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ABSTRACT

Objective: Multitask learning (MTL) using electronic health records allows concurrent prediction of multiple

endpoints. MTL has shown promise in improving model performance and training efficiency; however, it often

suffers from negative transfer – impaired learning if tasks are not appropriately selected. We introduce a se-

quential subnetwork routing (SeqSNR) architecture that uses soft parameter sharing to find related tasks and

encourage cross-learning between them.

Materials and Methods: Using the MIMIC-III (Medical Information Mart for Intensive Care-III) dataset, we train

deep neural network models to predict the onset of 6 endpoints including specific organ dysfunctions and gen-

eral clinical outcomes: acute kidney injury, continuous renal replacement therapy, mechanical ventilation, vaso-

active medications, mortality, and length of stay. We compare single-task (ST) models with naive multitask and

SeqSNR in terms of discriminative performance and label efficiency.

Results: SeqSNR showed a modest yet statistically significant performance boost across 4 of 6 tasks compared

with ST and naive multitasking. When the size of the training dataset was reduced for a given task (label effi-

ciency), SeqSNR outperformed ST for all cases showing an average area under the precision-recall curve boost

of 2.1%, 2.9%, and 2.1% for tasks using 1%, 5%, and 10% of labels, respectively.

Conclusions: The SeqSNR architecture shows superior label efficiency compared with ST and naive multitask-

ing, suggesting utility in scenarios in which endpoint labels are difficult to ascertain.
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INTRODUCTION

The intensive care unit (ICU) manages a heterogeneous population

of complex, medically vulnerable patients, requiring a range of or-

gan support therapies. Predicting the clinical trajectories of ICU

patients can inform conversations about limits of care and poten-

tially guide preventative interventions. Risk predictions can also as-

sist with resource allocation of staff and equipment across the

department.

The traditional approach to risk stratification of ICU patients

has been to use severity scores. First developed in the 1980s, these

scores are typically designed to predict in-hospital mortality and

have been refined through multiple editions. They include the

APACHE (Acute Physiology, Age and Chronic Health Evaluation)

score,1 the SAPS (Simplified Acute Physiology Score),2 and the

SOFA (Sequential Organ Failure Assessment) score.3 These scoring

tools are limited in that they use a small subset of the available pa-

tient data, often at a single time point during the ICU admission,
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and use fixed scoring thresholds that are not contextualized to the

patient. Although they show strong discriminative performance for

mortality at a population level, they are often poorly calibrated for

patient-level outcome prediction.4,5

The widespread adoption of electronic health records (EHRs)

creates an opportunity to use machine learning methods on rou-

tinely collected data for more accurate and personalized risk model-

ing. In recent years, there has been growing interest in the use of

deep learning approaches to cater for the high-dimensional longitu-

dinal data in the ICU, with numerous studies outperforming tradi-

tional risk scores at predicting mortality,6,7 specific organ

dysfunctions or syndromes,8–10 and life-support interventions.11

One shortcoming is that the majority of models are examples of

single-task (ST) learning—trained on a specific adverse event. By

contrast, the mental model of a clinician is more holistic and typi-

cally involves concurrent prediction of multiple adverse events. This

leverages the interdependencies between different organ systems and

their corresponding pathophysiologies.12,13

Multitask learning (MTL) is a method for concurrent outcome

prediction that has shown promising results across a range of

domains including speech recognition, bioinformatics, computer vi-

sion, and natural language processing.14,15 By learning a shared rep-

resentation across related tasks, MTL architectures have

demonstrated several advantages over ST models including im-

proved discriminative performance, computational efficiency,16 ro-

bustness,17 and a requirement for less labeled training data.18,19

MTL may also facilitate real-world deployment by having a single

model serving multiple functions.20

There have been promising results in the EHR domain suggesting

similar benefits from MTL.10,21–27 Harutyunyan et al22 applied a

long short-term memory (LSTM)–based MTL architecture to bench-

mark tasks on MIMIC-III (Medical Information Mart for Intensive

Care-III), including adverse event prediction and clinical phenotyp-

ing. They demonstrated that MTL provided consistent, though mod-

est, improvements over ST discriminative performance for 3 of 4

tasks, concluding that it serves as an important regularizer. More re-

cently, McDermott et al23 used the same ICU dataset to show that

only highly related tasks result in effective cross-learning, with a

high risk for negative transfer (reduced performance with MTL)

when certain task combinations were used. Negative transfer hap-

pens when dissimilar tasks introduce conflicting inductive biases in

the shared layers thereby hurting performance.28 Furthermore,

McDermott et al23 found that MTL pretraining with finetuning on a

new task significantly outperforms ST in few-shot learning (scarce

training data) scenarios, especially on continuous (rolling) outcome

prediction tasks.

