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ABSTRACT:

This paper proposes a semantic segmentation pipeline for terrestrial laser scanning data. We achieve this by combining co-registered
RGB and 3D point cloud information. Semantic segmentation is performed by applying a pre-trained off-the-shelf 2D convolutional
neural network over a set of projected images extracted from a panoramic photograph. This allows the network to exploit the
visual image features that are learnt in a state-of-the-art segmentation models trained on very large datasets. The study focuses
on the adoption of the spherical information from the laser capture and assessing the results using image classification metrics.
The obtained results demonstrate that the approach is a promising alternative for asset identification in laser scanning data. We
demonstrate comparable performance with spherical machine learning frameworks, however, avoid both the labelling and training
efforts required with such approaches.

1. INTRODUCTION

Over the past decade, the construction and real estate sectors
have increasingly used Terrestrial Laser Scanners (TLS) to cap-
ture and document building interiors. This process usually de-
livers a dense, high-quality point cloud, which can serve as
the basis for remodelling and asset management. Furthermore,
modern instruments not only capture the 3D positions of in-
terior surfaces, but also colour information from panoramic
photographs, making it possible for a point cloud to be reasoned
from both its spatial and photometric qualities. A key task in
point cloud scene understanding is assigning an object label for
every point, often referred as either per-point classification or
semantic segmentation. In this work we adopt the latter.

In recent years, a surge of deep learning approaches for point
cloud semantic segmentation have been proposed. Neverthe-
less, the problem is still considered hard. This can be accred-
ited to a number of reasons. Firstly, point clouds are typically
unordered, and sparse data types. This prevents normal con-
volution kernels, which assume discrete structured data, from
being effective. As a result, deep learning based 2D approaches
typically remain more mature. Despite great progress in ad-
dressing this problem (Qi et al., 2017b; Hermosilla et al., 2018;
Thomas et al., 2019), another issue looms. Modern deep learn-
ing based methods require very large labelled datasets, however,
such datasets for 3D data are typically not available at the same
scale as that for their 2D counterparts.

In light of such limitations, we instead ask the question, can 3D
point cloud semantic segmentation be achieved using only 2D
models? Ultimately allowing us to exploit existing 2D CNN
architectures and massive manually labelled 2D datasets.

In answering this, we propose a methodology which projects
3D data with co-registered RGB data into 2D images which can
be consumed by standard 2D Convolutional Neural Networks
∗ Corresponding author

(CNNs). Our multi-stage pipeline first starts with the extraction
of a panoramic image from a TLS acquired point cloud. Next,
we compute tangential images in a perspective projection which
can be fed into a CNN to map RGB values to per-pixel labels.
Finally, we project the label map back to the point cloud to
obtain per-point labels. Through a hyperparameter grid search
we find that our method can be used to obtain a competitive
semantic segmentation of point clouds leveraging only a pre-
trained off-the-shelf 2D CNN without any additional labelling
or domain adaptation.

Empirically we show that despite the raw image data being in an
equirectangular projection, CNNs trained using the more com-
mon rectilinear projection produce respectable labels using our
approach. Our pipeline therefore makes data captured by polar
devices, such as a TLS, compatible with any standard CNN-
based image segmentation architecture.

2. RELATED WORKS

The process of assigning per-point classification labels to point
clouds has a rich history. Traditionally, success has been owed
to supervised machine learning based techniques. As a single
point does not contain enough information to determine its la-
bel, researchers explore methods to encompass local neighbour-
hood context. Demantké et al. (2011), Weinmann et al. (2015)
and others demonstrated the effectiveness of explicitly encod-
ing features computed from a points local neighbourhood. Fea-
tures such as linearity, planarity and Eigenentropy are calcu-
lated for each point and passed into a Random Forest classifier.
This can be performed at scale (Liu and Boehm, 2015). Other
feature sets such as Fast Point Feature Histograms (FPFH)
(Rusu et al., 2009) and Color Signature of Histogram of Orient-
ations (SHOT) (Salti et al., 2014) have also shown promising
results.

