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Abstract 27 

Compulsive individuals have deficits in model-based planning, but the mechanisms 28 

that drive this have not been established. We examined two candidates—that 29 

compulsivity is linked to (i) an impaired model of the task environment and/or (ii) an 30 

inability to engage cognitive control when making choices. To test this, 192 31 

participants performed a two-step reinforcement learning task with concurrent EEG 32 

recordings and we related the neural and behavioral data to their scores on a self-33 

reported transdiagnostic dimension of compulsivity. To examine subjects’ internal 34 

model of the task, we used established behavioral and neural responses to 35 

unexpected events (reaction time (RT) slowing, P300 and parietal-occipital alpha-36 

band power) measured when an unexpected transition occurred. To assess 37 

cognitive control, we probed theta power at the time of initial choice. As expected, 38 

model-based planning was linked to greater behavioral (RT) and neural (alpha power, 39 

but not P300) sensitivity to rare transitions. Critically, the sensitivity of both RT and 40 

alpha to task structure was weaker in those high in compulsivity. This RT-41 

compulsivity effect was tested and replicated in an independent pre-existing dataset 42 

(N = 1413). We also found that mid-frontal theta power at the time of choice was 43 

reduced in high compulsive individuals though its relation to model-based planning 44 

was less pronounced. These data suggest that model-based planning deficits in 45 

compulsive individuals may arise, at least in part, from having an impaired 46 

representation of the environment, specifically how actions lead to future states.  47 
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Significance Statement 48 

Compulsivity is linked to poorer performance on tasks that require model-based 49 

planning, but it is unclear what precise mechanisms underlie this deficit. Do 50 

compulsive individuals fail to engage cognitive control at the time of choice? Or do 51 

they have difficulty in building and maintaining an accurate representation of their 52 

environment, the foundation needed to behave in a goal-directed manner? With 53 

reaction time and EEG measures in 192 individuals who performed a two-step 54 

decision making task, we found that compulsive individuals are less sensitive to 55 

surprising action-state transitions, where they slow down less and show less alpha 56 

band suppression following a rare transition. These findings implicate failures in 57 

maintaining an accurate model of the world in model-based planning deficits in 58 

compulsivity. 59 

  60 
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Introduction 61 

Compulsive behavior manifests as out-of-control and repetitive actions, often leading 62 

to functionally impairing outcomes (Robbins et al., 2012). This symptomology is 63 

characteristic of psychiatric disorders like obsessive-compulsive disorder (OCD) and 64 

addiction, and is thought to arise from an imbalance between two modes of action 65 

control (Gillan and Robbins, 2014): (i) goal-directed ‘model-based’ planning relying 66 

on knowledge of how actions lead to specific outcomes and (ii) rigid habits 67 

depending on reflexive stimulus-response associations which form slowly over time 68 

(Dickinson, 1985; Balleine and O’Doherty, 2010). The compulsivity literature has 69 

largely focused on testing if a dysfunctional imbalance in the competitive interactions 70 

between these decision systems cause habitual behaviors to dominate (Lee et al., 71 

2014; Gruner et al., 2016), but rather than being solely an arbitration failure, recent 72 

evidence suggest that compulsivity may be primarily associated with goal-directed 73 

control impairments. For example, OCD patients have performance deficits in the 74 

two-step reinforcement task (Voon et al., 2015) where ‘model-based’ planning, a 75 

reinforcement-learning model of goal-directed action, is operationalized as the extent 76 

to which individuals make decisions using knowledge of how their actions relate to 77 

subsequent events (Daw et al., 2005, 2011). Recent work has shown that this 78 

dysfunction has a developmental course (Vaghi et al., 2020) and is best captured by 79 

a compulsivity dimension in both general population samples (Gillan et al., 2016). 80 

 81 

However, it remains unclear what underlies model-based planning problems in 82 

compulsivity—a multifaceted cognitive capacity, model-based planning depends 83 

upon several functions including: (i) the construction/maintenance of an internal 84 

model (i.e., a representation of the environment, like the knowledge of relevant 85 
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action-outcome and state-state relationships), which is a pre-requisite for (ii) 86 

implementation of this model in behavior through prospective planning. Model-based 87 

failures could theoretically stem from mechanistic issues underlying either 88 

component (and others not the focus of the present study). Though direct tests to 89 

resolve this have been lacking, patients show goal-directed deficits even when they 90 

have requisite explicit knowledge of simple action-outcome contingencies (Gillan et 91 

al., 2014), suggesting that OCD patients may have issues solely with implementation. 92 

But, paradigms that feature more numerous and/or taxing contingency structures 93 

revealed problems in learning action-outcome associations in OCD and addiction 94 

(Gillan et al., 2011; Ersche et al., 2016), which correlated with goal-directed control 95 

failures in OCD (Gillan et al., 2011). Overall, the evidence remain equivocal because 96 

these devaluation-style tasks conflate goal-directed control deficits with increases in 97 

stimulus-response habit learning (Watson and de Wit, 2018) and were not designed 98 

to assess participants’ ability to represent the task environment.  99 

 100 

Recent data has suggested that goal-directed failures in compulsivity might arise 101 

from the latter. For example, compulsivity is linked to poorer learning of the 102 

consequences of their actions (Sharp et al., 2020) and at the meta-level, high 103 

compulsive individuals have abnormalities in how they view their own actions, 104 

exhibiting an over-confidence, which is relatively impervious to corrective evidence 105 

(Rouault et al., 2018; Seow and Gillan, 2020). Though studied in a different context, 106 

these findings suggest the possibility that individuals high in compulsivity have 107 

fundamental issues in acquiring and maintaining an accurate internal model of the 108 

world. To date, no study has examined neural representations of task structure in 109 

compulsive individuals as they perform a model-based planning task. The present 110 
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study aimed to fill this gap—testing if compulsivity is characterized by a disruption in 111 

constructing/maintaining an accurate representation of the task environment, or the 112 

use/implementation of this model in their choices. To do this, we analyzed reaction 113 

time (RT) and electroencephalography (EEG) data to define signatures of state 114 

transition knowledge (RT, P300 and posterior alpha) and of a well-established 115 

cognitive control marker (mid-frontal theta) as 192 subjects performed a two-step 116 

reinforcement learning task (Daw et al., 2005, 2011). With single-trial regression 117 

analyses, we sought to characterize several candidate neural correlates of the 118 

representation and implementation of the mental model and test if they associated 119 

with individual differences in model-based planning and compulsivity. 120 

  121 
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Materials and Methods  122 

 123 

Power estimation. We determined a minimum sample size from a prior study that 124 

investigated the association of goal-directed control (on a different task) with OCI-R 125 

scores from non-clinical participants who were also tested in-person (r = -0.26, p < 126 

0.05) (Snorrason et al., 2016). The effect size indicated that N = 150 participants 127 

were required to achieve 90% power at 0.05 significance. Our final sample was 128 

larger than this to achieve the required power for another study that the same 129 

subjects participated in (Seow et al., 2020). 130 

 131 

Participant exclusion criteria. During recruitment, all participants were ensured to 132 

be ≥18 to 65 years, had no personal/familial history of epilepsy and no personal 133 

history of neurological illness/head trauma nor unexplained fainting. Participants’ 134 

data were excluded from analysis if they failed any of the following on a rolling basis: 135 

Participants whose/who (i) EEG data were incomplete (N = 5) (i.e., recording was 136 

prematurely terminated before the completion of the task) or corrupted (N = 2), (ii) 137 

EEG data which contained excessive noise (i.e., >70% EEG epochs from the 138 

individual failing epoch exclusion criteria, see EEG recording & pre-processing) (N 139 