In this work, we introduce a sequential deep MTL architecture,

sequential subnetwork routing (SeqSNR), that automatically learns

how to control parameter sharing across tasks and apply it to a di-

verse set of ICU endpoints. SeqSNR is a time series adaptation of the

SNR architecture proposed by Ma et al28 as a method for flexible

parameter sharing between tasks. We hypothesize that SeqSNR may

show benefits over ST and shared-bottom (SB) (ie, traditional MTL

with hard parameter-sharing) architectures. The main contributions

of this article are the following:

• We produce benchmark results on a diverse set of clinical end-

points using multiple feature sets extracted from MIMIC-III.
• We demonstrate that SB MTL on clinical prediction tasks shows

inferior performance to ST models, owing to negative transfer

across tasks.

• We propose a novel architecture to mitigate negative transfer by

flexible parameter sharing.
• We show that the proposed MTL architecture outperforms its ST

counterparts in low-label scenarios.

MATERIALS AND METHODS

Data description
The EHR dataset used in this study is the open access, de-identified

MIMIC-III dataset.29 The patient cohort consisted of 36 498 adult

patients across 52 038 admissions to critical care units at the Beth Is-

rael Deaconess Medical Center between 2001 and 2012. Patients

were randomly split into training (80%), validation (10%), and test

(10%) sets.

We used a version of the MIMIC-III dataset mapped to the Fast

Healthcare Interoperability Resource (FHIR) standard as described

in Rajkomar et al30 and GitHub code.31 FHIR data is organized as a

collection of timestamped “resources” (eg, Medication Administra-

tion or Observation), each of which has an associated clinical code

(which we use as a feature ID) and, where applicable, a value. We

used the following FHIR resources: Patient (demographic informa-

tion: age and gender), Encounter (admission and ward location),

Observation (labs and vitals), Medication Prescription, Medication

Administration, Procedure, Condition (diagnosis).

Data preprocessing
FHIR resources were converted to sparse feature vectors via the fol-

lowing steps:

1. Clipping and standardization: The outlier values were clipped

to the first and 99th percentile values and continuous features

standardized based on the clipped data.

2. Time bucketing: Features were aggregated into hourly time

buckets using the median for repeated values.

3. Addition of presence features: Similar to Toma�sev et al,10 we

added presence features for all continuous variables to explic-

itly encode missingness. No numerical feature imputation was

used.

4. One-hot encoding: Categorical features were one-hot encoded.

Feature selection

The full feature set (n¼70 770) was designed to maximize the infor-

mation available to the model, by including the majority of struc-

tured data elements with the following exclusion criteria: the

features present only in nonadult cohorts (<18 years of age) were fil-

tered; rare features recorded only once in the entire dataset were re-

moved; unstructured data were excluded.

The reduced feature set (n¼123) consisted of a manually cu-

rated list of common laboratory tests, observations, and interven-

tions (no medications). The rationale was to identify a subset of

clinically relevant features that may be more generalizable across

health systems. Expert-guided feature selection is widespread in the

EHR literature22,32 and therefore useful as a benchmark compara-

tor. The list used here is very similar to the features proposed in the

MIMIC-Extract preprocessing pipeline,11 which harmonizes

MIMIC data into 93 semantic features; however, our list is aug-

mented with a number of additional common variables (see Supple-

mentary Appendix).
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Benchmark tasks
We defined a diverse suite of prediction endpoints, ranging from

specific organ dysfunctions and critical care interventions to more

general markers of deterioration. All tasks were formulated as con-

tinuous predictions, triggered every hour during eligible admissions

as in previous benchmark studies.11 Inference was only triggered

during ICU admission. There were fixed prediction horizons chosen

for each task based on clinical judgment about the window of

actionability (shown in Table 1). All tasks were set up as repeated

classification tasks—predicting the onset of the label within the pre-

diction window. Task definitions are the following (see the Supple-

mentary Appendix for further details):

• Acute kidney injury (AKI): AKI was defined using the Kidney

Disease Improving Global Outcomes guidelines33 excluding the

urine output criterion. AKI of stages 1 and above was included.

Periods of dialysis (including continuous renal replacement ther-

apy [CRRT], intermittent hemodialysis, and peritoneal dialysis)

were censored from the AKI prediction because it is redundant to

predict AKI during active dialysis.
• CRRT: CRRT is a form of acute dialysis used in critically ill

patients. All intervals of CRRT were separately labeled using the

codes and logic summarized in the Supplementary Appendix.

