
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Timing and Resource-aware Mapping of Quantum
Circuits to Superconducting Processors

Lingling Lao, Hans van Someren, Imran Ashraf and Carmen G. Almudever

Abstract—Quantum algorithms need to be compiled to respect
the constraints imposed by quantum processors, which is known
as the mapping problem. The mapping procedure will result
in an increase of the number of gates and of the circuit
latency, decreasing the algorithm’s success rate. It is crucial to
minimize mapping overhead, especially for Noisy Intermediate-
Scale Quantum (NISQ) processors that have relatively short
qubit coherence times and high gate error rates. Most of prior
mapping algorithms have only considered constraints such as
the primitive gate set and qubit connectivity, but the actual
gate duration and the restrictions imposed by the use of shared
classical control electronics have not been taken into account. In
this paper, we present a mapper called Qmap to make quantum
circuits executable on scalable processors with the objective of
achieving the shortest circuit latency. In particular, we pro-
pose an approach to formulate the classical control restrictions
as resource constraints in a conventional list scheduler with
polynomial complexity. Furthermore, we implement a routing
heuristic to cope with the connectivity limitation. This router
finds a set of movement operations that minimally extends
circuit latency. To analyze the mapping overhead and evaluate
the performance of different mappers, we map 56 quantum
benchmarks onto a superconducting processor named Surface-
17. Compared to a prior mapping strategy that minimizes the
number of operations, Qmap can reduce the latency overhead
up to 47.3% and operation overhead up to 28.6%, respectively.

Index Terms—Quantum computing, quantum compilation,
resource-constrained scheduling, routing

I. INTRODUCTION

Quantum computing is entering the Noisy Intermediate-
Scale Quantum (NISQ) era [1]. This refers to exploiting
quantum processors consisting of only 50 to a few hundreds of
noisy qubits - i.e. qubits with a relatively short coherence time
and faulty operations. Due to the limited number of qubits,
hardly or no quantum error correction (QEC) will be used
in the next coming years, posing a limitation on the size of
the quantum applications that can be successfully run on NISQ
processors. Nevertheless, these processors will still be useful to
explore quantum physics, and implement small quantum algo-
rithms that will hopefully demonstrate quantum advantage [2].
For running quantum applications on NISQ devices, it is thus
crucial to minimize their size in terms of circuit width (number
of qubits), number of gates, and circuit latency/depth (number
of cycles/steps). In addition, these quantum applications have

Lingling Lao is with the Department of Physics and Astronomy at
University College London.

Lingling Lao, Hans van Someren and Carmen G. Almudever are
with QuTech and the Department of Quantum and Computer Engineering at
Delft University of Technology. Imran Ashraf is with Computer Engineering
Department, HITEC University, Taxila, Pakistan

to be adapted to the hardware constraints imposed by quantum
processors. The main constraints include:

• Primitive gate set: Generally, only a limited set of quan-
tum gates that can be realized with relatively high fidelity
will be predefined on a quantum device. Each quantum
technology may support a specific universal set of single-
qubit and two-qubit gates, which are called primitive
gates. Different primitive gates may have different gate
durations. For instance, some superconducting quantum
technologies have CZ as a primitive two-qubit gate of
which the duration is twice as long as of a single-qubit
primitive gate [3].

• Qubit connectivity: quantum technologies such as su-
perconducting qubits [4]–[6] and quantum dots [7], [8]
arrange their qubits in 1D/2D architectures with nearest-
neighbour (NN) interactions. This means that only neigh-
bouring qubits can interact or in other words, qubits are
required to be adjacent to perform a two-qubit gate.

• Classical control: classical electronics are required for
controlling and operating the qubits. Using a dedicated
instrument per qubit is not scalable and is a very ex-
pensive approach. Therefore, shared control is required
especially when building scalable quantum processors.
For instance, eight qubits share one readout signal in
the IBM Quantum Hummingbird processor [9] and a
single Arbitrary Waveform Generator (AWG) is used for
operating on a group of qubits [10], [11].

All these constraints may vary across different quantum
processors, and quantum circuits normally cannot be directly
executable on these devices. A mapping procedure is re-
quired to transform a hardware-agnostic quantum circuit into
a constraint-compliant one that can be realized on a given
device. This mapping process i) decomposes any quantum
gate into the supported primitive gates; ii) performs an initial
placement of qubits and finds the set of movement operations
to route non-NN qubits to adjacent positions when they need
to interact; and iii) schedules operations to leverage the max-
imum available parallelism. Moreover, minimizing mapping
overhead in terms of the number of gates and circuit execution
time (latency) is critical for implementing quantum algorithms
on NISQ processors.

Different solutions including both exact algorithms and
heuristics have been proposed to map quantum circuits onto
NISQ processors. [12]–[16] propose mapping approaches for a
2D grid qubit architecture with NN interactions. Other works
[6], [17]–[27] target current quantum processors from IBM and
Rigetti which have irregular qubit connections. Most of prior

1
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

works [6], [12]–[24] mainly consider the qubit connectivity
and the primitive gate set constraints and their strategies focus
on minimizing gate overhead. They assume that any operation
takes one time-step without taking the actual gate duration
into account. Moreover, they do not consider the shared
classical control electronics, which restricts the parallelism of
some operations. This means the output circuits from previous
compilation passes need to be further scheduled by another
hardware-aware translation phase such as OpenPulse from
IBM [11] so that quantum operations can be performed on real
qubits with correct timing without violating any classical con-
trol constraint [11], [28]. Venturelli et al. [25]–[27] consider
gate duration and crosstalk constraints, but their mathematical
optimization formulation of gate scheduling has exponential
complexity.

This paper presents a mapper called Qmap to make quan-
tum circuits executable on scalable superconducting processors
with shared classical electronic controls. Qmap is embedded in
the OpenQL compiler [29] and its output circuit is described
by an executable low-level QASM-like code with precise
timing information. In order to analyze the impact of the
mapping procedure, we compile 56 benchmarks taken from
RevLib [30] and QLib [31] onto the Surface-17 superconduct-
ing processor [28].

The main contributions of this paper are the following:
• We provide a comprehensive analysis of the hardware

constraints of the Surface-17 processor, including the
supported primitive gates with corresponding duration,
the processor’s topology that limits the qubit connectivity,
and the classical control constraints resulting from the
shared control electronics among qubits that limits the
parallelism of quantum operations.

• We develop a Qmap mapper embedded in the OpenQL
compiler [29] to compile a quantum circuit into one that
complies with all the above constraints of Surface-17.
Specifically, we propose an approach to formulate the
classical control limitations as resource constraints in a
conventional list scheduling algorithm. Its objective is to
achieve the shortest circuit latency and therefore the high-
est gate-level parallelism with respect to these constraints.
The complexity of the developed scheduling heuristic is
polynomial in terms of the number of operations and
resources, which is applicable to large-scale circuits.

• For coping with the limited qubit connectivity, we present
a routing strategy in Qmap to move qubits that need to
interact to be adjacent. The proposed router not only finds
shortest paths that use least number of operations for
moving qubits (which is the routing strategy developed in
prior works) but also selects a set of movement operations
that will minimally extend the overall circuit latency.
Compared to a prior compilation strategy, the average
reduction of latency overhead and the average reduction
of gate overhead when using Qmap are 22% and 3.0%,
respectively.

• To enable a flexible implementation, we provide a method
to encode all hardware characteristics in a configuration
file that is accessed by every module of the compiler.
This flexibility also allows a comparative analysis of the

mapping impacts of different characteristics, giving some
directions for building future quantum devices. In addi-
tion, it allows the mapper to target different processors.

• Qmap uses not only SWAP operations (3 consecutive
CNOTs) for moving qubits but also MOVE operations
(2 consecutive CNOTs) when possible. Compared to the
mapping by only using SWAPs in prior works, the use
of MOVEs helps to reduce the number of gates and the
circuit latency up to 38.9% and 29% respectively.

The rest of this paper is organized as follows. We first
describe all the hardware parameters that will be considered
in this work in Section II. Then we introduce the proposed
resource-constrained scheduling algorithm in Section III and
other modules of the developed mapper such as the routing
heuristic in Section IV. Afterwards, we evaluate this mapping
strategy in Section V and summarize related works in Section
VI. Finally, Section VII concludes the paper and discusses
future work.

II. QUANTUM HARDWARE CONSTRAINTS

In this section, the hardware constraints of the Surface-17
superconducting processor will be briefly introduced, includ-
ing the primitive gates that can be directly performed, the
topology of the processor which limits interactions between
qubits, and the constraints caused by the classical control
electronics which impose extra limitations on the parallelism
of the operations.

A. Primitive gate set

In order to run any quantum circuit, a universal set of
operations needs to be implemented. In superconducting quan-
tum processors, these operations commonly are measurement,
single-qubit rotations, and multi-qubit gates.

