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Abstract

Haemophilia A is a congenital bleeding disorder affecting one in 5,000 to 10,000

males. To prevent symptomatic disease, injections of recombinant factor VIII

(FVIII) are administered to compensate for insufficient levels of this essential clot-

ting factor. Patients suffering from a severe form of haemophilia A are at increased

risk of forming neutralising antibodies — known as inhibitors — against therapeu-

tic FVIII. A better understanding of the binding characteristics of inhibitors may

aid the selection of optimal haemophilia A therapies, lead to the development of

new therapeutics that are less antigenic, and support future initiatives in person-

alised and precision medicine. With this goal in mind, Classical Molecular Dy-

namics (CMD) in conjunction with Molecular Mechanics/Generalized Born Surface

Area (MM/GBSA) free energy calculations, together with enhanced sampling tech-

niques, have been used to investigate interactions and the dynamics of binding site

residues of the human inhibitory antibody BO2C11 bound to the C2-domain of fac-

tor VIII. In parallel, recombinant bacterial expressions of the C2-domain were initi-

ated with the aim to explore structural changes induced by mutations that abrogate

binding as described previously in surface plasmon resonance experiments. Compu-

tational binding affinity predictions were generally shown to be in good agreement

with experimental findings. Additionally, binding site dynamics were investigated

in detail using customized visualization techniques and an interpretable machine

learning approach. Nevertheless, CMD simulations were insufficient for gaining

insights into structural changes induced by mutations that were determined exper-

imentally to be non-binding, and for exploring the underlying differences between

the bound and unbound structures of the FVIII-C2 domain. To this end, Acceler-
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ated Molecular Dynamics (AMD) and Umbrella Sampling (US) simulations proved

to be appropriate additions to investigate the conformational changes and energetic

differences associated with the binding of BO2C11.



Impact Statement

Today’s understanding of biomolecules is that function is determined by structure

and dynamics rather than structure alone. This is especially relevant for larger

biomolecules like proteins which modulate biological processes by conformational

changes and/or by occupying different conformational states. It is therefore of in-

terest to comprehend how molecular dynamics are able to promote or hinder cer-

tain functions. This knowledge could inspire the development of new or improved

biomolecules for patient treatment or for what is more the regulation of biological

processes in general.

Computational methods, such as Molecular dynamics simulations, have proven

useful in this context and have been used here to investigate the binding of an anti-

body that inhibits the function of replacement Factor VIII - a therapeutic adminis-

tered to patients possessing insufficient levels of this essential blood protein which

is the case in the blood disorder haemophilia A. The development of inhibitory

antibodies that neutralise replacement Factor VIII represents the most significant

challenge to effective haemophilia A treatment and generates costs of hundreds of

thousands of dollars per annum per patient. A better understanding of the binding

characteristics of inhibitory antibodies may aid the selection of optimal haemophilia

A therapies, lead to the development of new therapeutics that are less antigenic, and

support future initiatives in personalised and precision medicine.

With the advent of gene therapy, the rise of autoimmune diseases and allergies

and the apparent need for quicker development cycles for vaccines, which is cur-

rently highlighted by the coronavirus pandemic, the characterization of the interplay

between immune system and biomolecules is getting ever more attention.
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Existing experimental methods capable of providing a detailed characterisation

of antibody binding, such as site-directed mutagenesis assays, are typically expen-

sive, time-consuming and challenging. Computational methods were able to rank

experimentally determined effects of mutations on binding affinity with reasonable

success and provided detailed insights of FVIII C2-domain epitope dynamics which

may guide the design of muteins that evade antibody inhibition. Conducted on

commodity computer hardware, computational methods constitute a convenient and

promising additional research avenue.

It is however difficult to analyse and interpret extensive molecular dynamics

simulations exhibiting hundreds of thousands of atoms and time steps. With exist-

ing methods, the development of a rationale based on atomic motion is a labour-

intensive and error-prone process. Because of this, a new approach has been assem-

bled driven by the use of a readily available interpretable machine learning tech-

nique that can easily be analysed and interpreted. By that, a potentially impactful

site for antibody affinity (residue T2253) was brought to attention which was not

described as such in experiments as well as in binding affinity calculations. Insights

as such may guide experimenters in making well informed and more target-oriented

alterations to biomolecules.

The proposed interpretable machine learning approach is especially well suited

for the extensive spatio-temporal nature of molecular dynamics simulations but is

generally applicable to the interpretation of highly dimensional datasets. It may

very well see a number of applications in all kinds of research areas.
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Chapter 1

Introduction

1.1 Haemophilia A
Haemophilia A is an X-linked recessive bleeding disorder that has been known

since the second century and was later recognized by John Otto in 1803 who de-

scribed haemophilia in family pedigrees and laid the cornerstone for modern re-

search. There are reported cases of acquired haemophilia A with an incidence of 1

in a million per year [1]. Much more common is hereditary haemophilia A, which

affects one in 5,000 males, but is still comparatively rare and therefore classified as

an orphan disease, with a total number of about 180,000 cases worldwide in 2018

[2]. Since it is inherited in an X-linked recessive manner, haemophilic women are

extremely rare. Costs per haemophilia A patient per year easily exceed 100,000

pounds, which is almost exclusively due to the consumption of replacement factor

VIII [3]. Expenditures further increase in patients that form inhibitory antibodies

against therapeutic factor VIII [2, 4].

1.1.1 Haemophiliacs experience prolonged bleeding episodes

Insufficient levels or complete absence of functional blood protein factor VIII

(FVIII) are the cause of haemophilia A, which results in prolonged bleeding

episodes after injury or spontaneous joint and soft tissue bleeds. Special precautions

have to be taken to prepare patients for surgery. For patients with very low levels

of FVIII, joint bleeds account for 80% of incidents that can result in irreversible

damages to bones and cartilages [2]. Previously, it was therefore commonly rec-
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ommended that haemophiliacs refrain from physical activity resulting in reduced

mobility which besides acute and chronic pain causes a higher level of experienced

morbidity [5]. However, care has improved significantly over the last decade and

physical activity is now recommended for haemophiliacs [6].

1.1.2 Factor VIII is crucial for blood coagulation

FVIII is a large (280 kDa) glycoprotein that performs crucial functions in the blood

coagulation cascade. Dysfunctional FVIII stems from one or multiple mutations

in the genes responsible for the B-domain truncated FVIII amino acid sequence.

The chromosomal location of the FVIII gene is the q arm of the X-chromosome

at position 28, and is inherited in an X-linked recessive pattern [7]. Expression of

FVIII takes place in the liver and possibly other regions bearing endothelial cells,

such as the lung but the literature has yet to come to a final conclusion in this matter

[8, 9].

Upon release into the blood stream FVIII binds tightly in non-covalent fashion

to von Willebrand factor (VWF) whereas FVIII not bound to VWF gets rapidly

removed from the blood stream [10]. Initially, thrombin stemming from the point of

vascular injury cleaves FVIII which results in dissociation from VWF and activated

FVIII (FVIIIa) that is able to function as a cofactor to activated factor IX (FIXa) on

phospholipid surfaces found on blood platelets (figure 1.1, 1.2). The role of FVIII

as a cofactor with no enzymatic activity represents an exception in the coagulation

cascade, that is only shared with its homolog factor V. By far the majority of proteins

involved in blood coagulation are proteases that are synthesized as zymogens that

require activation.

The complex of FVIIIa with FIXa accelerates the activation of factor X 105

fold which in turn leads to more thrombin that activates even more FVIII and FIX.

This positive feedback loop greatly increase the availability of thrombin that is

needed in vast quantities for cleaving fibrinogen into fibrin and the activation of

factor XIII. Factor XIII is a transglutaminase that catalyses the formation of isopep-

tide bonds between fibrin lysines and glutamines, cross linking and stabilizing the

fibrin to finally form the blood clot. A derogation of the positive feedback loop
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Figure 1.1: The proteolytic activation of FVIII: Thrombin is cleaving the light chain (A3,
C1, C2) which reduces the affinity to VWF that in turn is competed off by the
higher affinity to phospholipid membranes (PL). To function as a cofactor to
FIXa the heavy chain (A1, A2) of FVIII has to be cleaved which results in a
release of the B-domain. FVIIIa is the non-covalently bound complex of the
heavy chain and light chain of FVIII.

by low levels of functional FVIII therefore leads to prolonged bleeding episodes

[7, 11, 12].

Inactivation of FVIIIa is facilitated by protein C that cleaves the A1 and A2

domains which are then transported to intracellular degradation pathways mainly

by members of the low-density lipoprotein (LDL) receptor family [13, 14].

An overview of the function of FVIII in the coagulation cascade is given in

figure 1.3.
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Figure 1.2: Structure of activated factor VIII (FVIIIa); green: Heavy chain; blue: light-
chain (reproduced from [15])
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Figure 1.3: The FVIII positive feedback loop: FVIII dissociates and gets activated by
thrombin and by FXa. It forms a complex with FIXa on the phospholipid sur-
face of platelets (PS) in a calcium dependent manner. This complex accelerates
the activation of FX by 105 fold. Activated FX in complex with FVa further
activates more FVIII and thrombin. Dashed lines: proteolytic activity; dashed
ovals: complexes (adapted from [16])

1.1.3 Haemophilia A therapy depends on the severity level

Before the 20th century, blood transfusion was the only means of treating prolonged

bleeding which was often fatal for patients since transfused blood did not provide

enough clotting factor. The application of raw blood or plasma was then more and

more replaced by specific therapeutics mitigating the effect of the missing factor

in the coagulation cascade which lead to the usage of clotting factor VIII derived

from plasma in 1955 for the treatment of haemophilia A patients. With it came

a great increase in life-quality and life-expectancy for haemophiliacs but this was

sadly reversed when it became apparent that in many cases replacement clotting

factor was contaminated by blood-borne viruses, mainly HIV and hepatitis C [17].

Different techniques were developed to deactivate viruses in plasma but with the
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Percentage of functional classification and implications
FVIII (relative to normal)
<1 Severe: From early life on regular bleeds into joints,

internal organs, muscles; if untreated joint deformations,
crippling

1-5 Moderate: spontaneous bleeds possible, bleeding
after slight injuries

>5 Mild: Bleeding during surgery and after major
injuries only

Table 1.1: Overview of severity classification (reproduced from [20])

ability to produce recombinant factor VIII since 1992 this became the standard of

care in developed countries.

In practice, three different levels of severity are distinguished depending on

the percentage of functional coagulation factor. For an overview see table 1.1. Mild

haemophilia A can be treated on-demand by administering 1-Diamino-8-D-arginine

(DDAVP) which raises the release of FVIII from endothelial cells. However a pro-

phylactic treatment seems to be a better choice for all patient groups. Long-term

patient health as well as quality of life are superior over on demand solutions, es-

pecially for children, since insufficient levels of FVIII increase incidences of crip-

pling haemarthroses in this patient group [18, 19]. For haemophilia A there is an

increasing number of prophylactic treatment options available. The NHS recom-

mends prophylactic treatment with Emicizumab, a bispecific antibody mimicking

the function of FVIIIa by forming a complex with both FIX and FX [21, 22]. A

very promising direction is gene therapy that has been successfully applied to cure

haemophilia B and should soon be available for haemophilia A patients [23, 24],

although this option might not be initially available for patients that are at risk of

developing inhibitors. An overview and outlook of therapies can be found in Hoff-

brand’s excellent guide on haematology [7].
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1.1.4 Inhibitory antibodies to factor VIII complicate therapy

Today, the most significant complication associated with the treatment of

haemophilia A is the development of inhibitory antibodies (inhibitors) that neu-

tralise the pro-coagulant function of the replacement FVIII products [25]. Inhibitor

formation occurs in around 30% of individuals with severe haemophilia A and is

accompanied by a reduced quality of life and life expectancy as well as increased

costs per patient. With the proper treatment these drawbacks can be mitigated

[26, 27].

1.1.4.1 Inhibitors mask functional surfaces on the FVIII C2-domain

Inhibitors form as a result of a MHC class II cellular immune cascade which in-

volves proliferation of CD4+ T lymphocytes that recognize antigens on different

domains of the FVIII molecule. This mechanism is also taking place in immune

systems of non-haemophiliacs but is hindered by natural anti-idiotypic antibodies.

Current research suggests that the C2-domain of FVIII in its inactive form is a prime

target for inhibitory antibodies [28]. The inhibition at this location is induced by

masking functional epitopes for VWF and phospholipid membranes binding as will

be discussed in detail in section 1.1.4.4. Different potential risk factors have been

reported that promote inhibitor formation spanning from the preparation of thera-

peutics to the state of patients [29, 30]. Combined with the varying epitopes that

get recognized it is challenging to consolidate the different research results, which

are often based on small cohorts because of the rareness of haemophilia A, to find

an immunologic answer to prevent inhibitor development. Further, inhibitor preven-

tion gets complicated by the different mechanisms at play in congenital and acquired

haemophilia, and differences between patients who create some FVIII (functional

or non-functional) and those who create none [31].

1.1.4.2 Immune tolerance induction is commonly used to treat pa-

tients with inhibitors

The treatment of patients with inhibitors is a major challenge; the most effective

therapy differs between patients and is hard to predict, and new therapeutic options
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are needed for those patients who respond poorly to existing treatment regimens

[32]. To prevent inhibitor formation in the first place, replacement FVIII risks are

considered as well as patient history and ancestry [18, 33]. Immune tolerance induc-

tion (ITI) by administration of high doses of recombinant factor VIII is the standard

therapeutic approach today and recommended by the National Health service UK

and US authorities [21, 34]. There are endeavours to provide a more targeted ITI,

choosing case-specific products and doses, to eventually prepare inhibitor patients

for gene therapy and also reduce costs [35].

