] employs a residual-in-residual architecture and the Residual Channel
Attention Blocks (RCABs) as its basic residual blocks, in order to rescale features adaptively
by considering interdependencies between feature channels. MARSGAN [27] employs a
very deep, densely connected, and adaptively weighted residual-in-residual architecture to
further improve network capacity and information flow on top of the SR GAN network
(SRGAN) [23] and the Enhanced SR GAN (ESRGAN) [25] network.

While many different ideas have been proposed to optimise the existing SRR networks,
improvements in SRR performance have become more and more marginal if the modifica-
tions are purely based on the network architecture. Therefore, recent studies have been
focused on either exploring different loss functions (e.g., exploring the perceptual-pleasing
solutions [23–25]), or exploring the effect of using more realistic training datasets [28,29].

In particular, the Content Adaptive Re-sampler (CAR) based SRR model [28] employs
a separately learned content-adaptive image downscaling model, which produces LR
images that could keep the key information for best reproducing the HR images. The
authors achieved state-of-the-art SRR performance in 2019/2020 using training datasets
produced through CAR with an existing EDSR network [16]. Moreover, the authors
in [29] constructed a “real-world” SRR training dataset (called RealSR), where paired
LR and HR images are captured by adjusting the focal length of a digital camera, to
replace the traditional synthetic training LR images, i.e., the bicubic down-sampled HR.
RealSR achieved state-of-the-art SRR performance in 2020/2021 using their “real-world”
training dataset with the existing RCAN network as well as a newly proposed Laplacian
Pyramid-based Kernel Prediction Network (LP-KPN) [29].

In this paper, we further explore our in-house MARSGAN [27] model that was previ-
ously developed for Mars applications, using the Sentinel-2 10 m/pixel colour images and
10–60 m/pixel multi-spectral images. Inspired by [28,29], we propose practical modifica-
tions of the loss function, training dataset, and network architecture of MARSGAN, which
we call learning Terrestrial image deblurring with Adaptive weighted dense Residual SR
GAN (TARSGAN).

We show TARSGAN SRR results using the 10 m/pixel Sentinel-2 “true” colour images
over a wide range of different types of natural and artificial surface features. These include
SRR over urban sites (buildings, roads, cars, ships, airports), forestry and agriculture sites,
and natural sites (mountains, deserts, the sea, the snow, and the sea-ice). Figure 1 gives an
example of the 10 m/pixel Sentinel-2 “true” colour image and the 3.44 m/pixel TARSGAN
SRR results over a geo-calibration site at Baotou, China.
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Figure 1. An example of the 10 m/pixel Sentinel-2 “true” colour image and the 3.44 m/pixel TARSGAN SRR re-
sults over a geo-calibration site at Baotou, China (Sentinel-2 image ID: S2A_MSIL1C_20171031T032851_N0206_R018
T49TCF_20171031T032851_TCI).

Moreover, we compare the spectral reflectance of the multispectral SRR product
against the original Sentinel-2 multispectral product on all available spectral bands to
demonstrate spectral invariance of the proposed TARSGAN system.

Furthermore, we propose an automated image effective resolution assessment system,
using automated image Edge detection and filtering, and automated measurements of
Edge Spread Function (ESF), Line Spread Function (LSF), and Full Width at Half Maximum
(FWHM) – for brevity, this system is referred to hereafter as ELF. ELF is considered essential
to building a streamlined and on-demand SRR processing system, in the future, which
would require automated SRR algorithm selection and performance evaluation.

The ELF measurements suggest a factor of 2.91 times of effective resolution improve-
ment on top of the 10 m/pixel Sentinel-2 “true” colour images using the proposed TARS-
GAN SRR system. This suggests our Sentinel-2 TARSGAN SRR results have an averaged
effective spatial resolution of about 3.44 m/pixel. More importantly, in contrast to other
generative SRR networks, TARSGAN does not introduce synthetic textures and artefacts.

With the proposed TARSGAN SRR and ELF effective resolution assessment system,
we believe Sentinel-2 global 10–60 m/pixel multispectral images can be transformed into
3–20 m/pixel multispectral SRR images, fully automatically in the near future (readers
should refer to the conceptual implementation of a streamlined SRR processing system in
Section 4.3), allowing better analytics to be performed in a transformative way.

The layout of this paper is as follows. In Section 2.1, we introduce the training and
test dataset. In Sections 2.2 and 2.3, we introduce technical details of the TARSGAN
SRR system. In Section 2.4, we describe the ELF image effective resolution assessment
system. Experimental results of the ELF system, TARSGAN SRR of 10 m/pixel Sentinel-2
“true” colour images, and TARSGAN SRR of the 10–60 m/pixel multispectral images, are
demonstrated in Section 3.1, Section 3.2, and Section 3.3, respectively. In Section 4, we
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discuss key issues, potential improvements, and future work before drawing conclusions
in Section 5.

2. Materials and Methods
2.1. Datasets for Testing and Training

Our test dataset in this work consists of Sentinel-2 images. The Copernicus Sentinel-2
mission comprises a constellation of two identical polar-orbiting satellites (Sentinel-2A/2B),
providing multi-spectral moderate spatial resolutions from 10 m/pixel to 60 m/pixel for
its visible and near-infrared (VNIR) bands and short-wave infrared (SWIR) bands. Details
of the Sentinel-2A/2B image spatial resolutions and spectral information can be found
in Table 1. Sentinel-2A and Sentinel-2B are phased at 180◦ to each other, placed in the
same sun-synchronous orbit. Sentinel-2A and Sentinel-2B have a wide swath width of
290km and together provide a high revisit frequency (5 days at equator and 2–3 days at
mid-latitudes). Sentinel-2 data are accessible through the Copernicus open access hub
(previously known as Sentinel scientific data hub; https://scihub.copernicus.eu/; accessed
on 2 July 2021).

Table 1. Sentinel-2 spatial resolution, central wavelength, and bandwidth for each of the VNIR and
SWIR bands.

Band name Band No. Spatial
Resolution (m)

Central Wavelength
(nm) 2A/2B

Bandwidth
(nm) 2A/2B

VNIR

B01 60 442.7/442.2 20/21

B02 10 492.4/492.1 66/66

B03 10 559.8/559.0 36/36

B04 10 664.6/664.9 31/31

B05 20 704.1/703.8 15/16

B06 20 740.5/739.1 15/15

B07 20 782.8/779.7 20/20

B08 10 832.8/832.9 106/106

B8A 20 864.7/864.0 21/22

B09 60 945.1/943.2 20/21

SWIR

B10 60 1373.5/1376.9 31/30

B11 20 1613.7/1610.4 91/94

B12 20 2202.4/2185.7 175/185

In this work, we perform SRR testing with a wide range of Sentinel-2 images over 6 dif-
ferent testing sites covering different types of natural and artificial surface feature/targets
(see Table 2). The 6 test sites are located over Baotou/China, Dubai/ United Arab Emirates,
Hainich/Germany, London/UK, Desert Rock/US, and Lincoln Sea/Greenland. These sur-
face features/targets include artificial structures, residential buildings, industrial buildings,
farms, countryside roads, highway roads, tower buildings, ships, artificial islands, airports,
airplanes, forest, isolated trees, hills, mountains, train stations, urban building blocks,
urban landmarks, bridges, deserts, river, sea-ice, leads, open water, and snow-covered
surfaces. In this work, we mainly demonstrate SRR results with the level 1 (L1C) images,
however, for 2 of the 6 sites (Site-3 Hainich and Site-4 London), where atmosphere clarity
is low, we also show SRR results from the level 2 (L2A) images. These form a total number
of 8 test Sentinel-2 images.

https://scihub.copernicus.eu/
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Table 2. Testing site, input Sentinel-2 image IDs (10 m/pixel TCI colour product), and containing features/targets.