Where there was no explicit end timestamp for CRRT, the label

was clipped 4 hours after the latest code suggestive of ongoing

CRRT. Intervals within 24 hours of each other were

concatenated.
• Vasoactive medications: Vasopressors and inotropes are medica-

tions used to manage circulatory function by modifying cardiac

contractility and systemic vascular resistance, used in heart fail-

ure and certain shock syndromes. The label was based on the on-

set of any of the following 7 vasopressors and inotropes:

norepinephrine, epinephrine, phenylephrine, vasopressin, dopa-

mine, dobutamine, and milrinone.
• Mechanical ventilation (MV): Labels were based on the SQL

query provided on the MIMIC GitHub repository.34 We only la-

bel the onset of the first instance of MV during an ICU admission

(first MV)—all timestamps after the first evidence of ventilation

were labeled positive. We censored the event sequences of

patients who were admitted to the Cardiac Surgery Recovery

Unit because the overwhelming majority of these patients arrived

in the unit already intubated.
• Mortality: Mortality was timestamped using the “EXPIRE” flag

included in the MIMIC-III dataset, which included both in- and

out-of-hospital mortality.
• Length of stay (LoS): The LoS task was defined as the remaining

LoS from the time of inference. This was set up as a binary classi-

fication based on whether the remaining LoS was greater than 48

hours.

In addition, for the multitask models, we included a set of 13 com-

mon laboratory tests and vital signs: hemoglobin, platelets, white

blood cells, sodium, potassium, creatinine, total bilirubin, arterial

partial pressure of oxygen, arterial partial pressure of carbon diox-

ide, arterial pH, lactate, C-reactive protein, and serum glucose as

secondary endpoints or auxiliary tasks. We computed the mean and

SD of these labs and vitals over 24-, 48-, and 72-hour prediction

horizons and added them as regression tasks at each time step

(hourly). Where a particular lab value was not measured in the look-

ahead window, the model loss was set to zero.

Table 1. Patient characteristics for the full cohort and positively labeled cohorts for each end point

All AKI CRRT Dialysis Vasoactive Medications

Organ system — Renal Renal Cardiovascular

Prediction horizon, h — 48 12 12

Patients 36 498 (100) 17 381 (47.6) 1165 (3.2) 14 539 (39.8)

ICU admissions 52 038 (100) 14 918 (28.7) 1308 (2.5) 16 601 (31.9)

Time steps 5 116 931 (100) 71 306 (1.4) 13 6423 (2.7) 662 786 (13.0)

Age, y 64 (52-76) 69 (57-78) 63 (51-73) 67 (57-77)

Female 15 414 (42.2) 7344 (42.3) 433 (37.2) 5696 (39.2)

ICU LoS, d 2.08 (1.17-4.08) 2.58 (1.33-5.17) 3.79 (1.75-9.67) 2.88 (1.46-5.92)

In-ICU mortality 4096 (7.9) 3092 (10.4) 560 (18.7) 3000 (12.4)

Fraction of admission with posi-

tive label, %

— 3.2 (1.6-5.7) 28.1 (8.3-50.6) 20.5 (8.4-45.5)

Contiguous label duration, d — 0.75 (0.33-1.46) 1.92 (0.21-4.63) 0.63 (0.21-1.63)

Time to first label, d — 0.54 (0.13-1.50) 2.02 (0.83-4.46) 0.13 (0.04-0.33)

First MV Mortality Remaining LoS � 2d —

Organ system Respiratory — — —

Prediction horizon 12 hours 48 hours 48 hours —

Patients 13933 (38.2) 5129 (14.1) — —

ICU admissions 18716 (36.0) 4096 (7.9) — —

Time steps 2793417 (54.6) — — —

Age, y 63 (49-76) 71 (58-80) — —

Female 6100 (43.8) 2293 (44.7) — —

ICU LoS, d 2.92 (1.54-6.29) 2.88 (1.33-6.58) — —

In-ICU mortality 3181 (14.3) — — —

Fraction of admission labeled, % 100 (97.2-100) 3.4 (1.2-11.5) 96.1 (49.5-100) —

Time to first label, d 0.00 (0.00-0.08) 3.17 (1.08-8.04) — —

Values are n (%) or median (interquartile range), unless otherwise indicated.

AKI: acute kidney injury; CRRT: continuous renal replacement therapy; ICU: intensive care unit; LoS: length of stay; MV: mechanical ventilation.
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Models
Our models extend on the recurrent neural network (RNN) archi-

tecture with highway connections introduced in Toma�sev et al.10

For all architectures, the input tensor is fed through a sparse lookup

embedding layer followed by a feed-forward neural network that

forms the encoder, an RNN stack, and another task-specific feed-

forward layer. Each feature type (continuous or categorical) has its

own encoder and the representations obtained are concatenated be-

fore being fed into the model. We compared the following 3 configu-

rations (illustrated in Figure 1):

• ST: traditional approach in which a separate model is trained for

each task.
• SB multitask: all tasks trained concurrently, with a joint loss as

described previously. SB is the most commonly used approach to

MTL in neural networks and is achieved by sharing the hidden

layers between all tasks (hard parameter sharing), while keeping

several task-specific output layers.
• SeqSNR: trains all tasks concurrently but also uses a layer-wise

modularization of the encoder and RNN stack based on work

described in Johnson et al.29

For both MTL architectures, 2 variants of each model are evalu-

ated. In avg_best, all tasks, except labs and vitals, are considered as

primary tasks and a single model is chosen based on the average

area under the precision-recall curve (AUPRC) (%) across all tasks.