= 4), (iii) responded with the same key in stage one >90% (n > 135 trials) of the time 140 

(N = 10), (iv) probability of staying after common-rewarded trials was significantly 141 

worse than chance, measured as <5% probability of fitting a binomial distribution 142 

with 50% (chance) probability and the total number of common-rewarded trials 143 

experienced by each subject (N = 11), (v) missed more than 20% of trials (n > 30 144 

trials) (N = 3), and (vi) incorrectly responded to a “catch” question within the 145 

questionnaires: “If you are paying attention to these questions, please select ‘A little’ 146 
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as your answer” (N = 7). Combining all exclusion criteria, 42 participants (17.95%) 147 

were excluded with N = 192 participants left for analysis (115 females (59.90%), 148 

between 18-65 ages (mean = 31.55, SD = 11.75 years). Excluded participants did 149 

not significantly differ in any of the three psychiatric dimension scores (see Self-150 

report psychiatric questionnaires, transdiagnostic dimensions & IQ; all ps > 151 

0.06) from participants whose data were analyzed. 152 

 153 

Procedure. Before presenting to the lab for in-person EEG testing, participants 154 

completed a brief at-home assessment via the Internet. They provided informed 155 

electronic consent, and submitted basic demographic data (age and gender), listed 156 

any medication they were taking for a mental health issue and completed a set of 9 157 

self-report psychiatric questionnaires (see Self-report psychiatric questionnaires, 158 

transdiagnostic dimensions & IQ). During the in-person EEG session, participants 159 

completed two tasks: the modified Eriksen flanker task (Eriksen and Eriksen, 1974) 160 

and the two-step reinforcement learning task (Daw et al., 2005, 2011). Data from the 161 

former task are published elsewhere (Seow et al., 2020), but note that we also 162 

reported the basic association with compulsivity and model-based planning in that 163 

paper, which served to contextualize a null result. Once participants had completed 164 

both tasks, they completed a short IQ evaluation before debriefing. A subset of the 165 

participants (N = 110, 47%) completed a short psychiatric interview (Mini 166 

International Neuropsychiatric interview English Version 7.0.0; M.I.N.I.) (Sheehan et 167 

al., 1998) before the experimental tasks to establish their diagnostic status. 168 

 169 



 

8 
 

Disorder prevalence (M.I.N.I.). After exclusion, 80 participants (41.67%) completed 170 

the M.I.N.I., which was introduced part-way through the study to add additional 171 

clinical context above our self-report measures. Of these participants, 35 (43.75%) 172 

met the criteria for one or more disorder. Broken down by recruitment arm, all 7 173 

subjects (100%) recruited from the clinical setting met criteria, while 28 (38.36%) 174 

from university channels met criteria. This rate is close to published reports on the 175 

prevalence of mental health disorders in college student samples (Auerbach et al., 176 

2018; Evans et al., 2018). Of the total sample, 33 (17.19%) were currently medicated 177 

for a mental health issue. Broken down by recruitment arm, all individuals recruited 178 

from the clinic were medicated, while 26 (14.05%) of those recruited through normal 179 

channels were medicated.  180 

 181 

Two-step reinforcement learning task. The sequence of events was presented in 182 

the same manner as a prior study that conducted the two-step task in the EEG 183 

(Eppinger et al., 2017) with the exception that we used the standard 70/30% 184 

transition probabilities (whereas Eppinger et al. (2017) instead contrasted blocks of 185 

60/40% vs 80/20%) and had a slightly shorted time to make a choice (1500ms here 186 

versus 2000ms in their paper) (Figure 1). On each trial, participants were first 187 

presented with a fixation cross for 500ms, and then shown a choice between two 188 

spaceships. They had 1500ms to respond; after which, an outline over the chosen 189 

option would indicate their choice (feedback) for 500ms. A fixation cross was shown 190 

for 500ms before transition, where the transitioned planet was shown (a blank color 191 

block) for 1000ms. Two aliens of that particular planet would then appear, with 192 

1500ms for choice, with feedback of the chosen option subsequently shown for 193 

500ms. Each of the aliens led to a probabilistic reward with a picture of ‘space 194 



 

9 
 

treasure’, or no reward with ‘space dust’, that was presented for 1000ms. Responses 195 

were indicated using the left (‘Q’) and right (‘P’) keys. Color of blocks behind rockets 196 

and those representing planets were randomized across all participants. Participants 197 

performed two blocks of 75 trials, i.e., 150 trials in total.  198 

 199 

The task captures both model-based and model-free behavior. A participant who 200 

performs the task purely in a model-free way will make their first-stage choices solely 201 

on whether they were rewarded on the last trial (choosing the same option if 202 

rewarded previously), regardless of the transition type that occurred. In contrast, a 203 

model-based strategy will take into account both the history of reward and the 204 

transition structure of the task when making the first-stage choice. For instance, if a 205 

first-stage choice led to a rewarded second-stage option via a rare transition, a 206 

model-based learner would be more likely to choose the alternative first-stage choice 207 

on the next trial as a common transition would then lead to the previously rewarded 208 

second-stage option. However, a model-free learner would not make this adjustment 209 

in choice based on transition type, and instead repeat the same first-stage choice 210 

again.  211 

 212 

Prior to the experimental task, participants completed a tutorial that explained the 213 

key concepts of the paradigm; the probabilistic association between the aliens and 214 

rewards (10 trials) and the probabilistic transition structure of rockets to planets (10 215 

trials). After this practice phase, they had to answer a 3-item basic comprehension 216 

test regarding the key rules of the task. If participants failed to answer all questions 217 
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correctly, the experimenter would reiterate the key concepts of the paradigm to the 218 

participant, allowing clarification. 219 

 220 

Self-report psychiatric questionnaires, transdiagnostic dimensions & IQ. In 221 

order to quantify compulsivity in our sample, we applied a previously defined 222 

transdiagnostic definition (Gillan et al., 2016) that is based on a weighted 223 

combination of items drawn from 9 self-report questionnaires (which were fully 224 

randomized). The questionnaires utilized were the Alcohol Use Disorder 225 

Identification Test (AUDIT) to asses alcohol addiction (Saunders et al., 1993), the 226 

Apathy Evaluation Scale (AES) for apathy (Marin et al., 1991), the Self-Rating 227 

Depression Scale (SDS) for depression (Zung, 1965), the Eating Attitudes Test 228 

(EAT-26) for eating disorders (Garner et al., 1982), the Barratt Impulsivity Scale 229 

(BIS-11) for impulsivity (Patton et al., 1995), the Obsessive-Compulsive Inventory - 230 

Revised (OCI-R) for OCD (Foa et al., 2002), the Short Scales for Measuring 231 

Schizotypy (SSMS) for schizotypy (Mason et al., 2005), the Liebowitz Social Anxiety 232 

Scale (LSAS) for social anxiety (Liebowitz, 1987), the trait portion of the State-Trait 233 

Anxiety Inventory (STAI) for trait anxiety (Spielberger et al., 1983). The short IQ 234 

evaluation was the International Cognitive Ability Resource (I-CAR) (Condon and 235 

Revelle, 2014). Questionnaires were fully randomized in their presentation. 236 

Correlations between questionnaire total scores ranged greatly (r = -0.08 to 0.79).  237 

 238 

We used weights derived from a previous study (Gillan et al., 2016) to transform our 239 

scores as our sample size had too low a subject-to-variable ratio (N = 192) for de 240 

novo factor analysis, as compared to the original study (N = 1413). Prior studies 241 
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have demonstrated the stability of the factor structure in new data (Rouault et al., 242 

2018; Seow and Gillan, 2020). Consistent with prior work, the resulting dimension 243 

scores were moderately intercorrelated (r = 0.33 to 0.42). 244 

 245 

Behavioral data pre-processing. Individual missed trials and trials with very fast 246 