Site Name Image ID (Product Level)
Type of Features or Targets

Area-1 Area-2 Area-3 Area-4

Site-1
Baotou, China

S2A_MSIL1C_20171031T032851_N0206_R018_
T49TCF_20171031T070327

(L1C)

Geo-
calibration
targets and
buildings

Buildings and
roads

Farms and
roads

Industrial
building blocks

Site-2
Dubai, AE

S2B_MSIL1C_20210528T064629_N0300_R020_
T40RCN_20210528T084809

(L1C)
Tower

buildings
Ships and sea

waves Artificial island
Airport,

airplane, and
roads

Site-3
Hainich, Germany

S2A_MSIL1C_20200921T103031_N0209_R108_
T32UNB_20200921T142406

(L1C)
Farms, houses,

and roads Forest Farms with
structures Farms and hills

S2B_MSIL2A_20210531T101559_N0300_R065_
T32UNB_20210531T140040

(L2A)
Agriculture

site
Agriculture

site
Agriculture

site and village
Agriculture

site

Site-4
London, UK

S2B_MSIL1C_20201217T111359_N0209_R137_
T30UXC_20201217T132006

(L1C)
Train stations
and buildings

Small building
blocks and

bridges

Building
blocks

Bridges and
ships

S2A_MSIL2A_20210309T105901_N0214_R094_
T30UXC_20210309T135358

(L2A)

London
millennium
wheel (with
thin clouds)

London
Stadium Canary Wharf

Kensington
Gardens (with

thin clouds)

Site-5
Desert Rock, U.S.

S2A_MSIL1C_20210507T180921_N0300_R084_
T12SUD_20210507T215833

(L1C)
Mountain and

road Trees in desert Desert and
river

Desert and
trees

Site-6
Lincoln Sea,
Greenland

S2A_MSIL1C_20200729T190921_N0209_R056_
T21XWM_20200729T222945

(L1C)
Sea-ice and

leads Isolated sea-ice
Snow on
mountain

surface
Sea-ice and
open water

Our training dataset is formed with Deimos Imaging, S.L. Deimos-2 images. Deimos-2
is a high-resolution Earth observation satellite, owned and operated by Deimos Imaging,
S.L. Deimos-2 collects 0.75 m/pixel panchromatic (PAN) band and 4 m/pixel Multi-Spectral
(MS) band images with a swath width of 12km (at nadir) from an orbit at ~600 km. The
MS capability includes 4 channels in the visible: Red, Green, Blue bands and near-infrared
(NIR) band. In this work, our training dataset is conducted with 102 non-repeat and cloud-
free Deimos-2 PAN band images (sampled at 1 m/pixel), which consists of 300,512 pairs of
LR and HR training samples. Instead of simply performing the “standard” bicubic down-
sampling processing of the HR images (Deimos-2 PAN) to produce their LR counterparts,
we use bicubic down-sampling followed by an average up-sampling and Gaussian blurring
operations, to form the degraded LR images at the same scale as the HR images (1 m/pixel).

2.2. Key Modifications of MARSGAN

In contrast to “photo-enhancing” SRR tasks, the desired SRR outputs of remote sensing
applications are fundamentally different. In remote sensing applications, higher signal-to-
noise ratio (SNR), minimised artefacts, sharper edges and object outlines, and ultimately,
the higher image effective resolution, are much more desirable in comparison to “re-
creating” high-frequency textures and/or objects. The original design of SRGAN [23] and
ESRGAN [25] are based on the idea that human vision does not care if the generated high-
frequency textures are not strictly correlated with the ground truth as long as they look
realistic. Such generated high-frequency textures can significantly improve the “perceptual
sharpness” but are considered artefacts in remote sensing or scientific applications. For
example, satellite image users probably do not want a synthetic map even it looks extremely
real. Therefore, we consider perceptual quality-driven SRR techniques are not suitable to be
used directly in any remote sensing applications. In the original work of MARSGAN [27],
experiments were made to reduce the weights of perceptual loss terms, but consequently,
the edge sharpness is also lowered as a trade-off of reducing the high-frequency artefacts.

In this work, we base our model on the MARSGAN architecture [27] but abandon
the idea of training the model with weighted perceptual loss. Instead, we use a structural
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similarity loss (see Section 2.3 for details) to reconstruct sharper outlines, without re-
creating any synthetic textures/objects.

Moreover, the authors in [28,29], demonstrated that the information contained within
the LR image actually plays an important role in successive SRR restoration on top of
purely improving a network architecture. Inspired by this, we propose to bring the LR
image into the same passive resolution as the HR image and apply a blurring operation at
the HR scale, to better model the fuzzy appearance of an LR image after being upscaled or
unsuccessfully super-resolved. This is based on the observation that even high-frequency
components can be effectively learned in the LR space with upscaling convolutions in
the end (as discovered since some early works of [30,31]), the information of the blurring
effect is not well preserved in the LR space. For example, an oversmoothed edge of an
image could be seen as a sharp zigzag edge after the down-sampling of the image. Figure 2
shows an example of the TARSGAN training LR image that was created via the proposed
down-sampling, up-sampling, and Gaussian blur operations (refer to Section 2.1) of the
1 m/pixel Deimos-2 PAN band image, in comparison to the “standard” training LR image
created from a simple bicubic down-sampling operation as used in general in SRR works.
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dimensions: 256 m × 256 m. Deimos-2 image courtesy of Deimos Imaging, S.L. 2021.

In summary, our goal in this work is to limit the room for the SRR network to learn
“synthetic SRR” and encourage the network to learn “deblurring SRR”. We focus on
training a deblurring-oriented SRR network, i.e., TARSGAN, that fits the goal of remote
sensing SRR applications, by modifying the loss function and removing the up-scaling
process of the original MARSGAN system [27] and constructing a new training dataset
that preserves the blurring information.