In task_best, the model is optimized for a single endpoint (index

task) and the other tasks act as auxiliaries. We show the results of

task_best, as this tended to show superior performance on the vali-

dation set. The previous recurrent models are also compared against

classical nonsequential benchmarks (logistic regression and

XGBoost) in the Supplementary Appendix.

Sequential subnetwork routing

Subnetwork routing enables flexible parameter sharing through the

use of learned Boolean connections that can “turn off” parts of the

network for a given task. As shown in Figure 1, we split the encoder

and deep model into multiple modules each of size de and ds, respec-

tively, connected by learned routing variables. The routing connec-

tions are always created between blocks in one layer and the next,

and are sampled from a hard concrete distribution35 with log a being

a learned parameter and b, c, and f being distribution hyperpara-

meters. We experimented both with Boolean connections obtained

via a hard sigmoid, and with scalar connections by using log a di-

rectly—the latter showed better performance.

The intuition of SeqSNR was to connect intermediate RNN

states and tune connections for the endpoint of interest, thereby cre-

ating subnetworks. We achieve this by multiplying the cell activa-

tions with routing variables, passing the combined information to

the cells in the next layer. Thus, for a given layer l and timestep t,

with a number of subnetworks per layer defined as S, the input for a

subnetwork c becomes:

inputc;l;t ¼ [
S

s¼1
logas;l�1 � as;l�1;t;a � HardConcreteðb; c; fÞ (1)

Each subnetwork collects activations from the different tasks,

which then need to be combined before passing through the next

layer. We experimented with both concatenation and summation

across tasks, but concatenation (yielding a vector of size RS
s¼1ds)

consistently yielded better performance and is used throughout.

Training and hyperparameters

The validation split was used to tune a variety of hyperparameters

including embedding size, regularization techniques, RNN stack

size, and RNN cell type—LSTM,36 GRU,37 and UGRNN.38 We re-

port here the optimal hyperparameter configuration. All models

used an embedding layer of size 400 for the numerical and presence

features. For the SeqSNR model, the embedding dimensionality was

split among 2, 3, or 4 subnetworks per layer. All models were

trained with a total of 3 layers. ST and SB have an LSTM cell size of

400, while SeqSNR used size 200 because it performed better than

the larger size, and all have 3 layers. We used Xavier initialization39

and Adam40 optimization with a batch size of 128, and an initial

learning rate of 0.0001 decaying every 12 000 steps by a factor of

0.85 replicating the setup in Toma�sev et al.10 Additionally, we used

state, input, and output variational dropout,41 with a probability of

0.4 for the RNN layers.

Loss

For multitask setups, we used 2 alternate approaches for weighting

the losses across tasks and optimized on a per-task basis. One ap-

proach involved using predefined values for the task loss weights

obtained through manual tuning; the second involved learning the

weights during training using the uncertainty weighing technique de-

scribed in Kendall et al.42 The loss can therefore be specified as

L ¼ Rci � Li, where ci can be either a predefined constant, or 1=r2

and Li represents cross-entropy for the binary tasks and L2 for the

regression tasks.

Performance metrics and statistical significance

We report both AUPRC and area under the receiver-operating char-

acteristic curve (AUROC) given the class imbalance for most

tasks.43 For all reported results, we compute the 95% confidence

intervals (CIs) using the pivot bootstrap estimator44 by sampling

patients from the test dataset with replacement 200 times. A higher

bootstrapping sample size (up to 500) was trialed for a subset of

cases, and the conclusions were consistent (Supplementary Table

14). Two hundred was ultimately selected as a balance between pre-

cision and computational efficiency. Moreover, we performed the 2-

sided Wilcoxon signed rank test45 to pairwise compare ST, SB, and

SeqSNR on the bootstrapped samples. We chose the critical value

a¼0.05 and used false discovery rate correction to adjust the P val-

ues for multiple hypotheses considering all the experiments per-

formed in this study.

