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The school building sector has a pivotal role to play in the transition to a low carbon UK economy. School
buildings are responsible for 15% of the country’s public sector carbon emissions, with space heating cur-
rently making up the largest proportion of energy use and associated costs in schools. Children spend a
large part of their waking life in school buildings. There is substantial evidence that poor indoor air qual-
ity and thermal discomfort can have detrimental impacts on the performance, wellbeing and health of
schoolchildren and school staff. Maintaining high indoor environmental quality whilst reducing energy
demand and carbon emissions in schools is challenging due to the unique operational characteristics
of school environments, e.g. high and intermittent occupancy densities or changes in occupancy patterns
throughout the year. Furthermore, existing data show that 81% of the school building stock in England
was constructed before 1976. Challenges facing the ageing school building stock may be exacerbated
in the context of ongoing and future climate change.
In recent decades, building stock modelling has been widely used to quantify and evaluate the current

and future energy and indoor environmental quality performance of large numbers of buildings at the
neighbourhood, city, regional or national level. Building stock models commonly use building archetypes,
which aim to represent the diversity of building stocks through frequently occurring building typologies.
The aim of this paper is to introduce the Data dRiven Engine for Archetype Models of Schools

(DREAMS), a novel, data-driven, archetype-based school building stock modelling framework. DREAMS
enables the detailed representation of the school building stock in England through the statistical anal-
ysis of two large scale and highly detailed databases provided by the UK Government: (i) the Property
Data Survey Programme (PDSP) from the Department for Education (DfE), and (ii) Display Energy
Certificates (DEC). In this paper, the development of 168 building archetypes representing 9,551 primary
schools in England is presented. The energy consumption of the English primary school building stock
was modelled for a typical year under the current climate using the widely tested and applied building
performance software EnergyPlus. For the purposes of modelling validation, the DREAMS space heating
demand predictions were compared against average measured energy consumption of the schools that
were represented by each archetype. It was demonstrated that the simulated fossil-thermal energy con-
sumption of a typical primary school in England was only 7% higher than measured energy consumption
(139 kWh/m2/y simulated, compared to 130 kWh/m2/y measured). The building stock model performs
better at predicting the energy performance of naturally ventilated buildings, which constitute 97% of
the stock, than that of mechanically ventilated ones. The framework has also shown capabilities in pre-
dicting energy consumption on a more localised scale. The London primary school building stock was
examined as a case study.
School building stock modelling frameworks such as DREAMS can be powerful tools that aid decision-

makers to quantify and evaluate the impact of a wide range of building stock-level policies, energy effi-
ciency interventions and climate change scenarios on school energy and indoor environmental
performance.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is estimated that people in Europe spend more than 90% of
their time indoors on average [1]. Children, in particular, spend a
large part of their waking life in school buildings (approximately
30% of their life at school, around 70% of which inside a classroom)
[2]. School buildings typically have high and intermittent occu-
pancy densities, which can result in high internal heat gains and
irregular heating demand patterns) [3]. Furthermore, the way
school classrooms are used changes throughout the day and
around the year. Special attention is, therefore, required when
designing school environments, due to the unique challenges they
face.

Maintaining indoor environmental comfort in such spaces is,
thus, particularly challenging; especially in the context of climate
change and associated increases in ambient temperatures. Accord-
ing to current climate change projections, the UK is expected to
experience warmer, wetter and windier winters, and hotter and
drier summers [4]. As the UK is a predominantly heating domi-
nated climate, its school buildings were originally designed to be
primarily naturally ventilated and may not be prepared to cope
with high levels of indoor overheating risk [5] Furthermore, data
suggest that up to two-thirds of the total English school floor area
was built before 1976 [6]. Therefore, research on current and
future school building stock performance has become increasingly
important in recent decades [7,8].

School buildings are responsible for around 15% of the UK’s
public sector carbon emissions. Energy expenditure is often the lar-
gest non-staff-related cost for schools [9]. This makes school build-
ings an important element in the transition to a low energy and
low carbon economy: It is estimated that the UK school building
stock has the potential to reduce its energy bills by £44 million
and prevent 625,000 tonnes of CO2 from entering the atmosphere,
annually [9]. The school building stock offers significant opportuni-
ties for reduction in energy use, as the factors that determine
energy performance, such as activity patterns and equipment
use, are fairly similar across the stock. For this, existing school
buildings will need to be retrofitted to higher energy standards.
While energy efficient design techniques, such as high thermal
insulation and airtightness levels, may potentially lead to reduced
heating demands, it is important to note that such design strate-
gies could impair indoor environmental quality and lead to over-
heating, if they lack a whole system approach. A detailed analysis
of the performance of the stock can assist policymakers and stake-
holders in improving energy performance and indoor air quality in
the school building stock.

Building stock modelling is widely used to examine the current
and future energy and indoor environmental quality performance
of large numbers of buildings at the neighbourhood, city, regional
or national level. These models often adopt an archetype approach
that uses a number of ‘typical’ buildings to represent the diversity
of the building sector. This approach enables decision-makers and
other stakeholders to investigate the performance of the entire
building stock under a range of different scenarios (e.g., climate
change, refurbishment packages, design strategies etc.). Such an
approach can help policymakers predict building stock perfor-
mance under different policy scenarios and help inform the devel-
opment of appropriate policies and regulations. This study forms
part of the UK Engineering and Physical Sciences Research Council
(EPSRC) funded project ‘Advancing School Performance: Indoor
environmental quality, Resilience and Educational outcomes’
(‘ASPIRE’), which aims to understand how energy efficient building
design strategies might affect the indoor environmental quality of
schools in the UK, and provide recommendations for optimum low
carbon and healthy school building design.
2

This paper presents a novel stock-modelling framework - Data
dRiven Engine for Archetype Models of Schools (DREAMS) - that
is capable of offering a detailed representation of the English pri-
mary school building stock. DREAMS uses data from two large-
scale databases (i) Property Data Survey Programme (PDSP [6]), a
survey of school buildings in England, and (ii) Display Energy Cer-
tificates (DEC), which contains data on a range of public building
thermal properties. The objectives of this study are:

� To accurately characterise, model and simulate the entire Eng-
lish primary school building stock based on the statistical anal-
ysis of the PDSP and DEC databases.