2.3. The TARSGAN System

The backbone of our proposed TARSGAN system is the MARSGAN model [27], which
itself is based on a GAN framework [32–34]. GAN provides an efficient framework for
learning generative tasks like SRR. Described in the fundamental work of [32,33], GAN
trains a generative model for SRR, whilst in parallel, it trains a discriminator model to
distinguish the predicted SRR image from ground-truth HR. Through alternative updates
of the two adversarial networks, the generative model is trained to produce SRR images
that are barely distinguishable from the HR images. For TARSGAN, we apply two practical
modifications to the original MARSGAN system as follows.
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Firstly, the adaptive weighted multi-scale reconstruction block is removed as the
training LR and testing LR images are pre-upsampled at the same passive resolution as
the HR images as described previously. Denoting the SRR image as ISRR, the LR image as
ILR, and the HR ground truth as IHR. The TARSGAN generator can be simplified from
the MARSGAN generator [27] as N (N = 16 in this work) layers of Adaptive-weighted
Residual-in-Residual Dense Blocks (AWRRDBs), where layers exclude the first and the last
layers. The first layer has 64 filters of size 3× 3 for initial feature extraction, denoted as
fext, and the last layer has a single filter of size 3× 3× 64 for SRR image reconstruction,
denoted as frec,. Denoting the n-th (n ∈ N) AWRRDB unit as f n

AWRRDB, the TARSGAN
generator can be expressed as

ISRR = frec

(
f N
AWRRDB

(
f N−1
AWRRDB

(
. . . f 1

AWRRDB( fext(ILR)) . . .
)))

+ ILR (1)

It should be noted that we use fewer AWRRDB layers in TARSGAN (N = 16) in
comparison to MARSGAN (N = 23), as needed to reduce the computation cost when
having LR image at the same scale as the HR image. However, we empirically found
that because TARSGAN is not trained with a perceptual loss term, the improvement from
stacking more AWRRDB layers is marginal. For AWRRDBs, we use the same architecture
as described in MARSGAN [27], i.e., each AWRRDB contains 3 dense blocks, and each
dense block contains 5 convolutional layers (3× 3 kernels, 32 feature maps, stride 1) and 4
Leaky Rectified Linear Unit (LReLU) activation with a negative slope of 0.2. The generator
network architecture of TARSGAN is shown in Figure 3. For a detailed description of the
AWRRDB blocks, please refer to [27].
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Secondly, we redefine the total loss function, denoted as ltotal , as a weighted sum of
the Mean Squared Error (MSE) loss, denoted as lMSE, the adversarial loss, denoted as lgen,
and the Structural Similarity (SSIM) [35] loss, denoted as lSSIM. SSIM is a commonly used
metric in image reconstruction tasks; in particular, it has been widely used in unsupervised
image depth estimation tasks to quantify the differences between a back-projected image
and the reference image (e.g., [36,37]), and as well as being an evaluation metric in many
SRR works representing the retrieval quality of structural features. SSIM is derived using
patterns of pixel intensities among neighbouring pixels with normalised brightness and
contrast as introduced in [35]. For the generated target image ISRR and the reference truth
IHR, SSIM(ISRR, IHR) can be formulated as
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SSIM(ISRR, IHR) =

(
2µISRR µIHR + C1

)(
2σISRR ,IHR + C2

)(
µ2

ISRR
+ µ2

IHR
+ C1

)(
σ2

ISRR
+ σ2

IHR
+ C2

) (2)

where µISRR , µIHR , σISRR , σIHR , and σISRR ,IHR are the local means, standard deviations, and
cross-covariance of ISRR and IHR, respectively. C1 and C2 are constants based on the
dynamic range of pixel values. As SSIM has an upper bound of 1, lSSIM can be defined as

lSSIM =
1− SSIM(ISRR, IHR)

2
(3)

The other two loss terms, i.e., lMSE and lgen, are the same as the ones described in [27].
The total loss ltotal of TARSGAN can be expressed as

ltotal = γlMSE + λlgen + ηlSSIM (4)

where γ, λ and η are the weights to balance the pixel-wise MSE loss, adversarial loss of
the discriminator, and the SSIM loss. In practice, TARSGAN is initialised with γ = 1,
λ = 5× 10−3, η = 0, then refined with γ = 0.5, λ = 5× 10−3, η = 1. The initial
learning rate is 10−4, and standard Adam optimisation [38] is used with β1 = 0.9 and
β2 = 0.99. Training and testing are achieved on the latest Nvidia® RTX 3090 GPU (Graphic
Processing Unit).

As discussed in [23,27], the potential texture details from an SRR network, are typically
synthetic textures (if not absent) and therefore cannot be “pixel-to-pixel” matched with the
ground truth HR, thus leading to a smoother solution that averages all potential synthetic
solutions when an MSE loss is used. Optimising an SRR network with the MSE loss
generally results in a smoothed reconstruction, however, with fewer synthetic artefacts.
In TARSGAN, we initialise the network first towards a smoother solution with respect to
the HR image to resolve large-scale and intermediate-scale features. Then the network is
refined towards better structural similarity measurement with respect to the HR image to
resolve shaper edges and shape/outline of small objects that are visible (but blurred) in
the LR image. For small objects or textures that are fundamentally not visible from the LR
image, we do not try to re-create them with TARSGAN.

2.4. The ELF System

In parallel to the TARSGAN SRR system, we also propose the ELF automated image-
effective resolution assessment system. The design of ELF is based on the Imatest® (see
https://www.imatest.com/; accessed on 2 July 2021) slanted-edge method and previous
collaborative work within the UK Space Agency funded SuperRes-EO project using FWHM
to assess the image effective resolutions. ELF measures the averaged FWHM of all de-
tectable slanted edges within an SRR image and compared against the averaged FWHM of
the same edges within the corresponding LR image. The overall workflow of ELF is shown
in Figure 4.

ELF takes the SRR image and the reference LR image, which is up-sampled to the
same scale as the SRR image, as inputs, and follows 9 processing steps that are briefly
described below.

(1) Create a binary image from the input SRR image using the Otsu adaptive thresholding
method [39].

(2) Use a Canny edge detector [40] to extract all potential edges.
(3) Use a Hough transform [41] to detect potential lines from the output of (2) and filter

for the given thresholds of lengths, gaps, and intersections.
(4) Crop for any number of regions of interest (ROIs) centred on the filtered lines and ap-

ply the same cropping for the same areas with the same sizes using the corresponding
LR image.

https://www.imatest.com/
https://www.imatest.com/
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(5) Perform image normalisation within each crop for both the crops from SRR and crops
from LR.

(6) Calculate and plot the ESF for each slanted edge within each normalised crop from (5).
(7) Filter each continuous ESF and only leave the peak ESF for each slanted edge.
(8) Calculate and plot the LSF for each ESF from (7).
(9) Calculate FWHM for each LSF from (8) and calculate the mean FWHM for the SRR

and LR images.
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The final calculated mean FWHM (MFWHM) over all detected slanted edges is used
to assess the image effective resolution with respect to the given native resolution of the
LR image. The final effective resolution of the Sentinel-2 SRR image can be estimated by
calculating the ratio, denoted as β, of the MFWHM(ILR) and MFWHM(ISRR), which is
proportional to the resolution enhancement factor, denoted as α. This is expressed as

α =
Res(ILR)

Res(IHR)
∝ β =

MFWHM(ILR)

MFWHM(IHR)
(5)

where Res(ILR) and Res(IHR) represent the native image resolution of ILR and IHR, re-
spectively, and MFWHM(ILR) and MFWHM(IHR) represent the averaged FWHM of
all detected slant edges of the same areas of ILR and IHR, respectively. The relationship
between α and β can be explored and validation performed using the adjacent bands of
the 10 m/pixel, 20 m/pixel, and 60 m/pixel Sentinel-2 images. In Section 3.1, we initially
calculate β using the Sentinel-2 20 m/pixel B05 and 10 m/pixel B04 images (for α = 2), and
then calculate β (for α = 2, 3, 6) using the 10 m/pixel B08, 20 m/pixel B8A, and 60 m/pixel
B09 images to ensure that the inter-comparison is done with spectrally close channels.