Label efficiency

We constructed prediction tasks in which only a fraction of the

training labels were available for the primary prediction task, but

the full dataset was available for the auxiliaries. We simulated this

for AKI, MV, CRRT, and vasoactive medications as primary end-

points using 1%, 5%, and 10% of the training labels—with mortal-

ity, LoS, and labs and vitals as auxiliaries with 100% of labels. The

4 primary tasks are harder to timestamp, as they rely on multiple

variables that are heterogeneously encoded in the EHR. The auxil-

iary tasks are straightforward to timestamp because they are reliably

encoded in the EHR. Label efficiency experiments compared

SeqSNRtask_best and ST on the full input feature set.
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RESULTS

Patient characteristics
Table 1 shows descriptive statistics for the study population, and the

subpopulations with positive labels for the 6 endpoints. Figure 2

shows a Venn diagram of patients with at least 1 positive label for

AKI, first MV, CRRT, and vasoactive medications.

Model comparison
Table 2 summarizes the discriminative performance (AUPRC and

AUROC) of each architecture for the full and reduced feature sets.

In Table 3, we report the outcome of the Wilcoxon signed rank tests

for pairwise comparison of results obtained by ST, SB, and SeqSNR.

Outcome prevalence denotes the percentage of the positive class in

Figure 1. Comparison of single-task (ST), shared-bottom (SB) multitask, and sequential subnetwork routing (SeqSNR) architectures, showing simplified depic-

tions of the embedding, recurrent neural network (RNN), and task modules.
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the test set (timestep-level prevalence). PR and ROC curves are pro-

vided in the Supplementary Appendix.

For the full feature set, when compared with ST, SB shows equiva-

lent performance for MV and mortality (2 of 6 tasks), positive transfer

for CRRT Dialysis (1 of 6 tasks), and negative transfer for AKI, vaso-

active medications, and LoS (3 of 6 tasks) (Tables 2 and 3). SeqSNR

outperforms SB on AKI, CRRT, vasoactives, and mortality (4 of 6

tasks). Both show equivalent performance on LoS (1 of 6 tasks), while

SeqSNR underperforms on first MV (1 of 6 tasks). Compared with

ST, SeqSNR demonstrates positive transfer on AKI, CRRT, mortality,

and LoS (4 of 6 tasks) and negative transfer on MV and vasoactives (2

of 6 tasks). In summary, SeqSNR shows a modest performance boost

relative to SB and ST for the majority of tasks.

For the reduced feature set, compared with ST, SB shows positive

transfer for CRRT and mortality (2 of 6 tasks), equivalent perfor-

mance on MV and vasoactive medications (2 of 6 tasks), and nega-

tive transfer for AKI and LoS (2 of 6 tasks). Compared with SB,

SeqSNR demonstrates better performance on AKI, MV, vasoactives,

and LoS (4 of 6 tasks); equivalent performance on mortality (1 of 6

tasks); and worse performance on CRRT (1 of 6 tasks). Comparing

SeqSNR with ST, we find that SeqSNR outperforms ST on CRRT

dialysis, vasoactives, MV, mortality, and LoS (5 of 6 tasks), and

both architectures show equivalent performance on AKI (1 of 6

tasks). The results demonstrate trends similar to the experiments on

the full feature set (ie, while SB shows similar performance to ST,

overall SeqSNR outperforms both SB and ST).

There were significant advantages from using the full vs the re-

duced feature set for MV, CRRT, vasoactive medications, mortality,

and LoS (absolute AUPRC uplifts of 41.8%, 44.9%, 25.6%,

16.9%, and 5.8%, respectively, in the ST formulation).

Label efficiency
Performance of both architectures decreased as the percentage of

labels for the index task was reduced. SeqSNRtask_best outperformed

ST across all tasks at the 10%, 5%, and 1% training data reduc-

tions, and the absolute boost of performance was statistically signifi-

cant for all cases (Table 4). There were large improvements for

specific tasks, eg, first MV at 1% (AUPRC and AUROC boosts of

4.9%). We excluded SB from these experiments because, as shown

in previously, SeqSNR outperforms it. CRRT dialysis was excluded

for the 1% label scenario because the models do not converge during

training, likely due to the low label prevalence of CRRT Dialysis.

DISCUSSION

This study is a proof of concept for SeqSNR with EHRs, demon-

strating that this flexible framework for multitask prediction has

benefits over traditional multitask and ST learning. While there

were modest boosts in discriminative performance relative to naive

multitasking on certain tasks, the main advantage of SeqSNR is its

performance in low-training-label scenarios (label efficiency).

Label efficiency is a useful property given the challenges of

assigning endpoint labels in EHR datasets, often requiring manual

review by clinicians. The ability to exploit multiple endpoints, some

of which may be more straightforward to label (eg, LoS or mortal-

ity), could reduce the requirements for manual curation on more

challenging endpoints that are encoded heterogeneously (eg, MV).

Notably, this approach is different from the classical transfer learn-

ing paradigm of pretraining and fine tuning. Instead of a 2-step pro-

cess, we use a single-step process in which all the tasks are jointly

trained under a multitask framework. The improved label efficiency

of SeqSNR corresponds with the few-shot learning experiments con-

ducted by McDermott et al,23 which found that MTL pretraining

preserved performance at subsampling rates as low as 0.1% of train-

ing data.