In principle, any kind of single-qubit rotation can be per-
formed on the Surface-17 processor. However, an infinite
amount of gates cannot be predefined. In this work, we
will limit single qubit gates to X and Y rotations (easier to
implement), and more specifically ± 45, ± 90 and ± 180
degrees will be used in our decomposition. The primitive two-
qubit gate on this processor is the conditional-phase (CZ) gate.
Table I shows the gate duration (gate execution time) of single-
qubit gates, CZ gate and measurement (in the Z basis) [32].
After mapping, the output circuit will only contain operations
that belong to this primitive gate set. The decomposition for
Z,H, S, S†, T, T †, CNOT, SWAP and MOVE gates into these
primitive gates is shown in Figure 1 (ignoring the global
phase).

TABLE I: The gate duration in cycles (each cycle represents
20 nanoseconds) of the primitive gates in the Surface-17
processor.

Gate type Duration
RX(±45,±90,±180) 1 cycle
RY (±45,±90,±180) 1 cycle

CZ 2 cycles
MZ 15 cycles

2
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Z ≡ X Y

H ≡ Y-90 Z ≡ Z Y+90 ≡ X Y-90

T ≡ H X+45 H ≡ Y+90 X+45 Y-90

T † ≡ H X−45 H ≡ Y+90 X−45 Y-90

S ≡ H X+90 H ≡ Y+90 X+90 Y-90

S† ≡ H X+90 H ≡ Y+90 X−90 Y-90

• ≡ •
Y−90 • Y+90

× ≡ • • ≡ • Y−90 • Y+90 •

× • Y−90 • Y+90 • Y−90 • Y+90

|ψ〉
Umv

|0〉 ≡ • ≡ • Y−90 • Y+90

|0〉 |ψ〉 • Y−90 • Y+90 •

Fig. 1: Gate decomposition into primitives supported in the
superconducting Surface-17 processor. Umv is the MOVE
operation.

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

f1

f2

f3

Fig. 2: Schematic of the realization of Surface-17 supercon-
ducting processor where qubits in the same color are controlled
by the same frequency and f1 > f int1 > f2 > fpark2 > f int2 >
f3 > fpark3 .

B. Processor topology

Figure 2 shows the topology of the Surface-17 processor,
where nodes represent the qubits and edges represent the
connections (resonators) between them. Two-qubit gates can
only be performed between connected qubits, i.e., nearest-
neighbouring qubits. This implies that qubits that have to
interact but are not placed in neighbouring positions will need
to be moved to be adjacent. Quantum states in superconducting
technology are usually moved using SWAP gates. A SWAP
gate is implemented by three CNOTs that in the case of the
Surface-17 processor need to be further decomposed into CZ
and RY gates as shown in Figure 1. In this work, we also
consider the use of a MOVE operation which only requires two
CNOTs (see Figure 1). Note that a MOVE operation requires
that the destination qubit where the quantum state needs to
be moved to, is in the |0〉 state. As mentioned, moving qubits
results in an overhead in terms of number of operations and
circuit depth, which in turn will decrease the circuit reliability.
Therefore, an efficient routing procedure is required to find the

series of movement operations to enable all two-qubit gates
with minimum overhead.

C. Classical control constraints
In principle, any qubit in a processor can be operated

individually and then any combination of independent single-
qubit and two-qubit operations can be performed in parallel.
However, scalable quantum processors use classical control
electronics with channels that are shared among several qubits.
Here we will describe the constraints imposed by the classical
control electronics used in the Surface-17 processor and how
they affect the parallelism of quantum operations.

a) Single-qubit gates: Single-qubit gates on supercon-
ducting qubits are performed by using microwave pulses. In
Surface-17, these pulses are applied at a few fixed specific
frequencies to ensure scalability and precise control. The
three frequencies used in Surface-17 are shown in Figure 2:
single-qubit gates on red, blue and pink colored qubits are
performed at frequencies f1, f2, and f3, respectively [28].
In this work, we assume that same-frequency qubits are
operated by the same microwave source or arbitrary waveform
generator (AWG) and a vector switch matrix (VSM) is used
for distributing the control pulses modulated on the waves to
the corresponding qubits [10].

The consequence of sharing control electronics is that one
can perform the same single-qubit gate on all or some of the
qubits that share a frequency, but one cannot perform different
single-qubit gates at the same time on these qubits (as these
would require other pulses to be generated). For instance, an
X gate can be performed simultaneously on any of the pink
qubits (7, 8 and 9) but not an X and a Y operation.

b) Measurement: Measuring the qubits is done by using
feedlines each of which is coupled to multiple qubits [28].
In Figure 2, qubits in the same dashed rectangle are using
the same feedline, e.g., qubits 13 and 16 will be measured
through the same feedline. Because measurement takes several
steps in sequence, measurement of a qubit cannot start when
another qubit coupled to the same feedline is being measured,
but any combination of qubits that are coupled to the same
feedline can be measured simultaneously at a given time. For
instance, qubits 13 and 16 can be measured at time t0, but it
is not possible to start measuring qubit 13 at time t0 and then
measure qubit 16 at time t1 if the previous measurement has
not finished.

c) Two-qubit gates: As mentioned, in the processor of
Figure 2 each qubit belongs to one of three frequency groups
f1 > f2 > f3, colored red, blue and pink, respectively; links
between neighbouring qubits are either between qubits from f1
and f2, or between qubits from f2 and f3, i.e. between a higher
frequency qubit and a next lower one. In between additional
frequencies such as interaction frequency f int and parking
frequency fpark are defined and f1 > f int1 > f2 > fpark2 >
f int2 > f3 > fpark3 (see the frequency arrangement and the
example interactions presented in Figure 5 of [28]). Each qubit
can be individually driven with one of the frequencies of its
group, i.e. {fi, f inti , fparki }.

A CZ gate between two neighbouring qubits is realized by
lowering the frequency of the higher frequency qubit near

3
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

to the frequency of the lower one. For instance, a CZ gate
between qubits 3 and 0 is performed by detuning qubit 3
from f1 to f int1 , which is near to the frequency f2 of qubit 0.
However, CZ gates will occur between any two neighbouring
(connected) qubits which have close frequencies. For example,
a CZ gate can occur between the detuned qubit 3 in f int1 and
its neighbour qubit 6 in f2 in the above example. To avoid this,
the qubits that should not be involved in a CZ gate must be
detuned to a lower frequency. In this example, q6 needs to be
detuned to its parking frequency fpark2 . Moreover, qubits in
parking frequencies cannot engage in any two-qubit or single-
qubit gate. In addition, when performing a CZ on qubits 3
and 0, qubit 2 must stay at f1 (and not be detuned) to avoid
interaction between qubits 2 and 0. The implementation of
two-qubit gates poses limitations not only on parallelizing
multiple two-qubit gates but also on the parallelism of two-
qubit gates and single-qubit gates. More details can be found
in [28].

Violation of these classical control constraints will cause
incorrect execution of quantum operations, leading to a com-
putational failure. Therefore, scheduling algorithms that can
take these constraints into account are needed to explore the
maximum available parallelism.

D. Configuration file

The hardware characteristics explained in this section are
precisely described in a configuration file (in json format). It
parameterizes the mapping modules that will be introduced in
the next section.

a) Primitive gate set: For Surface-17, the primitive gates
with all attributes including duration as listed in Table I and the
gate decomposition rules corresponding to those in Figure 1
are described in full detail in the configuration file.

b) Processor topology: The topology is defined by de-
scribing each connection with its source and target qubits. In
Surface-17, all edges are bidirectional, e.g., both CNOT(qa, qb)
and CNOT(qb, qa) can be performed on edge e(qa, qb). Qubits
and directed qubit connections are both named by integer val-
ues taken from contiguous ranges of integer numbers starting
from 0. As an example, the qubit numbering of the Surface-17
processor is shown in Figure 2; in the Surface-17 topology the
number of directed qubit connections is 48.

c) Classical control constraints: For single-qubit gates,
we use a look-up table Tg1 to describe the available AWGs
and the list of corresponding qubits that each AWG controls.
Similarly for measurement, the feedlines (three feedlines in
Surface-17) and the corresponding qubits that each feedline
is coupled to are described in a look-up table Tgm in the
configuration file. The AWGs and feedlines are both named by
contiguous integer numbers starting from 0. As mentioned in
Section II, it is assumed that three AWGs and three feedlines
are used in Surface-17, that is, |Tg1| = 3 and |Tgm| = 3,
respectively. The classical control constraints of two-qubit
gates are defined by using two look-up tables. One called Tg2f
describes for each connection which other connections cannot
be used to execute CZ gates in parallel (24 bi-directional edges
on the Surface-17 topology, i.e. |Tg2f | = 48). The other table

Tg2d describes for each connection which set of qubits needs to
be detuned in addition to one of its end-points, which means a
CZ on this connection and single-qubit gates on these detuned
qubits cannot be performed in parallel( |Tg2d| = 48).