3. Results
3.1. Estimation of Image Effective Resolution through ELF

In order to estimate the image effective resolution through the ELF measurements, we
perform two experiments based on the original Sentinel-2 10 m/pixel, 20 m/pixel, and
60 m/pixel images. The first experiment (Exp-1) is based on the 10 m/pixel B04 image
and 20 m/pixel B05 image. The second experiment (Exp-2) is based on the 10 m/pixel B08
image, 20 m/pixel B8A image, and 60 m/pixel B09 image.

We calculate MFWHM(IHR) and MFWHM(ILR) in Equation (5) using all detectable
edges from IHR and the same slanted edges at the same locations from ILR, respectively,
thus ensuring that the value of β can be computed for a specific image crop. The purpose
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of Exp-1 (using B05/B04) is to validate against Exp-2 (using B8A/B08), to check if there is
any significant difference in the calculated β, when α is fixed (α = 2). As the computed α is
demonstrated similar for using B05/B04 and using B8A/B08, we therefore repeat Exp-2
with 4 cropped images of size 8 km × 8 km to calculate the mean values of β for 2 times,
3times, and 6 times resolution differences, using B08 and B8A (α = 2), B8A and B09 (α = 3),
and B08 and B09 (α = 6), respectively.

In Figure 5, we demonstrate two examples (two detected slanted edges) within one
8 km × 8 km crop (at Site-1) using 10 m/pixel B04 image (IHR) and 20 m/pixel B05 image
(ILR). For all measurement records of all detected slanted edges, please refer to the Sup-
plementary Material. There are 29 valid FWHM measurements out of 77 detected slanted
edges for this image crop. The calculated MFWHM(IHR) is 3.19 pixels and MFWHM(ILR)
is 3.31 pixels, which suggests a β of 1.037 for an α of 2. In Figure 6, we demonstrate with two
other examples (two detected slanted edges) within the same 8 km × 8 km crop (at Site-1)
but using three bands, i.e., 10 m/pixel B08 (IHR), 20 m/pixel B8A (ILR), and 60 m/pixel
B09 (ILR). The FWHM measurements of the B08 image are compared against the FWHM
measurements of the B8A image for α = 2, and also against the FWHM measurements
of the B09 image for α = 6. There are 41 and 16 valid FWHM measurements out of 105
detected slanted edges for B08 and B8A and for B08 and B09, respectively. The calculated
MFWHM(IHR) and MFWHM(ILR) for B08 and B8A are 3.14 pixels and 3.42 pixels (av-
eraged from 41 FWHM measurements), respectively. The calculated MFWHM(IHR) and
MFWHM(ILR) for B08 and B09 are 3.33 pixels and 4.89 pixels (averaged from 16 FWHM
measurements), respectively. These suggest an average β of 1.057 for α = 2, which is close
to the measurements in Exp-1 (β = 1.037), and a β of 4.086 for α = 6.

Performing Exp-2 for three more image crops (8 km × 8 km) for B08 and B8A (α = 2),
B8A and B09 (α = 3), and B08 and B09 (α = 6), we can obtain the mean β of 1.055 for α = 2,
mean β of 1.386 for α = 3, and mean β of 1.517 for α = 6. This is summarised in Table 3.
For full measurement details, please refer to the Supplementary Material.

Table 3. ELF measurements of three cropped regions for B08 and B8A (α = 2), B8A and B09 (α = 3), and B08 and B09
(α = 6).

Crops
α = 2 α = 3 α = 6

Edges MFWHM
B08

MFWHM
B8A β Edges MFWHM

B8A
MFWHM

B09 β Edges MFWHM
B08

MFWHM
B09 β

1 75/166 2.76 2.85 1.033 20/104 3.47 4.15 1.196 12/166 3.24 4.53 1.398

2 22/43 2.92 3.14 1.075 2/35 3.20 4.40 1.375 9/43 3.36 5.44 1.619

3 32/65 2.74 2.90 1.058 7/49 2.94 4.67 1.588 10/65 3.30 5.06 1.533

Avg. - - - 1.055 - - - 1.386 - - - 1.517
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Figure 5. Examples of the Exp-1 ELF measurements for two detected slanted edge ROIs of a 8 km × 8 km image crop at
Site-1. 1st column: Sentinel-2 image crops of the 10 m/pixel B04 band and 20 m/pixel B05 band images (pre-upsampled to
10 m/pixel for comparison) showing two examples of the detected slanted edges in the green box; 2nd column: zoom-in
views of the examplar slanted edges within the automatically extracted ROIs; 3rd column: plots of ESFs (blue curve), LSFs
(orange curve) and FWHMs (red line) for the examplar slanted edges. For all Exp-1 ELF measurements of all detected
slanted edges within the 8 km × 8 km image crop at Site-1, please refer to Supplementary Material. N.B. Units of the x and
y axes of the 1st column and the 2nd column, and x axes of the 3rd column figures are “pixels”; units of the y axes of the 3rd
column figures are normalised intensity values—[0, 1] for ESF and [−0.1, 0.1] for LSF. 1st and 2nd columns show images at
different sizes of 8 km × 8 km and 250 m × 300 m, respectively.
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Figure 7 shows cropped examples (625𝑚 × 625𝑚) of the 10m/pixel Sentinel-2 “true” 
colour image (L1C) and TARSGAN SRR result of Site-1, which is located over Baotou, 
Inner Mongolia, China. It is part of the CEOS-WGCV (Committee on Earth Observation 
Satellites Working Group on Calibration and Validation) geometric calibration site 
described in [42,43]. Area-1 shows the artificial geo-calibration targets together with a few 
buildings and roads. Area-2 shows a dome-shaped building in the centre with gardens 

Figure 6. Examples of the Exp-2 ELF measurements for two detected slanted edge ROIs of a 8 km × 8 km image crop
at Site-1. 1st row: Sentinel-2 image crops of the 10 m/pixel B08 band, 20 m/pixel B8A band, and 60 m/pixel B09 band
images, showing two examples of the detected slanted edges in green box; 2nd row: zoom-in views of the examplar
slanted edges within the automatically extracted ROIs; 3rd row: plots of ESFs (blue curve), LSFs (orange curve) and
FWHMs (red line) for the examplar slanted edges. For all Exp-2 ELF measurements of all detected slanted edges within the
8 km × 8 km image crop at Site-1, please refer to Supplementary Material. N.B. Units of the x and y axes of the 1st row
and the 2nd row, and x axes of the 3rd row figures are “pixels”; units of the y axes of the 3rd row figures are normalised
intensity values—[0, 1] for ESF and [−0.1, 0.1] for LSF. 1st and 2nd rows show images at different sizes of 8 km × 8 km and
250 m × 300 m, respectively.

3.2. Demonstration of TARSGAN SRR Results and Subsequent ELF Assessment

In order to demonstrate SRR performance over different features and targets, we show
the results of six test sites with eight images, including six Sentinel-2 L1C images and
two L2A images. For each Sentinel-2 image, we show four small crops (250× 250 pixels
each and with a nominal spatial resolution of 2.5 m/pixel) that cover a variety of different
features and targets of interest that are summarised in Table 2. N.B. to look into more details,
please refer to the original full-size SRR images provided in the Supplementary Material.