1.1.4.3 A range of FVIII replacement products is available today

A field of interest in haemophilia A research is the development of therapeutic FVIII

products with reduced antigenicity. Porcine FVIII, which has 24 amino-acid differ-

ences to the human FVIII C2-domain alone is associated with reduced antigenicity

[36] and exhibits low cross-reactivity from anti-human FVIII antibodies [37], has

been used therapeutically for decades, initially as a plasma-derived product and

more recently in recombinant form [38, 39]. Various hybrid human/porcine FVIII

molecules have been developed [40, 41] and there is continuing interest in under-

standing how non-porcine FVIII orthologs may aid the development of improved

FVIII products [42]. A complementary strategy for reducing antigenicity involves

mutating residues in key B-cell epitopes of human FVIII [43, 44, 45]. A newer

strain of research are bio-engineered factor VIII products that are found to be less

immunogenic, e.g. the fusion protein rFVIIIFc in which the B-domain of FVIII is

replaced by the Fc domain of human IgG1 [46] or by binding the light and heavy

chain of FVIII covalently to form a recombinant B-domain-truncated factor VIII

single chain [47]. Other research is focusing on developing so called ’bypassing

agents’ that, for example, imitate the function of activated factor VIII by forming a

complex between factor IXa and factor X [22]. An overview of current endeavors

can be found in the summary of Pipe and co-workers [48]. Given the growing em-

phasis on personalised and precision medicine, it seems reasonable to expect that

target-oriented and highly specialized approaches will become increasingly rele-

vant [49]. Further, recent breakthroughs in gene-therapy for haemophilia B [50]
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and haemophilia A [51] add another emerging treatment option. A better under-

standing of inhibitors and their epitopes is likely to be important both in the design

of new therapeutics and in aiding the selection of the best treatment regimen for a

given individual [27, 48, 52].

1.1.4.4 Multiple studies identify areas of antigenic residues on the

FVIII C2-domain

Functional epitopes of the FVIII protein are found mostly in the A2 and C2 do-

mains which are responsible for binding to von Willebrand factor, phospholipid

membranes and FIXa[28]. Inhibitors mask these regions and induce the clearance

of inactive FVIII from the blood stream, inhibit the formation of the tenase com-

plex or the activation of FVIII by thrombin or FXa and cause the disruption of the

positive feedback loop described in section 1.1.2.

The 15 kDa C2-domain of FVIII has been described as a prime target for in-

hibitors by Prescott and co-workers [53]. Research efforts followed with the goal to

characterize mechanisms of inhibition and locate antibody epitopes.

The first detailed insights into C2-domain specific antibodies was provided

by Shima and co-workers [54]. They narrowed down antigenic regions for two

inhibitors to residues 2170-2327 and 2248-2312 (figure 1.8); bearing in mind that

the C2-domain of the FVIII sequence runs from Ser2173 through to Tyr2332. It

has been shown that the recognition of antibodies in these regions inhibit the non-

covalent complex both with VWF and with phospholipid membranes.

Subsequently, Scandella and co-workers investigated six human inhibitors that

were found to bind to the isolated FVIII C2-domain [55]. An overlap of antibodies

with C2-domain surfaces responsible for binding to phospholipid membranes was

determined as the cause for rendering FVIII dysfunctional. They further located the

core region of antigenic recognition to residues 2248 to 2312 (figure 1.8).

Detailed research of another C2-domain specific antibody, the IgG4 human

monoclonal inhibitor BO2C11, has been carried out by Jacquemin and co-workers

[56]. They discovered that inhibition takes place through hindrance of bond forma-

tion with VWF as well as with phospholipid membranes. Surface plasmon reso-
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nance (SPR) measurements indicate that BO2C11 has a very low off rate compared

to VWF [56]. This suggests that after dissociation from VWF the association of

BO2C11 with FVIII is virtually non-reversible. BO2C11 was further found to rec-

ognize an antigenic region spanning from residue 2173 to 2332 (figure 1.8).

In the same year, Healey and co-workers mapped a hot-spot for inhibitory anti-

bodies against therapeutic (alloantibodies) and patients’ own FVIII (autoantibodies)

on the C2-domain [57]. Their study design made use of the different binding be-

haviour of inhibitors between human and porcine FVIII. Introduction of the porcine

sequence Glu2181-Val2243 to human FVIII made it significantly less antigenic for

a series of 6 C2-domain specific inhibitors.

The C2-domain as a prime target for inhibitors was also confirmed in a clinical

study of Laub and co-workers [58]. The study reports that the majority of FVIII

inhibitors bound to the C2-domain in a study of patients treated with injections of

recombinant FVIII in Germany with similar results reported for Belgian patients

[59].

The first structure of the C2-domain was then published by Pratt and co-

workers with a resolution of 1.5 Å [60]. The amino-acid sequence of the FVIII C2-

domain crystal-structure (PDB 1d7p) differs from wild-type recombinant FVIII ow-

ing to the introduction of substitution S2296C for crystallographic purposes (mer-

cury derivatization). The topology of surface residues indicates that the binding

of phospholipid membranes involves the hydrophobic region consisting of two β-

hairpins (M2199/F2200 and L2251/L2252) and a loop region containing V2223. At

least 4 basic residues - R2215, R2220, R2320, K2249 - are found at or in the vicin-

ity of that region. The docking to phospholipid membranes is believed to involve a

combination of hydrophobic and electrostatic contributions.

This work was followed by solution of the structure of the BO2C11 fab frag-

ment bound to the FVIII C2-domain by Spiegel and co-workers (PDB 1iqd) which

also contained the mutation S2296C [61]. The structure suggests that negatively

charged aspartic acids in the antigen recognizing site form salt links with residues

R2220 and R2215. These two positively charged residues are also proposed to
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interact with negatively charged surfaces on the binding of FVIII to phospholipid

membranes. For the β-hairpins M2199/F2200 and L2251/L2252, polar, hydropho-

bic as well as van der Waals interactions have been determined to contribute to

binding affinity. The authors also point out that, compared to the apo conformation

of the FVIII C2-domain reported by Pratt, the holo (bound) conformation contains

a twist of about 90° in the β-hairpin M2199/F2200.

Research carried out by Barrow and co-workers [62] was inspired by differ-

ences in the amino-acid sequence of murine, porcine, canine and human FVIII, and

investigated phospholipid membrane binding and titers of 5 C2-domain specific

polyclonal human antibodies, including the human antibody BO2C11, by using

a one-stage clotting-assay. They incubated their B-domain deleted (BDD)-FVIII

wild-type and mutants with increasing levels of inhibitors until 50 percent proco-

agulant activity was lost. This measurement, called the Bethesda unit, reports the

potency of the antibody in hindering function but could also be seen as a proxy

for binding affinity. The fact that increasing levels of inhibitor influence function

gives evidence that the impairment is attributable to antigenicity and structure rather

than structure alone. Some of their mutants, such as F2200L, remain functional

even with greater quantities of BO2C11 which suggest that antigenicity was greatly

decreased, whereas M2199I loses its coagulant capabilities with lower levels of

BO2C11 than for the wild-type (table 1.5). It is therefore reasonable to assume that

M2199I has higher affinity to BO2C11 than the wild-type.

Meeks and co-workers produced 30 (29 mouse, 1 human) monoclonal an-

tibodies (MABs) and let them bind competitively to FVIII in an enzyme-linked

immunosorbent assay (ELISA) and further report FVIII inhibition titers using the

Bethesda assay for selected antibodies [63]. Their focus was to identify antibody

epitopes on the FVIII C2-domain and to analyse the effect of introduced muta-

tions. By letting antibodies compete over binding they could form 5 groups of an-

tibodies that belong to 3 core and 2 overlapping epitope regions on the C2-domain

(figure 1.6). It showed that the human antibody BO2C11 was located in group

AB along with 6 mouse antibodies, making the epitopic region belonging to group



1.1. Haemophilia A 27

AB the second most common target in this study. For antibody I109 belonging to

the same antigen-recognizing group as BO2C11 they detected that the double mu-

tant M2199I/F2200L on the β-hairpin produces a loss in antigenicity in a Bethesda

assay. Whether the double mutant alters the affinity of the FVIII C2-domain to

phospholipid membranes has not been validated in this study. Still, since I109’s

proposed inhibition mechanism includes the masking of the binding site of phos-

pholipid membranes, this finding adds to the observation by Spiegel et al. [61]

that positively charged surfaces in the vicinity of the M2199/F2200 β-hairpin are

important for protein function.

Table 1.3 shows the results of the thermodynamic van’t Hoff analysis for 9 mu-

tants and the wild-type carried out by Lin et al. [44]. It showed that for the wild-type

and most mutants the entropic contribution T ∆S is much larger than the enthalpic

contribution ∆H. Hence the binding is predominantly entropically driven. After

the identification of M2199 and F2196 mutants as promising in terms of destabiliz-

ing the binding to BO2C11 and further retaining the ability to bind to phospholipid

membranes proven in a one stage clotting assay, they produced the BDD wild-type

(WT), BDD-F2196K and BDD-M2199A and report KD values for binding to VWF

and BO2C11 (table 1.4). They identified that M2199A and F2196K have compara-

ble binding affinities to VWF as the WT and decreased affinity to BO2C11.

BO2C11 blocks FVIII binding to von Willebrand factor and phospholipid mem-

branes [56] and binds to a region of the C2-domain targeted by multiple human in-

hibitors [57, 64, 65], including three that share the VH1-24 germline with BO2C11

[64].

So far, computational studies involving the FVIII C2-domain have been carried

out to determine differences between the zymogenic and activated form [66], to

describe membrane binding mechanisms [67, 68] and for a virtual screening of

small ligands [69].
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FVIII-C2 variant KD=kd/ka (pM)
WT-FVIII-C2 9
F2196A 147
T2197A 10
N2198A 56
M2199A ka >3.0 × 107

F2200A 240
R2215A 150
R2220A NB
R2220Q NB
Q2222A 5
V2223M 6
S2250A 22
L2251A 6
L2252A 6
T2253A 10
Q2311A 3
H2315A 5
Q2316A 25

Table 1.2: KD values of the WT and mutants of the BO2C11 complex with the FVIII C2-
domain determined by surface plasmon resonance measurements (reproduced
from Lin and co-workers[44]). The association constant of M2199A was over
the physical limit of the instrument. The cause of non-binding of mutations
R2220A and R2220Q has not been determined in the literature yet; Nguyen et
al. propose a large-scale change in conformation [70]. Reported errors were
below 2.5 pM except for N2198A with 14 pM due to an unusually high kd value.
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Figure 1.4: Crystal-structure of the apo FVIII C2-domain solved by Pratt et al. [60]; Hy-
drophobic residues (red) especially those at the tip of β-hairpins as well as
positively charged residues (blue) are suggested to contribute to phospholipid
binding.
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Figure 1.5: Modified Bethesda assay conducted by Barrow et al. [62] of the B-domain
deleted WT FVIII (HB-), with point mutations (M2199I, F2200L, ..) as well as
with multiple mutations introduced (C2 D1, C2 D2 ...). Point mutation M2199I
has a higher Bethesda unit than HB-, meaning that lower concentrations of
antibody BO2C11 are needed for FVIII to lose 50% of its coagulant function,
which in turn indicates that this substitution might somewhat increase binding
affinity. On the other hand, F2200L has been found to be less antigenic than
the WT (reproduced from [62]).
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Figure 1.6: Antibody grouping by epitope regions as described by Meeks et al. (reproduced
from [63]); *Group AB contains BO2C11, the only human antibody that was
part of the ELISA experiment, which has been found to overlap with antigenic
regions of both group A and B.

FVIII-C2 variant ∆HA°(kJ/mol) T∆SA° (kJ/mol) KD (pM)
WT-FVIII-C2 -14 54 1
F2196A -18 38 154
T2197A -12 52 6
N2198A -13 45 68
M2199A -16 44 30
F2200A -18 37 230
R2215A -18 49 100
S2250A -3 57 30
L2251A -31 35 3
L2252A -49 14 9

Table 1.3: Thermodynamic (van’t Hoff) analysis of binding site affinity carried out by Lin
and co-workers (reproduced from [44]). Measurements were taken over a range
of 10°C to 40°C with 5°C increments for mutations that are at or over the limits
of the equipment as measured in table 1.2. It appeared that binding is mostly
entropically driven (high T ∆SA° values). Measuring errors were reported as
under 1 kJ/mol, however N2198A showed the most variability in the included
van’t Hoff plots (refer to Figure 2 in the original paper [44])
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Figure 1.7: Positively charged surfaces (blue) in the vicinity of β-hairpin M2199/F2200
(orange); antibody I109 belonging to the same antigen-recognizing group
as antibody BO2C11 inhibits the function of FVIII by masking VWF and
phospholipid membrane binding sites on the C2-domain; the double mutant
M2199I/F2200L was found to abrogate binding to antibody I109 [63]. If this
mutant influences the binding to phospholipid membranes has not been inves-
tigated in this study. The structural analysis of Spiegel et al. [61] points out
the importance of the β-hairpin M2199AF2200 since positively charged sur-
faces are located in its vicinity that are supposed to bind to negatively charged
regions found on phospholipid membranes.
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Complex KD=kd/ka (pM)
WT-BDD-FVIII/VWF 290
BDD-FVIII-F2196K/VWF 200
BDD-FVIII-M2199A/VWF 250
WT-BDD-FVIII/BO2C11 21
BDD-FVIII-F2196K/BO2C11 580
BDD-FVIII-M2199A/BO2C11 92

Table 1.4: B-domain deleted FVIII affinities to BO2C11 and to VWF (reproduced from
[44]). Lin et al. have shown that mutations F2196K and M2199A decrease
antigenicity while retaining the ability to bind to VWF.
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(a) (b)

(c)

Figure 1.8: Antigenic regions on the FVIII C2-domain identified by (a) gold: Shima et al.
[54] and Scandella et al. [55]; green: Jacquemin et al. [56] and Healey et al.
[57] (b) plum: Pratt et al. [60] and (c) red: Lin et al. [44]
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1.2 Molecular dynamics simulations to investigate

protein dynamics
Molecular dynamics (MD) is a computational simulation technique dating to the

1950s, with the first simulation of a protein in 1977 [71, 72]. Its attractiveness lies

in the level of spatio-temporal detail, giving a complete description of the system

at atomic resolution at user-defined time-steps. The ongoing advance of computa-

tional power available from commodity hardware, especially the advent of graph-

ical processing units (GPUs) that speed up computing by performing calculations

in a highly parallelised manner, provides the computational power to simulate time

spans that cover some biologically relevant processes [73]. MD is typically used

with a molecular mechanics interpretation of forces between atoms, that are com-

prised of van der Waals, bond length and angle as well as dihedral angle and elec-

trostatic interactions.