� To present the development of the archetype-based English pri-
mary school building stock model. This approach can enable a
detailed exploration of energy efficiency levels (heating and
cooling load) and a range of other building performance metrics
(e.g., indoor air quality, thermal comfort etc.) under different
climate change scenarios.

� To present the results of the model’s validation by comparing
simulated performance against measured energy use data.

2. Background

2.1. Building stock modelling approaches

In recent decades, building stock modelling has been widely
employed to predict energy performance of building stocks at dif-
ferent scales (neighbourhood, city, regional, national and cross-
national), and evaluate the potential impact of energy conservation
measures and climate change scenarios. Approaches to modelling
building stocks can broadly be broken down into two main cate-
gories: ‘top-down’ and ‘bottom-up’ approaches [10–13].

2.1.1. The top-down approach works at an aggregated level
Energy consumption is modelled by establishing statistical rela-

tionships between building energy use and macroeconomic or
other variables (often climatic ones). This approach is, therefore,
often used to estimate the aggregated impacts of building energy
consumption at regional and national levels. The top-down
approach relies on historical data to define those statistical rela-
tionships. This means that predictions of future performance are
based on past performance trends, which might not be applicable
for examining future scenarios and unpredicted events, such as cli-
mate change, accurately [10]. The top-down approach is easy to
apply as it requires a limited set of inputs for model development
[12], while it considers the building stock as an energy sink and
does not provide detailed energy results of individual buildings
or end-uses [11]. This may lead to limitations in identifying specific
policy measures for improving energy efficiency of different build-
ing types.

2.1.2. The Bottom-up approach works at a disaggregated level
Energy consumption is usually calculated for individual end-

uses, buildings or groups of buildings, and then the modelling out-
puts are aggregated at stock level. The bottom-up approach can be
further divided into two sub-categories:

a. Bottom-up statistical approach – This approach estimates
building energy consumption based on empirical and measured
data that expands further from the data used in the ‘top-down’
approach. As it is based on the use of historic data, this statistical
approach is capable of incorporating the effects of occupancy beha-
viour and other measured or observed data on energy consumption
[11]. However, similarly to the top-down approach, the reliance on
historical data limits its capability to explore the impacts of future
technologies on building energy performance.
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b. Bottom-up engineering approach – The engineering approach
estimates building performance through thermodynamic calcula-
tions using inputs that are related to the physical characteristics
of buildings. It is possible, by using this approach, to explore the
impact of various thermal performance measures (e.g., building
fabric or systems improvements). In contrast to the statistical
approach, however, one of its main limitations is that describing
and modelling human behaviour may not be complete [10].

For the purpose of guiding energy policy and decision making,
applying building simulations through the bottom-up engineering
approach may require significant resources, especially when a
large number of buildings is involved. This approach can be time
consuming, complex and costly, in particular in terms of data gath-
ering, computing time and power.

2.2. Archetype stock modelling approach

To address these challenges, an archetype approach is often
adopted for building stock modelling, a modelling technique
whereby a small number of buildings are defined as broadly repre-
sentative of the entire building stock. A key step in developing an
archetype-based building stock model is the selection and defini-
tion of archetypes: too many unique buildings will increase the
resource requirements and complexity of the model; too few
may mean that the model fails to accurately represent the com-
plexity and diversity of the stock being examined [14]. Therefore,
the archetype approach relies on the identification of similar build-
ing properties across the overall stock and the identification of the
optimum number of categories into which buildings are classified.

To date, archetype building stock models have been mostly
developed for the residential sector, ranging from the regional to
the national level [15–19]. Archetype-based building stock
approaches vary as a function of data availability, specific study
aims and regional/national stock characteristics. However, com-
mon patterns emerge across methodological approaches. General
procedures of archetype-based building stock modelling
approaches include:

1) Data collection and processing;
2) Classification of buildings;
3) Determination of representative parameters for each build-

ing category;
4) Development of archetype models.

With the collected data providing information of given build-
ings, the archetypes are classified based on a set of shared
energy-related properties within each building category. This is
followed by determining representative parameters depending
on their occurrence frequency at stock levels, which will finally
be used to develop archetypes models.

Archetype based building stock models are typically further
split into two different categories: virtual archetype models and
sample archetype models.

2.2.1. Virtual archetype models
Use notional averaged archetypes that represent different

building categories. For example, in studies in some European
countries, such as Germany and Denmark, the residential building
stock has been classified to enable the development of archetypes
for energy performance analysis [18,19]. In most cases, however,
input information requires access to different building databases
or even databases that were not specifically developed for building
energy assessment processes (e.g. census data or other local
authority owned data) [17,20].

Since the data that are used to establish archetypes at different
studies come from a diverse, non-homogeneous range of data
3

sources, the classfication methods applied to building stocks vary
widely. Some building parameters (e.g. floor areas) used to repre-
sent each category and characterise archetype models are defined
by statistical analysis, and often derived from average values of the
entire building stock data [16]. Other parameters such as thermal
properties, building systems and occupant behaviours) are often
determined through referring to building codes and standards,
and research literature [17,21]. Building properties such as build-
ing type and construction age are often recognised by many studies
as the most impactful variables for energy use, however, in cases
where detailed buildings thermal properties are missing, the speci-
fic criteria are often decided based on the modeller’s expertise [22].

2.2.2. Sample archetype models
Use the information of real buildings with similar characteris-

tics to the mean features of the concepts that were introduced in
section 2.2.1. Mata et al. [23] used the sample approach to repre-
sent the Swedish residential stock by a sample of 1,400 buildings.
The individual energy performance predictions were assigned
weighting coefficients to represent the fraction of each building
category in the stock, and results of building stock were later
aggregated. Another study [24] selected 12 sample buildings as
archetype models to generate detailed thermal energy demand
analysis at an urban district in Turin, Italy. A main limitation of this
approach would be the assurance that the selected sample accu-
rately represent the entire stock, however, using a large number
of sample archetype models will increase the reliability of the
stock’s representation, especially for large-scale building stock
with a variety of building types [11,24].

In some cases, archetype model development combines both
the theoretical approach and the sample approach due to data
availability variation in different regions. For instance, the TABULA
project (Typology Approach for Building Stock Energy Assessment)
offers a harmonized methodological framework for the representa-
tion of residential building stocks in 20 European countries using
both theoretical and sample archetypes for energy performance
prediction and assessment [25].