(<150ms) reaction times at the first-stage (indicating inattention or poor responding) 247 

were excluded from analyses. A total of 1082 trials (3.76%) were removed across 248 

participants (per participant mean = 5.64 (3.76%) trials). 249 

 250 

Quantifying model-based planning. The extent to which participants exhibited 251 

model-based (goal-directed) behavior was estimated from the stay/switch behavior 252 

of the first-stage choice (see Two-step reinforcement learning task) using mixed-253 

effects models written in R, version 3.6.0 via RStudio version 1.2.1335 254 

(http://cran.us.r-project.org; RRID:SCR_001905) with the glmer() function from the 255 

lme4 package (RRID:SCR_015654), with Bound Optimization by Quadratic 256 

Approximation (bobyqa) with 1e5 functional evaluations. The basic model tested if 257 

participants’ choice behaviour to Stay (repeat a choice they made on the last trial) 258 

(stay: 1, switch: 0) was influenced by the previous trial’s Reward (rewarded: 1, 259 

unrewarded: -1), Transition (common (70%): 1, rare (30%): -1) and their interaction 260 

(Figure 1). Within-subject factors (the intercept, main effects of reward, transition, 261 

and their interaction) were taken as random effects (i.e., allowed to vary across 262 

participants). In R syntax, the model was: Stay ~ Reward * Transition + (Reward * 263 

Transition + 1 | Subject).  264 

 265 
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As a model-based strategy depends on the history of reward and the transition 266 

structure, the extent to which model-based planning contributed to choice was 267 

indicated by the presence of a significant interaction effect between Reward and 268 

Transition (MB). Split half-reliability, where the data were split into two subsets (even 269 

versus odd trials) and correlated and adjusted with Spearman-Brown prediction 270 

formula, was estimated for model-based planning. To test if the compulsive 271 

dimension was associated with model-based deficits, we included the total scores of 272 

all three dimensions (AD: anxious-depression, CIT: compulsive behavior and 273 

intrusive thought, SW: social withdrawal) as z-scored fixed effect predictors into the 274 

basic model described above. The extent to which compulsivity is related to deficits 275 

in model-based planning was indicated by the presence of a significant negative 276 

Reward*Transition*CIT interaction.  277 

 278 

Sensitivity to task structure: Reaction time (RT). Recent work has shown that 279 

one effective way to index an individual’s sensitivity to the structure of the task is via 280 

reaction times (RT) (Shahar et al., 2019). In a similar fashion, we conducted a mixed 281 

effect linear regression of transition type (Transition; common: -1, rare: 1) on second-282 

stage reaction time (S2-RT). In the syntax of R with the lmer() function and lmerTest 283 

package for statistical tests (RRID: SCR_015656) (as with for all subsequent mixed 284 

effect models), the model was: S2-RT ~ Transition + (Transition + 1 | Subject). We 285 

asked if compulsivity was associated with a reduction in RT sensitivity to the 286 

transition structure (RT-Trans) with an interaction of the total scores of the three 287 

dimensions (AD, CIT, SW) as z-scored fixed effect predictors into the original model 288 

above; indicated by the presence of a significant negative Transition*CIT interaction. 289 
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We report the standardized beta coefficients and standard errors (applicable for all 290 

subsequent regression analyses). 291 

 292 

EEG recording & pre-processing. EEG was recorded continuously using an 293 

ActiveTwo system (BioSemi, The Netherlands) from 128 scalp electrodes and 294 

digitized at 512 Hz. The data were processed offline using EEGLab (Delorme and 295 

Makeig, 2004) (RRID:SCR_007292) version 14.1.2 in MATLAB R2018a (The 296 

MathWorks, Natick, MA) (RRID:SCR_001622). Data were imported using A1 as a 297 

reference electrode, then down-sampled to 250 Hz and band-pass filtered between 298 

0.05 and 45 Hz. Bad channels were rejected with a criterion of 80% minimum 299 

channel correlation. All removed channels were interpolated, and the data were re-300 

referenced to the average. To remove ocular and other non-EEG artefacts, ICA was 301 

run on continuous data with runica, PCA option on, and its components were 302 

rejected automatically with Multiple Artifact Rejection Algorithm (MARA) (Winkler et 303 

al., 2011), an EEGLab toolbox plug-in, at a conservative criterion of >90% artefact 304 

probability. For all EEG analyses, other non-specific artefacts were removed after 305 

epoching using a criterion of any relevant electrode examined showing a voltage 306 

value exceeding ±100µV. If participants had a rate of >70% of total epochs failing 307 

this criterion, their data were excluded from all analyses (N = 4 as reported in 308 

Participant exclusion criteria). The remaining participants had mean = 147.46 (SD 309 

= 2.98) epochs left. 310 

 311 

Single-trial analyses with EEG signals. All analyses described below (including 312 

time-frequency single-trial analyses) were conducted with mixed effects models. For 313 
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every single-trial analysis, we excluded single-trial EEG estimates which were ±5 SD 314 

away from the mean of the group. A maximum of <0.79% (n = 215) of the total trials 315 

across all participants were excluded for any measure. The regression model-based 316 

estimate (MB; defined in Quantifying model-based planning) was used as the 317 

individual between-subjects model-based estimate in all EEG analyses. 318 

 319 

Sensitivity to task structure: P300 and transition type. The P300 has well-320 

established sensitivity to stimulus probability (Polich and Margala, 1997) and prior 321 

research in healthy humans hypothesized the P300 as a sensitivity marker of state 322 

transition knowledge on the two-step task, although the direction of the reported 323 

effects have varied (Eppinger et al., 2017; Sambrook et al., 2018; Shahnazian et al., 324 

2019). Likewise, here we sought to investigate if the P300 would be sensitive to 325 

individual subjects’ sensitivity to transition structure and if the effect were linked to 326 

model-based planning/compulsivity. 327 

 328 

We first measured the P300 component at four parietal electrodes over the 329 

topography of the stimulus-locked peak (D16 (CP1), A3 (CPz), B2 (CP2), A4); 330 

Figure 3A). Data were epoched from -500ms to 1700ms relative to the onset of the 331 

second-stage stimulus (aliens presented) and baselined corrected from -200ms to 332 

0ms. Stimulus-locked single-trial P300 amplitudes were estimated as the mean of 333 

±100ms around the individual’s averaged latency of their positive peak within a 334 

search window 250ms to 1000ms after stimulus onset. To eliminate amplitude biases 335 

owing to latency variances due to RT, we subsequently aligned the epochs 336 

(measured at A4, A5, A19 (Pz), A32, the response-locked peak; Figure 3B) to the 337 

time of choice response execution. The response-locked P300 amplitude was 338 
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quantified as the mean amplitude -100ms to 0ms before response. We also 339 

measured the build-up rate of the response-locked signal as the slope of a straight 340 

line fitted to each single-trial waveform using the interval -400ms to -200ms. To 341 

investigate if the P300 was sensitive to rare versus common transitions and whether 342 

this depended on model-based control/compulsivity, we regressed both stimulus- 343 

and response-locked P300 measures against transition type Transition: rare: 1, 344 

common: 0) interacting with z-scored model-based estimates (MB) or compulsivity 345 

(CIT, controlled for the other psychiatric dimensions AD and SW), taking Transition 346 

and the intercept as random effects. In R syntax, the models were EEG ~ 347 

Transition*MB + (Transition + 1 | Subj) and EEG ~ Transition*(CIT + AD + SW) + 348 