MD proved to be a sensible additional route of investigation in the domain of

protein folding [74], regulatory processes [75], structure refinement [76], and gave

insights into transient states [77].

Since most biological macromolecules exist in a state close to equilibrium with

their environment, MD supplements experimental techniques that are only able to

capture snapshots of averaged ensembles on the atomic level. Information about

dynamic conformational changes has improved the understanding of ligand binding

motifs in many cases [73].

In addition to analysing conformational system states, it is possible to analyse

the coordinates and calculated forces produced by molecular dynamics simulations

to get insights into free energy of binding or, more generally, into energetic dif-

ferences between system states. By these means, MD is able to score/rank protein

complexes, which has made it a standard tool in drug-development [73, 78, 79, 80,

81, 82, 83, 84, 85].

For an MD research project, it is necessary to have an atomic structure of

the system under investigation. The Protein Databank holds more than 150,000

structures that could potentially be used for MD [86]. Given a structure, key choices
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need to be made concerning the force field, water model, simulation engine and

length of simulation.

1.2.1 Force Fields: The basis for calculating interatomic forces

As mentioned above, molecular mechanics distinguishes five different energy terms.

A summation of these energies is generally referred to as a force field and gives the

total potential energy Etotal of an atomistic system:

Etotal = Ebonds +Eangles +Edihedrals +Enon−covalent

Enon−covalent = EvdW +Eelectrostatics

(1.1)

where EvdW is the van der Waals energy contribution.

The force field used in this work is the ff14SB which is the recommendation for

protein dynamics by AMBER [87, 88] and has been shown to produce meaningful

results in many cases [89, 90, 91]. This force field represents the refinement of the

ff99SB force field in that its side-chain dihedral parameters were updated based on

empirical findings. All AMBER force fields share the following functional form

[92]:

Etotal = ∑
bonds

kb(l− l0)2 + ∑
angles

ka(θ −θ0)
2 + ∑

dihedral
∑
n

Vn

2
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[
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ri j

(1.2)

Covalently bonded atoms are modelled using a harmonic description kb that is

using the bond length l minus its distance from equilibrium l0 as input. The same

is done for triplets of atoms in the calculation of bond angle energy. Van der Waals

energy is modelled using a Lennard-Jones 12-6 potential where the distance of two

atoms at the minimum of the potential r0,i j is divided by the actual distance of these

atoms ri j. Energy stemming from the 4-body dihedral angle θ ′ is modelled with

a Fourier series and a phase shift of ξ . The electrostatic potential depends on the

atomic charges q and is modulated by the Coulomb constant C and the dielectric
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constant ε0.

The calculation of the potential energy by a force field as the one mentioned

that uses the coordinates of atoms as input is a computationally expensive task.

Short integration time steps of 1 femtosecond are needed for the accurate numerical

integration of the equation of motion for hydrogen bond vibrations [93]. Fortu-

nately, hydrogen bonds can be constrained by using fixed ideal values which makes

it possible to sample the system at larger time intervals with neglectable effects

on geometry [88, 94, 95]. SHAKE [94] and LINCS [96] are two algorithms that

are used frequently to decrease the sampling rate from 1 to 2 femtoseconds with

SHAKE being used through this work. Another method to increase the length of

time steps is ’virtual sites’ which defines virtual interaction sites for hydrogens that

account forces of hydrogen interactions to the closest heavy atoms [97]. Hydrogen

mass repartitioning is another method to enhance the sampling of hydrogen that as-

signs a proportion of the mass of a heavy atom to its covalently bonded hydrogen

atom. Due to the increase of hydrogen mass it is possible to increase the time step

of integration to 4 fs and more [98]. Still, the real-timescale of motion of larger

biomolecules such as e.g. loop motion is in the order of nano seconds and therefore

a vast amount of time steps has to be calculated [99].

1.2.2 Water can be represented at varying levels of detail

When it comes to water models, a trade off has to be made. Very accurate ex-

plicit solvent models add water molecules that are simulated in atomistic resolu-

tion. These models exist with differing degrees of complexity concerning inter- and

intramolecular modelling but all have the disadvantage of being computationally

expensive. On the other hand, implicit solvation approximates the effect of a sol-

vent by a solvation energy term that is added to the force field equation as outlined

in detail in section 1.2.2.2. Both models are considered appropriate for specific

tasks and are used extensively [100].
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Figure 1.9: Left: Solvation with explicit (discrete) water molecules Right: Water bath rep-
resented by a continuum energy term

1.2.2.1 Explicit solvation best resembles physiological conditions

Explicit solvation gives more accurate results but might not be feasible for big-

ger systems. For example, the protein complex investigated in this work consists

of roughly 10,000 atoms including hydrogens. After explicit solvation the system

contains around 200,000 atoms. A solvation of larger structures might come with

an even greater increase in atom count depending on the geometry of the solute. Be-

cause of the previously mentioned increases in computational power due to GPUs it

is nonetheless possible to run expressive explicit solvent simulations in reasonable

real-time.

Explicit solvation is used in this work for the equilibration productions of

crystal-structures and further to produce decorrelated frames for MM/GBSA calcu-

lations (chapter 1.5). A popular choice that has been used here for explicit solvation

is the TIP3P water model [101, 100]. It represents a water molecule by a rigid 3-

body entity that has empirically derived distances and angles and takes into account

the point-charges of hydrogen and the oxygen [102, 101]. A simplified force field

equation is used to calculate the pairwise energy of water molecules, with the goal

to make the calculation of the solvent more efficient:

E = ∑
pairs

( ALJ

roo12 −
BLJ

roo6 +C
qiq j

ri j

)
(1.3)



1.2. Molecular dynamics simulations to investigate protein dynamics 39

Figure 1.10: Parameters and geometry of the TIP3P water model. The three body system
has a negative charge in the centre that is two times that of its hydrogen point
charges. Distance, angle and charges are empirically derived quantities.

where roo is the distance of two oxygen atoms with Lennard-Jones parameters

ALJ,BLJ , C the Coulomb constant and qi,q j charged sites of distance ri j (cut-off

9Å) [103]. In comparison to the FF14SB formulation, here, covalent bonds are not

considered at all. Non-covalent interactions are approximated by interactions of

oxygen and a single charged site.

TIP4P is another rigid water model and an advancement of the TIP3P model.

To better describe the electrostatic properties of water, TIP4P has a Lennard-Jones

interaction site for the oxygen, charged sites at the hydrogen and introduces an

additional negative charge M in the center of the molecule [101].

Another approach that uses explicit solvent are all-atom force fields which

differ from a united-atom force fields like ff14SB in that they incorporate the cal-

culation of the solvent and do more accurately model the solvent as e.g. the solvent

model TIP3P. All-atom force fields such as ff03ws are especially well suited for

simulations of folding and intrinsically disordered proteins [104, 105].
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1.2.2.2 Representing solvent as a continuum speeds up calculation

Implicit solvation models or continuum solvent models are generally less accurate

than explicit models but have been found useful for approximating solvation en-

ergy of receptor-ligand complexes or reducing computational demands in the case

of resource intensive simulations like Replica Exchange MD [102, 106]. Their big

advantage over explicit solvation models lies in the representation of solvent as

continuous medium, which reduces the requirement of calculating energies for the

numerous explicit water molecules [100]. Different approaches exists with the main

branches Poisson-Boltzmann model (PB) and Generalized Born model (GB). PB is

the exact and theoretically sound way to describe the solvent as a dielectric medium

but is very expensive to calculate. GB is the upp to the more exact (PB) equation

which it is less computationally expensive. It further showed that the approximate

but accelerated calculation of the PB equation using numerical solvers produced

less accurate results than the GB model [107]. Hence, it became the more popular

choice for bigger molecules like proteins and DNA [108, 109, 110].

The implementation of AMBER’s Molecular Mechanics Generalized Born Sur-

face Area method (MM/GBSA) splits the calculation of solvation energy into po-

lar/electrostatic and non-polar contributions:

Gsolvation = Gpol +Gnp (1.4)

Calculation of Gpol , the polar solvation energy, is a non-trivial task, due to

polarization effects on the boundary between solvent, having a high dielectric con-

stant, and the solute with a low dielectric constant. The polar solvation energy is

approximated by solving the GB implicit solvent model (see section 1.5).

∆Gpol ≈−
1
2 ∑

i j

qiq j

fGB(ri j,Ri,R j)

(
1− exp(−κ fGB)

ε

)
fGB = [r2

i j +RiR jexp(−r2
i j/4RiR j)]

1/2

(1.5)

Important concepts in GB model 1.5 are that every atom is represented as a

sphere of radius Ri with a charge qi. The atoms of the solute are supposed to be
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filled with a material that has a dielectric constant, in this work ε = 1 was cho-

sen (explanation see section 2.1.3), whereas solvent atoms have a high dielectric

constant, with ε = 80 being the widely adopted choice for water at 300K.

Atomic radii Ri,R j are refined in 1.6 by considering the degree of burial of

an atom within the solute and hence the term ’effective Born radii’. fGB smooths

Ri,R j by taking into account the distance of two atoms ri j. κ is the Debye-Huckel

screening parameter that introduces the interaction energy of ions in the solution to

the calculation.

R−1
i = ρ

−1
i − tanh(αΨ−βΨ

2− γΨ
3)/ρi

ρ i = ρi−o f f set

Ψ = Iρ i

(1.6)

Subtracting an o f f set from the dielectric radius of an atom ρi comes from the no-

tion that its dielectric potential alters the e f f ective radius of a water molecule. The

default value of AMBER is 0.09Å. I calculates the degree of burial of an atom in the

solute, thereby excluding atoms that do not interact with the solvent. This can how-

ever introduce errors in cases where structures have cavities. The model assumes

solvent accessibility even for cavities too small for a water molecule to fit or that

are enclosed. The formula for I and the remaining parameters for the model that

have been optimized by Onufriev et al. can be found in their works [108, 111]. The

exact values for their ’model I’ parameters are α = 0.8, β= 0, γ = 2.909125.

The non-polar contribution of solvation is a combination of the van der Waals at-

traction between solute and solvent and the repelling force of altering the solvent’s

structure. This is approximated in the GB approach of AMBER to have a linear

relationship with surface accessible surface area (SASA) of a structure:

Gnp = γ ·SASA+ const. (1.7)

This equation is called the ’cavity’ term since it calculates the energy needed to

create a cavity in the solvent to fit the solute. It combines the calculated SASA, as
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in [112], of the solute and the surface tension γ of the solvent. For GB ’model I’ of

AMBER the exact values are γ = 0.005 and const.= 0.

For the hydrophobic entropy S that should by the definition of free energy be part of

the equation 1.4 there is no method to speak of to approximate its contribution and

therefore it is not part of the AMBER formulation. The only relation to hydrophobic

entropy is through the empirically derived constant const. and surface tension term

γ in 1.7 in the formulation of non-polar solvation free energy. Entropy calculation

is clearly a weakness that comes with the method and is stated to ”contribute to

the largest fluctuations in the overall free energy” [113] which in turn can lead

to unpredictable performance of the method, e.g. when calculated binding free

energies are compared to experimental results [114].

1.2.3 Thermostats and barostats provide a first impression of

thermodynamic stability

Before the investigation of a phenomenon by the analysis of a simulation, it is com-

mon practice to grant crystal-structures a generous so called equilibration time until

a relatively stable thermodynamic state has been reached and the structure has set-

tled under the novel condition, which include alterations to the structure and/or

solvation and changes in temperature and pressure. An initial idea about such a

stable state in a NPT simulation (constant number of atoms, constant pressure, con-

stant temperature) as the one carried out in this work can be given by the curves of

the thermostat and barostat. After the heating of the system the curve of the ther-

mostat, which gives information about fluctuations in temperature, and the size of

the box which is regulated by the barostat, should converge. Another measurement

that indicates whether the system has reached a thermodynamically stable state is

by investigating the potential, kinetic and total energies. However, these quantities

provide only global information about the dynamics of the structure under investi-

gation and usually a more fine grained picture is aspired, which will be discussed in

section 2.1.2.
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1.2.4 Simulation Engines differ in usability and accessibility

A variety of simulation softwares exists that are optimized to efficiently calculate

atomistic forces mentioned above. AMBER [88], GROMACS[115], NAMD[116],

CHARMM[117] and DESMOND[118] are examples of widely used simulation en-

gines. Criteria that determine the choice of an engine include the ease of use, the

speed of calculation as well as the costs for a licence. GROMACS is open-source

software that is very well curated and has an active user community. The simu-

lation engine AMBER is proprietary with comparable software maintenance and

online support as GROMACS. Depending on the GPU used for simulations, AM-

BER outperforms GROMACS whereas GROMACS might have advantages when

run on CPUs [119, 120]. The Shepherd Group at Birkbeck maintains powerful GPU

servers running AMBER and has made good experiences with this setup investigat-

ing antibody complexes [89] which is why all simulations have been carried out

with the AMBER simulation engine in this work.
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1.3 Accelerated Molecular Dynamics enhances sam-

pling

Nowadays, Classical Molecular Dynamics (CMD) that describes the dynamics of all

atoms as a function of time can be used to investigate protein dynamics in the order

of nanoseconds to milliseconds, depending on system size, computational resources

and the overall time frame of the project [121]. Global conformational changes

however can be in the order of microseconds and quickly get computationally in-

tractable for larger systems [122, 123, 124, 125]. Accelerated molecular dynamics

(AMD) is an enhanced sampling technique that is able to access meta-stable states

that otherwise would take tremendous computing time with CMD [123]. It further

has an advantage over Metadynamics, a related enhanced sampling technique, that

no prior knowledge about the system at hand is needed to apply. Still, parameters of

the method, namely boost potentials as well as thresholds must be chosen appropri-

ately for expressive simulations [124]. A probing of a range of parameters is often

advisable. Little a priori knowledge is also necessary for replica exchange molecu-

lar dynamics simulations but a proper setup is typically much harder to achieve and

very powerful computing resources are needed to run such simulations.