At the time of writing, there was only a limited number of
archetype models for non-residential building stocks. This may
partly be because non-residential buildings are more diverse than
residential buildings and therefore, often more challenging to rep-
resent using a limited set of archetypes [26]. In order to tackle this
challenge, Korolija et al. [27] developed a novel method to describe
the UK office building stock by using parametric modelling to cre-
ate office archetypes. The study parameterized the energy-related
building characteristics (e.g., building form, glazing ratio, envelope
construction etc.), and developed 3,840 virtual office building
models overall. This process, however, did not account for the
occurrence frequency of each archetype in the stock, which may
not be suitable for providing aggregated stock-level performance
figures.

2.3. Limitations of archetype stock modelling

Both archetype approaches outlined above (virtual and sample)
are characterised by a number of limitations:

a. The ability to address uncertainties: The major issue affecting
the robustness of archetype models is the uncertainty in modelling
inputs. Booth et al. [22] summarized two types of uncertainties
first-order (aleatory) uncertainty caused by the random variations
of input parameters (e.g. occupant behaviour, HVAC systems effi-
ciency levels etc.) and second-order (epistemic) uncertainty, due
to lack of knowledge on certain modelled parameters. In both vir-
tual and sample archetype models, input parameters are often
defined by a deterministic approach (e.g., where a single value is
assigned to a modelled parameter whereas stochastic models
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(e.g., models that account for changes in certain parameters) may
be capable of addressing some uncertainties [28]. These may
include occupant behaviour [28,29], or climate and building-
related parameters [30].

b. Levels of accuracy: The limited number of representative
building models in the archetype model is likely to affect the accu-
racy of results, as archetype models are, by their very definition,
approximations of actual buildings [31].

Whilst the availability of monitored building performance data
at the building stock level is often limited [30], stock-level perfor-
mance results are compared against measured data, whenever pos-
sible. Studies have shown promising agreement between
simulated and measured performance using archetype models:
8% discrepancy in a Sicilian residential stock [21], and 4% discrep-
ancy on a residential and commercial stock model in Milan, Italy
[32]. The agreement between simulated results and measured data
at stock level is explained by Reinhart and Cerezo Davila [31], who
asserts that individual model inaccuracies due to uncertainties
tend to average out when aggregated at stock level, so the apparent
overall level of accuracy is higher than that for any individual
archetype.

c. Lack of linking energy consumption evaluations to indoor envi-
ronment quality: Energy performance of buildings is highly relevant
to indoor environmental performance and occupant satisfaction
[33]. However, the majority of existing archetype models to date
have focused solely on energy performance. Although there are a
few studies that focus on indoor environmental quality at stock
levels [34–36], a more integrated approach is required, capable
of considering both energy and indoor environmental conditions.
Such approaches may be useful in informing integration of climate
change mitigation and adaption strategies, in the context of inter-
national climate policies [37].

In summary, the archetype approach is widely adopted in build-
ing stock energy use and indoor environmental quality modelling
due to its ability to describe and represent large groups of build-
ings in a relatively simple way. Under existing data and computa-
tional capacity, the archetype approach offers a good balance
between detailed description of the whole building stock on the
one hand, and modelling efforts on the other. To date, the arche-
type approach has been well developed for residential building
sectors, but less so for more heterogeneous non-domestic building
stocks. Nonetheless, as the operational energy use portion of non-
domestic buildings is estimated to grow in the future [38], the per-
formance evaluations of building performance for the non-
domestic building stock is increasingly critical and a topic of inter-
est in building stock modelling studies. Due to building stock mod-
els inherent constraints which could affect the result accuracy, a
validation process is required to evaluate the representativeness
of archetype models. The accuracy of modelling results can be
improved if audits or measured energy data are available at the
stock level.
3. Methodology

Building on existing archetype building stock modelling
approaches outlined in the previous section, this paper presents
a theoretical archetype stock model for primary school buildings
in England. The Data dRiven Engine for Archetype Models of
Schools (DREAMS) is a novel school building stock model frame-
work based on data-driven building theoretical archetypes.

Figure 1 schematically illustrates the study design. DREAMS
is based on two extensive and detailed databases of school
buildings including both observational (building thermal prop-
erties) and measured data (energy consumption). By analysing
the data from a national survey of the schools estate, the
4

Department for Education (DfE)’s Property Data Survey Pro-
gramme (PDSP) [6], school buildings were classified into
groups based on a series of buildings characteristics. The study
then proposes an automated process, through which a set of
school building archetypes were developed and defined as rep-
resentative of the whole stock in England. These archetypes
were subsequently simulated using EnergyPlus – a dynamic
thermal simulation tool which is widely tested and used both
in the industry and academia [39]. Predicted building perfor-
mance analysis was then carried out for energy use perfor-
mance, and simulation results were then compared with
measured energy consumption derived from Display Energy
Certificates database (DEC) [41], to ensure the model accurately
predicts the stock’s performance.

The main novelty of DREAMS lies within its use of databases
and its application to the school building sector: It is the first time
that a nation-wide school building stock has been modelled and
simulated using the archetype approach, based on an extensive,
nation-wide, detailed database of school buildings. It is believed
that the granularity of the data will lead to a more accurate depic-
tion of the stock.

3.1. DREAMS framework development

Fig. 2 illustrates the method behind the development of the
DREAMS framework. Section 3.1.1 provides an overview of the
databases that were used in this study, and their statistical analy-
sis. Section 3.1.2 introduces the concept behind the development
of the seed models. Section 3.1.3 explains the data processing
and the procedures underlying the generation of the school arche-
type models. Last, section 3.1.4 details the steps of building simu-
lation, post-processing, results analysis and comparison to
measured energy consumption figures.

3.1.1. Initial data analysis – The data sources
The Property Data Survey Programme (PDSP), was originally

commissioned by the UK Government’s Partnerships for Schools
(later part of Education Funding Agency) [6]. It collected informa-
tion on the physical condition of the education estate of England
between 2012 and 2014. While not all the English school building
stock was surveyed (e.g. recently built or modernised schools were
excluded), the resulting database includes information on 18,970
establishments across the country. This represents 85% of the
school stock in England, and includes primary and secondary
schools, as well as nurseries and special institutions as shown in
Table 1. For primary schools - the focus of this study- these surveys
cover around 90% of the total stock.