(Transition + 1| Subj) respectively. 349 

 350 

Time-frequency analysis. EEG data were epoched for both first and second-stages 351 

of the task for time-frequency analyses (alpha (9-13Hz) and theta (4-8Hz) power) 352 

detailed in the subsequent sections: -1700ms to 2200ms stimulus-locked at the first-353 

stage (rockets) as well as -2000ms to 3500ms stimulus-locked at second-stage 354 

(aliens). Time-frequency calculations were computed using custom-written MATLAB 355 

(The MathWorks, Natick, MA) routines. The EEG time series in each epoch was 356 

convolved with a set of complex Morlet wavelets, defined as a Gaussian-windowed 357 

complex sine wave: e(-i2*time*f) e(-time^2/2σ^2 ) where i is the complex operator, time is 358 

time, f is frequency, which increased from 2 to 40 Hz in 40 logarithmically spaced 359 

steps. σ defines the cycle (or width) of each frequency band and was set to 360 

cycle/2πf, where cycle increased from 4 to 12 in 40 logarithmically spaced steps in 361 

accordance with each increase in frequency step. The variable number of cycles 362 

leverages the temporal precision at lower frequencies and increases frequency 363 
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precision at higher frequencies. From the resulting complex signals of every epoch, 364 

we extracted estimates of power. Power is defined as the modulus of the resulting 365 

complex signal: Ζ(time) (power time series: ρ(time) = real[z(time)]2 + imag[z(time)]2). 366 

 367 

Stimulus-locked first-stage epoch was baselined corrected to the average frequency 368 

power for each frequency band examined (i.e., alpha or theta) from -400ms to -369 

100ms (corresponding to first-stage fixation) while for stimulus-locked second-stage 370 

epoch used -1400ms to -1100ms (corresponding to second-stage fixation, before 371 

presentation of the coloured squares (i.e., planets)) as the baseline. The latter 372 

baseline window was chosen as the colour of the planets were predictive of the 373 

aliens; as such, choice-relevant neural activity may potentially merge in the interval 374 

between the onset of the planets and aliens. For single-trial estimates of frequency 375 

power, as baselining with division induces spurious power fluctuations due to trial-to-376 

trial fluctuations, power at each individual trial was baselined corrected with the 377 

linear subtraction method  (Cohen, 2014) with its corresponding baseline activity: 378 

(power(time) – power(baseline)), at each frequency, at each channel. For 379 

visualisation purposes in the figures presented, power was normalized by conversion 380 

to a decibel (dB) scale: (10*log10[power(time)/power(baseline)]). 381 

 382 

Sensitivity to task structure: Alpha power and transition type. We were also 383 

interested in the idea that more sustained post-planning processes may be important 384 

for explaining model-based deficits in compulsive individuals. As such, we focused 385 

on posterior alpha-band (9-13Hz), which in addition to reflecting surprising outcomes 386 

(Fouragnan et al., 2017), is considered a general marker of mental activity and 387 

attention (Laufs et al., 2003; Klimesch, 2012) and is suppressed in conditions where 388 
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increased mental effort is needed (Stipacek et al., 2003; Pesonen et al., 2007). Much 389 

like the P300, we hypothesized that in model-based planners, alpha power would be 390 

greater following rare transitions. Potentially reflecting more than just an acute 391 

surprise, we predicted that alpha would show a more sustained pattern of increased 392 

suppression on rare versus common trials; speculatively, the sort that might be 393 

required to correctly update the (alternative) top stage choices following reward 394 

receipt on those rare trials. As a putatively core constituent of model-based planning, 395 

we hypothesized that the degree of this alpha sensitivity to transition type would be 396 

associated with individual differences in model-based choice. Moreover, if individuals 397 

high in compulsivity have an impoverished model of the task, we predicted they 398 

would show reduced alpha sensitivity to the transition types.  399 

 400 

Alpha power was measured at five parietal-occipital electrodes (A18, A19 (Pz), A20, 401 

A21, A31; surrounding A20 electrode; Figure 8A) in an epoch centred on the onset 402 

of the second-stage stimuli (aliens) and baseline corrected with activity before the 403 

onset of the transition (planets) (see Time-frequency analysis). Single-trial 404 

stimulus-locked alpha power estimates were measured as the mean power ±250ms 405 

around the average latency of the negative peak, specific for each individual, found 406 

within a search window 0ms to 1000ms after stimulus (alien) onset. We additionally 407 

obtained alpha power estimates quantified across four 1000ms rolling time bins by 408 

the mean amplitude within each time window. We labelled the time bins as they 409 

began from transition (planet presentation) to the stimuli (aliens presentation) from 410 

0ms to 1000ms, followed by three windows spanning choice to reward from 1000ms 411 

to 2000ms, 2000ms to 3000ms, and 3000ms to 4000ms. The same approach of 412 

mixed effect models with P300 and transition type was used to examine the 413 
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influence of model-based estimates/compulsivity on alpha power representation of 414 

rare versus common transitions, except for where Transition was coded differently 415 

(rare: -1, common: 1) for ease of interpreting the direction of interaction effects.  416 

 417 

Cognitive control: theta power during choice. Mid-frontal theta (4-8Hz) power is a 418 

well-established EEG signature of exerting ‘cognitive control’ over lower level 419 

impulses (Sauseng et al., 2010; Cavanagh and Frank, 2014), including Pavlovian 420 

biases (Cavanagh et al., 2013). We therefore considered theta power as a candidate 421 

signature associated with implementing model-based decisions and overriding more 422 

habitual model-free choices. If deficits in model-based planning in high compulsive 423 

individuals arise due to a failure of implementation, theta power during choice would 424 

be negatively linked to compulsivity. 425 

 426 

For theta power (4-8Hz), power estimates were measured at four frontal midline 427 

electrodes (C21 (Fz), C22, C23 (FCz), A1 (Cz); see Figure 8B) at the first-stage 428 

(see Time-frequency analysis). The mean power ±250ms around the individual’s 429 

average latency of the positive peak found within a search window 0ms to 500ms 430 

after stimulus onset was taken for every epoch. Similar to preceding analyses, we 431 

tested if single-trial theta power at the time of first-stage choice was associated with 432 

individual differences in model-based choice (MB), RT sensitivity to the transition 433 

structure (RT-Trans) or to compulsivity (CIT, controlled for AD and SW). We did this 434 

by taking each of them as z-scored predictor variables in their own linear regression 435 

model of trial by trial theta power using the following notation in R, which allows for a 436 

random intercept for each subject: S1-Theta ~ predictor variable + (1 | Subject). We 437 

also carried out a post-hoc analysis to test if theta modulates participants’ trial-by-438 
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trial RT (S2-RT) sensitivity to transition (Transition; common: 1, rare: -1) by testing a 439 

model of S2-RT ~ Transition * S1-Theta + (Transition * S1-Theta + 1 | Subject). 440 

 441 

Specificity with psychiatric questionnaire scores versus transdiagnostic 442 

dimensions. Additionally, we examined the advantages of utilizing a transdiagnostic 443 

definition of compulsivity as opposed to investigating single psychiatric 444 

questionnaires. We repeated the above time-frequency analyses (alpha and theta) 445 

with the individual total questionnaire scores (QuestionnaireScore, z-scored) 446 

replacing the three psychiatric dimensions (CIT, AD, SW) in their respective 447 

regression models detailed above. Separate mixed effects regression models were 448 

performed for each individual questionnaire as correlation across questionnaire 449 

scores ranged greatly from r = -0.09 to 0.79 as opposed to the transdiagnostic 450 

analysis where all three dimensions (that correlated moderately: r = 0.33 to 0.42) 451 

were included in the same model. 452 

 453 

Supplemental analyses. Finally, to ensure the specificity of any observed effects to 454 

the task events outlined above, we also tested for an association between model-455 

based planning and compulsivity with our candidate EEG signatures in reverse. That 456 

is, we tested if between model-based planning and compulsivity were linked to (i) 457 

alpha power at the first-stage or (ii) theta power sensitivity to transition type at the 458 

second-stage. See Figure 8A and Figure 8B for the respective analyses. 459 

 460 

For all analyses, we report the standardized beta coefficients and standard errors. 461 