Figure 7 shows cropped examples (625 m × 625 m ) of the 10 m/pixel Sentinel-2
“true” colour image (L1C) and TARSGAN SRR result of Site-1, which is located over
Baotou, Inner Mongolia, China. It is part of the CEOS-WGCV (Committee on Earth
Observation Satellites Working Group on Calibration and Validation) geometric calibration
site described in [42,43]. Area-1 shows the artificial geo-calibration targets together with
a few buildings and roads. Area-2 shows a dome-shaped building in the centre with
gardens and roads surrounded. Area-3 shows farms with linear farm roads. Area-4 shows
industrial building blocks. We can observe from the SRR image that the black and white
geo-calibration targets in Area-1 and the farms in Area-3 were brought out with clearer
outlines. The buildings and roads in Area 1,2 and 4 can be identified more easily from the
SRR image in comparison to the original Sentinel-2 image. There is no artefact found in the
SRR image for the four areas of Site-1.

Figure 8 shows cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true”
colour image (L1C) and TARSGAN SRR result of Site-2, which is located over Dubai, United
Arab Emirates. Area-1 shows many tower buildings in the city centre. Area-2 shows two
ships sailing on the sea that is close to the beach. Area-3 shows an artificial island over the
nearby beach with flat buildings and roads. Area-4 shows an airport with parked airplanes
and viaducts. We can observe from the SRR that the flat and tower buildings are much
clearer, and the roads were well resolved in Area-1, 3 and 4. The ships and airplanes in
Area-2 and 4 can be better identified from the SRR image. Especially for Area-2, fine-scale
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waves are revealed in the SRR image. There is no synthetic artefact (e.g., SRR generated
objects/textures) found in the SRR image for the four areas of Site-2.
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result over Dubai, United Arab Emirates (Site-2). Please refer to Supplementary Material for full-size SRR (produced from
Sentinel-2 S2B_MSIL1C_20210528T064629_N0300_R020 T40RCN_20210528T084809).
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Figure 9 shows cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true”
colour image (L1C) and TARSGAN SRR results of Site-3, which is located over a forestry
and agriculture area near Hainich, Germany. Area-1 shows yellow (possibly rapeseed)
and green coloured farms and a farmhouse in the centre. Area-2 shows an area of forest.
Area-3 shows gridded farms under some thin clouds. Area-4 shows a terraced field with
farms on the ground. We can observe from the SRR image that the boundaries of the
farms can be clearly identified in Area-1, 2 and 4. The farmhouse in Area-1 can be seen
with clear outlines. Although the atmospheric clarity is very low in the L1C image, some
of the individual trees in Area-2 can still be identified from the SRR image. In order to
compare the SRR results from the atmospherically corrected L2A images, we show different
cropped areas for the same site in Figure 10, focusing on the agriculture fields. In Figure 10,
Area-1 shows some dark green coloured farms with farm roads. Area-2 shows a mixture
of light green and dark green coloured farms with farm roads. Area-3 shows a small
village surrounded by farms. Area-4 shows light green coloured farms with a road in
the middle. We can observe from the SRR image that the boundaries of the farms were
clearly brought out and the narrow farm roads are much more visible in comparison to the
original Sentinel-2 image. There are no artefacts found from the SRR image for the eight
areas of Site-3.
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Figure 9. Cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true” colour images (L1C) and TARSGAN SRR
result over Hainich, Germany (Site-3). Please refer to Supplementary Material for full-size SRR (produced from Sentinel-2
S2A_MSIL1C_20200921T103031_N0209_R108 T32UNB_20200921T142406).

Figure 11 shows cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true”
colour image (L1C) and TARSGAN SRR result of Site-4, which is located over London, UK.
Area-1 shows the London Bridge train station and small buildings. Area-2 shows very
dense building blocks and bridges crossing the Thames river. Area-3 shows more urban
building blocks. Area-4 shows bridges and ships on the Thames river. We can observe from
the SRR image that the building blocks in Area-2 and 3 look more realistic than the original
Sentinel-2 image. The outlines of the bridges in Area-2 and 4 are clearer and cars on the
bridges in Area-4 are identifiable in the SRR image. Although image quality is lowered
by haze in the L1C image, edges of the different objects in all four areas were significantly
improved with SRR. In comparison, we show an L2A image and its corresponding SRR
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result in Figure 12 for London over different landmarks. Although the L2A image has
shown better contrast and more vivid colours, some stretching (intensity clipping) issues
caused overexposures over very bright objects. Area-1 shows the millennium wheel
(“London Eye”) under some thin clouds. Area-2 shows the London Stadium. Area-3 shows
the London commercial centre at Canary Wharf with many tower buildings. Area-4 shows
Kensington Gardens under some thin clouds. We can observe from the SRR image that
the super-resolved landmarks can be more easily identified from the SRR. In particular,
the millennium wheel and the paths on the grass in Area-1 and the garden path of the
Kensington park in Area-4 can all be better identified from the SRR image. Some buildings,
in Area-2 and 3, are overexposed, but the shapes and outlines are clearer in SRR. There is
no artefact found from the SRR image for the eight areas of Site-3.
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Figure 10. Cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true” colour images (L2A) and TARSGAN SRR
result over Hainich, Germany (Site-3). Please refer to Supplementary Material for full-size SRR (produced from Sentinel-2
S2B_MSIL2A_20210531T101559_N0300_R065 T32UNB_20210531T140040).

Figure 13 shows cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2
“true” colour image (L1C) and TARSGAN SRR result of Site-5, which is in a rural area over
Desert Rock, near Sedona and Flagstaff, Arizona, U.S.A. Area-1 shows a mountain peak
and a segment of the hillside road. Area-2 shows a mixture of desert and trees. Area-3
shows a yellow river in the desert. Area-4 shows a rural desert surface. Probably affected
by the atmosphere clarity and lack of patterns, the quality of the SRR image for this site is
lower than other sites. However, the shape of the mountain peak in Area-1, outlines of the
individual trees in Area-2 and 4, and outline of the river in Area-3, in the SRR image have
shown significant improvements over the original Sentinel-2 image.
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Figure 11. Cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true” colour images (L1C) and TARSGAN
SRR result over London, UK (Site-4). Please refer to Supplementary Material for full-size SRR (produced from Sentinel-2
S2B_MSIL1C_20201217T111359_N0209_R137 T30UXC_20201217T132006).
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Figure 13. Cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true” colour images (L1C) and TARSGAN SRR
result over Desert Rock, near Flagstaff, AZ, U.S. (Site-5). Please refer to Supplementary Material for full-size SRR (produced
from Sentinel-2 S2A_MSIL1C_20210507T180921_N0300_R084 T12SUD_20210507T215833).

Figure 14 shows cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2
“true” colour image (L1C) and TARSGAN SRR result of Site-6, which is located in the
Lincoln Sea of Greenland. Area-1 shows sea ice floes with various cracks and leads. Area-2
shows small pieces of ice floating on the water. Area-3 shows a snow-covered mountain
surface. Area-4 shows sea-ice, leads and open waters. We can observe from the SRR image
that the outlines of sea-ice and the narrow path of the leads and cracks were clearly brought
out in comparison to the original Sentinel-2 image.