1.3.1 A modified potential to overcome energy barriers

CMD simulations might be stuck in a local minima with energetic barriers too high

to overcome in a reasonable time frame. The quasi non-ergodic nature of large

biological molecules means there is a possibility that significant conformational

changes and other effects may be missed [126]. A path in the potential energy

landscape from one meta-stable state to another is typically a sequence of rarely-

visited conformations [127]. The AMD approach implemented as part of AMBER

adds a bias potential to the potential energy landscape (the potential energy of the

system calculated by the chosen force field) so that simulations more quickly get

out of low energy basins and are able to sample sequences of rare conformations

that lead from one meta-stable conformation to another [128]. Low energy wells

get filled up by a boost potential ∆V (r) if the potential V (r) falls below a predefined
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Figure 1.11: Exemplification of the normal potential as calculated by the force field (solid
line) and boosted potential (dashed line). r is the system state and V (r) the po-
tential energy of that system state. AMD fills low energy wells in the potential
energy surface by adding a boost potential.

threshold as defined by

V ∗(r) =

V (r), V (r)≥ E,

V (r)+∆V (r), V (r)< E,
(1.8)

where V (r) is the normal potential of a system state r. This is also illustrated in

figure 1.11. Parameters to set for an AMD simulation include the threshold for the

energy E and the boost factor α which together influence the bias potential ∆V (r).

For the approach of Hamelberg et al. [128] used here the bias potential is given by

∆V =
(E−V (r))2

α +(E−V (r))
. (1.9)

The AMD implementation in AMBER adds a boost to torsional energy with the
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option for an additional boosting of potential energy. Since this work uses the latter

approach, two boost potentials and two thresholds were calculated. In the course of

this research a script was developed that uses an initial 2 ns CMD simulation to es-

timate appropriate boost potentials and thresholds as recommended by the relevant

AMBER tutorial [129]. The calculation of the threshold for potential energy EthresP

and dihedral energy threshold Ethresdihed as well as respective boost potentials αP

and αdihed use the number of atoms in the system (nall = 221528 for the solvated

structure), the number of residues of the structure under investigation (nres = 156 for

the wild-type C2-domain), the average total potential energy (Epot=-688815.6798)

and average dihedral energy (Edihed=7284.1652) which have been calculated from

a short 1 ns simulation and is given in the following:

EthresP = Epot + 0.16 kcal
mol ∗ nall = −688815.6798 kcal

mol + 0.16 kcal
mol ∗ 221528 =

−653371.1998 kcal
mol

αP = 0.16 kcal
mol ∗nall = 0.16 kcal

mol ∗221528 = 35444.48

Ethresdihed = Edihed +(4 kcal
mol ∗nres) = 7284.1652 kcal

mol +(4 kcal
mol ∗156) = 7908.1652 kcal

mol

αdihed = 1
5 ∗ (4

kcal
mol ∗nres) = 4 kcal

mol ∗156 = 624

Sometimes it is advisable to increase the boosting of the system if progress is

deemed slow. In such a case the Amber manual [113] suggests to add multiples of

the boosting potential αdihed to Ethresdihed .
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1.4 Umbrella sampling improves the understanding

of transitions
Often, a protein or other biomolecular structure prepossess more than one stable

conformation. These meta-stable states are found in basins of the potential energy

landscape and typically have a high energetic barrier between them. With both

CMD and AMD, energetic basins are sampled very well whereas it might take very

long to get out of such a basin or, in other words, sample the transitional states that

lead over a high energetic barrier (figure 1.12). It is impractical to develop a good

understanding of the energy landscape between meta-stable states with the men-

tioned approaches. If the transition between two meta-stable states can be described

by one or, perhaps two, degrees of freedom such as torsion angles, distances and/or

RMSD values, Umbrella sampling (US) is a technique that can be used to sample

transitional states along a path defined by these so called reaction coordinates. Us-

ing this approach, experimenters can not only determine the energetic landscape

between two states but also the absolute difference in free energy of the conforma-

tions determined by the reaction coordinate and thereby the reaction coordinate’s

contribution to the free energy of the whole system. US was initially developed in

the context of Monte-Carlo simulations by Torrie and Valleau but has proved useful

for MD simulations as well [130, 131, 132, 133, 134].

1.4.1 Biased potentials lead the reaction coordinate along a pre-

defined path

US is a biased molecular dynamics method that transitions a structure under in-

vestigation from one state into another by applying forces along one or multiple

predefined reaction coordinates ξ . This transition is done gradually in a windowed

fashion. The shape of windows along the path of transition are determined by the

bias ωi that ensures that the sampled states do not deviate to far from a reference

state ξ
re f
i which is defined by the reaction coordinate. The bias is typically har-

monic, pulling the reaction coordinate back to the reference value with increasing

force as the two diverge (figure 1.13). With K as the strength of the bias, the bias
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Figure 1.12: Boosting of the potential in Accelerated Molecular Dynamics: r is the sys-
tem state and V (r) the potential energy of that system state. Because of an
energetic barrier the low energy basins on the right do not get sampled in
reasonable time nor do the transitional states leading over the energy barrier.

for window i is calculated as:

ωi(ξ ) = K/2(ξ −ξ
re f
i )2 (1.10)

After the reaction coordinate made the structure transition from one state to another

the probability distributions of the intermediate states get combined and unbiased

by the Weighted Histogram Analysis Method (WHAM) [134] to reconstruct a cu-

mulative probability distribution along the transition. This distribution can further

be transformed into the free energy along the chosen reaction coordinate which is

called the potential of mean force. An interesting measurement is the difference

in free energy from an initial state to an end state. Because the representation of

such initial and end states merely by conformations belonging to the singular state-

defining reaction coordinate value would not comprise naturally occurring thermo-

dynamics it is good practice to incorporate the probabilities p in the vicinity of the

state up to a sensible amount n. The free energy of a state i by a set of probabilities
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can be calculated as follows:

∆G = Gi−G j

Gi =−kbT ln(P∗i )

P∗i =
∑l=i−n pl

∑k=i+n pk

(1.11)

Where kb is the Boltzmann constant, T the temperature and P∗i is the sum of proba-

bilities p including those in the vicinity of state i (figure 1.14).
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(a) (b)

(c) (d)

Figure 1.13: To reproduce an unknown potential of mean force (dashed curve) of a reac-
tion coordinate the method of Umbrella Sampling could be imagined in what
follows (the terms are taken from equation 1.10): (a) a pole (ξ re f

i ) is put in
the ground and a ’stroller’ (ξ ) is restrained to it via a rubber band (ωi) (b) as
the stroller strolls about the rubber band pulls him or her back to not diverge
to far from the pole. We further count how often positions on the x-axis have
been visited by the stroller (c) After some time, all positions that are in range
of the rubber band are visited or the stroller has visited all positions under an
imaginary umbrella. Because the stroller does not like to go uphill too much
most of the time is spent in lower regions (d) We repeat the above procedure
with the pole positioned at specified gaps, with the requirement that umbrellas
overlap. Now, by looking at our notes of positions (the histogram and prob-
ability curve drawn above the x-axis) we can comprehend how the landscape
must have looked. Higher regions will be populated much less than lower
regions. Umbrellas should have a considerable overlap so that even rarely-
visited positions are sampled. Gaps between umbrellas lead to an inaccurate
reconstruction of the potential of mean force. Besides the distance between
poles the restraining force, determining the width of the umbrellas, could be
chosen appropriately to sample these regions sufficiently.
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Figure 1.14: Free energy calculation from probability. To calculate the difference in free
energy of states i and j it is good practice to include the probability of a
number n of neighbouring states. These probabilities P∗i and P∗j can then be
used in the calculation of free energy as in equation 1.11.
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1.5 MM/GBSA: The compromise between accurate

and rapid free energy calculations
Molecular Mechanics Generalized Born Surface Area (MM/GBSA) is a computa-

tional method that is used to calculate the free energy from molecular systems. It is

popular in computational biology for estimating the strength of small ligand bind-

ing [135] but has been successfully applied to characterize larger complexes as well

with latest applications in the course of SARS-Cov-2 related research [136, 137].

In benchmarks against more rigorous methods like free energy perturbation (FEP)

and thermodynamic integration (TI), MM/GBSA has been shown to perform less

accurately, but still comparatively well. An at least 8-fold reduction in computation

time and the possibility to decompose binding free energy down to the residue level

justifies its use - even more so with larger complexes that need a lot of sampling

with more rigorous methods [138, 139, 140]. Molecular docking approaches have

been found useful to quickly find binding poses but binding affinity scoring is not

reliable [141] though new docking approaches combined with a mix of models has

shown promising results in the recent GC4 challenge held in January 2020 [142].

Free energy calculations using the MM/GBSA approach is the middle way between

empirical scoring and very computationally heavy but theoretically sound methods

[114].

1.5.1 Change in free energy as an estimate of binding affinity

Free energy describes the state of a thermodynamic system as the amount of re-

versible work at a constant temperature and constant pressure and is given in equa-

tion 1.12:

G = H−T S (1.12)

where H is the enthalpic and T S the temperature dependent entropic contribution.

In chemistry it is common practice to compare the free energy of two system states

to draw conclusions if a chemical reaction will happen spontaneously as is the case

when the free energy of the initial state is higher than the free energy of the final

state. This difference, the ∆G value, is calculated as the difference of enthalpy
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minus the difference in entropy times temperature:

∆G = ∆H−T ∆S (1.13)

One could also calculate change in free energy by subtracting the free energy of one

state against the other.

∆G = Gstate1−Gstate2 (1.14)

In this work, the system comprises the molecular complex and the explicit solvent

molecules. Varying conformations of the solute and rearrangement of water are

effects that are naturally occurring in the thermodynamic equilibrium [143]. To

account for this dynamic behaviour, free energy is calculated over a range of sys-

tem states. Since a quantification of the binding free energy between the parts of

the complex is desired, one could naively subtract the free energy of the complex

from that of the separated binding partners as illustrated in figure 1.15. However,

the free energy of systems containing explicit water is largely determined by the

contribution of solvent-solvent interactions that fluctuate by an order of magnitude

larger than the binding free energy. Lengthy simulations of both system configura-

tions (in complex and with separated partners) would be needed to get convergence

in the presence of solvent-solvent interactions. Neglecting the solvent completely

is far from optimal, since hydrophobic residues that are shielded from water in

the binding site typically contribute a greater portion of binding free energy. The

MM/GBSA method replaces the explicit solvent by an implicit solvent model, re-

moving free energy calculations of solvent-solvent interactions. Polar solvation free

energy is then approximated with the Generalized Born approach whereas interac-

tions between binding partners are determined by molecular mechanics (MM) 1.15.

∆Gbind,solv = Gcomplex−Gseparated

G = GMM +Gsolvation−T S

GMM = Ebnd +Eel +EvdW

Gsolvation = Gpol +Gnp

(1.15)
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GMM is calculated for the solute in vacuum consisting of Ebnd which includes en-

ergies from atoms linked by a covalent bond and Eel ,EvdW that capture long range

interactions. These energies are described in more detail in chapter 1.2.1. Interac-

tions with the solvent are split into Gpol which is estimated using the Generalized

Born approach and a non-polar contribution Gnp approximated by the solvent ac-

cessible surface area. Both are outlined in more detail in subsection 1.2.2.2.

The entropy S in equation 1.15 can be split into configurational entropy and

hydrophobic entropy. The methods to calculate configurational entropy, quasi-

harmonic and normal mode approximations that are part of the AMBER package,

were found to introduce additional statistical errors, rendering free energy calcula-

tions less expressive [113].

In detail, entropy calculations employing quasi-harmonic approximation have

been shown to have severe convergence problems and conceptually expect only one

energy minima which is a an approximation too crude for flexible structures such

as proteins [144, 145, 114]. Normal mode approximation (NMA) is a very compu-

tationally expensive technique which is why typically a truncated NMA approach

is used that restricts calculations to an area of interest [146]. It has been shown to

improve correlation to experimental results in some cases but also worsening free

energy calculations in other cases [147]. Because of the tremendous computation

times of even truncated NMA it cannot be easily ascertained if energy predictions

benefit from the inclusion of a configurational entropy term.

An assumption often made is therefore that the configurational entropy is not

significantly different between holo (bound) and apo (unbound/solitary) state nor

is influenced by the amino acid change that is associated with point substitutions.

The omission of configurational entropy calculations has become standard practice

in free energy calculations [113].

However, research on configurational entropy using the computational method

’Mining Minima algorithm’ [148] that is able to split free energy into enthalpic and

entropic contributions shed light on the importance of configurational entropy and

how it is influenced by dynamics, namely rotational and translational degrees of
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Figure 1.15: Naive calculation of binding free energy by subtracting free energies of a set of
binding partner trajectories in complex and separated into ligand and receptor
including solvent-solvent interactions

freedom and overall rigidity of a ligand [149]. The results of the study of Chang et

al. suggest that binding affinity is as much influenced by entropy as by electrostatic

interactions and hydrophobicity. Their conclusion is therefore that the ranking capa-

bilities of computational techniques omitting configurational entropy will by design

have a limited accuracy.

As discussed in subsection 1.2.2.2 entropy of water molecules is only part of

empirically determined parameters and thereby cannot be evaluated directly. Over-

all, the lack of proper entropy estimations introduces an offset between predicted

∆G and experimentally determined free energies. Since, in many experiments and

also in this work the goodness of fit between experimental and predicted binding

free energies relies on ∆∆G values (differences in free energy relative to the wild-

type), direct comparison of predicted ∆G values to experimental ∆G values is not

required.
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(a) (b)

(c) (d)

Figure 1.16: Calculation of Gbind,solv: (a) implicit solvation of separated binding part-
ners, (b) implicit solvation of complex, (c) separated binding partners in
vacuum, (d) complex in vacuum. Polar and non-polar solvation free energy
(∆Gpol,∆Gnp) are approximated using the GB approach (figures (a),(b)). MM
terms are calculated in vacuum (figures (c),(d)). The cumulative energy of
systems (a), (c) is then subtracted from (b),(d) to get the energy upon binding.
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1.6 Existing structural analysis techniques reduce di-

mensionality insufficiently
The sheer amount of spatio-temporal data produced by MD simulations poses a

challenge to researchers trying to pin down the most interesting phenomena of the

system under investigation. This problem gets even harder when effects across

simulations that use slightly altered structures (e.g. point mutations) should be

considered. Often, structural changes can be described as RMSD/RMSF values.