 462 
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Code and data availability. The code and data to reproduce the main figures are 463 

available at https://osf.io/mx9kf/. 464 

  465 
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Results 466 

Compulsivity and model-based planning. Logistic regression analysis of choice 467 

behavior on the two-step task revealed clear evidence for model-based planning in 468 

this sample via a significant interaction between Reward and Transition (β = 0.20, 469 

standard error (SE) = 0.03, p < 0.001; Figure 1). Individual subject coefficients for 470 

this interaction term were extracted and used as an individual difference measure for 471 

EEG analysis (split half-reliability was r = 0.71). Consistent with prior work, there was 472 

also evidence for model-free learning, where subjects were more likely to repeat 473 

choices if they were followed by reward (main effect of Reward: β = 0.55, SE = 0.05, 474 

p < 0.001), and an overall tendency to repeat choices from one trial to the next 475 

(Intercept: β = 1.46, SE = 0.07, p < 0.001). Importantly, we replicated prior work in 476 

finding that individual differences in compulsivity and intrusive thought (hereafter: 477 

‘compulsivity’) were associated with reduced model-based planning (β = -0.07, SE = 478 

0.04, p = 0.05) (Figure 2A), while anxious-depression (β = 0.05, SE = 0.04, p = 479 

0.14) and social withdrawal were not (β = -0.01, SE = 0.04, p = 0.73). 480 

 481 

Reaction time (RT) sensitivity to task structure. Someone who is aware of the 482 

task structure should expect to be presented with the second-stage state that is most 483 

commonly associated with their first-stage choice. As such, when a rare transition 484 

occurs, they will react to this violation in expectancy, requiring more time to respond 485 

and ‘re-plan’ (Decker et al., 2016). We therefore hypothesized that participants would 486 

have a slower RT after a rare versus common transition and that this difference 487 

would be greater in participants who exhibit the most model-based behavior. We 488 

found support for both hypotheses; participants had a slower mean RT for rare 489 

versus common trials after transition (β = 0.17, SE = 0.01, p < 0.001) (Figure 2B) 490 
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and this effect was larger in those with higher levels of model-based control (β = 0.28, 491 

SE = 0.07, p < 0.001). Crucially, we found that this effect was reduced in high 492 

compulsive individuals (β = -0.03, SE = 0.01, p = 0.01) (Figure 2C). Prior studies 493 

using this task did not test for an association between compulsivity and this RT cost, 494 

but the data is readily available. To test the robustness of this finding, we therefore 495 

re-analyzed a prior dataset (N = 1413) collected entirely online (Gillan et al., 2016) 496 

using a similar variant of the two-step task and the same measure of compulsivity. 497 

We replicated this effect (β = -0.02, SE = 0.004, p < 0.001) (Figure 2C). This is, to 498 

our knowledge, the first evidence that compulsivity is associated with muted 499 

behavioral reactions to violations in transition expectancy, suggestive of disruption in 500 

the quality of the mental model of the task itself.  501 

 502 

 503 

P300 sensitivity to task structure. The P300 or P3b has well-established 504 

sensitivity to stimulus probability, exhibiting larger peak amplitudes for less probable 505 

stimuli (Polich and Margala, 1997). Prior research in healthy humans thus 506 

hypothesized that the P300 may be a marker of sensitivity to state transitions on the 507 

two-step task, though these studies have yielded inconsistent results, with some 508 

finding greater P300 amplitudes for rare versus common transitions (Sambrook et al., 509 

2018; Shahnazian et al., 2019) and one finding the opposite (Eppinger et al., 2017). 510 

Here, we examined the second-stage stimulus-locked P300 and found a significant 511 

main effect of transition type (β = 0.03, SE = 0.01, p = 0.02), consistent with 512 

Sambrook et al. (2018) and Shahnazian et al. (2019) whereby greater P300 513 

amplitude was observed after rare versus common transitions (Figure 3A). However, 514 

this differential rare versus common signal was not larger in individuals high in 515 
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model-based planning (β = 0.01, SE = 0.01, p = 0.35), nor did it show any 516 

association to compulsivity (β = 0.02, SE = 0.02, p = 0.24).  517 

 518 

Recently, it has been suggested that P300 is more accurately characterized as a 519 

response-locked signal (O’Connell et al., 2012; Twomey et al., 2015). This raises the 520 

possibility that the stimulus-locked signal measurements favored in previous studies 521 

of the two-step task may have yielded cross-condition effects that were partly or 522 

entirely determined by RT differences. In light of these considerations, we 523 

complemented the stimulus-locked analyses with an examination of response-locked 524 

signal measurements. When we repeated the analysis using response-locked P300 525 

amplitude, we found that the transition effect was no longer significant and its 526 

direction was in fact reversed (β = -0.02, SE = 0.01, p = 0.23) (Figure 3B). Again, 527 

there was no association with model-based planning (β = -0.01, SE = 0.01, p = 0.49) 528 

or compulsivity (β = 0.01, SE = 0.02, p = 0.67). We also examined the build-up rate 529 

of the response-locked P300 as a measure of how quickly evidence for the decision 530 

was accumulated (Kelly and O’Connell, 2013). The build-up rate was steeper for 531 

common versus rare trials (β = -0.04, SE = 0.01, p = 0.002) but this measure was 532 

again not linked to model-based planning (β = -0.01, SE = 0.01, p = 0.46) nor 533 

compulsivity (β = 0.01, SE = 0.02, p = 0.25). Thus, we concluded that the P300 may 534 

not provide the most reliable or sensitive measure of neural sensitivity to task 535 

structure. 536 

 537 

 538 

Alpha power sensitivity to task structure. ERPs principally reflect activity changes 539 

that are short-lived and strictly time-locked to particular events (Makeig and Onton, 540 
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2012). We thus investigated if time-frequency measures such as alpha power (9-541 

13Hz), which has been previously linked to OCD (Perera et al., 2019), would be able 542 

to provide a superior and more sustained neural representation of the task’s 543 

transition structure. Specifically, we examined if parietal-occipital alpha power locked 544 

to the second-stage stimulus was able to distinguish between rare and common 545 

transitions across a series of time bins in our task. This allowed us to ascertain not 546 

just if participants showed sensitivity to task structure following a transition, but for 547 

how long they sustained that representation (e.g., as they made subsequent choices 548 

and received a reward). We reasoned that short-lived responses might reflect 549 

surprise stemming from arriving at a rare versus common state, but more sustained 550 

patterns could reflect post-planning processes required to update model-based top 551 

stage choice values.  552 

 553 

In line with our hypothesis, alpha power overall differentiated between the two 554 

transition types (β = 0.02, SE = 0.01, p < 0.001), such that parietal-occipital alpha 555 

was more suppressed after rare versus common transitions (Figure 4A). We found 556 

that in a manner sustained over three rolling time bins beginning from the state 557 

transition (planet) (0ms to 1000ms: β = 0.02, SE = 0.01, p = 0.03) to the end of 558 

choice feedback (1000ms to 2000ms: β = 0.02, SE = 0.01, p = 0.03; 2000ms to 559 

3000ms: β = 0.01, SE = 0.02, p < 0.05), individuals high in model-based control 560 

showed the largest alpha power differentiation (Figure 4B). Importantly, this same 561 

signature was negatively related to compulsivity, with a significant association 562 

observed at the time after state transition (0ms to 1000ms: β = -0.03, SE = 0.01, p = 563 