The programme was not originally designed to collect building
energy use information. However, part of the collected data is use-
ful for investigating school building thermal performance. This
includes the following key variables: the number of buildings in
each school’s premises, building footprint area, number of storeys,
average Window-to-Wall Ratio (WWR), and building construction
age. Outside of the focus of the present study, data gathered as part
of PDSP include information on external areas, internal finishes and
sanitary services [40].

In addition to PDSP, another key source of school building stock
information used in this study was the Display Energy Certificates
(DEC) database, acquired from the bulk public release. Introduced
in 2008, DECs provide standardised and normalised performance
benchmarks for large non-domestic public buildings in England
and Wales [41]. Variables within the DEC database include the
building internal environment: Heating, Ventilation and Air Condi-
tioning (HVAC) systems, main heating fuel, occupancy levels and
measured annual energy consumption data, presented as electric-
ity and fossil-thermal energy intensities (kWh/m2). A number of



Fig. 1. The study design.

Fig. 2. The DREAMS framework: archetype development.

Table 1
An overview of the surveyed schools’ data within the PDSP dataset.

Phase of Education Survey Year All

2012 2013 2014

N N N N

16 Plus 20 78 3 101
All Through 14 16 13 43
Middle Deemed Primary 4 5 9 18
Middle Deemed Secondary 37 59 39 135
Not applicable 160 457 365 982
Nursery 106 193 93 392
Primary 2,489 6,324 6,479 15,292
Secondary 507 935 565 2,007
All 3,337 8,067 7,566 18,970
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studies presenting statistical analyses of school DECs have been
published to date [42,43]. The DEC data used for this study com-
prise 44,127 certificates for primary schools, lodged between 9
March 2010 and 1 October 2016.

Considerable data processing was necessary to use the separate
datasets for the purposes of archetype generation. This included
pre-processing of the PDSP and DEC files separately, matching
the two datasets, and post-processing. The steps are detailed
below:

- Pre-Processing: Prior to linking to PDSP, the DEC data was pro-
cessed using methods developed by [44] to exclude records that
could introduce uncertainties to the analysis, or that are for
buildings outside of the focus of this study. The process
involved checking the records for data formatting and com-
pleteness, and excluding any records with the following
characteristics:

� Duplicate entries
� Records that were updated in less than 6 months from the pre-
vious record.
5

� Records with unusual normalised energy figures (the ‘opera-
tional rating’), including DEC with operational ratings above
1,000, below 5 (unusually high and low respectively) or 200
or 9999 (default values)

� Records with floor area lower than 50 m2

� Mixed-fuel use buildings with no electrical or fossil-thermal
energy use

� Composite DECs (where a building has significant areas of dif-
ferent uses that are not sub-metered, these may be produced
under a ‘composite’ methodology)

- Postal address matching: Next, the DEC database was matched
to the PDSP database based on postal addresses of the entries in
each database. This was carried out at the level of each individ-
ual school, using the address data from each file. Address-
matching was undertaken in a semi-automated, geographically
scaled manner: Code, written in SAS 9.4 [45], calculated Leven-
shtein distances between pairs of addresses prioritised based on
the geographic data, using the postcodes as primary identifiers.
Following this, manual inspection of each pair was performed,
to validate the address-matching process.

- Post-processing: Following the address-matching process,
schools without matched building characteristics and energy
data (from the PDSP and DEC databases, respectively) were
removed. To improve the alignment of the two datasets,
DECs based on surveys that took place between 2012 and
2014 (the period when the PDSP data were collected) were
selected, where available. Last, since this study focuses on
primary schools, entries for other school types were
removed.

Following the processing and matching steps detailed above
produced a ‘combined school dataset’ with 9,551 primary schools,
fromwhich the archetype models were produced for DREAMS. Ref-
erences to the schools data in the remainder of this paper refer to
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this combined dataset, rather than the raw, separate DEC or PDSP
files.

3.1.2. The development of seed models
A core component of the DREAMS framework is a set of school-

building models, or ‘seed’ models. These are thermal models that
were created based on the five construction eras, as recorded in
the PDSP survey; pre-1919, inter-war, 1945–1966, 1967–1976,
post-1976. These represent ‘distinct eras within school building
programmes and schools built within these eras often have similar
construction characteristics, maintenance needs and lifecycle
expectations’. Each construction era was associated with a typical
school’s built form (e.g., whether a building has a ‘+’ shape foot-
print or an ‘I’ shape) and typical building fabric characteristics
(construction build-ups, U-Values), as seen in Table 2. It is
Table 2
‘Seed’ models (For the U-Values: GF = Ground Floor. EW = External Wall. R = Roof).

Era Representative building (Figures by [47])

Pre 1919

Inter-war

1945–1966

1967–1976

Post 1976

6

acknowledged that built forms do vary within these periods, for
example, by reflecting regional variations in construction trends
over time. Work is ongoing to account for these issues with a more
disaggregated modelling approach.

The resulting five seed models, in the form of EnergyPlus Input
Data Files (*.idf) include information on building geometry, along
with the thermal properties of the building envelope, internal
loads and HVAC-related pre-set characteristics (e.g., infiltration,
systems etc., as described in Table 3).

� The building geometry of these representative forms were pro-
duced based on [46] and an online survey of schools in England,
carried out using Google Maps and Bings Maps [47,48].

� The building fabric characteristics - Construction build-ups were
defined based on [49–53].
‘Seed’ model EnergyPlus file Build-ups and U-Values [W/m2k]

GF: 1.5
EW: 1.8
R: 2.9

GF: 1.5
EW: 1.8
R: 2.9

GF: 1.4
EW: 1.7
R: 1.9

GF: 1.4
EW: 1.7
R: 1.2

GF: 0.95
EW: 0.83
R: 0.57



Table 3
Ventilation inputs.

Value Time on Other

Infiltration 6 l/m2 exterior surface area 24 h
Natural Ventilation 8 l/second/person 10 min at the beginning of every hour between 09:00–18:00, if external temperature

is not below 19 �C, and difference between indoor and outdoor temperature is not
greater than 2 �C

Mechanical Ventilation 8 l/second/person 09:00 – 18:00 � Pressure drop across the
system: 1,000 Pa

� Fan efficiency: 70%
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� Internal heat loads for the seed models were obtained from the
National Calculation Method (NCM) [54] and Building Bulletin
101 (BB101, ‘Guidelines on ventilation, thermal comfort and
indoor air quality in schools’) [52], as detailed in Tables 4 and 5.