Such an approach is legitimate in situation where the researcher knows in advance

what to focus on or for binding sites that contain only a few residues. Probing a

wider range of atomic positions across different simulations exponentially grows

the possibilities for RMSD/RMSF calculations resulting in an insufficient reduction

of dimensionality to spot meaningful phenomena.

Another method popular in the field is principal component analysis. It repre-

sents the motion of an atomic system by principal components that range from large

scale conformational changes to local motion and thermodynamic noise. Since mo-

tion differs from simulation to simulation the calculated components are differing

as well and cannot be compared computationally. An investigation of components

by eye is cumbersome and error-prone across a set of simulations.

1.6.1 A decomposition of MM/GBSA energies helps to elucidate

binding patterns

One advantage of the MM/GBSA method is that binding free energy can be decom-

posed to a pairwise-contribution of residues in the epitope. Further, by comparing

decomposed binding free energies of mutants to those of the wild-type, weaker as

well as stronger bonds can be investigated across simulated frames and visualized

as in figure 1.17 and figure 1.18. It is thereby possible to develop an intuition about

underlying binding mechanisms and differences introduced by mutations, which

has proven insightful in a study of Shepherd and co-workers involving stalk binding

antibodies in the context of influenza virus [89]. By decomposing binding free en-

ergies they were able to determine the importance of residues in the epitope of three
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antibodies and illustrate the difference in interaction energy for selected mutants

with the aim to inspire the development of stalk binding antibodies.

In the context of the apoptosis inhibitor survivin that is overexpressed in solid

tumors, Sarvagalla and co-workers employed a pairwise decomposition of frames of

a simulation of the wild-type using MM/PBSA to identify residues that are involved

in biologically relevant interactions which they call ’hot spots’ . They subsequently

substituted hot spot residues to alanine, ran MD simulations, and calculated binding

free energies. By that, they were able to define a pharmacophore model that further

informed a virtual screening that identified the HIV protease inhibitor indinavir as

a potential survivin inhibitor [150].

It is however challenging to undertake an analysis of a set of simulations in-

cluding amino-acid substitutions using a pairwise decomposition since random fluc-

tuations can often not be distinguished from changes introduced by a substitution.

The usefulness of interaction plots is limited to the investigation of a few simula-

tions, residues or phenomena.

Something to consider when using a pairwise decomposition of free energy is

that for a rigorous decomposition of total free energy into partial free energy contri-

butions, interaction energies must be considered in isolation which would make it

necessary to separate the molecule into independent parts. However, such a separa-

tion would result in a new system where populated states or phase space in general

differs from the unseparated/original system since interactions are typically nonad-

ditive. Free energy calculated for the new system would not be precise. Differences

in free energy calculated by subtracting the free energy of the new system from the

free energy of the original system therefore do not reflect the free energy contri-

bution of an interaction. Calculated differences in free energy using such an ap-

proach would depend on the correlation of the interaction of interest with all other

interactions. A disentanglement of interactions into independent parts remains a

challenging task that needs considerable simulations lengths [151]. Non-the-less an

energy decomposition of enthalpic contributions can be a helpful addition to studies

aiming to predict the impact of mutations or alterations of interactions. Yet, one has
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Figure 1.17: Visualizing interaction energies of residues: Identifiers given by chain letter
(e.g. ’A’,’B’,’C’) followed by the amino acid one letter code and residue num-
ber after the colon; hydrogen bonds (the hydrogen bond has to be present in
at least 150 out of the last 200 frames of the equilibration) coloured in red,
remaining interactions in black; The thickness of lines is determined by the
represented energy (the thicker the line the more energy); residue colouring
based on the hydrophobicity at pH 7: pink and red reflect slight and high
hydrophobicity respectively, green neutral, cyan hydrophilic; energy values
below 1 kcal/mol are not displayed.



1.6. Existing structural analysis techniques reduce dimensionality insufficiently60

Figure 1.18: Relative interaction energies to wild-type: Dotted lines indicate a loss in bind-
ing energy, solid lines a gain; colouring, line thickness and threshold as in
figure 1.17

to be cautious to not over interpret such enthalpic decompositions since the actual

effect of a structural alteration on free energy is ultimately a mix of thermodynamic

properties where the role of enthalpic contributions is hard to come by [152].



Chapter 2

In-depth analysis of the BO2C11

FVIII C2-domain binding site

So far, the human antibody BO2C11 is the only human anti-Factor VIII antibody

studied in detail. Pratt and co-workers used SPR to measure the binding kinetics

of 43 non-silent point mutations introduced to the epitope of the BO2C11 FVIII

C2-domain complex (from now on referred to as the holo FVIII C2-domain). In

this work, 16 of the 42 amino-acid replacements to alanine and one replacement

to methionine have been characterized computationally. This subset comprised all

residues that were described previously by Pratt and co-workers to mediate binding

and residues that stabilize binding as well as such that did not show a significant im-

pact in experiments. The latter two sets of amino-acid replacements were chosen so

that the full range of experimental binding affinity measurements was represented

in simulations. Since the majority of experimental affinity measurements differ less

than 1 kcal/mol from wild-type it is sensible to restrict calculations to a representa-

tive subset of replacements since such small changes in affinity would not be picked

up by the computational approach chosen here. Different equilibration times were

evaluated and the number of frames for binding free energy calculations was chosen

to reduce the statistical error to under 1 kcal/mol.

Even though entropy has been shown to be a major contributor to binding affin-

ity in experiments (referring to high T ∆SA-values in table 1.3), the computational

approach adopted here only considers entropic contributions stemming from the
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calculation of solvation free energy by the Generalized Born model (as discussed

in detail in section 1.5), where entropy is represented in the empirically derived

constants for the estimation of non-polar as well as polar Gibbs free energy. The

importance of configurational entropy, which is the entropy neglected in this work,

has been investigated computationally by Sun et al. [147]. In their study, the calcu-

lation of entropy using the method ’interaction entropy’ has been shown to improve

the correlation to experimentally determined binding free energies with the force

field FF14SB with a dielectric constant of ε = 1, which were also the choices for

MM/GBSA calculations in this work. However, since relative binding free energy

was estimated comparatively well with a Pearson correlation of rp = 0.62 in the ini-

tial MD simulation carried out in the course of this work, I refrained from entropy

calculations that are labour-intensive to implement and/or take tremendous time to

converge.

2.1 MD and MM/GBSA protocols

2.1.1 Preparation of crystal-structures for simulation

The holo FVIII C2-domain crystal-structure (where the BO2C11 fab fragment is

bound to the recombinant FVIII C2-domain; PDB 1iqd) [61] and the apo FVIII C2-

domain crystal-structure [60] (PDB 1d7p) were downloaded from the Protein Data

Bank [86]. The 2 Å crystallographic structure of the holo FVIII C2-domain contains

three segments of three, six and nine residues that are unresolved in the structure

of the antibody fab fragment at locations remote from the binding interface. MOD-

ELLER v9.17 [153] was used to model these missing loops and to introduce amino

acid substitutions.

The apo crystal-structure of the FVIII C2-domain has a resolution of 1.5 Å

with no missing segments but with crystal contacts as outlined in figure 2.1. Crystal

contacts are artefacts that occur due to the process of crystallization and potentially

influence the structure of individual crystals [154].

Structures were protonated with MolProbity 3.3.160602 [155]. Topologies for

simulations were generated by tleap from AmberTools 18 [88] with the FF14SB
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Figure 2.1: Crystal contacts of the apo C2-domain structure (PDB 1d7p); epitope region of
the C2-domain (light-brown) including two β-hairpins that contain numerous
contacts (black lines) to a neighbouring unit (grey).

protein force field and mbondi2 radii set. Structures were solvated in a TIP3P oc-

tahedral water box with charge neutralized by Cl- ions. The distance between the

box boundary and a given structure was set to a minimum of 20 Å. Short range

van der Waals and electrostatic interactions were restricted to a distance of 8 Å to

reduce computational time. For van der Waals energies, that are modelled using a

Lennard-Jones potential, attractive forces are nearly zero after the cut-off distance

chosen here. Long-range electrostatic interactions above this threshold were calcu-

lated employing particle mesh Ewald summation (PME) [156].

2.1.2 An equilibration time of 40 ns was ascertained employing

statistical methods

Residence times for protein complexes in this work are in the order of hours (see

table 1 in [44]). Even with supercomputers, simulation times of hours are insur-

mountable in reasonable real-time and it is necessary to find simulation times that

are computed in the time frame of the project and give the experimenter enough

confidence that an equilibrated state has been reached. In practice, the real time
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duration of MD simulations typically ranges from a few hours to several days or

month [157].

Another consideration concerning equilibration is that structures used in this

work have been produced by X-ray crystallography [61, 60]. This method makes

use of the scattering of X-rays that give information about electron densities and

thereby atom positions [141]. By recording the diffraction pattern of the crystal at

different orientations, it is then possible to define an electron density map and fur-

ther draw conclusions about the atom types and relative positions. Hence atomic

positions are averaged and do not necessarily reflect positional fluctuations that oc-

cur at thermodynamic equilibrium [158]. Further, since a crystal comprises many

molecules of the same type, one has to consider that these contact each other and

form so-called crystal contacts (figure 2.1). These can alter the electron density and

therefore influence the derived conformation of the structure.

A preliminary equilibration stage has been proven to produce more accurate

binding free energy values in a benchmark comprising 43 complexes compared to

solely minimising energy [140].

For these reasons, it is common practice to equilibrate a structure, i.e. bring

it into thermodynamic equilibrium, before running succeeding simulations upon

which conclusions are based [113]. It should be noted though, that equilibrium can

only be achieved for a limited amount of degrees of freedom and not for the whole

structure the size of a protein domain [145]. The AMBER manual recommends

further a slow increase of temperature and a restraining of force field energies before

the actual equilibration. A conservative and incremental increase of temperature

should prevent high velocities and abnormally high energies that could ’blow up’

the structure, which is often the case if the temperature is increased from 0 K to

300 K in a single step or, in general, if temperature increments are too big [113].

Preparatory steps in this work follow the protocol implemented by Shepherd and

co-workers [89]:

1. Initially there is a minimization of the system energy by 40 steps of steepest

descent prior to 40 steps of conjugate gradients.
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2. This is followed by a 100 ps relaxation production where backbone atoms are

restrained by a force equivalent to 4.0 kcal/mol and an increase in temperature

from 0 K to 50 K. Pressure is not restrained during this first relaxation.

3. The second relaxation of 2 ns raises the temperature further to match the one

used in all succeeding simulations. Backbone atoms are restrained by a force

equivalent to 1.0 kcal/mol.

4. To conclude the adaption of the structure to the force field another 1 ns simu-

lation is run with no restraints on the backbone.

To date, the most widely adopted method to quantify sufficient equilibration

time (besides the analysis of global parameters outlined in section 1.2.3) is by the

means of a Root Mean Square Deviation (RMSD) value. Since this quantity is

only a single number, counteracting motion might not be spotted, e.g. parts of

the structure might stabilize while others destabilize which would cause the RMSD

value to stagnate. This might convey the impression that the structure is equilibrated

[159]. The equilibration time in this work has been chosen based on the similarity

of probability distributions of φ ,ψ backbone angles of residues in the binding site

in a prolonged simulation of the holo FVIII C2-domain structure. The similarity

between two probability distributions P,Q was quantified using the Jensen-Shannon

divergence distance metric which is given in the following equation:

JSD(P||Q) =

√
D(P||M)+D(Q||M)

2

D(P||Q) = ∑
x∈χ

P(x)log
(P(x)

Q(x)

) (2.1)

where M is the point-wise mean (M = P+Q
2 ) and D is the Kullback-Leibler diver-

gence. The Jensen-Shannon divergence of φ ,ψ backbone angle probability distribu-

tions after different equilibration times (1, 5, 10, 20, 40 ns where each nanosecond

contains 100 frames) has been calculated against the probability distribution of a

1 µs run in this way (figure 2.2). If the two probabilities of backbone angles are
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fairly similar, it means that the structure does not explore new backbone conforma-

tions after the simulation time of the shorter simulation up to the simulation time

of the longer one and the divergence approaches zero. This means that side chain

and backbone angles in the shorter simulation populate virtually the same values as

in the longer simulation, which indicates that during the time span from after the

shorter simulation up to the end of the longer simulation, no vital new angles are

explored. By this logic the shorter simulation time is sufficient to reproduce the

longer simulation time, which proposed that the binding site is just as well equili-

brated after 40 ns as after 1 µs. However, the approach described here might miss

some bigger conformational changes. The orientation of a prolonged structure, such

as a β-hairpin might change disproportionately high in relation to backbone angles

at the base of the structure, which might act as a lever, and would not be repre-

sented in the calculated Jensen-Shannon divergence of angles. It might be useful to

additionally investigate such effects using RMSD values. Another improvement of

the method could be to calculate the Jensen-Shannon divergence in a window like

fashion. If a simulation is well equilibrated, a comparison of e.g. two windows,

containing the first and second half of the frames to a prolonged simulation run

should come to the same conclusion. By that, a better understanding of trends and

equilibration times in general could be developed.

2.1.3 Fluctuations of MM/GBSA values dropped below 1

kcal/mol using 150 decorrelated frames

To remove bias through autocorrelation between frames, a set of decorrelated

frames for energy calculations was extracted from 30 simulations of 1 ns each.