0.007) (Figure 4C). Overall second-stage alpha power was also associated with 564 

compulsivity (β = -0.09, SE = 0.03, p < 0.001), however, this effect was not related to 565 
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model-based control (β = 0.03, SE = 0.02, p = 0.25) nor RT differences in transition 566 

types (β = -0.03, SE = 0.02, p = 0.20)—highlighting that it is the sensitivity of alpha to 567 

task structure, not alpha overall, that best tracks model-based performance at this 568 

task.  569 

 570 

Control analyses demonstrate that this transition sensitivity effect is present even if 571 

alpha estimates were locked to response times (Figure 5) and is not found with 572 

second-stage theta-power (Figure 8B) (which we examine later in the context of 573 

cognitive control at first-stage). In terms of alpha specificity to compulsivity, there 574 

were no associations to the other two transdiagnostic dimensions; anxious-575 

depression (β = 0.007, Ss = 0.01, p = 0.47) or social withdrawal (β = -0.001, SE = 576 

0.01, p = 0.91). When we examined the association between alpha-band sensitivity 577 

to transition structure and all nine of the original psychiatric questionnaire total 578 

scores, we found diminished sensitivity in those with elevated OCD (β = -0.02, SE = 579 

0.01, p = 0.006) and eating disorder symptoms (β = -0.02, SE = 0.01, p = 0.05) 580 

(Figure 6).  581 

 582 

Theta power at the time of choice. Finally, moving beyond participants’ sensitivity 583 

to the transition structure of the task, we tested if during the crucial time of first-stage 584 

choice, when model-based planning manifests in behavior, we could detect 585 

differences in a neural signature previously linked to cognitive control, mid-frontal 586 

theta (4-8Hz). As theta has previously been shown to reflect computations crucial to 587 

goal-directed action (Sauseng et al., 2010; Cavanagh et al., 2013; Cavanagh and 588 

Frank, 2014), we hypothesized that model-based planning would be positively linked 589 
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to theta power while compulsivity would be negatively associated with the neural 590 

oscillation.  591 

 592 

We tested this using a mixed effects regression analysis with trial-by-trial estimates 593 

of theta power as the dependent variable and individual differences in model-based 594 

choice (coefficients of the effect of reward*transition from the logistic regression of 595 

stay/switch behavior) as the predictor variable. Theta power during choice was not 596 

significantly associated with model-based planning (β = 0.02, SE = 0.01, p = 0.11); 597 

though, the trend was in the expected direction. When we used RT sensitivity to 598 

transition structure, instead of model-based choice, as an alternative manifest 599 

variable of the brain’s capacity for model-based planning, we found a significant 600 

positive relationship with theta (β = 0.04, SE = 0.01, p = 0.002), indicating that those 601 

participants who had higher theta power during their first-stage choice also had 602 

larger differences in their RT between rare and common transitions at the second-603 

stage. Finally, using the same analysis approach, this time with individual differences 604 

in compulsivity as the predictor variable, we found an overall effect of lower theta at 605 

the time of choice in individuals high in compulsivity (β = -0.03, SE = 0.01, p = 0.04) 606 

(Figure 7A). Similar to alpha power modulations, reduced theta power at the first-607 

stage was linked to more than one questionnaire score—schizotypy (β = -0.03, SE = 608 

0.01, p = 0.01), depression (β = -0.03, SE = 0.01, p = 0.02) and OCD (β = -0.03, SE 609 

= 0.01, p = 0.03) and were associated with the compulsive dimension (β = -0.03, SE 610 

= 0.01, p = 0.03) (Figure 7B).  611 

 612 

One explanation for the somewhat closer association between theta and RT 613 

sensitivity (compared to model-based choice) is that theta at the time of choice 614 
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reflects participants’ mental simulation of future states. We tested this post-hoc using 615 

a within-subject analysis by examining whether on trials where theta was highest, 616 

subjects showed even greater RT sensitivity to transition type. We did not find 617 

evidence in support of this within-subject, such that the interaction between theta 618 

and transition type was not significant (β = 0.004, SE = 0.01, p = 0.57). Finally, by 619 

way of control analysis, we tested if alpha power at first-stage (Figure 8A) was 620 

associated with compulsivity (β = -0.14, SE = 0.05, p = 0.002), model-based 621 

planning (β = 0.03, SE = 0.04, p = 0.45) or RT differences in transition types (β = -622 

0.004, SE = 0.04, p = 0.92), but none were significant.   623 
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Discussion 624 

Model-based planning deficits linked to compulsivity have been theorized to arise 625 

from issues with the balance/arbitration between competing model-based and 626 

model-free influences during choice (Gillan and Robbins, 2014; Lee et al., 2014; 627 

Gruner et al., 2016; Lloyd and Dayan, 2019), but these presumed planning failures 628 

might, at least partially, arise from an impoverished internal model of task structure. 629 

Here, we found that high compulsive individuals lacked neural and behavioral 630 

sensitivity to state transition probabilities, evidenced in their RT and parietal-occipital 631 

alpha power suppression in response to unexpected transitions. Speaking to the 632 

potential for more general cognitive control problems to also contribute to model-633 

based deficits, we additionally took mid-frontal theta as its candidate neural signature 634 

and observed that high compulsive individuals had reduced theta when they made 635 

their first-stage choices. These findings have important implications for refining 636 

theories of compulsivity, which may be associated with more fundamental problems 637 

in constructing and maintaining a model of the causal structure of the environment 638 

necessary for goal-directed “model-based” control than just cognitive control failures. 639 

 640 

In line with prior research, participants exhibited longer RTs following rare transitions 641 

which was also previously shown to relate to model-based planning (Deserno et al., 642 

2015; Decker et al., 2016; Shahar et al., 2019). Crucially, the opposite was true of 643 

compulsivity, with the most compulsive individuals showing the smallest difference in 644 

RT between these trial types. This finding was robust—the effect replicates in a 645 

former dataset (N=1413) tested online (Gillan et al., 2016). This may reflect a 646 

number of processes including uncertainty arising from the presentation of 647 

unexpected options (Deserno et al., 2015), lower discriminability of the options 648 
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presented following rare transitions (Shahar et al., 2019) or, as per our original 649 

hypothesis, a reduced awareness of the task structure (Decker et al., 2016) including 650 

action-state transitions necessary to build an accurate causal model of the world.  651 

 652 

Moving beyond behavior, analysis of alpha power revealed a similar picture. Much 653 

like RT, alpha suppression at the second-stage was sensitive to transition 654 

probabilities, with rare than common transitions associated with greater alpha 655 

suppression, possibly reflecting the greater mental effort required after rare 656 

transitions to call to mind action values associated with the unexpected options 657 

presented. In line with this, previous studies using n-back paradigms have shown 658 

greater parieto-occipital alpha suppression when working memory load increases 659 

(Stipacek et al., 2003; Pesonen et al., 2007). Importantly, this mental activity was 660 

sustained beyond second-stage choice right up until reward receipt, which might 661 

reflect that one must not only re-plan, but also that task structure information is used 662 

together with trial outcome to update first-stage choices. Consistent with this 663 

interpretation, individual difference analysis demonstrated that this difference in 664 

alpha suppression had important behavioral correlates. Model-based planners 665 

showed the largest differences in alpha power between transition type, while higher 666 

levels of compulsivity were associated with less of a distinction in alpha power 667 

between transition type. Building upon the RT findings, we present neural evidence 668 

that compulsivity may be characterized by failures in representing the kind of causal 669 

action-state relations necessary to behave in a model-based manner. The notion that 670 

sustained alpha differentiation across common/rare trials reflects a post-planning 671 

process is speculative and future research should aim to distinguish this from the 672 

effects of surprise. 673 
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 674 