Besides the low-label scenario, there is also the issue of negative

transfer across EHR prediction tasks, which was reported by

McDermott et al23 for most common MIMIC-III endpoints. Our

Figure 2. Patient-level overlap of acute kidney injury (AKI), first mechanical ventilation (MV), continuous renal replacement therapy (CRRT), and vasoactive medi-

cation labels.
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results corroborate these findings, demonstrating that SB MTL tends

to show a performance drop relative to ST learning. We find that

the degree of negative transfer varies depending on the index task

and is more common when using the full feature set. McDermott et

al23 propose a solution involving multistage training (MTL pretrain-

ing followed by ST fine tuning); however, this carries the risk of cat-

astrophic forgetting.46 We propose SeqSNR as an alternative

approach for mitigating negative transfer via soft parameter sharing,

which allows the network to optimize for cross-learning between re-

lated tasks. Although the performance boost from SeqSNR relative

to SB was modest, these results suggest that flexible parameter shar-

ing may be a promising mitigation strategy for negative transfer and

should be further investigated for multitask modeling with EHR

data.

Because most of the EHR literature uses a manually curated set

of clinically relevant features, rather than the entire EHR, we dem-

onstrate results on both a full and a reduced feature set. Across all

tasks and architectures, there was a significant performance drop

when using the reduced feature set. The dimensionality of this fea-

ture set is several orders of magnitude lower than the complete raw

EHR (123 features vs over 70 000 including all medications and

interventions). This reinforces the findings from Toma�sev et al10 and

Rajkomar et al30 that a complete embedding of the EHR can yield

significant performance improvements. However, there is likely a

trade-off between performance and generalizability because the full

EHR contains many operational factors that are site-specific.

As a benchmarking exercise, this paper presents state-of-the-art

or near-state-of-the-art performance across the 6 ICU endpoints

when the full feature set is used. Although static predictions (trig-

gered at a single time point during an admission [eg, 24 hours]) are

more commonplace in the literature, comparable continuous predic-

tion results on MIMIC-III are presented in other studies,11,22,23,47 al-

though these all use more limited, manually curated input features

(ranging from 17 to 136 features). Our results for mortality in 48

hours on both feature sets exceed the mortality in 24 hours results

presented in Harutyunyan et al,22 independent of the ST/SB/SeqSNR

Table 2. Comparison of ST, SB, and SeqSNR performance on the full and reduced feature sets

Task Prediction Horizon Outcome Preva-

lence (%)

Feature

Set

Model AUPRC (%) AUROC (%)

AKI 48 h 12.6 Full ST

SBtask_best

SeqSNRtask_best

47.4 (43.2-51.8)

46.1 (41.7-50.0)

48.1 (44.4-51.3)

78.9 (77.3-80.5)

78.4 (76.5-80.1)

79.3 (77.7-80.9)

Reduced ST

SBtask_best

SeqSNRtask_best

47.2 (43.6-50.6)

45.7 (42.3-49.7)

47.2 (43.5-51.4)

78.1 (76.4-79.7)

77.7 (76.3-79.6)

78.2 (76.6-80.0)

CRRT dialysis 12 h 0.4 Full ST

SBtask_best

SeqSNRtask_best

56.8 (49.5-62.8)

57.9 (49.8-65.0)

58.5 (50.1-64.9)

98.2 (97.2-100.0)

97.9 (96.7-99.3)

97.8 (96.4-99.4)

Reduced ST

SBtask_best

SeqSNRtask_best

11.9 (8.5-14.6)

13.0 (8.5-15.9)

12.6 (8.9-15.4)

96.7 (95.5-97.8)

96.5 (95.3-97.7)

96.5 (95.4-97.6)

Vasoactive medications 12 h 1.8 Full ST

SBtask_best

SeqSNRtask_best

45.6 (42.6-48.7)

39.4 (36.5-42.5)

40.5 (37.5-43.8)

93.0 (92.0-94.0)

92.7 (91.8-93.6)

92.7 (91.9-93.5)

Reduced ST

SBtask_best

SeqSNRtask_best

20.0 (17.8-21.9)

20.3 (18.2-22.2)

21.1 (18.8-23.3)

84.5 (83.0-85.9)

85.3 (84.2-86.4)

85.6 (84.3-86.8)

First MV 12 h 3.4 Full ST

SBtask_best

SeqSNRtask_best

65.6 (61.9-68.9)

64.6 (61.1-68.1)

64.4 (60.9-68.3)

91.4 (89.6-93.0)

92.5 (91.0-93.8)

92.3 (90.9-93.7)