The school building seed models adopt a ‘zone-per-floor’
approach with regard to glazed openings and occupancy levels.
Table 4
‘Seed models’ Internal loads.

Area-weighted figure
in the seed model

Schedule

Lighting 5.1 W/m2 09:00–16:00: 100%
16:00–18:00: 50%

Occupancy 0.3 ppl/m2 (with
110 W/person)

09:00–16:00: 100%
16:00–18:00: 50%

Electrical equipment 3.3 W/m2 09:00–16:00: 100%
Otherwise: 5%

Table 5
Thermostat inputs.

Value Time on

Heating setpoint 20 �C 09:00–18:00
12 �C Otherwise

Fig. 3. The filtering and grouping of the PDSP and DEC data

7

According to this approach, each thermal zone has been defined
as an entire floor. While the seed models hold no information
regarding window sizes or locations, this approach enables easy
manipulation of a range of building characteristics, such as build-
ing floor area or window-to-wall-ratio (WWR), later on in the pro-
cess of theoretical archetype generation. Similarly, school buildings
accommodate a mix of functions and spaces that are used in differ-
ent ways during the day (e.g., classrooms and circulation areas). To
allow for this variety of occupancy within the ‘single zone-per-
floor’ model, an area-weighted approach per each seed was taken;
whereby an overall average internal environment condition was
produced based on the proportion of the total floor area of the par-
ticular seed, as associated with each use type.

3.1.3. Archetype model generation
a. Property data Survey Programme database (PDSP) and classi-

fication into archetypes
The combined school dataset included data for 9,551 primary

schools, across England. The data were then further filtered, classi-
fied and divided into groups, or ‘archetypes’, based on 5 key build-
ing characteristics (as illustrated in Fig. 3). These variables are
known to impact on energy performance in schools:

� Location (degree day regions): Climate impacts on building
energy use by directly influencing heat losses and gains. Typi-
bases, and the classification into ‘archetype’ buildings.



Table 6
Climate regions and their weather files [58].

climate region CIBSE weatherfile

1 Thames Valley London_TRY
2 South-eastern London_TRY
3 Southern Southampton_TRY
4 South-western Plymouth_TRY
5 Severn Valley Swindon_Brize_Norton_TRY
6 Midland Birmingham_TRY
7 West Pennines Manchester_TRY
8 North-western Newcastle_TRY
9 Borders Newcastle_TRY
10 North-eastern Leeds_TRY
11 East Pennines Nottingham_TRY
12 East Anglia Norwich_TRY
13 Wales Cardiff_TRY
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cally, when comparing energy performance between buildings
in different locations or over different time periods this is
accounted for via a ‘weather adjustment’ process (see e.g.
[55,56]) This involves scaling the portion of a building’s energy
demand associated with space heating, based on the local cli-
mate during the energy measurement period. For this study,
13�Day climate regions were used (assigned to each school
based on the postal address) in line with the DEC methodology
[55]. In line with recent research, an assumption of 80% of
fossil-thermal energy associated with space heating was used
for weather correction [55] instead of the 55% used in the DEC
methodology [55].

� Building age (pre 1919; inter war; 1945–66; 1967–76; post
1976): For this study, building age data was taken from the
PDSP dataset. Construction age impacts on energy use, by acting
as a proxy for the thermal properties of the building envelope.
Additionally, as building design is influenced by regulations
and architectural trends, other attributes such as built form will
also vary with construction age. In this study, construction
build-ups and the school’s built form are associated with the
Fig. 4. Frequency distribution of each archetype across

Fig. 5. An example of the manipulation of a seed model and the crea

8

school’s construction era (as detailed in Table 1). Consequently,
all schools built in a certain era, were assumed to have the same
build-up and initial built form. This is illustrated in the repre-
sentative building forms for each seed model.
climate regions in primary schools across England.

tion of a theoretical archetype building (n = number of schools).
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� Internal environment (natural or mechanical ventilation): While
mechanical ventilation remains relatively uncommon in UK
schools, past studies have shown that the type of ventilation
is associated with a significant difference in energy consump-
tion [42,43]. For primary schools, mechanical ventilation was
found to be associated with 12% higher electricity intensity,
and 15% lower fossil-thermal intensity on average compared
with those with natural ventilation. For the purposes of this
study, the internal environment field available from the DEC
database was used, which categorises buildings as air condi-
tioned, mechanically or naturally ventilated, or mixed mode.

� Construction type (single- or multi-block school): The PDSP
database includes both single-block schools and multi-block
ones. To account for the possibility of different construction
dates or internal characteristics between school blocks within
a single school, this study generated two building entities
within each seed model: an ‘original’ building, which is
assumed to be the largest building in a school, and an additional
building, which is an aggregation of the floor area of the rest of
the buildings in the school. If a specific school is a ‘single-block’
school, the additional building is deleted from its seed model.

Following the creation of the above list, each ‘seed’ model was
manipulated to accurately represent the group of school buildings
that shared the same characteristics. e.g., all pre 1919 London pri-
mary schools that do not have any extension and are naturally ven-
tilated were modelled by manipulating the ‘pre 19190 seed model:

� applying the appropriate primary school usage profile, using the
London weather file, assigning the pre 1919 construction build-
ups,

� enabling natural ventilation in the simulation (setting up win-
dows opening schedule),

� ensuring only the main school building is modelled and simu-
lated, and

� ensuring its dimensions (floor area and number of floors) are
the average of all the schools it represents.

Each school archetype, thus, corresponds to a unique combina-
tion of the above variables. A full list of the theoretical archetypes,
Table 7
Archetype buildings stock-level sample size. * Nat = Naturally ventilated building. Mec =

Building era School description Stock-level s
of schools in

Pre-1919 Nat-Single 261
Nat-Multi 1,984
Mec- Single 5
Mec- Multi 33

Inter war Nat- Single 106
Nat- Multi 672
Mec- Single 2
Mec- Multi 11

1945–1967 Nat- Single 329
Nat- Multi 1,730
Mec- Single 7
Mec- Multi 50

1967–1976 Nat- Single 392
Nat- Multi 2,138
Mec- Single 11
Mec- Multi 62

Post-1976 Nat- Single 501
Nat- Multi 1,166
Mec- Single 50
Mec- Multi 41
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including frequency counts across the stock, is provided in Fig. 4
below. It should be noted that, unsurprisingly, school building
characteristics of schools vary geographically across England. As
a result, some theoretical archetypes do not exist in certain regions
within the database.