These short simulations were independent from each other, meaning each used the

position coordinates which were the ones from the last frame of the equilibration

but assigned new randomized initial velocities to the system as recommended by

Genheden et al. [160]. Further, only 5 frames in 100 ps intervals from the second

half of these runs were used in the MM/GBSA binding free energy calculations in

order to give the complex sufficient time to deviate far enough from the input state

resulting in a total of 150 frames. The sampling frequency of 100 ps was based on
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: (a)-(e) Jensen-Shannon divergences of the probability distributions of binding
site residue backbone angles. The reference probability distribution is a 1 µs
simulation; (e) It showed that after 40 ns probability distributions are fairly sim-
ilar; (f) Leucine 2252 is the least converged residue after 40 ns, yet distributions
do not differ significantly.
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the time taken for the time-dependent autocorrelation function of calculated ∆G val-

ues to reach 0. This protocol has been shown to produce good results as in Shepherd

and co-workers [89].

The impact of the dielectric constant ε on MM/GBSA binding free energy cal-

culations has been extensively studied in the papers of Hou et al. [140, 161]. In

their work dating back to 2011, they propose a method to deduce most promising

dielectric constants, in terms of high correlation coefficients to experimental results,

for protein-ligand complexes. This method is based on the solvent accessible sur-

face area of polar atoms in the binding site and suggests a solute dielectric constant

of ε = 2 for the complex structure used in this work. However, in their more re-

cent study, a dielectric constant of the solute of ε = 1 did successfully identify the

binding pose that was closest to the crystal-structure out of a set of generated de-

coy poses. An increase of the dielectric constant worsened this ranking of binding

poses. Therefore, ε = 1 was used throughout this work.

SHAKE [94] was used in all steps except for the minimization. Atom coordi-

nates escaping the simulation box were set to reappear on the opposite side of the

box (iwrap = 1). The remaining parameters were set to the AMBER 18 defaults.

A Monte Carlo barostat was used throughout all simulations to keep pressure con-

stant. The Monte Carlo barostat was used over a Berendsen barostat because of its

recommendation by AMBER [88]. The volume was kept constant in all but the first

relaxation run. A Langevin thermostat was used throughout the simulation with

a collision frequency of 1 ps−1. This value was set following a recommendation

by the developers of AMBER (Re: [AMBER] NVT Vs NPT from Ross Walker

on 2011-03-17 (AMBER Archive Mar 2011), n.d.). Simulations were carried out

with the GPU-based simulation engine pmemd.cuda [162] except for the minimiza-

tion step which used the CPU-based sander [113] as recommended because of the

double precision floating point numbers of the CPU-based implementation. On a

commodity hardware server, using Nvidia GTX 1080 GPUs, the simulation of one

structure lasted about 4 days when run on a single GPU and resulted in a total of

73.1 ns of simulation time consisting of 3.1ns relaxation, 40 ns equilibration and
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30 decorrelated productions of 1 ns each. With 17 substitutions plus the wild-type

structure, the total runtime for a set of simulations was therefore around 72 days,

which was further reduced by the use of multiple GPUs in parallel.

2.1.4 Investigating reproducibility by using different setups and

repetition

Using the setup outlined in the last section, 5 sets of simulations were run differing

in temperature, initial structure and/or equilibration time.

• set CS25: conformation of the crystal-structure simulated at 25°C

• set CS37: conformation of the crystal-structure simulated at 37°C

• set CS25’: conformation of the crystal-structure pre-equilibrated for 40 ns in

a simulation at 25°C before amino acid substitutions were introduced

• set WT25’: conformation of the wild-type pre-equilibrated for 40 ns in a

simulation at 25°C before amino acid substitutions were introduced

• set WT37: conformation of the wild-type simulated at 37°C

• set WT25*: conformation of the wild-type with parameters mbondi = 3 and

igb = 8 instead of mbondi = 2 and igb = 2 simulated at 25°C

where ’wild-type’ refers to a reversion of the mutation S2296C originally intro-

duced by crystallographers, to reconstruct the original FVIII C2-domain wild-type

sequence.

Set CS25’ and WT25’ use the last frame of a 40 ns equilibration run at 25°Cas

illustrated in figure 2.3 and therefore simulated a time span of 40 ns + 73.1 ns =

113.1 ns in total. Each set contained the 17 substitutions inspired by Pratt and

co-workers and further M2199I and F2200L from the functional study carried out

by Barrow and co-workers. Selected substitutions can be split into two groups.

Group one containing R2220A/Q, R2215A, N2198A, M2199A, F2186A, S2250A,

Q2316A and F2200A/L are substitutions that decrease binding affinity strongly

(coloured blue in figure 2.4). Group two containing L2251A, L2252A, T2253A,
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(a)

(b)

Figure 2.3: (a) Protocol for sets CS25, CS37, WT37 and WT25*: The conformation of the
crystal-structure is used directly to introduce substitutions; (b) protocol for set
CS25’ and WT25’: The difference to the other protocol is that an initial equili-
bration of 40 ns was granted so that the structure has more time to adjust itself
to the new condition in explicit solvent. This provision has only been done once
for the original starting structure (the conformation of the crystal-structure in
set CS25’ and the reverted wild-type in set WT25’). All following substitutions
were introduced to the final conformation of this pre-equilibration; Orange lines
in the production simulations indicate that chosen frames for MM/GBSA cal-
culations are extracted from the second half and at intervals to allow structures
to deviate from their initial conformation so that a range of conformations can
be captured.
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T2197A, H2315A, Q2222A, V2223M and M2199I are substitutions that have no

or a slightly stabilizing effect on binding. Of special interest are the substitutions

M2199I and M2199A that were shown to somewhat increase binding affinity [62]

or reduce binding free energy [44] respectively.

The script MMPBSA.py was configured to carry out energy calculations based

on implicit solvent simulations using the one trajectory approach with AMBERs

Generalized Born model 2 (igb=2). This parameter resembles the model known as

GBOBC1, which is published as model I in the work of Onufriev et al. [108]. In

the context of a study, which amongst others investigated the impact of MM/GBSA

models on binding free energy calculations, this model has been shown to be supe-

rior in terms of correlations to experimental values over other choices [161]. Ac-

cording to the AMBER manual, the parameter for radii sets was set to 2 (mbondi=2)

for this GB model. The unsolvated receptor and ligand topologies were created us-

ing ante-MMPBSA.py [113].

150 frames at 100 ps intervals were used to calculate binding free energy and

pairwise contributions of binding site residues not more than 3.9 Å apart. The value

of 3.9 Å is the default cut-off distance of the widely-cited programs Ligplot and

Ligplot+, which are used to identify hydrogen bonds and hydrophobic contacts be-

tween proteins [163, 164]. In the analysis employed here, residue pairs are included

which are within this cut-off in any snapshot, meaning that the list of interacting

residues will be more permissive than that generated from a single structure.

The model accounts for surface tension in the non-polar contribution of solva-

tion by 0.005 kcal/mol per 1 Å2 solvent accessible surface area. To mimic condi-

tions in the mammalian body, the salt concentration was set to 0.2 M whilst other

parameters followed the AMBER 18 defaults. The MMPBSA.py calculations were

carried out using the CPU-based code ’sander’ from AMBER 18. Running on 15

cores of a 20-core 2.5 GHz Intel Xeon E5-based server calculations finished within

minutes.



2.1. MD and MM/GBSA protocols 72

(a) (b)

(c) (d)

Figure 2.4: Important residues in the binding site of BO2C11 with the FVIII C2-domain;
(a) spheres indicate amino-acid replacements evaluated experimentally and
computationally, residues coloured blue were shown to have a significant im-
pact on binding affinity according to experiments [44]; (b) and (c) view from
the perspective of the antigen recognizing site; (c) and (d) surface plots high-
lighting regions of point mutations in white that have no or little effect and blue
significant effect on binding affinity according to experiments.
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2.2 Multiple simulation setups show good agreement

with experiments
Simulations of the holo FVIII C2-domain structure were carried out using 6 differ-

ent configurations: 1) the conformation of the crystal-structure simulated at 25°C

(CS25); 2) the conformation of the crystal-structure simulated at 37°C (CS37); 3)

the conformation of the crystal-structure where substitutions are introduced after a

pre-equilibration of the original structure of 40 ns at 25°C (CS25’); 4) the conforma-

tion of crystal-structure with reversed mutation S2296C pre-equilibrated for 40 ns

(further termed wild-type) at 25°C (WT25’); 5) the conformation of the wild-type

at 37°C (WT37); 6) the conformation of the wild-type with parameters mbondi = 3

and igb = 8 instead of mbondi = 2 and igb = 2 simulated at 25°C (WT25*). Corre-

lations with experimental ∆G values are shown in table 2.1.

Simulations of the crystal-structure (CS25, CS37, CS25’), containing the mu-

tation S2296C, performed reasonably well, given the approximations of the method

used, especially in light of the importance of entropy. A generous 40 ns pre-

equilibration before introducing substitutions (CS25’) did not have a positive effect

on the correlation with experimental data. However, reverting the crystal-structure

mutation S2296C to the amino-acid sequence of the FVIII wild-type and equilibrat-

ing it for 40 ns before further substitutions improved accordance with experiments

in the case of WT25’. A change of the parameters for atomic radii and Generalized-

Born model did significantly worsen outcomes in the set WT25*.

To gain confidence that the promising correlation of the set WT25’ (figure 2.5)

is persistent, this set of simulations was repeated three times with the result, that

the performance of WT25’ simulations were not in all cases reproducible. The third

set of simulations gave somewhat poorer results, emphasising the importance of

deriving mean values from multiple simulations. Correlating the mean of individ-

ual binding free energy calculations of the four sets with experimental results gave

a Pearson correlation of 0.67 to experimental SPR and 0.56 to van’t Hoff data and

corresponding Spearman’s rank correlation coefficient of 0.63 and 0.68 respectively

(figures 2.7, 2.8 and 2.5). It showed that ∆G values favourably averaged out and
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produced higher correlations than was expected from the individual simulations.

Still, Spearman rank correlation coefficients rs of individual simulation sets ranging

from 0.46 to 0.61 were comparatively good, as were Pearson correlation coeffi-

cients ranging from 0.51 to 0.68. The best correlation that has been achieved with

MM/GBSA applied to 1864 protein-ligand structures from the PDBbind database

using different settings for the interior dielectric constant was rs=0.60 and rp=0.58

[165]. With a smaller benchmark dataset of 46 protein-protein complexes and us-

ing various MM/GBSA protocols, the best correlation achieved was rs=0.68 and

rp=0.65 [140]. The findings presented here give reason to belief that a thorough

evaluation of simulation setups is advisable before drawing conclusions about the

capabilities of molecular dynamics simulations.

The overall mean error of binding free energy calculations was 5.6 kcal/mol

with a higher error observed in R2220A (12 kcal/mol), WT (10 kcal/mol), N2198A

(9.4 kcal/mol) and H2309A (9 kcal/mol). From figure 2.6 it can be seen that the

ranking of N2198A is especially unstable. It is worth noting that N2198A had

the highest standard error rate in the reported SPR measurements at 25°C, and its

sensorgram and van’t Hoff plot suggest that the impact of this mutation on BO2C11

binding proved challenging to characterize [44]. Whether these experimental and

computational challenges are linked is unclear.

Predictions were made for two additional substitutions inspired by FVIII or-

thologs: M2199I (porcine) and F2200L (canine). When evaluated using a modi-

fied Bethesda assay, substitution F2200L was shown to decrease the antigenicity of

FVIII with respect to BO2C11, whereas substitution M2199I somewhat increased

its antigenicity [62] – in marked contrast to substitution M2199A, which induced

a significant reduction in BO2C11’s binding free energy [44]. Calculated binding

free energies relative to WT for M2199I and F2200L were consistent with their ob-

served (and contrasting) functional impact – M2199I was predicted to increase the

strength of BO2C11 binding in a total of 6 out of 8 simulations, whereas F2200L

and M2199A were predicted to decrease the strength of BO2C11 binding in all but

one simulation (figure 2.9).
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SPR van’t Hoff
configuration Pearson Spearman Pearson Spearman
CS25 0.56 0.50 0.51 0.58
CS37 0.62 0.61 0.57 0.51
CS25’ 0.50 0.36 0.57 0.63
WT25’ 0.65 0.61 0.57 0.78
WT37 0.63 0.68 0.57 0.64
WT25* 0.22 0.12 0.18 0.17

Table 2.1: Correlation coefficients of calculated free energies in sets of simulations with
varying setups to experimental SPR and van’t Hoff measurements from exper-
iments: Each simulation set is comprised of 17 simulations of structures con-
taining substitutions plus the unaltered structure. Non-binding mutations found
in experiments are lacking an absolute measurement value and are therefore not
included in the calculation of correlation coefficients. WT25’ showed good rank-
ing capability and was selected for an in-depth analysis.

Figure 2.5: First run of the set of simulations WT25’ plotted against experimental van’t
Hoff data (∆∆G = ∆G(mutant)− ∆G(WT )): The exclusion of the outlier
R2215A greatly increases the Pearson correlation coefficient from rp = 0.57
to rp = 0.76 and reduces the p-value from pp = 0.09 to pp = 0.02. The Spear-
man rank correlation coefficient rs = 0.78 was superior to all other simulation
setups.
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Figure 2.6: Ranking of the repeated WT25’ runs: The first column depicts the ranking de-
termined by SPR experiments. The association rate of M2199A* did exceed
limits of the instrument but had been incorporated by using its van’t Hoff mea-
surement. The second column ranks calculated free energies based on the mean
binding free energy values of individual simulations of the four sets whose
ranking is following in the remaining columns.

Table 2.2: Correlation coefficients of individual simulations with settings WT25’ against
SPR measurements: *Mean refers to the calculation of coefficients by using
mean ∆G values and it is thereby different from the mean of the coefficients
shown in the table; it showed that correlations coefficients of individual simula-
tion sets were less expressive (Pearson 0.61) than when the mean of ∆G values is
used (Pearson 0.67). This indicates that ∆G values which have an adverse affect
on correlation favourably mean out over multiple simulations.
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Figure 2.7: Predicted mean ∆∆G values of the four times repeated simulation set WT25’
against experimental SPR measurements [44]: Experimental KD values were
converted to ∆G values with ∆∆G = ∆G(mutant)−∆G(WT ). R2220A* and
R2220Q* have been reported as non-binders in experiments with no absolute
value given. Their ∆G value would therefore be found around a very high x-
coordinate which is why they are depicted as arrows. Error bars on the y axis
depict the standard deviation of predicted free energies of the four times re-
peated set of simulations. The statistical error of 1 kcal/mol of each individual
simulation is not shown here. rp and rs are the Pearson and Spearman correla-
tion coefficients with p-values pp and ps.