III. RESOURCE-CONSTRAINED SCHEDULING

Qubits in NISQ computers have relatively short coherence
times, limiting the size of circuits that can be run successfully
with high fidelity. It is therefore necessary to minimize the
execution time of the circuit (or makespan, or circuit latency)
and explore the highest gate-level parallelism, which is the
objective of a quantum gate scheduler. Before discussing
the other mapping modules, we first introduce the proposed
heuristic scheduling algorithm that can take the actual gate
duration and classical control constraints into account. The
circuit shown in Figure 3 will be used as an example. We refer
to the qubits in the quantum circuit as virtual qubits (others
call them program qubits or logical qubits). These need to be
mapped to the qubits in the quantum processor called physical,
real or hardware qubits or locations

A. Weighted dependency graph

As mentioned previously, precise timing is essential for cor-
rectly executing quantum applications on real qubits. There-
fore, a scheduler that considers gate duration is required to
efficiently generate the correct instruction sequences with tim-
ing information meanwhile minimizing the circuit execution
time. Prior works [6], [12]–[24] do not consider the actual
gate duration, assuming any operation takes one time-step. To
ensure quantum operations can be executed at correct time,
their output circuits need to be further scheduled by some
other low-level hardware-aware units such as OpenPulse [11].
In contrast, the scheduling algorithm developed in the Qmap
mapper will directly take gate duration into account.

Similar to classical scheduling, a Quantum Operation De-
pendency Graph (QODG) G(VG, EG) is constructed from the
QASM representation of a quantum circuit, in which each
operation is denoted by a node vi ∈ VG, and the data
dependency between two operations vi and vj is represented
by a directed edge e(vi, vj) ∈ EG with weight wi that
represents the duration of operation vi. Pseudo source and sink
nodes are added to the start and end to simplify starting and
stopping iteration over the graph. The QODG of the circuit in
Figure 3a is shown in Figure 4a. In previous works that do not
consider gate duration, only directed graphs are constructed,
which cannot be directly applied to this work.

B. Formulation of resource constraints

Furthermore, the scheduler also needs to adhere to the
parallelism restrictions imposed by the shared classical control
electronics as described in Section II. In this work, these clas-
sical control constraints are treated as resource constraints
in an otherwise conventional critical path list-scheduler im-
plementation [33]. A so-called machine state S is defined to
describe the occupation status of each resource ri ∈ R, where
R represents the set of all resources in Tg1, Tgm, Tg2f , and

4
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

(a)

02

5

11

43

f1

f2

f3

(b)

Fig. 3: An example circuit consisting of 6 qubits and 9 gates.
(a) Its cQASM representation without scheduling and (b) its
initial qubit placement on the Surface-17 processor.

(a) (b)

Fig. 4: (a) The QODG of the circuit in Fig. 3a. Operations in
the blue boxes are in the critical path. The CZ gate in orange
has qubits that are not nearest neighbors. (b) The parallel
cQASM code of the routed circuit, where operations in the
same line or inside one bracket are scheduled to start at the
same cycle. SWAP gates are inserted to perform the CZ on
q0 and q3.

Tg2d. The constraints for single-qubit gates and measurement
are implemented by using |Tg1| and |Tgm| resource states,
respectively. To support the two-qubit gates constraint, there
is a resource state for each connection (to constrain mutual CZ
concurrency) and a resource state per qubit (to constrain CZ
versus single-qubit gate concurrency). Specifically, a resource
state consists of two elements: the operation type that is using
this resource and the occupation period which is described by a
pair of cycle time ([t0, t1)), representing the first cycle that it is
occupied and the first cycle that it is free again, respectively. If
an operation v is scheduled at cycle t0 (v.cycle = t0), then all
the resources for performing v (v.resources) will be occupied
till (and not including) t1 = t0 + v.duration (v.duration is
the duration of v).

C. Scheduling heuristic

Algorithm 1 shows the pseudo code of this algorithm that
schedules all gates of a given circuit with respect to the
resource constraints. Its objective is to achieve the shortest
circuit latency.

The heuristic maintains two sets of gates: Vm holds the gates
that have been scheduled, and Vav includes the gates that are
available for scheduling. A gate v is available when all its
predecessors p in G have been scheduled, that is, ∀p, p is in
Vm. Furthermore, it maintains a machine-state S consisting of
all resource states as described above.

Algorithm 1 Forward Scheduling algorithm
Input: Non-scheduled circuit
Input: Configuration file with gate durations and resource

descriptions R
Output: Scheduled circuit

1: Generate QODG G(VG, EG) from circuit
2: Initialize ∀v ∈ VG : v.resources ⊂ R and v.duration
3: Vm ← Unique pseudo source node
4: Vav ← All available gates in G(VG − Vm, EG)
5: Initialize cycle t← 0
6: Initialize machine-state S ← ∀r ∈ R is free
7: while Vav 6= ∅ do
8: Vr ← resource-free gates ⊂ Vav based on S
9: if Vr 6= ∅ then

10: Vc ←Most-critical gates ⊂ Vr in G(VG−Vm, EG)
11: Select v ∈ Vc which is first in the circuit
12: Add v to Vm
13: v.cycle← t
14: Update S with v.resources occupied at [t, t +

v.duration)
15: Vav ← All available gates in G(VG − Vm, EG)
16: else
17: t← t+ 1

Algorithm 1 first constructs a QODG for the input circuit
and initializes Vm, Vav , and S (lines 1-6). After finding all the
available gates at current cycle t, it selects the ones that can be
scheduled at cycle t and collects them in Vr (line 8). A gate
v ∈ Vav can be scheduled at cycle t only if it is resource-free
at t, that is, when its predecessors have finished execution,
∀p ∈ Vm, p.cycle + p.duration 6 t (this data dependency
constraint can be seen as qubit resource constraint); and when
all resources in v.resources are not occupied for all cycles
in [t, t+ v.duration). The worst-case time complexity of this
step is O(min(g, n) · (|R|)), n and g are the number of qubits
and operations in the input circuit, respectively (in the worst
case, gates on every qubit can be scheduled).

If Vr is not empty, the heuristic selects the first most-critical
gate v in this set (lines 9-11). A most-critical gate in Vr is
the one that has the longest path to the pseudo sink node of
the QODG G. In this work, the length of the longest path
is pre-computed for each node in G, which only takes linear
time. Then it adds this gate v to Vm, assigns the current cycle
attribute to v.cycle. It updates S by reserving all the resources
of v (v.resources) for its execution duration and updates Vav
given that v has been scheduled now and thus some more gates
may have become available (lines 12-15). In this case, cycle
t is not incremented because more gates may be scheduled in
the same cycle.

For the example circuit in Figure 4a, if X q2 is scheduled
at t=0, then the resource f2 will be occupied in [0, 1) and
therefore Y q0 cannot be scheduled at this cycle any more
(control constraints for single-qubit gates in Section II). Fur-
thermore, to respect with the control constraints for two-qubit
gates, neither gates Y q0 and CZ q1,q2 nor gates CZ q2,q4
and CZ q3,q5 will be scheduled at the same cycle as shown
in Figure 4b.

5
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

If Vr is empty, the heuristic increments t (line 17) and
continues the schedule loop again until all the gates are
scheduled, that is, Vav is empty. In the worst case, this loop
needs to be repeated O(L) times, L is the multiplication
of the total number of operations (g) in the given circuit
and the longest gate duration in cycles. Resource-constrained
scheduling is NP-hard in the strong sense [34]. Previous works
that are using exact optimization approaches or exhaustive
search algorithms for scheduling [13], [18], [19], [25] cannot
be adapted to efficiently solve this problem. In contrast, the
proposed scheduling algorithm has reduced its complexity to
at most

Oschedule = O (min(g, n) · (|R|) · g) . (1)

IV. MAPPING QUANTUM ALGORITHMS

Mapping means to transform the original hardware-agnostic
quantum circuit that describes the quantum algorithm to an
equivalent one that can be executed on the target quantum
processor. To this purpose, the mapping process has to be
aware of the constraints imposed by the physical implemen-
tation of the quantum processor. These include the set of
primitive gates that is supported, the allowed qubit interactions
that are determined by the processor topology, and the limited
concurrency of multi-gate execution because of classical con-
trol constraints. Mapping will likely increase the number of
operations that are required to implement the given algorithm
as well as the circuit latency/depth, decreasing the reliability
of the algorithm. Efficient algorithms that can minimize this
mapping overhead are then necessary, especially in NISQ
processors where noise sets a limit on the maximum size of a
computation that can be run successfully.

A. Overview of the Qmap mapper

The Qmap mapper developed in this work is embedded in
the OpenQL compiler [29] and its design flow is shown in
Figure 5. The input of Qmap is a quantum circuit written in
OpenQL (C++ or Python). The OpenQL compiler reads and
parses it to a QASM-level intermediate representation. Qmap
then performs the mapping and optimization of the quantum
circuit based on the processor characteristics provided in a
configuration file as described in the previous section. This
approach allows Qmap to target different quantum devices
by just changing the parameters in the configuration file.
After mapping, QASM-like code is generated. Currently, the
OpenQL compiler is capable of generating cQASM [35] that
can be executed on the QX simulator [36] as well as eQASM
[37], a QASM-like executable code that can target the Surface-
17 processor. The generation of other QASM-like languages
will be part of future extensions of the OpenQL compiler. The
modules of Qmap will be discussed in the rest of this section.