Our data do not exclude the possibility that compulsive individuals also face issues 675 

with implementing model-based planning even when they have the requisite state 676 

knowledge. Indeed, we also found that mid-frontal theta, which is thought to support 677 

adaptive cognitive control in a variety of contexts (Cavanagh et al., 2012) was 678 

reduced in compulsive individuals during first-stage choice. In addition to being 679 

negatively related to compulsivity, theta power was also elevated in those whose RT 680 

was most sensitive to task structure, and trended towards being elevated in model-681 

based planners, supporting the view that theta activity at the time of choice at least in 682 

part reflects mental operations relevant to executing a model-based plan. However, 683 

disentangling the specific theta-driven processes is beyond the scope of our current 684 

experimental design. Theta power at choice time could reflect a host of executive 685 

processes such as selecting between competing options (including suppressing 686 

distracting stimuli) (Nigbur et al., 2011), inhibiting unhelpful associations (Cavanagh 687 

et al., 2013) and the mental simulation/search of future states (Doll et al., 2015). 688 

 689 

Previous EEG studies of the two-step task (Eppinger et al., 2017; Sambrook et al., 690 

2018; Shahnazian et al., 2019) showed that the P300 was associated with state 691 

transitions. However, the inconsistent effect direction raises doubt as to how these 692 

differences should be interpreted. Recent literature conceptualizes the P300 as an 693 

evidence accumulation process that builds towards a peak at choice time (Twomey 694 

et al., 2015) and as such variances in RT will influence the latency of the stimulus-695 

locked P300 amplitude peak (Kelly and O’Connell, 2015). Our results comparing 696 

stimulus-locked and response-locked analysis approaches suggest that it is the 697 

build-up rate of the P300 that is sensitive to transitions and that previously reported 698 
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stimulus-locked amplitude modulations are attributable to RT differences. We also 699 

found that none of the analyzed P300 metrics were predictive of individual 700 

differences in model-based planning.  701 

 702 

In this study, we utilized a transdiagnostic compulsive dimension which was 703 

previously shown to provide the best mapping to model-based deficits in an online 704 

general population sample (Gillan et al., 2016). We replicated this finding here and 705 

extend it to EEG correlates of behavior, where our alpha and theta modulations were 706 

relatively non-specific to the DSM-defined questionnaires compared to our a priori 707 

dimensional factor ‘compulsivity’. This research pipeline illustrates how mental health 708 

dimensions may be defined in large online samples and then used in smaller studies 709 

that can avail of the harder tools of neuroscience, like EEG (Gillan and Seow, 2020). 710 

While continued over-arching criticism will question its applicability to diagnosed 711 

patients, recent work suggests the core mechanisms we capture in general 712 

population samples is broadly equivalent, at least in compulsivity. Similar to large-713 

scale general population findings, model-based deficits in diagnosed patients are 714 

linked to individual differences in self-reported compulsivity, and model-based 715 

deficits mapped onto this compulsivity dimension more strongly than the diagnosis of 716 

these patients (e.g., whether they had an OCD diagnosis) (Gillan et al., 2019). As 717 

such, there is growing evidence that the specific associations between cognition and 718 

compulsivity observed in the general population are likely clinically relevant.  719 

 720 

Overall, our findings suggest that model-based difficulties in compulsivity may be 721 

linked to an impoverished mental model of environmental contingency—an 722 

interpretation bolstered by recent findings implicating diminished transition learning 723 
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in compulsivity in a task devoid of value representations (Sharp et al., 2020). Future 724 

work should carry on in this vein, perhaps asking: are failures in memory encoding or 725 

retrieval are responsible for the deficits observed in compulsivity following 726 

transitions? Are these effects specific to learning about actions and their 727 

consequences, or more distributed failures to learn about causality? Moreover, there 728 

are several facets of model-based planning beyond the learning/maintaining 729 

knowledge of the transition structure that may also be implicated, like the inhibition of 730 

opposing model-free signals at choice time, forward simulation of future states at 731 

choice time, attention at reward receipt and using that information for updating the 732 

correct first-stage option. Understanding these factors will provide a clearer picture of 733 

the neural mechanisms that lead to compulsive disorders and hopefully, provide 734 

scope for intervening more effectively. The clear advantage of the use of EEG here 735 

is its temporal resolution, which was crucial in allowing us to capture the sustained 736 

differentiation of alpha power to transitions. With this, of course, comes with a lack of 737 

spatial precision. Future work combining fMRI and EEG might prove fruitful, 738 

particularly for dissecting potentially multiple processes at the time of first-stage 739 

choice. Finally, there is growing recognition that the dichotomization of two decision 740 

systems is over-simplified; model-based/model-free processes are partially 741 

synergistic, overlapping in certain situations and/or hierarchically organized 742 

(Cushman and Morris, 2015; Balleine and Dezfouli, 2019; da Silva and Hare, 2020). 743 

Future research must go beyond dichotomized frameworks to advance our 744 

mechanistic understanding of how deficits in building a model of the world translate 745 

to behavior irregularities such as compulsive habits. 746 

 747 
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Our findings may have implications for understanding how compulsive behaviors and 748 

obsessive beliefs develop in concert, in a more integrated fashion than previously 749 

considered. Clinical cognitive models of OCD have long presumed that compulsions 750 

are performed to reduce anxiety induced by obsessive beliefs (Salkovskis and 751 

McGuire, 2003; Matthews and Wells, 2008), in contrast to a more recent hypothesis 752 

suggesting that obsessions are post-hoc rationalizations to explain the performance 753 

of compulsive behavior (Gillan and Sahakian, 2015). These data may suggest that 754 

the hard distinction between obsessions and compulsions might be less clear than 755 

these models propose. Failures in accurately representing the relationship between 756 

actions and their consequences may be a common source of both compulsive 757 

habitual behaviors in OCD and also faulty metacognitive beliefs that form the basis 758 

of obsessions. One might imagine that with a less stable world model representation, 759 

the more likely a patient may develop faulty beliefs and rely on habitual 760 

representations.  761 
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Figure Legends 951 

Figure 1. Two-step reinforcement learning task. Paradigm consists of two stages 952 

where participants take a rocket that has a common (70%) or rare (30%) transition to 953 

one of two second-stage planets (states). Aliens on these planets each have a 954 

unique probability of reward (‘space treasure’ (reward) or ‘space dust’ (non-reward)) 955 

that drifts slowly throughout the entire experiment. Participants have to take into 956 

consideration the task transition structure and their history of rewards to make 957 

choices that maximize reward. The sequence of events as presented for EEG is the 958 

same as that of Eppinger et al. (2017), except they included a manipulation of 959 

transition probabilities in their study (comparing 60/40% to 80/20%) and used a 960 

longer choice window (2000ms). On the top right inset, model-based behavior is 961 

reflected as the probability of repeating the first-stage choice (stay) as a function of 962 

the occurrence of a transition from the previous trial (common: 70%, rare: 30%) and 963 

whether a reward was received (reward, non-reward). In a purely model-free learner, 964 

stay probabilities after reward should be higher than when no reward was presented 965 

regardless of transition type. In a purely model-based learner, stay probabilities after 966 

common-reward and rare-non reward should be higher than common-non reward 967 

and rare-reward. In our empirical data here, the stay probabilities obtained across 968 

conditions is a mix of both model-based and model-free behavior. Error bars reflect 969 

standard errors of mean. 970 

 971 
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Figure 2. Model-based behavior and reaction times in compulsivity.  973 