2.3 A structural analysis explains the impact of sub-

stitutions

An analysis of pairwise interaction energies of the contact residues in the holo FVIII

C2-domain (between the BO2C11 fab fragment and the FVIII C2-domain) in the

simulation set WT25’, both with and without selected substitutions, provided the

means for a detailed study of the epitope.

Interaction energies of the holo FVIII C2-domain wild-type suggested that

three residues in the antibody heavy chain – D52, D97 and D99 – account for
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Figure 2.8: Predicted mean ∆∆G values of the four times repeated simulation set WT25’
against van’t Hoff measurements. Values were converted as in figure 2.7. rp

and rs are the Pearson and Spearman correlation coefficients with p-values pp

and ps.

more than half of the binding free energy (figure 2.11). On this basis, it is pos-

sible to comprehend why certain substitutions have a big impact on the binding to

BO2C11. For example, substitutions R2215A, R2220A and R2220Q are predicted

to break multiple hydrogen bonds between R2215 and D52, and R2220 and D99 re-

spectively. On the other hand, it is less obvious why breaking other hydrogen bonds

has considerably less impact. One such example is T2253A, which forms hydrogen

bonds with key residue D97 (figure 2.11) but is located close to predicted and exper-

imental determined binding free energy values of the wild-type (figure 2.7a). In this

case, the post-substitution binding free energy decomposition suggests that the loss

of bonds with D97 is partially compensated by the formation of stronger bonds at

other locations, notably those associated with residues G2214, H2315, R2215 and

W2203.

A comparison of substitutions M2199A (weaker binding) and M2199I (func-
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(a)

(b)

Figure 2.9: Ranking of substitutions M2199A, M2199I and F2200L with differences in
binding free energy to WT shown in parentheses: The ranking of M2199A
and F2200L from experimental data is not clear since they appear in differ-
ent studies with methods SPR and Bethesda assay. A direct comparison is not
possible but both were shown to decrease binding affinity. (a) Across different
simulation setups point mutations have been ranked as in experiments; (b) An
exception was the third repetition of WT25’ where the WT was ranked excep-
tionally high. Overall, M2199I has been classified to bind stronger than WT in
most cases, although some predictions were in the level of noise and moreover
indicate a WT-like binding affinity.

tionally more potent, and hence potentially a stronger binder) gave insights into

binding patterns that partly explained the contrary binding free energy calculations

by differences in interactions of both substitutions (section 2.3.2). The predicted

binding free energy did not reflect the effect of non-binding in the case of R2220A

and R2220Q (section 2.3.3) and consistently exaggerated the influence of R2215A

in comparison to experiments (section 2.3.1). A structural analysis suggested that

this is due to shortcomings of the applied computational methods.
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Figure 2.10: Binding free energy decomposition of T2253A. List of binding site residues
(first column) responsible for changes of up to 1 kcal/mol in binding free en-
ergy calculations of the substitution T2253A (second column) or in the wild-
type structure (third column). In the forth column differences between WT
and T2253A are presented. It showed that the substitution to alanine increases
binding free energy by 7.54 kcal/mol at its location T2253. This however is
not reflected in binding free energy calculations since the effect is compen-
sated by stronger interactions, mainly of residues G2214, H2315, R2215 and
W2203 that combined reduce binding free energy by 5.25 kcal/mol.

2.3.1 Insufficient representation of entropy and/or water-

bridges may explain outlier R2215A

In all sets of simulations the effect of the substitution R2215A was overestimated. A

pairwise decomposition of binding free energies of the WT suggested that bonds of

R2215 contribute 25% of binding free energy, with the bond to the antibody heavy

chain residue D52 accounting for 15% alone (figure 2.11). On the reduction to

alanine the change in binding free energy of around 20-25 kcal/mol was apparently

caused exclusively by lost bonds at the site of the substitution (figure 2.12). A

possible explanation for the overestimation could be the neglected effect of water

that enters the binding site that is caused by the reduction of the arginine side-chain

to alanine (figure 2.13). Entropic effects as well as water-bridges could compensate

for some of the loss in binding free energy upon substitution which would not be
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accounted for in MM/GBSA binding free energy calculations. In the case of the

substitution F2200A water is entering the binding site as well but the disregard of

its effect might not be as extreme. The bonds of F2200 with the antibody are not as

strong as with R2215 and a compensation of the loss in binding free energy upon

substitution by water contacts might only play a minor role. Further investigations

would be needed to corroborate these hypotheses.

2.3.2 A detailed structural analysis explains differences between

M2199I and M2199A

Predictions for the contrasting substitutions M2199A and M2199I were consistent

with experimental findings; substitution M2199A weakens the binding of BO2C11

to the FVIII C2-domain (in line with the binding assay data by Pratt and co-workers

[44])), whereas substitution M2199I strengthens binding (in line with functional

assays data by Barrow et al. [62])). A visualization of the difference in pairwise

energies of residues in the epitope of the substitutions M2199A against M2199I

highlighted that differences in binding free energy were attributable to strengthened

interactions between FVIII C2-domain residue 2199 and multiple residues in both

the heavy and light chain of BO2C11. To compare differences in binding patterns

of single residues rather than sets, the novel visualization technique presented in

figure 2.14 has been developed. By focussing on a selected residue (displayed in the

middle), this technique gives the opportunity for a fine-grained analysis by reducing

the threshold below 1 kcal/mol. Further, it showed that the substitution to isoleucine

at position 2199 creates stronger bonds with antibody residues than the substitution

to alanine which accounts for 3 kcal/mol in binding free energy (figure 2.14).

2.3.3 R2220 substitutions did not reflect abrogation of binding

Pratt and co-workers had concluded that R2220A and R2220Q muteins show “virtu-

ally no binding” to B02C11 [44]. Given the strength of BO2C11 binding, it seems

highly unlikely that straightforward bonding changes induced by R2220 substitu-

tions are sufficient to explain the abrogation of binding. This was confirmed by a

pairwise decomposition of the predicted binding free energy of the wild-type where
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Figure 2.11: Pairwise decomposition of binding free energy of the wild-type. This suggests
that R2215 has the strongest impact on binding, followed by R2220, T2253
and L2251. Interestingly, the reduction to alanine of these residue has varying
effects in binding free energy calculations (figure 2.7).
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Figure 2.12: Difference of binding interactions between wild-type and mutant R2215A (de-
noted as A2215). The total change in binding free energy is mainly caused by
the loss of bonds of 2215. No compensating bonds to the antibody form at
the location of the substitution or other sites for that matter. Moreover water
enters the binding site (figure 2.13).

only 16% of binding free energy reduction was attributable to the bonds of R2220

(figure 2.11). Yet, predictions of R2220 substitutions caused a larger reduction in

B02C11’s binding affinity than any substitution except R2215A (figure 2.7). How-

ever, figure 2.11 also shows that the salt-bridge of R2220 to D99 on the antibody

heavy chain is the only means by which this residue contributes directly to binding

free energy. On the other hand, R2220 has multiple contacts in the epitope, espe-

cially to the β-hairpin M2199/F2200 whose mutants were shown to have a great

impact on binding (figure 2.15). Positioned between two β-hairpins, the extensive

intra-domain contacts of R2220 suggest that R2220 prepossess a stabilizing func-

tion in the epitope besides its contact to D99 which has also been proposed by

Nguyen et. al [70]. A reduction to alanine at this position might disturb the epitope

conformation such that it does not get recognized by the antibody fab fragment.

However, the substitutions R2220A and R2220Q were shown to have a relatively
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Figure 2.13: Contacts of R2215 and solvent contacts R2215A (a) bonds of R2215 and sol-
vent contacts of R2215 contacting residues. Only few water molecules are
found in the vicinity of R2215; (b) upon reduction of R2215 to an alanine
water enters the binding site and binding free energy calculations indicate
a very weak binding affinity. The tremendous increase of binding free en-
ergy of R2215A due to the loss of contacts with the antibody fab fragment
might be counteracted by binding free energy reducing water-bridges and/or
entropic contributions. Water-bridges were not considered in binding free en-
ergy calculations as well as was configurational entropy, which might explain
the outlier value.

mild effect on the binding patterns of other residues in the binding site which in-

dicates that a large-scale conformational change has not taken place (figure 2.16

and figure 2.17). To investigate this further, the Jensen-Shannon divergence used

to estimate a sufficient equilibration time in section 2.1.2 can be used as a tool to

visualize large scale conformational changes. For example, to comprehend the ef-

fect of a substitution the distributions of φ and ψ angles of all wild-type residues

and of all residues in the structure including the substitution are calculated. Then

the Jensen-Shannon divergence as in equation 2.1 is determined for every tuple of

residues but in this case overlaid onto the structure instead of providing a histogram.

By adopting this approach it is easy to spot regions that consistently differ in their

backbone conformation. An investigation using this approach showed that no struc-

tural change has taken place in the epitope during a simulation of 40 ns (figure

2.18).

These findings suggest different explanations for the underestimation of R2220

substitutions in the complex structure: 1) the attractive force of the positive charge
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Figure 2.14: Comparison of the difference between binding patterns of M2199I (denoted as
C:I2199) and M2199A; free energy values in kcal/mol are displayed alongside
residues; the threshold for interactions is 0.1 kcal/mol; other elements identi-
cal to figure 1.17. The value next to ’C:I2199’ in the middle indicates that the
substitution to isoleucine produces around 3 kcal/mol lower free energy than
the substitution to alanine. This is due to stronger bonds to the antibody heavy
and light chain, e.g. the tryptophan 47 on the antibody heavy chain ’B:W47’
has the value ’-0.68’ next to it which means that bonds of I2199 reduce the
free energy by 0.68 kcal/mol more than A2199. For the light chain (letter A)
contacts populate a stretch of residues from 92 to 97. Intra-domain contacts,
like ’C:F2200’ play a minor role.
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Figure 2.15: Contacts of R2220 (magenta): The only contact directly contributing to bind-
ing free energy is the salt-bridge to the antibody heavy chain residue D99.

of the R2220 arginine group is needed to initiate the binding process which is not

reflected in simulations where the antibody is already bound; 2) R2220A induces

a conformational change that ultimately results in dissociation from the antibody

but the timescale of MD simulations is insufficient to sample this phenomenon; 3)

R2220A induces a conformational change that could not take place because the

antibody restricts large scale motion in the epitope once it is bound.
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Figure 2.16: Difference of binding interactions between wild-type and substitution
R2220A (denoted as A2220): The substitution of R2220 to alanine was ac-
companied by a change in binding free energy of 17 kcal/mol that is almost
exclusively attributable to the loss of the bond to D99.
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Figure 2.17: Difference of binding interactions between wild-type and substitution
R2220Q (denoted as Q2220): As for substitution of R2220 to alanine the
substitution to glutamine was accompanied by a change in binding free en-
ergy of 12 kcal/mol that was almost exclusively attributable to the loss of the
bond to D99.
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Figure 2.18: Comparison of φ ,ψ-distributions in 40 ns simulations of R2220A and WT
using the Jensen-Shannon distance measure. The red box outlines the epitope
region with the antibody to the left and the FVIII C2-domain on the right. Re-
gions in blue indicate great differences in backbone dynamics, whereas white
ones indicate no or very little difference. The only region that shows a great
divergence is a solvent exposed loop region of the antibody (top left) which
is most probably due to insufficient sampling. The substitution of R2220 to
alanine did not cause any bigger conformational changes in the epitope.
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2.4 Conclusion

Multiple sets of simulations with various setups were run and evaluated consulting

experimental SPR and functional binding affinity measurements [44, 62]. It showed

that substitutions to alanine of residues that are supposed to mediate binding ac-

cording to Pratt and co-workers [44] were successfully identified as low affinity

complexes in binding free energy calculations. However, one set using a different

Generalized Born model and atom radii had no significant correlation with experi-

mental data. This introduced doubt in the method which is why a promising simu-

lation setup was repeated three times which proved that results were reproducible.

An experimentally determined stronger binding mutation (M2199I) could be

distinguished from a weaker binding one at the same location (M2199A) and a

structural analysis, employing a novel visualization technique, highlighted differ-

ences in binding patterns between the two substitutions that partially explains the

contrary behaviour. Further, conformations and binding patterns of an outlier in

predicted free energies R2215A, and the experimentally determined non-binding

mutations R2220A and R2220Q were analysed with the conclusion that the applied

method of CMD with MM/GBSA binding free energy calculations might not be

suitable in these cases.

An interesting avenue of research that could not be followed in the course of

this PhD would have been the investigation of entropy of the holo FVIII C2-domain

with methods such as interaction entropy [166]. The thermodynamic van’t Hoff

analysis that has been conducted by Lin et. al [44] (table 1.3) produced a range

of entropy-enthalpy ratios that could potentially be used to test the usefulness and

capabilities of entropy calculations.

The simulation protocol outlined in this chapter could be used to classify novel

mutations and therefore provide inspiration and guidance for experimental studies.

However, certain short-comings of molecular dynamics paired with MM/GBSA

binding free energy calculations should be considered. The entry of water upon

mutation or more generally the role of water in the binding site is poorly repro-

duced by MM/GBSA which might be the cause for the outlier R2215A (see section
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2.3.1). Further, the one trajectory approach chosen here assumes identical confor-

mations for the bound and separated complex. This simplification greatly reduces

simulation time but flaws calculations where a bigger conformational change ac-

companies formation of the complex. Especially non-binding mutations such as

R2220A/Q that are supposed to introduce conformational changes are difficult to

classify in that manner. The omission of entropy further introduces a large offset

between experimental and predicted calculated binding free energies [114]. Con-

cerning configurational entropy, the degree of how much the formation of the com-

plex confines the flexibility of both binding partners is typically influenced by the

mutation introduced as is the entropy of water in the case where binding partners

are separated.