B. Initial placement

It is preferable to place highly interacting qubits next to
each other such that less movement operations will be added
for performing two-qubit gates. Similar to the placement

Ro
ut

in
g 

 w
it

h 
lo

ca
l s

ch
ed

ul
in

g

G
lo

ba
l s

ch
ed

ul
ng

In
it

ia
l p

la
ce

m
en

t

Qmap mapper

optimization
Quantum 
algorithms 
written in 
OpenQL

QASM 
code

(cQASM
   eQASM)

Executable codeInput circuits

Configuration file
- Elementary gates with duration
- Gate decomposition 
- Chip topology
- Classical control constraints

Fig. 5: Overview of the Qmap mapper embedded in the
OpenQL compiler.

approaches in [38], the initial placement problem in this work
is formulated as a quadratic assignment problem (QAP) and
the objective is to minimize the movement or communication
overhead, which is modeled by the distance between interact-
ing qubits minus 1. Qmap tries to find an initial placement
with minimum communication overhead by using the Integer
Linear Programming (ILP) algorithm presented in [39]. Such
an initial placement implementation can only solve small-
scale problems in reasonable time. Even though for near-
term implementations these numbers largely suffice, for large-
scale circuits, one can either partition a large circuit into
several smaller ones or apply heuristic algorithms to efficiently
solve these models [40]. Other works also solve this initial
placement problem by using a Satisfiability Modulo Theories
(SMT) solver [41].

C. Resource-constrained routing

It is unlikely to find an initial placement in which all the
qubit pairs that a two-qubit gate need to be performed on can
be placed in neighboring positions. Therefore, qubits will have
to be moved during computation. For instance, based on the
initial placement of qubits shown in Figure 3b, the first 4 CZ
gates of the circuit can be performed directly as qubits are
NN, but qubits in the last CZ gate will need to be routed
to adjacent positions. Routing refers to the task of finding
a series of movement operations that enables the execution
of two-qubit gates on a given processor topology with low
communication overhead. To do so, multiple routing paths are
evaluated and one is selected based on various optimization
criteria such as the number of added movement operations,
increase of circuit depth, or decrease of circuit reliability
[6], [17]–[23], [25], [41], [42]. Afterwards, the corresponding
movement operations are inserted.

1) Routing heuristic: In this work, after the ILP-based
initial placement, a heuristic algorithm is used to perform this
routing task. It is a scheduler-based heuristic of which the
objective is to minimize overall circuit latency. Algorithm 2
shows the pseudo code of the proposed routing algorithm,
which finds all two-qubit gates in which qubits are not nearest-

6
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

neighbours and inserts the required movement operations to
make them adjacent. As mentioned in Section II we use
SWAPs as well as MOVE operations for moving qubits.

The router algorithm starts by mapping the pseudo source
node and then selecting all available gates (Vav) from the
generated QODG (lines 1-3). Then it finds all the single-qubit
gates and the two-qubit gates of which qubits are NN from
Vav , these gates are collected in Vnn (line 5). If Vnn is not
empty, then all gates in this set are mapped directly and a
new set of available gates is computed (lines 6, 7, and 13-15).
Mapping a (NN) gate implies replacing virtual qubit operands
by their physical counterparts according to the VP-map table
M similar to the one shown in Figure 3b and decomposing
this gate to its primitives when the configuration specifies so.

After that, only non-NN two-qubit gates remain in the
available set. The router selects the ones which are most
critical in the remaining dependency graph G since they have
the highest likelihood to extend the circuit when mapped in
an inefficient way or when delayed (line 9). When there are
several equally critical gates, the routing heuristic chooses the
first one in the input circuit (line 10) and finds a set of move-
ment operations to bring these two qubits to adjacent positions.
After the movement set selection, the router schedules the
SWAP/MOVE operations into the circuit (line 11), updates
the VP-map (line 12), recomputes the set of available gates
(line 15), and runs the routing heuristic until all the gates are
mapped.

2) Movement set selection: For finding a set of movement
operations for a non-NN two-qubit gate, all shortest paths
between these two qubits are considered. During Qmap ini-
tialization time, the distance (i.e. the length of the shortest
path) between each pair of qubits has been computed using the
Floyd-Warshall algorithm. Finding all shortest paths between
qubits at mapping-time is done by a breadth-first search (BFS),
that is, selecting only path extensions which decrease the
distance between the qubits. For each shortest path, there may
exist several movement sets since qubits can meet in any
neighboring position within the path. Note that all movement
sets would lead to adding an equal minimum number of
movements to the circuit. In a

√
N ×

√
N grid architecture,

the total number of shortest paths between most remote two
nodes (qi, qj) is O(4

√
N ) and the number of movement sets

for each path is (2
√
N − 2).

In this work, a set of movement operations that minimally
extends the circuit latency is selected and scheduled into
the circuit. As shown in Algorithm 3, this router evaluates all
movement sets by looking back to the previously mapped gates
(lines 1 and 2) and interleaving each set of movements with
those gates using the proposed resource-constrained schedul-
ing heuristic (Section III) in an as-soon-as-possible (ASAP)
policy (line 4). It selects the one(s) which minimally extend(s)
the circuit latency (lines 6 and 7). When there are multiple
minimal-cost sets, a random one is taken. The complexity of
this routing strategy is

O(g
√
n4
√
n) ·Oschedule. (2)

For example, there are multiple ways to move qubits q0
and q3 in Figure 3b to be adjacent. One solution is to swap

q0 with q4 and swap q2 with q3. However, these two SWAP
gates cannot be performed in parallel because of the two-qubit
gate control constraints in Section II. Alternatively, the router
chooses the movement set {SWAP q0,q1 and SWAP q2,q3}
which will minimally extend circuit latency without violating
any constraints as shown in Figure 4b.

Algorithm 2 Forward Routing algorithm
Input: Non-routed circuit, VP-map M
Input: Configuration file with topology and constraints
Output: Routed circuit

1: Generate QODG G(VG, EG)
2: Vm ← Unique pseudo source node
3: Vav ← All available gates in G(VG − Vm, EG)
4: while Vav 6= ∅ do
5: Vnn ← All single-qubit and NN two-qubit gates in
Vav

6: if Vnn 6= ∅ then
7: Select the first most-critical gate v ∈ Vnn
8: else
9: Vc ← Most-critical gates ⊂ Vav in G(VG −
Vm, EG)

10: Select v ∈ Vc which is first in the circuit
11: Insert movement(s) for v
12: Update M
13: Map v according to M
14: Add v to Vm
15: Vav ← All available gates in G(VG − Vm, EG)

Algorithm 3 Movement selection algorithm
Input: QODG G(VG, EG), gate v, VP-map M
Input: Configuration file with topology and constraints
Output: The set of movements for v

1: P ← All shortest paths for v
2: MVP ← All possible sets of movements based on P
3: for mvj in MVP do
4: Interleave mvj with previous gates (looking back)
5: Lmvj

← circuit’s latency extension by mvj
6: if Lmvi = min(

⋃
j Lmvj ) then

7: Select mvi as the set of movements (randomly pick
one when there are more one minimum sets)

D. Global scheduling

After routing, the circuit adheres to the processor topology
constraint for two-qubit interactions and has been scheduled
in an As-Soon-As-Possible (ASAP) way. The global scheduler
reschedules the routed circuit to achieve the shortest circuit
latency and the highest instruction-level parallelism. It does
this in an As-Late-As-Possible (ALAP) way to minimize the
required life-time and thus the decoherence error of each
qubit. The global scheduler employs a backward version of
Algorithm 1, i.e. it traverses the circuit starting from the sink
node, working backwards through the circuit, decrementing t.

7
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

E. Decomposition and optimization

Starting from a quantum circuit described in cQASM format
(see Figure 3), the circuit is also decomposed during mapping
into one which only contains the primitive gates specified
in the configuration file, on top of adherence to the other
constraints. A circuit optimization module is also implemented
to reduce the number of gates, e.g., two consecutive X gates
can cancel each other out.

The decomposition and optimization can be done at ev-
ery step of the mapping procedure, i.e. before, during, and
after routing. Qmap reduces sequences of single qubit gates
to their minimally required sequence both before and after
routing. Whether decomposition is applied at a mapping step
is specified in the configuration file. The implementation
of the QODG represents the commutability of not only all
gates with disjoint qubit operands but also the known two-
qubit operations CNOT and CZ with overlapping operands,
and optimizes their order during both routing and global
scheduling.

The final output circuits by using the Qmap mapper are
described in cQASM code with precise timing information,
that is, which operations can be issued at each cycle. The
output circuit can also be represented by eQASM code [37]
that can be directly read by the quantum microarchitecture
in [43].

V. QMAP EVALUATION

In this section, we evaluate Qmap by mapping a set of
benchmarks from RevLib [30] and QLib [31] on the super-
conducting processor Surface-17 that has a distance-3 surface-
code topology [28]. All the hardware constraints discussed in
Section II, including the primitive gates with their real gate
duration, the topology and the electronic control constraints
are taken into account. The mapping experiments are executed
on a server with 2 Intel Xeon E5-2683 CPUs (56 logical cores)
and 377 GB memory. The Operating System is CentOS 7.5
with Linux kernel version 3.10 and GCC version 4.8.5.

A. Benchmarks

The circuit characteristics of the used benchmarks are shown
in Table II. All circuits have been decomposed into ones
which only consist of gates from the universal set {Pauli,
S, S†, T, T †, H , CNOT}. In these benchmarks, the number of
qubits varies from 3 to 16, the number of gates goes from 5 to
64283, and the percentage of CNOT gates varies from 2.8% to
100%. Moreover, the minimum circuit depth and the minimum
circuit latency are also included, ranging from 2 to 35572 time-
steps and from 5 to 12256 cycles (using the gate duration of
Surface-17 in Table I), respectively. Note that these numbers
are meant to characterize the algorithms without considering
the processor topology and classical control constraints.