In order to calculate the effective resolution of the TARSGAN SRR results, we perform
ELF measurements for all afore-demonstrated examples. The measured MFWHM(ILR),
MFWHM(ISRR), and the calculated ratio of MFWHM(ILR)/MFWHM(ISRR), i.e., β, for
all six sites (32 image crops), are summarised in Table 4. The effective resolution enhance-
ment factor (last column of Table 4—Avg. α) are calculated using the averaged value of
β for each site (second last column of Table 4—Avg. β) and the calibrated values of α
and β (α ∝ β) are shown in Table 3. It should be noted that the exemplar image crops are
very small (250× 250 pixels ), for the forest, sea, and desert crops, and as well as some
crops that were affected by severe haze or under thin clouds, it is impossible to obtain any
valid slanted edge ROIs from ELF (these missing values are marked as “-” in Table 4). The
total averaged effective resolution enhancement factor (Avg. α) of 2.91 times suggests the
TARSGAN SRR results have an averaged effective resolution of 3.44 m/pixel in comparison
to the 10 m/pixel Sentinel-2 inputs.
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Figure 14. Cropped examples (625 m × 625 m) of the 10 m/pixel Sentinel-2 “true” colour images (L1C) and TARSGAN
SRR result over Lincoln Sea, Greenland (Site-6). Please refer to Supplementary Material for full-size SRR (produced from
Sentinel-2 S2A_MSIL1C_20200729T190921_N0209_R056 T21XWM_20200729T222945).

Table 4. Summary of the ELF measurements of all demonstrated examples and estimated effective resolution improve-
ment factors.

Site#
MFWHM(ILR)/MFWHM(ISRR) = β

Avg. β Avg. α
Area-1 Area-2 Area-3 Area-4

Site-1 4.37/2.73 = 1.60 - 4.24/3.49 = 1.21 3.63/2.83 = 1.28 1.363 2.695 times

Site-2 4.7/3.95 = 1.19 - 3.80/3.08 = 1.23 4.30/3.40 = 1.26 1.227 2.520 times

Site-3 (L1C) 4.67/3.53 = 1.32 - - 5.00/3.30 = 1.52 1.42 3.779 times

Site-3 (L2A) 3.35/2.60 = 1.29 4.27/2.93 = 1.46 5.08/3.78 = 1.34 4.15/2.80 = 1.48 1.393 3.160 times

Site-4 (L1C) - - 5.27/4.24 = 1.24 4.07/3.58 = 1.14 1.19 2.408 times

Site-4 (L2A) - 4.75/3.86 = 1.23 3.79/3.44 = 1.10 1.165 2.332 times

Site-5 - 4.58/3.22 = 1.42 4.27/3.93 = 1.09 - 1.255 2.604 times

Site-6 3.68/3.12 = 1.18 - - 4.88/2.94 = 1.66 1.42 3.779 times

Total Avg. - 1.304 2.910 times

3.3. Results from Multispectral Bands

The proposed TARSGAN model can be used to improve the image effective res-
olution of any different multispectral bands without changing their spectral property.
In order to demonstrate spectral invariance of TARSGAN SRR, we test on each indi-
vidual band over two test images (both cropped to a size of 30 km × 30 km)—one
from Site-2 (covering different surface features of urban, desert, and water; image ID:
S2B_MSIL2A_20210528T064629_N0300_R020_T40RCN_20210528T091914) and the other
one from Site-3 (covering forestry and agriculture features; image ID: S2B_MSIL2A_
20210531T101559_N0300_R065_T32UNB_20210531T140040).
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Figure 15 shows for Site-2 intercomparisons of all spectral bands of the SRR product
against the original Sentinel-2 L2A surface reflectance product. It should be noted that
the SRR images are down-sampled to the same scale as the L2A product in order to
achieve the comparison. For 60 m bands, 100× 100 pixels are plotted; for 20 m bands,
300× 300 pixels are plotted for the same area, for 10 m bands, 300× 300 pixels are plotted
for a smaller area. For a detailed comparison of the full area of Site-2, please refer to the
multispectral SRR product and corresponding Sentinel-2 L2A product, provided in the
Supplementary Material.
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Figure 15. Site-2 intercomparisons of all spectral bands of the SRR product against the original Sentinel-2 L2A surface
reflectance product (S2B_MSIL2A_20210528T064629_N0300_R020_T40RCN_20210528T091914).

Considering the resolution gap, the SSR surface reflectance values all show good cor-
relations against the original Sentinel-2 L2A surface reflectance values—with the majority
of the pixels lying on the 1:1 line, which can be observed from the individual scatter plots
of Figure 15.

Figure 16 shows the Site-3 intercomparisons of all spectral bands of the SRR product
against the original Sentinel-2 L2A surface reflectance product. The same sampling rates
are used as Site-2 intercomparisons. Similarly, a good correlation between the multispectral
SRR product and the original Sentinel-2 L2A product can be observed. For a detailed
comparison of the full area of Site-3, please refer to the multispectral SRR product and
corresponding Sentinel-2 L2A product, provided in the Supplementary Material.
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Figure 16. Site-3 intercomparisons of all spectral bands of the SRR product against the original Sentinel-2 L2A surface
reflectance product (S2B_MSIL2A_20210531T101559_N0300_R065_T32UNB_20210531T140040).

4. Discussion
4.1. From MARSGAN to TARSGAN

In this work, we explore the MARSGAN [27] model with the Sentinel-2 L1C and
L2A images. Two practical modifications were applied over the original MARSGAN
network to form a new model, which we call TARSGAN. The first modification is removing
the adaptive weighted multi-scale reconstruction block and using pre-upsampled and
blurred training LR images to achieve better network learning of the blurring effect of the
LR images and thus better resolve small and burry objects. The second modification is
replacing the perceptual loss used in MARSGAN with an SSIM loss to obtain better overall
edge sharpness, whilst avoiding adding synthetic or stochastic textures or artefacts to the
data. Figure 17 shows some examples from Site-1 demonstrating the impact of the two
modifications to MARSGAN with the original 10 m/pixel Sentinel-2 image, the MARSGAN
SRR as described in [27] (MARSGANv0), MARSGAN SRR trained with up-sampled and
blurred LR dataset using perceptual loss (MARSGANv1), and the MARSGAN SRR trained
with up-sampled and blurred LR dataset using the SSIM loss (TARSGAN). From Figure 17,
we can observe the impact of using the proposed training strategy (MARSGANv1) that
results in the sharpest edges among the three, but with synthetic appearance, and replacing
the perceptual loss with SSIM loss, which eliminates the synthetic artefacts, while keeping
compatible edge sharpness.
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Figure 17. (A–D) Cropped examples of Site-1 of the original 10 m/pixel Sentinel-2 image, the MARSGAN SRR as described
in [27] (MARSGANv0), MARSGAN SRR trained with upsampled and blurred LR using perceptual loss (MARSGANv1),
and the MARSGAN SRR trained with upsampled and blurred LR using the SSIM loss (TARSGAN). All subfigures are self
contrast stretched and have sizes of 625 m × 625 m..