More recently, there has been a surge of deep learning based
approaches (Griffiths and Boehm, 2019). The seminal work of
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PointNet (Qi et al., 2017a) demonstrated the compatibility of
deep learning with such problems. However, PointNet did not
exploit local neighbourhood features like those explicitly en-
coded in early works. PointNet++ (Qi et al., 2017b) showed that
by combining a PointNet with local neighbourhood grouping
and sampling module, results could be significantly improved.
More recent research looks at developing convolution kernels
(which experienced unprecedented success in the 2D domain)
that are capable of working in the unordered, sparse and con-
tinuous domain where the point cloud exists. Examples such
as Monte Carlo Convolutions (Hermosilla et al., 2018), Kernel
Point Convolutions (Thomas et al., 2019) and PointConv (Wu
et al., 2019) address this.

In the 2D domain researchers have developed methods for pro-
cessing spherical images. For example, the spherical cross-
correlation and generalised Fourier transform algorithms in Co-
hen et al. (2018), the adaptation of different convolution lay-
ers in Yu and Ji (2019), or transforming encoders and decoders
for understanding the geometry variance derived from the input
equirectangular panoramic image in Zhao et al. (2018b). Zhao
et al. (2018a) improved spherical analysis for equirectangular
images by creating networks that can iterate between image
sectors and classify panoramas with significant performance
and speed, which is comparable to classic two-dimensional net-
works.

As it is possible for 3D point clouds to be projected into a 2D
spherical domain, naturally, approaches have been proposed
to exploit the spherical 2D CNNs for 3D semantic segmenta-
tion. Jiang et al. (2019), parse spherical grids approximated to
a given underlying polyhedral mesh, using what the author calls
”Parameterised Differential Operators”, which are linear com-
binations of differential operators that avoid geodetic computa-
tions and interpolations over the spherical projection. Similarly,
Zhang et al. (2019) propose an orientation-aware semantic seg-
mentation on icosahedral spheres.

Concurrent research has also been present in the autonomous
driving domain. Wu et al. (2018); Wang et al. (2018) transform
3D scanner data into 2D spherical image which is fed into a
2D CNN, before unprojecting labels back to the original point
cloud. These methods are typically a lot faster than purely 3D
approaches as projection and 2D convolutions are much faster
than 3D neighbourhood searches required by geometric-based
approaches. Similar to our work, Tabkha et al. (2019) perform
semantic segmentation using a Convolutional Neural Network
(CNN) on RGB images derived by projecting coloured 3D point
clouds. However, our work differs from these approaches as we
do not use an unordered point cloud as the representation for the
LiDAR data. Instead, we use the ordered panoramic represent-
ation that is generated by polar measuring devices such as TLS.
On the downside this restricts our approach to single scans cap-
tured with static TLS and excludes e.g., mobile scanners.

Also similar to our work, Eder et al. (2020) divide a spherical
panoramic image into tangential icosahedral planes and the pro-
ject individual perspective images. This allows each image to
be fed into a pre-trained 2D semantic segmentation CNN. Fur-
thermore, Eder et al. (2020) obtained comparable results using
standard CNNs to more specialised spherical CNNs.

3. METHODOLOGY

Given a point cloud P ∈ Rn×k captured using a polar-based
TLS scanner, we aim to assign a per-point object class label

i.e. Rn×k → Rn×1 where n is the number of points in P and
k ∈ Rx,y,z,r,g,b (although k can include other sensor features
such as intensity). Whilst in remote sensing and photogram-
metry this problem is typically referred to as (per-point) clas-
sification, we use the term semantic segmentation common in
image processing as these are the networks we use for creating
the label mapping function f : Rn×k → Rn×1.

Our methodology can be split into the following primary pro-
cesses. First, a point cloud P with corresponding RGB image
data I ∈ Rh×w×3 is captured using a survey-grade TLS. Such
scanners are two-axis polar measurement instruments and ac-
quire quasi regular samples on the two axes, effectively cre-
ating a regular grid in the polar space. This representation is
also commonly used in panoramic imaging and is referred to as
equirectangular. The scanner hardware or associated software
warps the image data captured alongside the point cloud into
this projection. The resulting panoramic colour images can be
extracted using open standard file formats.