The latter two parameters are defined as follows:
Circuit depth is the length of the circuit. It is equivalent

to the total number of time-steps for executing the circuit
assuming each of the gates takes one time-step.

Circuit latency refers to the execution time of the circuit
considering the real gate duration. Latency and gate duration

are expressed in cycles. In this paper, we assume that a cycle
takes 20 nanoseconds.

In order to generate quantum circuits which are executable
on real processors, extra movement operations need to be
added and gate parallelism will be compromised. Other pa-
rameters after mapping these benchmarks to the Surface-17
processor are obtained, such as the number of inserted SWAP
and MOVE operations and the CPU time the mapping process
takes. We analyze the impact of the mapping procedure in
terms of number of gates and circuit latency for Surface-17.
The mapping overhead is calculated by (Xo − Xin)/Xin,
where Xin and Xo represent the values of the same circuit
characteristic before and after mapping, respectively.

B. Prior compilation strategies

As mentioned previously, the routing algorithms in most of
prior mapping works [6], [12]–[24] optimize the number of op-
erations, that is, the number of added SWAP gates. They do not
take actual gate duration and classical control limitations into
account. Their output circuits need to be further scheduled by
a low-level hardware unit like OpenPulse [11] such that they
can be correctly executed with precise timing. In this work, we
also implement such a compilation procedure called MinPath
mapper to compare with the proposed Qmap. MinPath uses
the same initial placement approach as the Qmap mapper.
However, the router in MinPath randomly selects one of the
movement sets along one of the shortest paths as described in
Section IV-C without respecting to classical control constraints
and without evaluating which set(s) will minimally extend
circuit latency. The complexity of the router in MinPath is
O(g
√
n4
√
n).

Furthermore, we also introduce a Trivial mapper that may
not be able to map the circuit with minimal latency extension
but its routing strategy has linear complexity (O(g)). In the
trivial mapping strategy, a naive initial placement is used in
which qubits are just placed in their appearing order, no circuit
optimization is performed. For the router in the trivial mapper,
the gates in the input circuit are mapped in the order as
they appear in the circuit, i.e. by-passing the QODG. For
performing a non-NN two-qubit gate, it simply selects the
first shortest path that is found. Moreover, only a single set
of movement operations is generated for the chosen path, the
set moving the control qubit adjacent to the target qubit. In
addition, only SWAP gates are generated for moving qubits.
By contrast, the MinPath and Qmap mappers use the ILP-
based initial placement, enable circuit optimization, and can
insert both SWAP and MOVE gates.

The main differences of these three mapping strategies are
summarized in Table III. To provide gate sequences with pre-
cise timing and comply with the classical control constraints,
the proposed resource-constrained scheduling is performed
after routing procedure of the Trivial and MinPath mappers.

C. Overhead comparison of various mappers

Table IV shows the results of mapping benchmark circuits to
the Surface-17 superconducting processor using three different
mapping strategies: Trivial, MinPath, and Qmap. In this paper,

8
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II: The characteristics of the input benchmarks including the number of qubits, the total number of gates, the number
of two-qubit gates (CNOTs), its circuit depth and its circuit latency in cycles (20 ns per cycle).

Benchmarks Qubits Gates CNOTs Depth Latency Benchmarks Qubits Gates CNOTs Depth Latency
alu bdd 288 7 84 38 48 169 sym9 146 12 328 148 127 450
alu v0 27 5 36 17 21 72 sys6 v0 111 10 215 98 74 266
benstein vazirani 16 35 1 5 40 vbeAdder 2b 7 210 42 52 116
4gt12 v1 89 6 228 100 130 448 wim 266 11 986 427 514 1788
4gt4 v0 72 6 258 113 137 478 xor5 254 6 7 5 2 5
4mod5 bdd 287 7 70 31 40 140 z4 268 11 3073 1343 1643 5688
cm42a 207 14 1776 771 940 3249 adr4 197 13 3439 1498 1839 6377
cnt3 5 180 16 485 215 207 729 9symml 195 11 34881 15232 19235 66303
cuccaroAdder 1b 4 73 17 25 58 clip 206 14 33827 14772 17879 61786
cuccaroMultiply 6 176 32 55 133 cm152a 212 12 1221 532 684 2366
decod24 bdd 294 6 73 32 40 143 cm85a 209 14 11414 4986 6374 21967
decod24 enable 6 338 149 190 669 co14 215 15 17936 7840 8570 29608
graycode6 47 6 5 5 5 20 cycle10 2 110 12 6050 2648 3384 11692
ham3 102 3 20 11 11 41 dc1 220 11 1914 833 1038 3597
miller 11 3 50 23 29 105 dc2 222 15 9462 4131 5242 18097
mini alu 167 5 288 126 162 564 dist 223 13 38046 16624 19693 68111
mod5adder 127 6 555 239 302 1048 ham15 107 15 8763 3858 4793 16607
mod8 10 177 6 440 196 248 872 life 238 11 22445 9800 12511 43123
one two three 5 70 32 40 141 max46 240 10 27126 11844 14257 49400
rd32 v0 66 4 34 16 18 66 mini alu 305 10 173 77 68 242
rd53 311 13 275 124 124 441 misex1 241 15 4813 2100 2676 9240
rd73 140 10 230 104 92 330 pm1 249 14 1776 771 940 3249
rd84 142 15 343 154 110 394 radd 250 13 3213 1405 1778 6163
sf 274 6 781 336 436 1516 root 255 13 17159 7493 8835 30575
shor 15 11 4792 1788 2268 7731 sqn 258 10 10223 4459 5458 18955
sqrt8 260 12 3009 1314 1659 5740 square root 7 15 7630 3089 3830 13049
squar5 261 13 1993 869 1048 3644 sym10 262 12 64283 28084 35572 122564
sym6 145 7 3888 1701 2187 7615 sym9 148 10 21504 9408 12087 41641

TABLE III: The main differences of the Trivial, MinPath, and Qmap mappers. n and g are the number of qubits and gates in
an input circuit, respectively.

Circuit
optimization

ILP-based
placement

Routing
Smart gate
selection

Shortest
path

MOVE
operation

Multiple
movement sets

Minimize
latency

wrt. Classical
controls Complexity

Trivial No No No Yes No No No No O(g)

MinPath Yes Yes Yes Yes Yes Yes No No O(g
√
n4

√
n)

Qmap Yes Yes Yes Yes Yes Yes Yes Yes O(g
√
n4

√
n) ·Oschedule

the mapper is set to only find an ILP-based initial placement
for the first ten two-qubit gates in any given circuit and com-
putation time is limited to 10 minutes and is not included in
the final CPU time. For each benchmark circuit, the mapping
procedure is executed for five times and the one with minimum
overhead is reported.

Compared to the circuit characteristics before mapping
(Table II), no matter which strategy is applied, the mapping
procedure results in high overhead for most of the benchmarks
as shown in Table IV. The only exceptions are the ‘benstein v’
and ‘graycode6 47’ circuits, because some operations in these
circuits can be canceled out by the optimization module in the
mapper, decreasing their circuit sizes. When the trivial mapper
is used, the mapping procedure leads to a high overhead
in both circuit latency and total number of gates by up to
1160% (on average 148.3%) and 800% (on average 400.1%),
respectively. The MinPath mapper results in a latency overhead
by up to 260% (on average 93.4%) and a gate overhead by up
to 414.6% (on average 304.1%). Finally, the proposed Qmap
mapper increases the circuit latency and the total number of
gates by up to 260% (on average 72.1%) and 403.2% (on
average 295.9%), respectively.

Furthermore, we compare the resulted overhead of these
three mapping strategies as shown in Figure 6. The trivial map-
per leads to the highest mapping overhead as less optimization
is performed. Compared to the trivial strategy, the MinPath
mapper can reduce the latency overhead and gate overhead up

to 140% (‘gray6 47’) and 360% (‘benstein vazirani’), respec-
tively. The average latency (AVL) reduction and average gate
(AVG) reduction are 30% and 30.2%, respectively. Moreover,
the proposed Qmap mapper has lower or equal overhead than
the MinPath mapper in terms of both circuit latency and
number of gates for 96.4% and 87.5% of the benchmarks,
respectively. More specifically, Qmap can reduce the latency
overhead up to 47.3% (‘decod24 b’) and decrease the gate
overhead up to 28.6% (‘cuccaroMultiply’) compared to the
MinPath mapping strategy. The average latency (AVL) reduc-
tion and average gate (AVG) reduction are 22% and 3.0%,
respectively. This is because the router in the MinPath mapper
only considers the qubit connectivity limitation and minimizes
the number of operations, that is, it randomly selects a
movement set that has minimum number of operations to
move qubits to be neighbours. The gate duration and classical
constraints will only be taken into account by a later module
(such as the global scheduler in this work and the OpenPulse in
IBM Qiskit [17]). In comparison, the router in Qmap uses the
proposed resource-constrained scheduling approach as base
and evaluates more minimum-weight movement sets to select
one which minimally extends the circuit latency (Section IV).