(A) Model-based control estimated by a logistic regression of choice behavior with 974 

one-trial back reward and transition. Regressions were conducted in a model with all 975 

three dimensions: ‘anxious-depression’ (AD), ‘compulsivity and intrusive thought’ 976 

(CIT) and ‘social withdrawal’ (SW). Model-based control is reduced high compulsive 977 

individuals.  978 

(B) Participants have on average a longer mean response time (RT) at second-stage 979 

choice after a rare transition than a common one (paired t-test: t191=16.16, 95% 980 

Confidence Interval (CI) [79.85 102.05], p<.001). Circles in raincloud plot (Allen et al., 981 

2019) depict mean RT of rare or common trials for each individual, with black marker 982 

indicating grand average mean and standard deviation (SD).  983 

(C) RT difference between transition type (RT-Trans) is diminished in high 984 

compulsive individuals. We replicated the same effect in a prior dataset of N = 1413 985 

(Gillan et al., 2016). 986 

For (A) & (C), error bars denote standard error. The Y-axes indicate the percentage 987 

change in model-based planning/RT-Trans as a function of 1 SD of psychiatric 988 

dimension scores. *p≤.05, ***p<.001. 989 
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Figure 3. Second-stage P300 and transition type.  991 

(A) Grand average waveforms of rare and common trials stimulus-locked to second-992 

stage stimuli (aliens). Waveform is baselined -200ms to 0ms. The mean amplitude 993 

for stimulus-locked P300 was obtained over 4 centro-parietal electrodes (D16 (CP1), 994 

A3 (CPz), B2 (CP2), A4) as indicated by the white dots in the topography plot. This 995 

transition effect was no longer significant when second-stage P300 signal was 996 

response-locked (Figure 3B).  997 

(B) Topography plot represents the P300 component -100ms to 0ms before second-998 

stage response. White dots indicate parietal electrode sites (A4, A5, A19 (Pz), A32) 999 

where the positive component was measured. Grand average second-stage P300 is 1000 

plotted response-locked comparing the waveforms following rare versus common 1001 

transitions. Single-trial analyses indicate that the P300 amplitude, measured as the 1002 

mean amplitude -100ms to 0ms (shaded grey), does not distinguish transition type (β 1003 

= -0.02, SE = 0.01, p = 0.23). 1004 
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Figure 4. Stimulus-locked alpha power at transition. Alpha power was measured 1006 

across 4 time bins of 1000ms each separated by vertical dashed lines, starting from 1007 

the transition (0ms) until after reward (4000ms), at parietal-occipital electrode sites 1008 

(see Figure 4-2). 1009 

(A) Grand average second-stage alpha power waveforms between rare and 1010 

common transitions. Continuous analyses revealed that alpha difference (rare – 1011 

common) is significant in time bin 2-3 (all β>.03, SE<.01, p<.001).  1012 

(B) Alpha power difference between transitions (common minus rare) is depicted 1013 

above by comparing top/bottom 50th percentile (N=96 per group) of participants 1014 

grouped by model-based estimates (MB). Continuous analyses revealed that alpha 1015 

difference (rare – common) is enhanced for more model-based participants in time 1016 

bins 1-3 (all β>.01, SE<.02, p<.05).  1017 

(C) Alpha power difference between transitions (common minus rare) comparing 1018 

top/bottom 50th percentile (N=96 per group) of participants grouped by or 1019 

compulsivity (CIT). Continuous analyses revealed that alpha difference (rare – 1020 

common) is diminished for more compulsive participants in time bin 1 (β=-.03, 1021 

SE=.01, p=.007). 1022 

Stars in time bins indicate significance from continuous analyses. *p<.05, **p<.01, 1023 

**p<.001. 1024 

These second-stage transition effects were specific to alpha power, and not present 1025 

with theta power (Figure 8B). 1026 
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Figure 5. Grand average waveforms of rare versus common transitions for 1028 

second-stage response-locked alpha power. RT differences between rare and 1029 

common transitions was only significantly associated with stimulus-locked alpha 1030 

power differentiation of states in the time bin before reward presentation (2000ms to 1031 

3000ms: β = 0.01, SE = 0.01, p = 0.04; all other time bins: ps > 0.30; Figure 4). To 1032 

complement our main result based on stimulus-locked alpha, we repeated the 1033 

transition analysis with single-trial response-locked alpha estimates (measured as 1034 

the mean of ±100ms centered around each participant’s averaged latency of the 1035 

negative peak), which also yielded a significant association overall effect (β = 0.03, 1036 

SE = 0.01, p < 0.001; Figure 5). Similar to stimulus-locked alpha, rare transitions 1037 

showed greater depression of alpha during choice selection for rare versus common 1038 

transitions, suggesting that alpha transition effect is not explained by RT. 1039 
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Figure 6. Second-stage alpha power sensitivity to transition at time bin 1 (0ms 1041 

to 1000ms) with psychiatric symptoms and dimensions (AD: ‘anxious-1042 

depression’, CIT: ‘compulsive behavior and intrusive thought’, SW: ‘social 1043 

withdrawal’). Alpha power differentiating rare versus common transitions was 1044 

associated with both OCD and eating disorder symptoms. The transdiagnostic 1045 

analysis showed the effect was captured by a compulsive dimension (CIT). The Y-1046 

axis show the percentage change in alpha power sensitivity to transition type (%) as 1047 

a function of 1 SD increase of psychiatric questionnaire/dimension scores. Error bars 1048 

denote standard errors. *p ≤ .05, **p<.01. 1049 
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Figure 7. First-stage theta power with psychiatric symptoms and dimensions 1051 

(AD: ‘anxious-depression’, CIT: ‘compulsive behavior and intrusive thought’, 1052 

SW: ‘social withdrawal’). Theta power was measured at mid-frontal electrode sites 1053 

(see Figure 6-1). 1054 

(A) Grand average waveforms of first-stage theta power comparing the top/bottom 1055 

50th percentile (N=96 per group) individuals based on their compulsivity (CIT) 1056 

estimates. Single trial analyses (with all participants) indicate high compulsive 1057 

individuals exhibit a decrease in theta power (β=-.03, SE=.01, p=.03). In contrast, 1058 

first-stage alpha power was not associated with compulsivity (Figure 8A). 1059 

(B) Reduced theta power at first-stage was linked to several questionnaire scores 1060 

but the effect was ultimately specific to compulsivity. The Y-axis shows the change in 1061 

theta power (µV2) as a function of 1 SD increase of psychiatric 1062 

questionnaire/dimension scores. Error bars denote standard errors. *p<.05. 1063 
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Figure 8. Supplemental analyses.  1065 

(A) First-stage stimulus-locked alpha power. Topography and line plot (locked to 1066 

first-stage rockets) show alpha depression during the making a choice at the first-1067 

stage. White dots on the topography plot indicate parietal-occipital electrode sites 1068 

(A18, A19 (Pz), A20, A21, A31) where alpha was measured for both first and 1069 

second-stages. 1070 

(B) Second-stage stimulus-locked theta power. Topography plot shows theta power 1071 

increase after stimulus-onset at the mid-frontal scalp. White dots indicate electrode 1072 

sites (C21 (Fz), C22, C23 (FCz), A1 (Cz)) where theta power was measured for both 1073 

first and second-stages. Theta power at the first-stage was not associated to 1074 

compulsivity (β = -0.004, SE = 0.02, p = 0.84) nor model-based planning (β = 0.01, 1075 

SE = 0.02, p = 0.51). Theta power was also not linked to transition type (β = -0.01, 1076 

SE = 0.01, p = 0.20) and had no transition interaction effects with compulsivity (β = 1077 

0.01, SE = 0.01, p = 0.14) nor model-based planning (β = -0.004, SE = 0.01, p = 1078 

0.65). 1079 
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