Next, we convert the information of the panoramic image I
to tangential images IT to simulate a rectilinear lens. This
projection is not a valid transformation for the complete pan-
oramic image, and therefore we create a sequence of over-
lapping partial images. The position of the tangential images
is determined using spherical grid sequence intervals, creat-
ing an almost equal distribution over the spherical space such
that IT = {It1 . . . Itn}. We then obtain per-pixel labels Is ∈
Rh×w×1 by utilising a semantic segmentation CNN S such that
Isi = S(Iti ). All partial rectilinear label images Isi are then
projected back to the original panoramic projection, allowing
the final label map IC to be created using the confidence scores
obtained by the semantic segmentation process. In our exper-
iments S is a pre-trained UperNet model (Xiao et al., 2018)
which was trained on the rectilinear based ADE20K dataset
(Zhou et al., 2017). Finally, we map the class labels IC → P
using the co-registration matrix, assigning per-point labels. Fig-
ure 1 gives a graphical overview of the process. In the following
sections we will discuss each stage in detail.

Figure 1. This diagram shows the proposed semantic
segmentation process using panoramic images from TLS data.
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3.1 Data acquisition

Our scanner data (P and I) in this project was collected using a
Leica RTC360 TLS. This system (along with many other com-
mercially available systems) captures 3D measurements in a
structured sequence. As mentioned above it acquires the points
over a quasi-regular grid in the polar space. This polar grid
is directly represented as a two-dimensional matrix. This en-
ables the projection of 3D point cloud data from a polar to an
equirectangular projection. Effectively transforming the cap-
tured data into a panoramic image (Figure 2 Row 1). This
representation of TLS data is long established for image pro-
cessing and object extraction (Boehm and Becker, 2007; Eysn
et al., 2013).

We processed all data with the manufacturer software, export-
ing the point cloud to a grid-type separator file format that pre-
serves the orientation header of the scan position and each cor-
responding scanned point on the ordered grid. We utilise this
raster grid to extract the panoramic image directly. The final
resolution of our panoramic image is (20, 334 × 8, 333). This
is generated from a maximum of 169, 443, 222 points (as lim-
ited by the TLS), however, in practice much fewer points are
actually captured due to lack of returns from angular surfaces,
windows etc.

3.2 Rectilinear projection

With the TLS capture described above having a spherical
equidistant subdivision, the creation of an equirectangular pro-
jection is trivial, interpreting the data as a raster. As this projec-
tion is neither equal-area nor conformal, there are distortions in
the resulting panoramic image. To address the spherical distor-
tion, we need to define a rectilinear projection for tangential im-
ages and a subdivision method from where the tangential points
will be defined for each individual projection.

The mathematical foundations used in this reprojection process
are detailed as follows, extracted from Weisstein (2018). Given
a point pi ∈ P with a latitude and longitude (λ, φ), the trans-
formation equations for the creation of a tangent plane at that
point, with a projection with central longitude λ0 and central
latitude φ1 are given by:

x =
cosφ sin (λ− λ0)

cos c
(1)

y =
cosφ1 sinφ− sinφ1 cosφ cos (λ− λ0)

cos c
(2)

Where c is the angular distance of the point (x, y) from the
projection centre, given by:

cos c = sinφ1 sinφ+ cosφ1 cosφ cos (λ− λ0) (3)

Knowing the image size and the corresponding field of view
(FOV) angle for the respective c, we can generate individual
images IT from the full-dome panorama I. The latitude and
longitude (λ, φ) positions of the spherical intervals are defined
by the golden ratio angle separation, where the generative spir-
als of a Fibonacci lattice turn between consecutive points along
a symmetrical spiral sphere (Gonzalez, 2009).

Figure 2. Data at different stages of the pipeline. Row 1
Panorama image created from TLS point cloud with the

co-registered RGB information. Row 2 Example of tangential
image in rectilinear projection and segmentation result. Row 3
The semantic segmentation output re-projected from tangential

to equirectangular. The full map is given in Figure 6. Row 4
Point cloud rendering with labels from merged equirectangular

segmentation map.

To create the lattice, the function of this sequence for the sym-
metrical points n is described as n = 2N + 1 where N is any
natural number defining the desired interval subdivision and the
integer i range from −N to +N . The spherical coordinates of
ith point are:

lati = arcsin

(
2i

2N + 1

)
(4)

loni = 2πiΦ−1 (5)

where:
Φ = 1 + Φ−1 = (1 +

√
5)/2 ' 1.618 (6)
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and Φ is the golden ratio.

The result of this projection, which is also referred to as
gnomonic projection, is a quasi perspective image Iti (Figure
2 Row 2) which is equivalent to an image captured by a camera
with a rectilinear lens. Typical cameras available today try to
achieve such a projection. As a result the projected images are
of the same projection as those of most large scale benchmark
datasets used to train 2D ML models.