D. Scalability and flexibility
a) Scalability: As discussed in Section IV, the complex-

ity of the proposed resource-constrained scheduling heuristic
in the worst case is still polynomial (Equation 1), making it

9
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Fig. 6: Comparison of three different mapping strategies. Overhead reduction (left) when comparing the MinPath mapper to
the trivial mapper and (right) when comparing Qmap to MinPath. Benchmarks are in the horizontal axis and listed in their
appearing order in Table II.

applicable to large-scale quantum circuits. The complexity of
the routing heuristic is polynomial in terms of the number of
gates but scales sub-exponentially with the number of qubits
in a given circuit when using the Qmap and MinPath strategies
(in Table III).

We have tested three mapping strategies (Trivial, MinPath,
Qmap) for different sizes of benchmarks, in which the number
of qubits ranges from 3 to 16 and the two-qubit gate number
from 5 to 62483. The runtime (in seconds) that different
mappers requires for mapping each benchmark on the Surface-
17 processor can be found in Table IV, which is measured
by the CPU time that the entire mapping procedure takes,
excluding the time the ILP-based initial placement takes.
As expected, the mapper that performs more optimizations
and evaluates more movement sets has a longer runtime.
In this case, the trivial mapper has the shortest execution
time whereas the Qmap takes the longest time. For example,
when mapping the largest benchmark ‘sym10 262’ with 62483
gates onto the Surface-17 processor, the trivial and the Qmap
mappers take 72.8 seconds and 9083.4 seconds, respectively.
Moreover, most of the CPU time of MinPath and Qmap is
spent on the routing procedure because of its sub-exponential
complexity in qubit numbers (compared to linear complexity
of the scheduling heuristic).

Based on the complexity analysis and the experimental
results, we can conclude that Qmap is scalable in terms of
large number of gates. However, our experiments only use
benchmarks which have less 20 qubits. Therefore, its scalabil-
ity with the number of qubits needs to be further investigated.
Furthermore, one may need to make a compromise between
mapping performance and runtime for large-scale benchmarks.

b) Flexibility: As introduced in Section II-D, the device
characteristics such as the primitive gate set with gate duration,
device topology, and electronic control constraints are encoded
in a configuration file. Qmap will compile target quantum cir-
cuits based on the hardware information provided in this file.
This means the compilation passes in Qmap including qubit
initial placement, routing, scheduling, and gate decomposition
are device-independent. This flexibility allows one to apply
Qmap on other similar superconducting quantum processors
by simply changing the corresponding device parameters in
the configuration file. However, some extra changes in the

compilation techniques might be required when targeting a
different quantum technology, for instance, Si-spin qubits.

E. SWAPs versus MOVEs

Fig. 7: Reduction of mapping overhead when using MOVEs if
possible compared to when only using SWAPs. Benchmarks
are in the horizontal axis and listed in their appearing order
in Table II. The average latency (AVL) reduction and average
gate (AVG) reduction are 2.76% and 4.21%, respectively.

As mentioned in Section II, a SWAP gate is implemented by
three consecutive CNOT gates whereas a MOVE operation is
implemented by two consecutive CNOT gates but requiring an
ancilla qubit in the state |0〉. Therefore, if there are available
ancilla qubits (qubits that are not used for computation), then
it is preferable to use MOVE operations rather than SWAP
gates, which helps to reduce the mapping overhead. In this
section, we evaluate the benefit of using MOVE operations
instead of only using SWAPs. We map the benchmarks in
Table II onto the Surface-17 processor using the MinPath
mapper. Different from the setups in Table IV, to have a fair
comparison between using MOVEs if possible and only using
SWAPs, in this case the native initial placement is applied and
the first movement set is always selected. With the same qubit
overhead, the mapping with MOVEs can reduce the number of
gates up to 38.9% (‘bestein vazirani’) and the circuit latency
up to 29% (‘graycode6 47’) compared to the mapping with
only SWAPs as shown in Figure 7. The latency reduction and
gate reduction are higher than 1% for around 48.2% and 64.3%
of the benchmarks, respectively.

10
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE IV: The results of mapping quantum benchmarks to the Surface-17 processor, including the latency overhead (LtyOH)
and gate overhead (GateOH) in percentage compared to the characteristics before mapping, the number of two-qubit gates
(CZs) in the mapped output circuits, the numbers of inserted SWAP (SWs) and MOVE (MVs) operations, and the CPU time
that routing and scheduling take in seconds.

Benchmarks The Trivial mapper The MinPath mapper The Qmap mapper
LtyOH GateOH CZs SWs MVs Time LtyOH GateOH CZs SWs MVs Time LtyOH GateOH CZs SWS MVs Time