Reduced ST

SBtask_best

SeqSNRtask_best

23.8 (21.2-26.1)

23.9 (20.6-26.7)

24.5 (21.4-27.2)

81.3 (79.3-83.1)

81.1 (79.1-83.1)

80.6 (78.6-83.2)

Mortality 2 d 3.3 Full ST

SBtask_best

SeqSNRtask_best

58.0 (55.0-61.1)

58.0 (54.8-60.8)

58.6 (54.9-61.5)

93.7 (92.8-94.6)

93.3 (92.3-94.4)

93.9 (93.1-94.7)

Reduced ST

SBtask_best

SeqSNRtask_best

41.1 (37.2-45.1)

42.3 (38.8-45.5)

42.5 (38.3-46.4)

89.4 (88.3-90.9)

90.7 (89.6-91.8)

90.5 (89.3-91.7)

Remaining LoS �48 h 40.0 Full ST

SBtask_best

SeqSNRtask_best

85.2 (84.3-86.0)

84.3 (83.5-85.0)

85.4 (84.6-86.1)

88.8 (88.3-89.3)

89.0 (88.4-89.5)

89.0 (88.4-89.6)

Reduced ST

SBtask_best

SeqSNRtask_best

79.4 (78.5-80.5)

79.1 (78.0-80.0)

79.7 (78.6-80.8)

85.3 (84.7-86.0)

85.3 (84.5-86.1)

85.7 (85.0-86.5)

AKI: acute kidney injury; AUPRC: area under the precision-recall curve; AUROC: area under the receiver-operating characteristic curve; CRRT: continuous re-

nal replacement therapy; ICU: intensive care unit; LoS: length of stay; MV: mechanical ventilation; SB: shared bottom; SeqSNR: sequential subnetwork routing;

ST: single task.
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architecture used. Wang et al11 predicted vasopressor and ventilator

onset with a different formulation, framing it as a 4-class multilabel

classification over a 4-hour prediction window offset by 6 hours

from the time of inference. Our results on the full feature set

exceeded the performance on the onset prediction task for both va-

soactive medications and MV.

This study has a number of important limitations. First, we dem-

onstrate these results on a single EHR dataset with ICU-related end-

points. While this is a valuable proof of concept, further

investigation is warranted on other datasets and task combinations

to evaluate the generalizability of SeqSNR. Second, several of the

tasks (eg, MV) typically have very early onset in the ICU admission

(because respiratory support is often the reason for ICU transfer),

meaning that the prediction window was extremely short. Future

work could evaluate SeqSNR on endpoints with longer prediction

horizons and more straightforward interdependencies. Third, there

is a lack of consensus on how best to report confidence bounds in

EHR studies. We have used the conservative approach of patient-

level bootstrapping22; however, this leads to wide confidence inter-

vals due to the heterogeneity in the patient population. To combat

this issue, we performed the Wilcoxon signed rank test to pairwise

compare ST, SB, and SeqSNR on the bootstrapped samples and

have drawn conclusions based on the outcome of these tests. Finally,

we emphasize that these are prototype models to demonstrate meth-

ods. In order to translate these models into deployment, more rigor-

ous evaluation would be needed including prospective validation

and detailed case review.

CONCLUSION

MTL is a promising approach for clinical predictions because it

learns generalizable representations across tasks and mirrors the

interdependencies of physiological systems. We show that naive

multitasking has variable performance compared with ST learning,

with the possibility for negative transfer. We introduce a time series

Table 3. Wilcoxon signed rank test for pairwise comparison of performance obtained by ST, SB, and SeqSNR on the full and reduced fea-

ture sets.

Task Feature Set Pairwise Comparison P Value for AUPRC P Value for AUROC

AKI Full ST vs SB <.001 <.001

SeqSNR vs SB <.001 <.001

SeqSNR vs ST .002 <.001

Reduced ST vs SB <.001 <.001

SeqSNR vs SB <.001 <.001

SeqSNR vs ST .635 .060

CRRT dialysis Full ST vs SB .003 <.001

SeqSNR vs SB .035 .739

SeqSNR vs ST <.001 <.001

Reduced ST vs SB <.001 .019

SeqSNR vs SB .002 .679

SeqSNR vs ST <.001 .063

Vasoactive medications Full ST vs SB <.001 <.001

SeqSNR vs SB <.001 .888

SeqSNR vs ST <.001 <.001

Reduced ST vs SB .020 <.001

SeqSNR vs SB <.001 <.001

SeqSNR vs ST <.001 <.001

First MV Full ST vs SB .330 <.001

SeqSNR vs SB <.001 .006

SeqSNR vs ST <.001 <.001

Reduced ST vs SB .149 .005

SeqSNR vs SB <.001 .011

SeqSNR vs ST <.001 <.001

Mortality Full ST vs SB .081 <.001

SeqSNR vs SB .019 <.001

SeqSNR vs ST <.001 <.001

Reduced ST vs SB <.001 <.001

SeqSNR vs SB .203 <.001

SeqSNR vs ST <.001 <.001

Remaining LoS Full ST vs SB .021 <.001

SeqSNR vs SB .271 .021

SeqSNR vs ST .025 <.001

Reduced ST vs SB <.001 .186

SeqSNR vs SB <.001 <.001

SeqSNR vs ST <.001 <.001

To adjust for multiple hypothesis testing, we perform false discovery rate correction considering all experiments performed in this study and report the false dis-