4.2. Potential Improvements to TARSGAN and ELF

In this paper, we focused on the demonstration of the TARSGAN SRR results for
Sentinel-2 “true” colour and multispectral images, alongside a demonstration of the auto-
mated image effective resolution assessment. The two proposed modifications of MARS-
GAN are considered light-touch to the original network architecture. In the future, we
would like to test out more optimisation ideas to further improve the TARSGAN SRR
results. For example, training the network in a cascaded manner, i.e., providing the in-
termediate 2× resolution HR as supervision data to better guide the network learning
artefact-free 4× resolution enhancement. Or similar to [28], training a separate model to
learn a comprehensive set of degradation effects of LR images, could also be helpful in
constructing a better training dataset that not only focuses on the blurring effect of the
LR images. Other work like separating the training datasets for different features (e.g.,
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separating forestry scenes with urban scenes) may help improve the SRR performance for
a particular category of the applications.

On the other hand, the proposed ELF system is capable of directly assessing the image
effective resolution that is considered to be a better metric of representing the performance
of an SRR algorithm, in comparison to the commonly used subjective quality metrics or
perceptual indexes [44,45]. ELF does not need a reference HR image, which is generally
difficult or expensive to obtain. However, ELF is not always applicable if test images are
very small and do not contain sufficient edge features. In the future, we would like to extend
the ELF system with automated circle feature detection and ring measurements to improve
its robustness over scenes that have insufficient edge features. Moreover, combining the
subjective quality metrics or perceptual indexes as well as automated detection of the
smallest resolvable objects could also improve the performance of the image effective
resolution assessment system.

4.3. A Future Streamlined SRR System

Over the last few years, deep learning-based techniques have achieved significant
success in the field of SRR due to the richly available training datasets (as no labelling is
required) and significantly faster processing speed in comparison to the traditional SRR
approaches. However, some suboptimal restorations or occasional false predictions cannot
be fully eliminated when using a single deep learning-based SRR network. Even with
any state-of-the-art algorithms/models, the quality of the SRR results may still differ from
dataset to dataset, from scene to scene, and from one area to another area. Therefore, we
propose the concept of employing a streamlined SRR system on a GPU or GPU cloud
server that is capable of achieving automated algorithms/networks selection and results
assessments, which will provide the optimal solution for automated SRR processing of all
sorts of input EO datasets. Figure 18 shows a conceptual implementation of this future
streamlined SRR processing system using a processing scheduler with web-based data
delivery, a combination of different SRR algorithms/networks as the “core processor”, and
a combination of the proposed ELF system and other image quality assessment metrics as
the “quality assessor”.
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5. Conclusions

In this paper, we introduced the TARSGAN SRR model and the ELF image-effective
resolution assessment system. We demonstrated TARSGAN SRR results using the 10 m/pixel
Sentinel-2 “true” colour images over a wide range of different types of natural and artificial
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surface features/targets. The ELF measurements show an averaged effective resolution
enhancement factor of about 2.91 times over the passive SRR upscaling factor of 4 times.
This suggests an effective resolution of ~3.44 m/pixel achieved with TARSGAN SRR
over the 10 m/pixel bands. In addition, the multispectral properties of the TARSGAN
SRR images were demonstrated to have good correlation, considering the resolution gap
of 4 times, in comparison to the original Sentinel-2 images for all spectral bands. This
suggests multispectral applications (e.g., calculation of multispectral indices indicative of
crop health/stress and potential yield in precision agriculture) could be seamlessly applied
using the TARSGAN super-resolved images but with better precision. We believe the
demonstrated Sentinel-2 TARSGAN SRR system has potential for new applications in a
variety of different fields, such as planning infrastructure, public services and monitoring
of small urban targets in the field of urban intelligence; providing field scale mapping
and boundary management at a global scale in the field of agriculture; achieving better
detection and classification accuracy of different science targets, e.g., sea-ice leads and
melt-ponds, in the field of oceanology and geology.
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zf3, All figures in full resolution. Processing results and assessment figures in original resolution.

Author Contributions: Conceptualization, Y.T. and J.-P.M.; methodology, Y.T. and S.X.; software, Y.T.,
S.X., and R.S.; validation, Y.T., R.S., S.X. and J.-P.M.; formal analysis, Y.T., R.S. and S.X.; investigation,
Y.T. and J.-P.M.; resources, Y.T., S.X., R.S. and J.-P.M.; data curation, Y.T. and J.-P.M.; writing—original
draft preparation, Y.T.; writing—review and editing, Y.T., J.-P.M., S.X., R.S.; visualization, Y.T., R.S.
and S.X.; supervision, J.-P.M.; project administration, Y.T. and J.-P.M.; funding acquisition, Y.T. and
J.-P.M. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the UCL Enterprise
SpaceJump project under grant agreement no. STFC KEI2019-03-01, UK Space Agency Centre for
Earth Observation Instrumentation under SuperRes-EO project (UKSA-CEOI-10 2017-2018) grant
agreement no. RP10G0435A05 and OVERPaSS project (UKSA-CEOI-11 2018-2019) grant agreement
no. RP10G0435C206, UKSA Aurora programme (2018-2021) under grant no. ST/S001891/1, and
STFC consolidated grant STFC “MSSL Consolidated Grant” ST/K000977/1. S.X. has received
funding from the Shenzhen Scientific Research and Development Funding Programme (grant No.
JCYJ20190808120005713) and China Postdoctoral Science Foundation (grant No. 2019M663073).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The research leading to these results has received funding from the UCL En-
terprise office for SpaceJump under grant agreement no. STFC KEI2019-03-01, UK Space Agency
Centre for Earth Observation Instrumentation under SuperRes-EO project (UKSA-CEOI-10 2017-2018)
grant agreement no. RP10G0435A05 and OVERPaSS project (UKSA-CEOI-11 2018-2019) grant agree-
ment no. RP10G0435C206, UKSA Aurora programme (2018-2021) under grant no. ST/S001891/1,
and STFC consolidated grant STFC “MSSL Consolidated Grant” ST/K000977/1. S.X. has received
funding from the Shenzhen Scientific Research and Development Funding Programme (grant No.
JCYJ20190808120005713) and China Postdoctoral Science Foundation (grant No. 2019M663073).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Ouwerkerk, J.D. Image super-resolution survey. Image Vis. Comput. 2006, 24, 1039–1052. [CrossRef]
2. Shah, A.J.; Gupta, S.B. Image super resolution-a survey. In Proceedings of the 1st International Conference on Emerging

Technology Trends in Electronics, Communication & Networking 2012, Surat, India, 19–21 December 2012; pp. 1–6.
3. Ha, V.K.; Ren, J.; Xu, X.; Zhao, S.; Xie, G.; Vargas, V.M. Deep Learning Based Single Image Super-Resolution: A Survey. In

Proceedings of the International Conference on Brain Inspired Cognitive Systems, Xi’an, China, 7–8 July 2018; Springer: Cham,
Switzerland, 2018; pp. 106–119.

https://liveuclac-my.sharepoint.com/:f:/g/personal/ucasyta_ucl_ac_uk/Ek7gotjnQhVFl0xwKMsEzFQBPbYeVPrdxIPqjWG5L36UHg?e=v8vzf3
https://liveuclac-my.sharepoint.com/:f:/g/personal/ucasyta_ucl_ac_uk/Ek7gotjnQhVFl0xwKMsEzFQBPbYeVPrdxIPqjWG5L36UHg?e=v8vzf3
https://liveuclac-my.sharepoint.com/:f:/g/personal/ucasyta_ucl_ac_uk/Ek7gotjnQhVFl0xwKMsEzFQBPbYeVPrdxIPqjWG5L36UHg?e=v8vzf3
http://doi.org/10.1016/j.imavis.2006.02.026


Remote Sens. 2021, 13, 2614 24 of 25

4. Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020.
[CrossRef] [PubMed]

5. Tsai, R.Y.; Huang, T.S. Multipleframe Image Restoration and Registration. In Advances in Computer Vision and Image Processing; JAI
Press Inc.: New York, NY, USA, 1984; pp. 317–339.