alu bdd 288 98.2% 367.8% 113 25 0 0.06365 69.2% 306% 100 16 7 1.7313 50.3% 330.9% 109 15 13 1.77362
alu v0 27 130.5% 422.2% 56 13 0 0.0353 38.9% 222.2% 30 3 2 4.20968 47.2% 238.9% 34 3 4 4.13529
benstein vazirani -10% 28.6% 10 3 0 0.01667 -10% -74.3% 1 0 0 0.01051 -10% -74.3% 1 0 0 0.01135
4gt12 v1 89 107.8% 422.4% 346 82 0 0.19592 81% 302.2% 270 54 4 25.6367 54% 288.6% 259 51 3 26.0342
4gt4 v0 72 135.1% 448.8% 413 100 0 0.2555 84.9% 294.6% 296 55 9 4.40794 64.8% 277.1% 273 52 2 4.628
4mod5 bdd 287 112.8% 384.3% 100 23 0 0.07120 67.1% 252.8% 71 10 5 18.7469 61.4% 242.8% 69 10 4 19.5225
cm42a 207 120.5% 394.5% 2532 587 0 1.42467 100% 344.1% 2352 517 15 611.534 75.8% 334.9% 2301 494 24 535.889
cnt3 5 180 172.3% 413.6% 725 170 0 0.38054 103% 333.6% 623 136 0 25.0301 69.5% 339.6% 641 142 0 25.6028
cuccaroAdder 1b 201.7% 134.2% 50 11 0 0.03036 55.1% 26% 23 0 3 0.2521 55.1% 26% 23 0 3 0.28906
cuccaroMultiply 213.5% 142.6% 122 30 0 0.06122 95.4% 55.7% 74 10 6 2.05933 .63.1% 39.7% 64 6 7 2.09601
decod24 bdd 120.2% 413.7% 110 26 0 0.06353 76.9% 312.3% 90 14 8 1.38109 40.6% 293.1% 83 15 3 1.46449
decod24 enable 100.6% 375.4% 467 106 0 0.23441 97.9% 233.1% 434 95 0 28.704 72% 336% 434 95 0 28.7617
graycode6 47 50% 520% 11 2 0 0.00898 -20% 200% 5 0 0 5.83973 -20% 200% 5 0 0 5.8601
ham3 102 92.7% 335% 26 5 0 0.01126 46.3% 220% 17 2 0 0.15724 46.3% 210% 17 2 0 0.22297
miller 11 89.5% 344% 65 14 0 0.02856 48.5% 232% 46 3 7 0.19096 32.3% 198% 39 0 8 0.27471
mini alu 167 102.8% 396.9% 414 96 0 0.21319 74.6% 288.9% 309 61 0 29.411 45% 270.8% 294 56 0 28.5271
mod5adder 127 112.7% 394.4% 794 185 0 0.44677 82.1% 303.6% 645 130 8 7.0105 54.3% 279.1% 598 109 16 7.4544
mod8 10 177 108.6% 419.3% 661 155 0 0.36898 80% 310.9% 530 102 14 2.26425 64.4% 305.9% 518 106 2 2.53567
one two three 103.5% 394.3% 101 23 0 0.05446 66.7% 275.7% 76 12 4 6.18516 52.5% 260% 70 10 4 6.41456
rd32 v0 66 154.5% 441.2% 55 13 0 0.02766 59.9% 232.3% 32 4 2 1.65692 57.6% 226.4% 31 1 6 1.71454
rd53 311 168.2% 450.5% 448 108 0 0.24811 106.1% 354.2% 370 78 6 0.32513 94.1% 357.1% 375 81 4 0.67113
rd73 140 193.9% 420.9% 350 82 0 0.19047 127.5% 339.1% 300 62 5 20.682 100.6%1 329.6% 292 52 16 20.3441
rd84 142 251.5% 425.9% 526 124 0 0.30129 164.9% 373.4% 481 109 0 20.7494 118.5% 341.9% 448 98 0 21.1735
sf 274 121% 398.3% 1137 267 0 0.67493 78.4% 304.2% 926 178 28 40.0639 41.8% 261.3% 818 104 85 41.2879
shor 15 95% 309.2% 5472 1228 0 4.33023 74.1% 264.4% 5046 1028 87 2.45284 45.1% 255.9% 4924 982 95 14.6928
sqrt8 260 121.4% 436.1% 4719 1135 0 3.49803 102.5% 366.7% 4231 953 29 4.12037 74.5% 363.4% 4216 956 17 13.2009
squar5 261 115.8% 410.7% 2951 694 0 2.17597 97.5% 347.7% 2663 594 6 3.48788 77.5% 339.7% 2630 585 3 7.76352
sym6 145 103.1% 395.5% 5583 1294 0 4.12125 85.1% 322.5% 4872 965 138 3.94839 69% 315.2% 4787 970 88 16.7757
sym9 146 177.8% 424.7% 499 117 0 0.30173 131.1% 355.2% 447 93 10 21.1801 117.8% 343.9% 431 91 5 21.6935
sys6 v0 111 222.9% 431.2% 338 80 0 0.24816 140.6% 353.9% 290 62 3 21.1563 115.5% 322.7% 267 49 11 21.1608
vbeAdder 2b 186.2% 122.8% 135 31 0 0.09799 103.4% 42.9% 79 9 5 0.16455 85.3% 41.9% 80 6 10 0.1938
wim 266 120.4% 415.6% 1474 349 0 0.98658 98.3% 334.9% 1273 272 15 13.0377 78.4% 326.3% 1254 265 16 13.5583
xor5 254 1160% 800% 23 6 0 0.01135 260% 157.1% 8 1 0 29.7578 260% 157.1% 8 1 0 29.2384
z4 268 116.9% 413.9% 4598 1085 0 3.19178 101.5% 354.3% 4178 905 60 818.036 70.6% 340.5% 4088 887 42 869.445
adr4 197 124.1% 426.6% 5287 1263 0 3.38715 100% 361.4% 4780 1082 18 1.67818 73.6% 350.6% 4685 1021 62 10.924
9symml 195 114.3% 422.6% 53224 12664 0 36.5722 102.1% 370.8% 49485 11167 376 16.642 75.1% 364.4% 49154 11282 38 2332.7
clip 206 126.5% 432.8% 52809 12679 0 40.1273 108.1% 380.1% 49227 11379 159 17.44 80.1% 375.6% 49090 11268 257 2587.99
cm152a 212 118.3% 417.6% 1834 434 0 1.3859 90.5% 337.8% 1586 346 8 0.66896 72.7% 334.6% 1591 353 0 3.53968
cm85a 209 120.3% 434.5% 17886 4300 0 14.2237 100.8% 380.5% 16654 3832 86 6.49007 72.2% 367.5% 16224 3716 45 389.036
co14 215 156.1% 452.5% 29218 7126 0 20.9755 129.8% 414.6% 28381 6837 15 10.8777 95.8% 403.3% 27787 6615 51 1044.04
cycle10 2 110 119% 422.8% 9236 2196 0 7.12406 97.3% 365.2% 8460 1904 50 3.26144 74.9% 361.1% 8471 1899 63 106.071
dc1 220 115.2% 414.3% 2867 678 0 2.62955 97.8% 348% 2574 567 20 1.45486 66.2% 324.1% 2444 481 84 8.51783
dc2 222 118.1% 432.6% 14754 3541 0 12.5991 99.5% 371.4% 13547 3100 58 5.16826 75.7% 369% 13520 3077 79 268.637
dist 223 130% 429.4% 58891 14089 0 40.4085 111.5% 381.5% 55613 12757 359 55.0312 82.1% 372.2% 54717 12599 148 3550.7
ham15 107 118.1% 422.9% 13356 3166 0 10.1604 100.9% 364.7% 12257 2797 4 5.74947 74% 353.7% 12030 2704 30 193.48
life 238 114% 422.9% 34238 8146 0 30.3595 97.3% 365.3% 31370 7134 84 14.0716 74.9%5 366.4% 31920 7324 74 1364.49
max46 240 126.7% 421.4% 41211 9789 0 35.6086 106.1% 361.6% 37631 8375 331 16.8426 80.5% 356.7% 37565 8217 535 1840.89
mini alu 305 216.9% 398.2% 254 59 0 0.16079 108.7% 328.3% 228 35 23 0.19804 114% 348% 242 41 21 0.40925
misex1 241 112.8% 415.1% 7206 1702 0 5.75472 96.3% 357.1% 6577 1479 20 3.13745 71.9% 354.7% 6588 1480 24 53.4152
pm1 249 120.6% 394.5% 2532 587 0 2.3615 98.4% 338.7% 2314 499 23 1.48028 73.2% 337.7% 2331 504 24 6.86838
radd 250 115.1% 419.7% 4867 1154 0 4.11447 99.4% 365.4% 4516 979 87 2.43807 75.2% 348.4% 4363 948 57 24.0061
root 255 133.2% 435.4% 26882 6463 0 20.7858 112.4% 381.4% 24991 5824 13 11.4199 83% 369.4% 24520 5627 73 844.114
sqn 258 128.6% 420.9% 15529 3690 0 11.7106 101.3% 353.6% 13908 3019 196 6.55198 74.1% 348% 13815 2984 202 270.981
square root 7 174.1% 477.2% 12896 3269 0 10.6409 110.1% 350% 10274 2371 36 50077.7 77.8% 333.6% 9845 2184 102 46862.9
sym10 262 119.6% 429.9% 99658 23858 0 72.7567 102.1% 374.7% 92270 21030 548 42.2372 75.6% 371.5% 92326 20986 642 9083.41
sym9 148 111.1% 413.3% 32127 7573 0 27.4377 91.8% 342.8% 28378 6152 257 14.4444 69.9% 340.2% 28462 6182 254 800.226

VI. RELATED WORK

To achieve the shortest circuit latency and provide precise
timing information for generating correct control signals,
schedulers that consider actual gate duration should be de-
veloped. Furthermore, the control electronic constraints that
can be very restrictive especially when scaling-up quantum
processors, should also be taken into account to allow valid
execution of quantum applications. As discussed previously,
most of prior mapping works [6], [12]–[24] only focus on
the primitive gate set and qubit connectivity constraints. The
output circuits from prior mappers need to be further scheduled
with respect with the gate duration and classical control
constraints, which is less optimal than the Qmap mapper as
shown in Section V. Moreover, they all use SWAP operations
for moving qubits when targeting superconducting quantum
processors. In addition, so far no mapper has been developed
for more scalable quantum processors such as the Surface-

17 processor presented in [28], [44]. Although this type of
processors has been designed with the aim of building a
large qubit array capable of performing fault-tolerant quantum
computations based on surface code, it can be also used for
running quantum algorithms in a near-term implementation.

Many existing mapping algorithms [6], [12]–[27] and this
paper use either the number of inserted movement operations
or the circuit depth/latency as optimization metrics. Although
all these metrics affect the success probability of a quantum
circuit, an analysis on which ones are more critical to be
minimized is required. Recent works [20], [22], [23], [41],
[42], [45] suggest to choose the routing path based on the
fidelity of the two-qubit gates along the path as they are used
to implement the movements (noise-aware mapper). However,
the reliability of a path is calculated by simply multiplying
the fidelity of each gate without considering error propagation
and decoherence, which makes this metric incomplete and not

11
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

very accurate and it thus sometimes fails in predicting the
most reliable route [23]. A more accurate metric that can well
represent success probability and also can be easily used by
the mapping procedure needs to be developed.

VII. CONCLUSION AND DISCUSSION

Classical control electronics will be shared among qubits
for scalable quantum processors, imposing limitations on the
parallelism of quantum operations. More importantly, violation
of these control constraints will lead to invalid execution of
quantum circuits. In this work, we have proposed a method
that formulates these control constraints as resource constraints
in a conventional list scheduling algorithm. Then we have
developed a Qmap mapper that applies the proposed resource-
constrained scheduling heuristic in the routing procedure with
the objective of minimizing circuit latency. The evaluation
results on the Surface-17 processor show that Qmap results in
lower overhead in terms of both circuit latency and number of
gates compared to the prior mapping strategy (MinPath) that
minimizes the number of operations in the routing process
and then reschedules the circuits with respect to the actual
gate duration and classical control constraints. However, the
complexity of the routing algorithm in Qmap scales sub-
exponentially with the number of qubits in the input circuit.
Future work can reduce its complexity by only evaluating the
shortest paths where less qubits were, are or will be busy in
the past, current, or coming cycles.

Furthermore, Qmap can be applied to different processors
by only changing their corresponding hardware characteristics
in the configuration file. We will investigate the performance
of Qmap on other NISQ processors and compare it with prior
works in the future. In addition, more mapping metrics need
to be investigated and included in the mapper. Note that what
parameter(s) to optimise during the mapping might depend
on the characteristics of the target quantum processor. In
addition, our mapping approach is based on the compilation of
quantum circuits at the gate level. Although it generates valid
instructions with precise timing, they still need to be further
translated into appropriate signals that control the qubits by the
microarchitecture proposed in [43]. A different approach is to
directly compile quantum algorithms to control pulses [46].
Further work will compare both solutions and investigate the
trade-off of allocating mapping tasks to the compiler and the
microarchitecture.

ACKNOWLEDGMENT

The authors acknowledge support from the Intel Corpora-
tion. LLL also acknowledges funding from the China Schol-
arship Council.

REFERENCES

[1] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[2] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, pp. 467–488, 1982.

[3] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state
of play,” arXiv:1905.13641, 2019.

[4] IBM, “Quantum experience,” https://www.research.ibm.com/ibm-q/,
2017.