covery rate–adjusted P values. The P values marked in bold are statistically significant on the 95% confidence limit (a¼ 0.05).

AKI: acute kidney injury; AUPRC: area under the precision-recall curve; AUROC: area under the receiver-operating characteristic curve; CRRT: continuous re-

nal replacement therapy; LoS: length of stay; MV: mechanical ventilation; SB: shared bottom; SeqSNR: sequential subnetwork routing; ST: single task.
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adaptation of a recent subnetwork routing architecture that outper-

forms naive multitasking and ST learning in terms of label effi-

ciency. SeqSNR should be considered for multitask predictive

modeling using EHR data, especially in situations in which training

data are limited or endpoint labels difficult to ascertain.
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Table 4. Label efficiency results showing discriminative performance when the training dataset for the index task is reduced to 1%, 5%, and

10% while the auxiliary tasks have access to all training labels.

Label, Patients Task Predicted Horizon (h) Model AUPRC (%) AUROC (%)

1%, 365 AKI 48 ST

SeqSNRtask_best

P value

31.0 (28.1-33.4)

31.5 (27.9-34.3)

.013

71.3 (69.8-72.9)

72.4 (70.2-74.0)

<.001

Vasoactive medications 12 ST

SeqSNRtask_best

P value

21.2 (18.4-23.5)

22.1 (19.7-24.3)

<.001

83.8 (82.5-85.2)

86.8 (85.5-88.0)

<.001

First MV 12 ST

SeqSNRtask_best

P value

27.4 (23.4-31.0)

32.3 (28.0-35.7)

<.001

78.2 (75.5-80.6)

83.1 (80.8-85.2)

<.001

5%, 1825 AKI 48 ST

SeqSNRtask_best P value

32.6 (29.6-35.5)

35.5 (31.6-38.7)

<.001

72.0 (70.5-73.5)

73.6 (71.8-75.4)

<.001

CRRT dialysis 12 ST

SeqSNRtask_best

P value

28.9 (16.0-38.0)

33.1 (22.9-40.5)

<.001

94.5 (92.5-96.9)

96.7 (95.3-98.1)

<.001

Vasoactive medications 12 ST

SeqSNRtask_best

P value

27.2 (24.3-29.4)

30.7 (28.1-33.3)

<.001

86.4 (84.8-87.8)

89.3 (88.3-90.4)

<.001

First MV 12 ST

SeqSNRtask_best

P value

42.0 (36.4-45.9)

43.1 (38.7-47.1)

<.001

83.4 (81.1-85.7)

85.8 (83.5-87.6)

<.001

10%, 3650 AKI 48 ST

SeqSNRtask_best

P value

33.8 (29.6-37.4)

39.0 (35.1-42.2)

<.001

72.3 (70.2-74.1)

76.0 (74.5-77.5)

<.001

CRRT dialysis 12 ST

SeqSNRtask_best

P value

42.5 (35.0-50.8)

44.2 (36.3-52.6)

<.001

96.7 (95.2-98.4)

96.9 (95.7-98.1)

<.001

Vasoactive medications 12 ST

SeqSNRtask_best

P value

32.1 (29.4-34.6)

33.0 (30.1-36.1)

<.001

89.7 (88.6-90.8)

90.4 (89.4-91.3)

<.001

First MV 12 ST

SeqSNRtask_best

P value

47.3 (40.3-52.8)

48.1 (43.2-51.9)

.013

86.2 (83.5-88.5)

88.1 (86.4-89.6)

<.001

We perform the Wilcoxon signed rank test for pairwise comparison of SeqSNR and ST for each case and report the false discovery rate–corrected P values for

both AUPRC (%) and AUROC (%).

AKI: acute kidney injury; AUPRC: area under the precision-recall curve; AUROC: area under the receiver-operating characteristic curve; CRRT: continuous re-

nal replacement therapy; LoS: length of stay; MV: mechanical ventilation; SeqSNR: sequential subnetwork routing; ST: single task.
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tingstarted/access/forinstructions). More information about
MIMIC-III can be found on their website (https://mimic.mit.edu/

about/mimic/). Modelling source code is available online (https://
github.com/google/ehr-predictions).
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