6. Keren, D.; Peleg, S.; Brada, R. Image sequence enhancement using subpixel displacements. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 742–746.

7. Kim, S.P.; Bose, N.K.; Valenzuela, H.M. Recursive reconstruction of high resolution image from noisy undersampled multiframes.
IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1013–1027. [CrossRef]

8. Bose, N.K.; Kim, H.C.; Valenzuela, H.M. Recursive implementation of total least squares algorithm for image reconstruction from
noisy, undersampled multiframes. In Proceedings of the IEEE Conference Acoustics, Speech and Signal Processing, Minneapolis,
MN, USA, 27–30 April 1993; Volume 5, pp. 269–272.

9. SRhee, H.; Kang, M.G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng.
1999, 38, 1348–1356.

10. Hardie, R.C.; Barnard, K.J.; Armstrong, E.E. Joint MAP registration and high resolution image estimation using a sequence of
undersampled images. IEEE Trans. Image Process. 1997, 6, 1621–1633. [CrossRef]

11. Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. Fast and robust multi-frame super-resolution. IEEE Trans. Image Process. 2004,
13, 1327–1344. [CrossRef]

12. Yuan, Q.; Zhang, L.; Shen, H. Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 379–392. [CrossRef]

13. Tao, Y.; Muller, J.-P. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery.
Planet. Space Sci. 2016, 121, 103–114. [CrossRef]

14. Tao, Y.; Muller, J.-P. Super-Resolution Restoration of Spaceborne HD Videos Using the UCL MAGiGAN System. In Image and
Signal Processing for Remote Sensing XXV; SPIE: Strasbourg, France, 2019; pp. 1115508-1–1115508-7.

15. Tao, Y.; Muller, J.-P. Super-resolution restoration of MISR images using the UCL MAGiGAN system. Remote Sens. 2019, 11, 52.
[CrossRef]

16. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2017, Honolulu, HI, USA, 21–26 July 2017;
pp. 136–144.

17. Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate image super-resolution.
arXiv 2018, arXiv:1808.08718.

18. Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings
of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018; pp. 252–268.

19. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1637–1645.

20. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155.

21. Wang, C.; Li, Z.; Shi, J. Lightweight image super-resolution with adaptive weighted learning network. arXiv 2019,
arXiv:1904.02358.

22. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. ; Fu, Y. Image super-resolution using very deep residual channel attention
networks. In Proceedings of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September
2018; pp. 286–301.

23. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

24. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. EnhanceNet: Single image super-resolution through automated texture synthesis. In
Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 4491–4500.

25. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced super-resolution generative
adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops 2018, Munich,
Germany, 8–14 September 2018.

26. Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN+: Further improving enhanced super-resolution generative adversarial network. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020, Barcelona, Spain,
4–8 May 2020; pp. 3637–3641.

27. Tao, Y.; Conway, S.J.; Muller, J.-P.; Putri, A.R.D.; Thomas, N.; Cremonese, G. Single Image Super-Resolution Restoration of TGO
CaSSIS Colour Images: Demonstration with Perseverance Rover Landing Site and Mars Science Targets. Remote Sens. 2021,
13, 1777. [CrossRef]

28. Sun, W.; Chen, Z. Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 2020,
29, 4027–4040. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2020.2982166
http://www.ncbi.nlm.nih.gov/pubmed/32217470
http://doi.org/10.1109/29.56062
http://doi.org/10.1109/83.650116
http://doi.org/10.1109/TIP.2004.834669
http://doi.org/10.1109/TCSVT.2011.2163447
http://doi.org/10.1016/j.pss.2015.11.010
http://doi.org/10.3390/rs11010052
http://doi.org/10.3390/rs13091777
http://doi.org/10.1109/TIP.2020.2970248
http://www.ncbi.nlm.nih.gov/pubmed/32031937


Remote Sens. 2021, 13, 2614 25 of 25

29. Cai, J.; Zeng, H.; Yong, H.; Cao, Z.; Zhang, L. Toward real-world single image super-resolution: A new benchmark and a
new model. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2019, Seoul, Korea, 27 October–2
November 2019; pp. 3086–3095.

30. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 391–407.

31. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883.

32. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. arXiv 2014, arXiv:1406.2661. [CrossRef]

33. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
34. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. arXiv 2018, arXiv:1807.00734.
35. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef]
36. Godard, C.; Mac Aodha, O.; Firman, M.; Brostow, G.J. Digging into self-supervised monocular depth estimation. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3828–3838.
37. Alhashim, I.; Wonka, P. High quality monocular depth estimation via transfer learning. arXiv 2018, arXiv:1812.11941.
38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
40. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [CrossRef]
41. Hart, P.E.; Duda, R.O. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15.
42. Li, C.R.; Tang, L.L.; Ma, L.L.; Zhou, Y.S.; Gao, C.X.; Wang, N.; Li, X.H.; Zhou, X.H. A comprehensive calibration and validation

site for information remote sensing. ISPRS-IAPRSIS 2015, XL-7/W3, 1233–1240. [CrossRef]
43. Zhou, Y.; Li, C.; Tang, L.; Wang, Q.; Liu, Q. A Permanent Bar Pattern Distributed Target for Microwave Image Resolution Analysis.

IEEE Geosci. Rem. Sens. 2017, 14, 164–168. [CrossRef]
44. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.

2012, 21, 4695–4708. [CrossRef] [PubMed]
45. Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.M.; Channappayya, S.S.; Medasani, S.S. Blind Image Quality Evaluation Using

Perception Based Features. In Proceedings of the 21st National Conference on Communications (NCC) 2015, Mumbai, India, 27
February–1 March 2015.

http://doi.org/10.1145/3422622
http://doi.org/10.1109/TIP.2003.819861
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1109/TPAMI.1986.4767851
http://doi.org/10.5194/isprsarchives-XL-7-W3-1233-2015
http://doi.org/10.1109/LGRS.2016.2632181
http://doi.org/10.1109/TIP.2012.2214050
http://www.ncbi.nlm.nih.gov/pubmed/22910118

	Introduction 
	Materials and Methods 
	Datasets for Testing and Training 
	Key Modifications of MARSGAN 
	The TARSGAN System 
	The ELF System 

	Results 
	Estimation of Image Effective Resolution through ELF 
	Demonstration of TARSGAN SRR Results and Subsequent ELF Assessment 
	Results from Multispectral Bands 

	Discussion 
	From MARSGAN to TARSGAN 
	Potential Improvements to TARSGAN and ELF 
	A Future Streamlined SRR System 

	Conclusions 
	References