[5] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, p.
595, 2018.

[6] Rigetti, “Rigetti forest,” https://www.rigetti.com/forest, 2018.
[7] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge,

M. Y. Simmons, and L. C. Hollenberg, “A surface code quantum
computer in silicon,” Science advances, vol. 1, no. 9, p. e1500707, 2015.

[8] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner,
N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner et al., “A crossbar
network for silicon quantum dot qubits,” Science advances, vol. 4, no. 7,
p. eaar3960, 2018.

[9] IBM, “Ibm research blog,” https://www.ibm.com/blogs/research/2020/
09/ibm-quantum-roadmap/, 2020.

[10] S. Asaad, C. Dickel, N. K. Langford, S. Poletto, A. Bruno, M. A.
Rol, D. Deurloo, and L. DiCarlo, “Independent, extensible control of
same-frequency superconducting qubits by selective broadcasting,” npj
Quantum Information, vol. 2, p. 16029, 2016.

[11] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop,
J. Chen, J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp et al.,
“Qiskit backend specifications for openqasm and openpulse experi-
ments,” arXiv:1809.03452, 2018.

[12] M. Yazdani, M. S. Zamani, and M. Sedighi, “A quantum physical design
flow using ilp and graph drawing,” Quantum information processing,
vol. 12, no. 10, pp. 3239–3264, 2013.

[13] A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number of
swap gates for multi-dimensional nearest neighbor quantum circuits,” in
The 20th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2015, pp. 178–183.

[14] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and
R. Drechsler, “Look-ahead schemes for nearest neighbor optimization
of 1d and 2d quantum circuits,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 292–297.

[15] A. Farghadan and N. Mohammadzadeh, “Quantum circuit physical
design flow for 2d nearest-neighbor architectures,” International Journal
of Circuit Theory and Applications, vol. 45, no. 7, pp. 989–1000, 2017.

[16] S. Herbert and A. Sengupta, “Using reinforcement learning to find
efficient qubit routing policies for deployment in near-term quantum
computers,” arXiv:1812.11619, 2018.

[17] H. Abraham, AduOffei, I. Y. Akhalwaya, G. Aleksandrowicz et al.,
“Qiskit: An open-source framework for quantum computing,” 2019.

[18] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the ibm QX architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[19] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization. ACM, 2018, pp. 113–125.

[20] W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang,
“Qubit allocation for noisy intermediate-scale quantum computers,”
arXiv:1810.08291, 2018.

[21] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 1001–1014.

[22] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A
case for variability-aware policies for nisq-era quantum computers,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2019, pp. 987–999.

[23] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. Van Meter, “Extracting
success from ibm’s 20-qubit machines using error-aware compilation,”
arXiv:1903.10963, 2019.

[24] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and
S. Sivarajah, “On the qubit routing problem,” arXiv:1902.08091, 2019.

[25] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum
circuits to realistic hardware architectures using temporal planners,”
Quantum Science and Technology, vol. 3, no. 2, p. 025004, 2018.

[26] K. E. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank,
“Comparing and integrating constraint programming and temporal plan-
ning for quantum circuit compilation,” in Twenty-Eighth International
Conference on Automated Planning and Scheduling, 2018.

[27] D. Venturelli, M. Do, B. O’Gorman, J. Frank, E. Rieffel, K. E. Booth,
T. Nguyen, P. Narayan, and S. Nanda, “Quantum circuit compilation:
An emerging application for automated reasoning,” 2019.

12
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 

https://www.research.ibm.com/ibm-q/
https://www.rigetti.com/forest
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/


0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3057583, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[28] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. J.
Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable quantum
circuit and control for a superconducting surface code,” Phys. Rev.
Applied, vol. 8, no. 3, p. 034021, 2017.

[29] N. Khammassi, I. Ashraf, J. v. Someren, R. Nane, A. Krol, M. A. Rol,
L. Lao, K. Bertels, and C. G. Almudever, “Openql: A portable quantum
programming framework for quantum accelerators,” arXiv:2005.13283,
2020.

[30] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
38th International Symposium on Multiple Valued Logic (ismvl 2008).
IEEE, 2008, pp. 220–225.

[31] C. C. Lin, A. Chakrabarti, and N. K. Jha, “QLib: Quantum module
library,” ACM Journal on Emerging Technologies in Computing Systems,
vol. 11, no. 1, p. 7, 2014.

[32] T. E. OBrien, B. Tarasinski, and L. DiCarlo, “Density-matrix simulation
of small surface codes under current and projected experimental noise,”
npj Quantum Information, vol. 3, no. 1, p. 39, 2017.

[33] J. E. Kelley Jr and M. R. Walker, “Critical-path planning and schedul-
ing,” in Papers presented at the December 1-3, 1959, eastern joint IRE-
AIEE-ACM computer conference. ACM, 1959, pp. 160–173.

[34] J. Blazewicz, J. K. Lenstra, and A. R. Kan, “Scheduling subject to
resource constraints: classification and complexity,” Discrete applied
mathematics, vol. 5, no. 1, pp. 11–24, 1983.

[35] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G.
Almudever, and K. Bertels, “cQASM v1. 0: Towards a common quantum
assembly language,” arXiv:1805.09607, 2018.

[36] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudéver, and K. Bertels, “QX:
A high-performance quantum computer simulation platform,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 464–469.

[37] X. Fu, L. Riesebos, M. A. rOL, J. van Straten, J. van Someren, N. Kham-
massi, I. Ashraf, R. Vermeulen, V. Newsum, K. Loh et al., “eQASM:
An executable quantum instruction set architecture,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 224–237.

[38] M. J. Dousti, A. Shafaei, and M. Pedram, “Squash: a scalable quantum
mapper considering ancilla sharing,” in Proceedings of the 24th edition
of the great lakes symposium on VLSI. ACM, 2014, pp. 117–122.

[39] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi,
K. Bertels, and C. G. Almudever, “Mapping of lattice surgery-based
quantum circuits on surface code architectures,” Quantum Science and
Technology, vol. 4, p. 015005, 2019.

[40] M. J. Dousti and M. Pedram, “LEQA: latency estimation for a quantum
algorithm mapped to a quantum circuit fabric,” in Proceedings of the
50th Annual Design Automation Conference (DAC)). ACM, 2013, p. 42.

[41] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen,
and C. H. Alderete, “Full-stack, real-system quantum computer studies:
architectural comparisons and design insights,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 527–
540.

[42] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015–1029.

[43] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N.
Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, “An experi-
mental microarchitecture for a superconducting quantum processor,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50). IEEE/ACM, 2017, pp. 813–825.

[44] Intel, “Intel newsroom,” https://newsroom.intel.com/press-kits/
quantum-computing/#intel-qutech, 2019.

[45] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, 2017.

[46] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 1031–1044.

Lingling Lao is a Research Fellow in quantum com-
puting at the Department of Physics and Astronomy,
University College London, UK. She received her
Ph.D. at the Quantum and Computer Engineering
Department and QuTech, Delft University of Tech-
nology, The Netherlands in 2019. Her research inter-
ests include quantum error correction, quantum error
mitigation, and quantum compilation. Currently, she
focuses on compilation and error mitigation tech-
niques for implementing quantum applications on
noisy intermediate-scale quantum computers.

Hans van Someren is a quantum software engineer
at the Quantum and Computer Engineering Depart-
ment and QuTech, Delft University of Technology,
The Netherlands. Until 2015 he was principal archi-
tect at ACE Associated Computer Experts mainly
leading the development of CoSy, a compiler gen-
eration system for advanced low-level processors
such as DSPs and vector architectures, which was
widely used by industry. Currently his interests are
in quantum computing, i.e. compilation, scheduling,
optimization and mapping, architecture exploration,

programming model, and tools architecture for noisy intermediate-scale quan-
tum computers.

Imran Ashraf is a Postdoctoral researcher at Delft
University of Technology. He received his Ph.D. in
Computer Engineering from Delft University of
Technology, The Netherlands in 2016. The focus
of his research was advanced profiling, code par-
allelization, communication driven mapping of ap-
plications on multicore platforms. In 2016, Im-
ran started working as Post-Doctoral Researcher at
Quantum and Computer Engineering department,
QuTech, TU Delft. His research focused on compi-
lation techniques for quantum computing. Currenty,

Imran is working as Assistant Professor at Computer Engineering Department,
HITEC University, Taxila, Pakistan.

Carmen G. Almudever is a group leader at the
Quantum Computing Division of QuTech at Delft
University of Technology. She works on the def-
inition and implementation of a scalable quantum
computer architecture that bridges the gap between
quantum applications and quantum devices. Her
research focuses on different aspects of the quantum
computing stack including quantum programming
languages and compilers, mapping of quantum al-
gorithms, architecting and benchmarking of quan-
tum computers, quantum error correction and fault

tolerant quantum computation.

13
Authorized licensed use limited to: University College London. Downloaded on July 05,2021 at 14:24:01 UTC from IEEE Xplore.  Restrictions apply. 

https://newsroom.intel.com/press-kits/quantum-computing/#intel-qutech
https://newsroom.intel.com/press-kits/quantum-computing/#intel-qutech