3.3 Semantic segmentation

At the centre of our pipeline is a deep learning based semantic
segmentation network S which maps a single tangential image
to a probability class map S : ITi → Isi (Figure 3). A key
benefit of our pipeline is that it is compatible with any choice
of S. In such a fast moving field this allows the user to drop
in the current best performing network implementation. In this
work we opt for the widely used UPerNet network (Xiao et al.,
2018) as an example.

We choose this network for several reasons. Firstly, the net-
work performs competitively on computer vision benchmarks.
Next, the authors offer an easy-to-use publicly available imple-
mentation. Lastly, the authors release pre-trained weights on
the ADE20K indoor scene parsing dataset, which contains all
of the objects present in our datasets.

We note, that whilst any 2D CNN semantic segmentation net-
work can be used in our pipeline, it is important that the user
also has access to the prediction confidence scores Csi ∈ CC (as
output from the final prediction probability distribution). These
values are used to handle redundant label when recomposing
Isi ∈ IC → IC . This is discussed in detail in Section 3.4.

Figure 3. Projected tangential image (left), visualisation of
UPerNet semantic segmentation classes (centre) and

corresponding confidence map where darker is more confident
(right).

3.4 Reprojection

After obtaining the semantically segmented images Isi ∈ IC
and the confidence matrix associated to each tangential position
(λ, φ), it is necessary to warp back the images to the equirect-
angular projection, in order to obtain a new set of panoramic
images for the posterior unification process. The inverse trans-
formation equations, having a pixel coordinate (x, y), are given
by:

φ = sin−1

(
cos c sinφ1 +

y sin c cosφ1

ρ

)
(7)

λ = λ0 + tan−1

(
x sin c

ρ cosφ1 cos c− y sinφ1 sin c

)
(8)

With the central longitude λ0, central latitude φ1, φ and λ being
the resulting latitude and longitude for each reprojected pixel
(x, y), respectively. ρ and c are defined as:

ρ =
√
x2 + y2 (9)

c = tan−1 ρ (10)

The resulting image has the corresponding order of latitude and
longitude of the spherical subdivision (Figure 2 Row 3).

3.5 Panoramic Label Map

Following the processing methodology, it is necessary to re-
create a full resolution panoramic label image IC from the
overlapping tangential semantic segmentation maps (i.e. Iti ∈
IC → IC). To achieve this, we adopt a winner-take-all ap-
proach from the corresponding pixel confidence scores Cs ∈
CC . The final output map for any redundant pixels is therefore:

IC(λ, φ) = max
i,j

[Csi (λ, φ), Csj (λ, φ)] (11)

3.6 Point cloud semantic segmentation

As a final step we map the equirectangular label map onto the
original point cloud (i.e. IC → P). This is easily achieved by
storing the original mapping P → I (Section 3.1). Using the
reverse of this mapping we simply assign each point pi ∈ P its
corresponding value from IC . A rendering of the point cloud
with label colours is shown in Figure 2 Row 4.

4. RESULTS

We test our methodology outlined in Section 3 for a range
of configurations. Furthermore, we evaluate our approach on
both an internal dataset and a sample from the common 2D3DS
benchmark dataset (Armeni et al., 2017).

4.1 Performance metrics

It is important to define the metrics used to evaluate our pro-
posed pipelines performance. Whilst the 2D3DS dataset con-
tains labels, our internal dataset did not. It is therefore neces-
sary to label the ground truth data. As we are not using the
dataset for training a CNN, all data is test data, and as such,
we do not require a large dataset. All data was therefore manu-
ally annotated using standard image processing software with a
graphical user interface.