Typical building energy performance modelling inputs were
then calculated for each archetype, including: average floor area
(m2), number of storeys (n), WWR (%), electricity (for lighting
and fans, in case of mechanical ventilation) and fossil-thermal
energy use intensities (energy for space and water heating,
expressed in kWh/m2), for all schools within each archetype, as
seen in Fig. 4 below. Further details are provided in the Appendix.

b. The manipulation of seed models and creation of the arche-
type models

Following the above procedures, the five seed EnergyPlus mod-
els were processed using a customised archetype-model-
generation script using Python 3.6.2 [57], assigning the relevant
categories described above (namely, floor area, number of storeys
and WWR). A computer program was developed (using Python
3.2) to automatically read the seed models and modify the relevant
parameters, as illustrated on Fig. 3 above. The 9,551 primary
schools could now be represented by 168 theoretical archetype
models. Fig. 5 offers an example of the manipulation of a seed
model and the output of the customised theoretical archetype
model generation process. The figure shows an example of the gen-
eration the archetype of single-block, London-based, naturally ven-
tilated primary schools, that had been built between 1967 and
1976. It represents 34 schools that have an average overall floor
area of 2,219 m2, 3 storeys and an average of 25% WWR.
3.1.4. Simulation controller and building energy performance analysis
Once the full set of archetypes thermal simulation modelling

input definition files (*.idf) were generated, a second script was
developed to automate a batch-simulation process and results post
processing. EnergyPlus (version 8.9, [39]), one of the most widely
used thermal simulation tool in built environment research, was
used to perform the thermal simulation analysis. Based on two
energy and load simulation tools (BLAST and DOE-2), EnergyPlus
and its IDF Editor enable relatively easy access to its input files
and a quick and simple manipulation of input parameters.
Mechanically ventilated building. Single = Single block. Multi = Multi block.

ample size (actual number
the database)

Number of Archetypes across all
of England’s climate regions
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Test Reference Year (TRY) weather files from the Chartered
Institution of Building Services Engineers (CIBSE) were used in this
study [58]. TRY files describe typical weather conditions based on
30-year measurements (1984–2013) in 13 cities around the UK
and are used for assessing Building Regulations compliance. It is
noted that weather data collected in urban locations may not rep-
resent the climate for schools at locations of suburban and rural
areas. These weather files have been applied to the overall school
stock based on the degree-day regions defined in the CIBSE
methodology, as noted previously [55]. Table 6 shows the list of cli-
mate regions and the CIBSE TRY weather files that were used to
represent these regions. It should be noted that the reference to
‘Wales’ corresponds with schools that have been matched to the
Wales climate region but are still physically located within
England.
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4. Results analysis and interpretation

The section below details the building performance simulation
results and the comparison against the measured data. The analy-
sis starts with a wide overview and performs a stock-level analysis,
describing each archetype and the number of schools they repre-
sent across the country. Next, a high-level cross-country compar-
ison between the simulated and measured energy performance is
presented. Last, an analysis at a climate-zone is presented (Lon-
don), to enable a more detailed investigation of the school stock
at a more confined area.

4.1. Stock-level analysis – Archetype description

Table 7 demonstrates the breakdown of the school archetype
models and the number of actual buildings they represent at the
national level. The data show that most schools in the sample are
naturally ventilated (9,279 and 272, respectively, or 2.9% of the
entire English primary school stock). Although most schools in
the stock include building extensions, an appreciable number of
school buildings do not have an extension (1,664 schools with no
extension, compared to 7,887 schools with extension, or 21.1% of
the entire English primary school stock). Assuming that some of
the schools that had never been extended will require additional
space at some point, this leaves room for potential interventions
that will improve the overall performance of the individual
schools, as well as that of the stock as a whole. Last, the summary
table reveals that 81% of the sample (7,793 buildings) was built
before 1976, and only 1,758 built post that year. Despite the large
sample size (9,551 represents half of all English primary schools at
the time of PDSP), some biases will exist, reflecting the underlying
data. Notably, as outlined previously, schools constructed or signif-
icantly refurbished in recent years were excluded from PDSP, so
the sample will under-represent more recently built schools.

4.2. Fossil-thermal energy consumption breakdown

Once the Archetype models had been generated, the entire Eng-
lish primary school stock was simulated and its simulated energy
performance was compared to measured data, based on the DEC
database of those schools. Table 8 presents the simulated and mea-
sured fossil-thermal energy consumption for each archetype.While
most of the climate regions in Table 8 show a good match between
the measured and simulated fossil-thermal energy consumption,
some areas show larger differences (e.g., Plymouth, Cardiff and Nor-
wich). It is suggested that these discrepancies are associated with
the small number of schools in these areas. It is hypothesised that
an archetype-based building stock model, such as the one devel-
oped in this study, may perform less well in areas where the sample
10



Fig. 7. The relationship between simulate and measured fossil-thermal perfor-
mance in archetypes primary schools in England, by construction era.
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size is particularly small, as variations in the characteristics and
energy use of individual buildings may dominate.

Figures 6-7 and Table 9 compare the average mean simulated
and measured energy consumption, for fossil-thermal energy use,
for each archetype. Since each archetype represents a number of
schools, the simulated energy consumption of each archetype
was compared to the average measured consumption (based on
DEC) of the schools represented by the archetype. Values were cal-
culated by summing up the measured energy consumption of all
schools for each archetype (kWh/m2) and dividing it by the total
number of buildings. These figures, therefore, express the average
energy consumption, both simulated and measured, of each arche-
type across the country.

Figure 6 shows that archetypes of the later eras (1945–1967,
1967–1976 and post 1976) have a smaller variation between sim-
ulated and measured consumption than the pre 1919 and inter-
war models. The difference between the average simulated and
measured, by archetype, is 18.8% (pre 1919), 22.3% (inter war),
10.8% (1945–1967), 8.9% (1967–1976) and 3.2% (post 1976).

Figure 7 and Table 9 show the relationship between the average
simulated and measured fossil-thermal energy performance, bro-
ken down by construction age band. This shows that DREAMS per-
forms better for schools constructed at later eras (e.g., 1945–1966,
1967–1977 and post 1977); the difference between simulated and
measured fossil-thermal energy consumption is lower for these
schools compared to earlier construction eras (pre-1919 and Inter
war). This is potentially due to the difference between assumed
and actual build-ups: while the assumed modelled build-ups con-
sider that the buildings have not gone through any thermal-related
improvements, it is likely that many of the pre 1919 and inter war
schools will have undergone refurbishments to some degree and
that their building envelope’s thermal performance has, therefore,
improved.

Figure 8 and Tables 10–11 compare the simulated and mea-
sured consumption figures based on ventilation strategy – natural
and mechanical ventilation. The results show that while the
naturally-ventilated simulations have managed a good level of
accuracy (between 1 and 10% difference between predicated and
Fig. 6. A comparison between simulated and measured fossil-thermal (gas) energy co
building. Mec = Mechanically ventilated building. Single = Single block. Multi = Multi bl

11
measured figures), the predictions for the mechanically-
ventilated schools show a wider range of differences – between
0% and 26%.

It is important to point out, nevertheless, that mechanically
ventilated schools account for only 2.9% (272 schools in total) of
the entire sample. This suggests that for 97% of the school stock
nsumption for the primary school stock in England. * Nat = Naturally ventilated
ock.



Fig. 8. Simulated and measured fossil-thermal performance in primary schools
archetypes in England, by ventilation strategy.

Table 9
Average simulated and measured fossil-thermal energy consumption of primary schools in England, by construction era.

Construction Era Simulated consumption (kWh/m2/y) Measured consumption (kWh/m2/y) Difference Sample size (n)

Pre-1919 147 134 10% 2,283
Inter war 157 139 13% 791
1945–1967 140 133 5% 2,116
1967–1976 136 127 7% 2,603
Post-1976 127 123 3% 1,758

Fig. 9. Simulate and measured fossil-thermal performance in primary schools in
London, by ventilation strategy.
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(the blue entries in Fig. 8), modelling achieves a high level of pre-
diction accuracy. It is suggested that the lower agreement between
simulated and measured consumption in mechanically ventilated
schools is associated with the small sample size (272 entries, split
into 10 sub-categories, based on the classification procedure as
described in Section 3). Notwithstanding these preliminary results,
Table10
Average simulated and measured fossil-thermal energy consumption for naturally ventila

Construction Era Simulated consumption (kWh/m2/y) Measu

Pre-1919 147 134
Inter war 157 140
1945–1967 140 133
1967–1976 136 128
Post-1976 127 122

Table 11
Average simulated and measured fossil-thermal energy consumption for mechanically ve

Construction Era Simulated consumption (kWh/m2/y) Measu

Pre-1919 145 116
Inter war 134 121
1945–1967 130 121
1967–1976 127 122
Post-1976 115 124

12
further investigation needs to be undertaken to understand and
improve the predictions for those schools.

Overall, results show that the average primary school in Eng-
land is predicted to consume 139 kWh/m2/y of fossil-thermal
energy, compared to 130 kWh/m2/y of measured consumption.
ted primary schools in England, by construction era.

red consumption (kWh/m2/y) Difference Sample size (n)

10% 2,245
12% 778
5% 2,059
7% 2,530
4% 1,667

ntilated primary schools in England, by construction era.

red consumption (kWh/m2/y) Difference Sample size (n)

25% 38
11% 13
7% 57
4% 73
7% 91
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This indicates that the simulated results predicted 7% higher
energy consumption than measured figures.

4.3. Analysis of the London climate region

DREAMS enables a detailed investigation of the stock-level per-
formance at a climate-region level. This section presents an exam-
ple of such an analysis, for London. Fig. 9 and Tables 12 and 13
compare the simulated and measured fossil-thermal energy con-
sumptions for London’s primary schools. While most archetypes
have achieved between 3 and 7% difference between simulated
and measured figures, it is noted that, similarly to the analysis of
the UK as a whole (Table 10), three archetypes have performed
worse (12, 17 and 41%). However, these are each mechanically ven-
tilated buildings, and only represent a total of 50 schools out of the
2,206 London-area schools in the database.

Table 14 shows a comparison between the DREAMS’ simulated
and measured fossil-thermal energy consumption for the primary
school stock for London. This demonstrates that there is a greater
difference between simulated and measured performance in
archetypes, where the sample size is small.
Table 13
Average simulated and measured fossil-thermal energy consumption for mechanically ve

Construction Era Simulated consumption (kWh/m2/y) Measu

Pre-1919 131 112
Inter war 134 95
1945–1967 124 122
1967–1976 122 125
Post-1976 115 130

Table12
Average simulated and measured fossil-thermal energy consumption for naturally ventila

Construction Era Simulated consumption (kWh/m2/y) Measu

Pre-1919 132 139
Inter war 140 149
1945–1967 132 136
1967–1976 128 137
Post-1976 121 131

Table 14
A comparison between simulated and measured fossil-thermal energy consumption
Mec = Mechanically ventilated building. Single = Single block. Multi = Multi block.

Building type School description Simulated fossil thermal (kWh/m2/y)

Pre-1919 Nat-Single 128
Nat-Multi 136
Mec-Single 133
Mec-Multi 130

Inter war Nat-Single 139
Nat-Multi 140
Mec-Single 135
Mec-Multi 132

1945–1967 Nat-Single 131
Nat-Multi 132
Mec-Single 121
Mec-Multi 127

1967–1976 Nat-Single 127
Nat-Multi 128
Mec-Single 122
Mec-Multi 122

Post-1976 Nat-Single 120
Nat-Multi 123
Mec-Single 111
Mec-Multi 118

13
5. Discussion

The development of the DREAMS framework for the energy per-
formance prediction of the English school building stock was pre-
sented in the previous sections. Comparison of the simulated
heating consumption with measured consumption figures show
that the model performs satisfactorily: Simulated heating energy
consumption for a typical primary school in England is only 7%
higher than the measured consumption (139 kWh/m2/y simulated,
compared to 130 kWh/m2/y measured). While no previous studies
exist that use an archetype-based approach to modelling the
school stock, this result is comparable to the discrepancies
between measured and simulated data in equivalent residential
stock modelling (Famuyibo et al. [21]– 8%, Caputo et al. [32] �
4%, Ren et al. [16]- 9.2%, Stefanović et al. [59]- 2,2%).