To evaluate each scenario’s performance, we opt for the widely
used Intersection over Union metric (Everingham et al., 2010),
averaged over all classes (mIoU). In practise we compute the
IoU over theN×N confusion matrixC, whereN is number of
classes (21 in our case). Let cij be a single entry inC, where cij
is a number of sampled from the ground truth class i predicted
as class j, then the per-class IoU can be computed as:

IoUi =
cii

cii +
∑
j 6=i

cij +
∑
k 6=i

cki
(12)
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mIoU is then:

mIoU =
1

N

N∑
i=1

IoUi (13)

In addition to mIoU we also compute an average of the overall
accuracy, however, as accuracy can be non-robust when strong
class imbalance is present, we treat mIoU as our primary met-
ric. Nevertheless, we compute mAcc as:

mAcc =

N∑
i=1

cii

N∑
j=1

N∑
k=1

cjk

(14)

4.2 Hyperparameter search

It is evident that the configuration used to perform I → IT can
affect model performance. We therefore perform a hyperpara-
meter grid search to find the optimum configurations for gener-
ating the tangential images IT with respect to our performance
metrics. We select the following hyperparameters for optimisa-
tion; spherical tangent points location, fov, image size
and image ratio. Results of the search are visualised in Figure
4.

Figure 4. Results of the hyperparameter’s optimisation process
(Section 4.2).

4.3 Internal dataset

The result of the mIoU evaluation shows that the 70-degree
field of view, a 3:4 aspect ratio, an image size of 840 × 1120
and a spherical subdivision with 32 tangential points is the op-
timal pipeline configuration for this dataset, as shown in Figure
4. It is also remarkable that an increase in the resolution of
the tangential images does not improve the final performance.
Additionally, greater redundancy in the spherical positions also
results in a decreased performance.

The final semantic segmentation image IC with the optimum
hyperparameters is shown in Figure 6 (top). Analysing the
areas captured in the original panorama from the TLS visible
in Figure 5 (top), versus the final segmented image, we note
high precision is achieved at the object boundaries, especially
on the furniture and walls. In addition, the mIoU performance
achieved is superior to the analysis of the raw panoramic image

Figure 5. Original panoramic images: Internal TLS capture
(top) and 2D3DS panoramic RGB sample (bottom)

Table 1. Comparison of our proposed method using partial
projections and applying the same CNN directly to the raw

panorama with no projections.

Method MAcc MIoU

Raw panorama 0.912% 0.371%
OURS (TLS Dataset) 0.927% 0.636%

OURS (2D3DS Dataset) 0.896% 0.472%

I, extracted directly from the point cloud P . The final results
with the optimum optimisation are shown in Table 1.

The normalised confusion matrix (Figure 7) demonstrates that
our pipeline is able to identify the majority of the required
classes presented in the panoramic scene. However, we note
classes H (door) and I (desk) are poorly detected.

Figure 6. Final semantic segmentation results for our internal
dataset (top) and 2D3DS dataset (bottom).
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Figure 7. Normalised confusion matrix for our internal dataset
(top) and 2D3DS dataset (bottom).

4.4 2D3DS dataset

We processed the selected 2D3DS panorama shown in Figure
5 (bottom), using the same methodology. We obtain the result-
ing shown in Figure 6 (bottom). The output segmentation map
IC is compared to the provided ground truth data. The selected
image has a resolution of 4096 × 2048. The resulting image
is generated by considering the best value obtained in the grid
search presented before, but adjusting the image size and FOV
resolution, with 80-degrees FOV, an aspect ratio of 3:4, an im-
age resolution of 600× 1200 and the spherical interval division
as 32 tangential points.

Qualitatively analysing Figure 6 (bottom vs. top row), it is evid-
ent that the proposed method does not achieve similar perform-
ance in the lower resolution 2D3DS dataset, in comparison with
the internal high-resolution TLS dataset. This is particularly
evident for the ceiling. However quantitatively, it is clear from
the confusion matrix (Figure 7 bottom) that nevertheless most
areas of the dataset were correctly classified.

5. CONCLUSION

We presented a pipeline for semantic segmentation of TLS
point clouds for indoor scenes. We show that by exploiting
co-registered RGB image data, we can perform semantic seg-
mentation using standard 2D CNNs. These labels can then be
mapped back onto the original 3D point cloud data. We demon-
strate satisfactory results using a pre-trained off-the-shelf 2D

CNN, eliminating the need for manually labelled training data
or specialised 3D point cloud networks. This allows us to ex-
ploit large 2D labelled datasets for 3D point cloud semantic
segmentation. Furthermore, our results show that despite our
original data being in an equirectangular projection, we still
achieve reasonable class labels from a network trained on more
commonly available rectilinear images. Whilst we expect res-
ults to improve if a network is trained directly on equirectan-
gular images, we show that this is not strictly necessary. This
significantly reduces workload and accelerates the adoption of
new DL frameworks for TLS data.
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