The study shows that, while the overall difference between sim-
ulated and measured energy use for the stock is small, there is a
relationship between the school characteristics and model accu-
racy. For example, older schools have larger differences between
predicted and measured consumption, than more recently built
schools.
ntilated primary schools in London, by construction era.

red consumption (kWh/m2/y) Difference Sample size (n)

17% 11
41% 7
1% 18
2% 16
12% 32

ted primary schools in London, by construction era.

red consumption (kWh/m2/y) Difference Sample size (n)

5% 477
6% 233
3% 511
7% 543
7% 358

for the primary school stock in London. * Nat = Naturally ventilated building.

Measured Fossil thermal(kWh/m2/y) Difference (%) Sample size (n)

138 7% 34
139 3% 443
92 45% 3
132 2% 8

151 8% 26
147 5% 207
79 71% 2
111 19% 5

135 3% 84
136 3% 427
128 5% 2
116 9% 16

137 7% 98
137 6% 445
115 6% 2
135 9% 14

130 8% 120
131 6% 238
150 26% 17
110 8% 15
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The study has further shown that a larger difference between
simulated and measured performance was noted in naturally ven-
tilated buildings (compared to mechanically-ventilated ones), but
also noted that such schools account for less than 3% of the stock.
Lastly, the paper showcased DREAMS’ performance at a climate-
region scale (London). It was shown that the performance of the
model for the London region is broadly similar to its performance
at national level.

Through the analysis of the modelling and simulation outputs, a
few issues were identified to potentially improve the model’s out-
puts as part of future and ongoing work:

5.1. Generalisation

Generalisation of building properties, which is a fundamental
principle in stock modelling, creates some limitations. These may
reflect a range of factors, including the difficulty of accessing mea-
sured building energy use, a lack of knowledge of building thermal
characteristics and an inability of models to accurately reflect user
behaviour [31].

5.2. Sample size

The archetype models were defined based on an analysis of
existing data on real school buildings. Through data filtering and
grouping, schools were aggregated into groups with shared charac-
teristics. In some cases, these groups represent a very small num-
ber of schools. The analysis shows that the smaller the sample size,
the higher the likelihood of a larger difference between simulated
and measured fossil-thermal energy consumption.

5.3. Mechanically-ventilated schools

These schools have shown the greatest differences between
simulated and measured space heating energy performance. While
mechanically ventilated schools currently represent only around
3% of the entire stock, it is possible that mechanical systems will
become more common in schools in the future. Consequently,
the relative impact of these systems on the stock may be more
significant.

5.4. Data availability

Though the archetype models have been based on databases of
actual buildings and their measured energy consumption, addi-
tional data could further improve the model’s accuracy in predict-
ing actual performance. In particular, detailed construction build-
up data, internal loads and usage patterns profile may be especially
important [9].

Despite the current limitations in the DREAMS framework, this
study shows promising levels of resemblance between predicted
and measured consumption on a stock level. It is suggested that
a framework such as DREAMS could be useful in examining a range
of performance-related stock-level proxies in schools, both on a
national and regional levels. This could potentially help inform
decision and policy makers in recommendations for stock-level
school performance-related policies, such as:

� Evaluating schools’ performance under difference climate
change scenarios

� Examining different schools’ refurbishment packages and their
suitability on a regional-scale

� Evaluating stock-level Indoor Air Quality and pupils’ cognitive
performance

� Investigating power-generation in school premises and the
potential for Net Zero schools
14
It is noted that as the proposed methodology will used in a
number of modelling applications, further developments would
be needed to account for the specific requirements and unique fea-
tures of each application. This may include domains such as
occupancy-based demand response and comfort optimisation, the
use of microgrids with renewable energy sources and energy stor-
age, energy and comfort management and others.
6. Conclusions

This paper presented the principles underlying the develop-
ment of the Data dRiven Engine for Archetype Models of Schools
(DREAMS), a novel, data-driven, archetype-based school building
stock modelling framework, which was developed within the
EPSRC-funded ASPIRE project. To the knowledge of the authors,
this is the first time that detailed statistical analysis of two
national, large scale building stock databases (PDSP and DEC) is
performed in order to create a combination of theoretical and sam-
ple archetypes that are statistically representative of the English
primary school building stock. Data analysis, category definition
and archetype development procedures were outlined in detail.
Using the DREAMS framework, 168 school building archetype
models were developed that broadly represent 9,551 primary
schools in England.

Following the development of the theoretical archetypes, build-
ing energy and thermal performance simulation was carried out in
EnergyPlus for the baseline English primary school building stock
using 13 regional CIBSE TRY weather files.

� DREAMS’ simulated performance achieved good agreement
with measured energy consumption (only 7% difference).

� The study showed that there was a higher agreement between
predicted and measured heating consumption in the archetypes
of newer schools than in those of older ones: Simulated heating
energy consumption of post war schools archetypes had
achieved between 3 and 7 % higher figures than measured con-
sumption, while pre-war schools archetypes have reached
between 10 and 13% difference.

� The study showed that simulated consumption figures of natu-
rally ventilated school archetypes – which account for 97% of
the stock – were only 4–12% higher than measured figures,
while the 3% mechanically ventilated school archetypes
achieved between 4 and 25% difference. While the later can
be considered as a significant difference, the small number of
mechanically ventilated buildings (less than 3% of the stock)
means this should have minimal impact on a stock-level. Still,
the study concludes that further investigation should be carried
to explore the reasons for the discrepancy between simulated
and measured consumption figures in mechanically ventilated
buildings.

� Overall, this study finds that more detailed data, with regards to
the description of the school building stock, as well as the way it
is applied, could further improve the accuracy of the simulated
archetypes in predicting actual performance.

Future work should be focused on improving the accuracy of
the model’s performance predictions. DREAMS was built as a flex-
ible framework that can be adapted to process more granulated
data inputs. As part of the ASPIRE project, further work is also
planned on retrieving updated and more extensive school stock
data. The platform will also be expanded to model secondary
schools and predict indoor overheating and air quality levels,
under current and future climate change scenarios.

Furthermore, stakeholder engagement can help identifying the
potential for model improvements specifically, for testing retrofit
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strategies, estimating indoor overheating and indoor air quality,
and for estimating energy consumption under current and future
climate change scenarios.
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