To make the best use out of molecular dynamics simulations with MM/GBSA

binding free energy calculations it is advisable to critically examine and discuss

computational results before drawing conclusion or setting up further experiments

[167].



Chapter 3

Accelerated Molecular Dynamics of

antibody-removed and apo FVIII

C2-domain

Classical Molecular Dynamics (CMD) simulations combined with MM/GBSA free

energy calculations carried out in this work successfully ranked residues that con-

tributed most to the binding affinity in experiments and gave detailed insight into

the binding site between the FVIII C2-domain and antibody BO2C11. However,

free energies predicted for experimentally determined non-binding substitutions

R2220A and R2220Q did not suggest a drastic change in binding behaviour. This

might be due to a conformational change induced by these substitutions that is in-

accessible with CMD.

Accelerated molecular dynamics (AMD) is an enhanced sampling technique

that reduces the time to overcome high-energetic barriers. It has been used to in-

vestigate the motion of two β-hairpin flaps in the context of HIV-1 protease by

Hamelberg et al. [168]. They employed AMD simulations because CMD simula-

tions did not sample the transition from holo to apo conformation upon removal of

the inhibitor from the complex structure. Using AMD they were able to investigate

the open and closed states and the transitional path.

A study carried out by de Oliveira et al. derives the open conformation and

transitional states from closed to open conformation of Trypanosoma cruzi Proline
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Racemase using AMD. Similar to the former mentioned work, a crystal-structure of

the closed conformation, that is with bound inhibitor, was available from the Protein

Data Bank. It became apparent that CMD was insufficient to sample large scale

conformational changes but meaningful insights could be achieved with AMD.

To this end, AMD was used here to gain insights into molecular motions that

involve overcoming comparatively high energy barriers that are unlikely to be ac-

cessible with CMD within reasonable time. Thresholds and boost potentials were

calculated as has been outlined in section 1.3.1.

3.1 β-hairpin M2199/F2200 differs in the holo and

apo crystal-structures
A difference between the holo and apo crystal-structure of the FVIII C2-domain

epitope was described previously by Spiegel et al. [61] involving the β-hairpin

containing residues M2199/F2200.

In this research, the twist of the hairpin mentioned by Spiegel et al. was quan-

tified with respect to the angle of intersections of lines defined by the α-carbons of

residues M2199 and F2200 as shown in figure 3.1. By using the definition of the

twist following the definition of reaction coordinate B in the section 4.1, where an

absolute angle of -80° was calculated for the apo FVIII C2-domain crystal-structure

contrasting with a value of 4° in the case of the holo conformation, a difference of

-84° was calculated. Further, results presented here are thereby comparable to the

ones from Umbrella sampling simulations in the next chapter.

Since the side chain of residue R2220 whose mutants were shown to abrogate

binding is in contact with this hairpin, it could be assumed that upon removal of

the guanidinium group the conformation of the hairpin might be influenced (fig-

ure 3.2). Moreover, given the conformation of the aromatic rings of W2203 and

F2196 it is reasonable to assume that R2220 is involved in cation-pi stacking inter-

actions. Stacking interactions of two aromatic rings are well described by the van

der Waals potential and point charge electrostatics with the force field used in this

work. However, the impact of stacking interactions in biomolecules is hard to pin
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down because of the interdependence of their environment [169]. A visual inspec-

tion and a calculation of angles in CMD simulations of the holo FVIII C2-domain

wild-type and with the substitution R2220A showed that no large scale conforma-

tional change took place concerning the twist of the β-hairpin M2199/F2200 or in

the epitope overall (figure 3.3).

A possible explanation is that epitope motion is sterically hindered by the

bound antibody. To test this hypothesis, complementary CMD simulations were run

where the antibody got deleted from the holo FVIII C2-domain structure (ABD).

These included simulating the substitution R2220A. AMD simulations of the ABD

FVIII C2-domain were conducted to investigate structural changes of the β-hairpin

M2199/F2200 and also to evaluate the capabilities of the AMD simulations. The

latter follows the assumption that the conformation of the β-hairpin M2199/F2200

of the holo FVIII C2-domain should revert to the conformation of the apo FVIII

C2-domain crystal-structure upon removal of the antibody since the latter confor-

mation represents a low energy basin that should be sampled using AMD. Further,

the apo FVIII C2-domain structure (PDB 1d7p) was solvated and simulated using

CMD and AMD. Since the ABD and apo FVIII C2-domain share the same topol-

ogy and only differ slightly in their conformation (RMSD 0.4 Å) except for the

β-hairpin M2199/F2200 (RMSD 1.4 Å), the analyses of their simulations should

come to similar conclusions. However, results are only comparable if there is a

credible proof that simulations reached an equilibrated state.

To investigate the capabilities of CMD, a 200 ns simulation was run for ABD

FVIII C2-domain and the apo FVIII C2-domain. It showed that the apo FVIII C2-

domain did deviate to an angle of around -50° whereas the ABD FVIII C2-domain

populates states around 30° to 50° besides its initial value of 4° (figure 3.4 (a)

and (b)). This plot uses a 1D Gaussian filter that aggregates values to a smooth

line. General trends could thereby be spotted in the otherwise very wide spread and

rapidly changing values. These plots might convey the impression that hairpin mo-

tion is rather restricted which is why the additional visualization in figure 3.5 should

give a sense of angle distributions over time. The observation that both simulations
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Figure 3.1: Quantification of the twist of the β-hairpin M2199/F2200: The apo FVIII
C2-domain crystal-structure in green overlaid onto holo conformation of the
FVIII C2-domain crystal-structure in blue. The lines defined by α-carbons
M2199/F2200 intersect with an angle of approximately 84°. To increase com-
parability to Umbrella sampling simulations in the next chapter, reference
points and calculations of this angle follows the definition of reaction coor-
dinate B in section 4.1, where values of 4° and -80° were determined for the
holo and apo FVIII C2-domain crystal-structure respectively.

Figure 3.2: Contacts of the R2220 side-chain with residues of the β-hairpin M2199/F2200:
The aromatic rings of residues W2203 and F2196 might engage in cation-pi
stacking interactions involving the guanidinium group of R2220.
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did not converge to the same value might be due to high energy barriers in the case

of the ABD FVIII C2-domain that are not overcome in a sensible time frame with

CMD.
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Figure 3.3: Twist of β-hairpin M2199/F2200 in CMD simulations of the holo structure: (a)
and (b): The substitution R2220A did not cause a large scale conformational
change of the β-hairpin compared to the wild-type; (c) and (d): No trend could
be observed which might indicate that motion of the β-hairpin M2199/F2200
is hindered by the bound antibody.
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Figure 3.4: Overview of trends in angles with different simulation setups: (a) and (b) CMD
simulations proved to be insufficient to investigate hairpin motion since in both
cases values did not converge; (c) and (d) AMD simulations of the wild-types
approach a value around -45° degrees and did not resemble the value of -80°
measured in the crystal-structure of the apo FVIII C2-domain; (e) and (f) Sim-
ulations with substitution R2220A did not populate a state around 4°. The
absence of this state might provide an explanation for the effect of non-binding
but further investigations would be needed to corroborate this hypothesis.
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(a)

(b)

Figure 3.5: 3D histograms of CMD simulations of the (a) apo FVIII C2-domain and (b)
ABD FVIII C2-domain: Even though both structures share the same topology,
the twist of the β-hairpin M2199/F2200 has been relatively stable in both sim-
ulations and more importantly the ABD FVIII C2-domain did not approach the
conformation of the β-hairpin M2199/F2200 of the apo FVIII C2-domain.
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3.2 No equilibration but hairpin conformations devi-

ate from crystal-structure
To overcome energy barriers that are not sampled using CMD, AMD simulations

were performed which are adding a boost potential to enhance the sampling of the

energy landscape. To check whether a biased simulation like AMD reached an

equilibrated state it is sensible to get an idea whether low energy wells have been

filled up by bias potentials. The energy landscape would not change its shape after

equilibration since low energy wells have reached the threshold and additional boost

potentials would not be applied.

However, an issue with AMD simulations is that for larger structures, like the

one discussed here, it is no longer possible to recover the equilibrium due to large

energetic noise [170]. Other methods, like the Jensen-Shannon divergence as em-

ployed in section 2.1.2, showed that the β-hairpin M2199/F2200 has not reached

equilibrium in both the ABD and apo FVIII C2-domain (figure 3.6). For the apo

FVIII C2-domain this is also apparent in figure 3.4 (c) where the angle of 4° is

populated just before the end of the simulation. It is not clear when an equilibrated

state would be reached in any of the simulations and statements based on the data

presented here are therefore rather poorly supported.

Still, it could be observed that the twist of the β-hairpin M2199/F2200 of the

ABD and apo FVIII C2-domain wild-types approach each other with average values

of -45° and -34° respectively using AMD (figure 3.4 (c) and (d)). To get a sense of

which hairpin conformations are most populated, a clustering using the algorithm

DBSCAN of the angle values has been performed. The AMD simulations of the

wild-type apo and ABD FVIII C2-domain produced three clusters each. Centroids

of clusters for the apo FVIII C2-domain were -48°, -27° and 3°, where the clusters

contain around 85%, 11% and 4% of the data points respectively. The simulation of

the ABD FVIII C2-domain produced clusters with values and populations of -40°

(86%), 9° (9%) and 19° (5%). The fact that highly populated states approach each

other is an indicator that AMD simulations can produce meaningful results with the

system under investigation.
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(a)

(b)

Figure 3.6: Windowed Jensen-Shannon divergence of AMD simulations: The twist of the
β-hairpin is calculated in windows of 50,000 frames where successive windows
are compared (e.g. ’0k->50k to 50k->100K’ is the Jensen-Shannon divergence
of hairpin angles between frames 0 to 50,000 and frames 50,000 to 100,000) (a)
For the AMD simulation of the apo FVIII C2-domain wild-type it showed that
the angle population around 4° just before the end of the simulation produces
a high divergence which indicates insufficient equilibration; (b) for the ABD
FVIII C2-domain wild-type a trend can be observed but bearing in mind the
sudden change of the apo FVIII C2-domain it might be too optimistic to assume
an equilibration time indicated by this trend.
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An additional observation is that highly populated states concerning the β-

hairpin M2199/F2200 (with angles of -48° and 40°) are differing from the confor-

mation of the apo FVIII C2-domain crystal-structure where an angle of around -80°

was measured. This discrepancy might be due to solvation and/or the influence of

crystal contacts (figure 3.7).

3.3 Substitution R2220A might influence hairpin

conformation
An investigation of the twist angle of β-hairpin M2199/F2200 with AMD was also

carried out for the non-binding substitution R2220A (figure 3.8). For the simulation

of the apo structure with R2220A the clusters -45° (65%) and -34° (35%) were

determined whereas the simulation of R2220A introduced to the ABD FVIII C2-

domain produced clusters of -44° (75%) and 2° (25%). A comparison between the

clusters produced in CMD simulations of the apo FVIII C2-domain WT (-48°, -27°,

3°) and the apo FVIII C2-domain with substitution R2220A (-45°, -34°) showed

that the cluster with a 3° centroid (figure 3.6) is missing in the latter simulation.

On the basis of these results, a cautious hypothesis for the phenomenon of non-

binding is that the mutation R2220A influences the conformation of the β-hairpin

M2199/F2200 in such a manner that a stable state with an angle of around 3°, which

resembles the holo conformation, is no longer accessible and causes the antibody to

not recognize the epitope. However, there is reasonable doubt if the simulation of

the apo FVIII C2-domain with substitution R2220A is converged, even more so in

the case of the ABD FVIII C2-domain with R2220A.
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Figure 3.7: Structural view of the twist of β-hairpin M2199/F2200: The structure coloured
in purple represents a frame of the AMD simulation of the apo FVIII C2-
domain where the β-hairpin samples an angle of -48°, which resembles the
most populated state. Blue and green depict the conformation of the holo and
apo FVIII C2-domain crystal-structure respectively. It showed that the hairpin
conformation of the apo FVIII C2-domain simulated in explicit solvent pro-
duces a different hairpin twist than the crystal-structures. This might be due to
crystal contacts and/or effects of the solvent.
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(a) (b)

(c) (d)

Figure 3.8: 3D histograms of the β-hairpin M2199/F2200 twist in AMD simulations: (a)
The angle of the simulation of the apo FVIII C2-domain deviates after 900 ns
(indicated by the red arrow); (b) It showed that the distribution of the hair-
pin twist angle in the case of the apo FVIII C2-domain with the substitution
R2220A is much more variable and did not produce a cluster of values around
4°; (c) and (d) show the ABD FVIII C2-domain wild-type and with substitution
R2220A respectively. These were the least converged AMD simulations. An
explanation could be that the removal of the antibody perturbs the epitope and
raises the need for longer simulations.
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3.4 Conclusion

AMD simulations gave an additional view to the motion of the β-hairpin

M2199/F2200 in the epitope between BO2C11 and the FVIII C2-domain. Upon

removal of the antibody from the holo structure (ABD FVIII C2-domain), it ap-

peared that the β-hairpin M2199/F2200 underwent a twist of about 50°. AMD

simulations of the apo FVIII C2-domain sampled a similar hairpin twist, which

was in contrast to CMD simulations and to the crystal-structure of the apo FVIII

C2-domain. However, for larger systems, as the one under investigation here, a

reconstruction of the energy landscape is no longer possible and could therefore

not be used to investigate equilibration [170]. An analysis of β-hairpin states using

the Jensen-Shannon divergence showed that equilibration has not been reached in

a 1 µs run of the apo FVIII C2-domain which devalues definitive statements based

on the data presented. A mere observation is that during the time of simulation,

substitution R2220A introduced to the apo FVIII C2-domain did not sample the

β-hairpin state around 3° which was populated in the wild-type simulation. This

could point to a rarely-visited state that is needed for antibody binding. Further

investigations employing for example molecular docking simulations and/or exper-

imental techniques like nuclear magnetic resonance would be needed to support

this hypothesis. Owing to the difficulties involved in assessing equilibrium of that

have been mentioned, I refrained from running prolonged AMD simulations. In

hindsight, the enhanced sampling technique Gaussian accelerated molecular dy-

namics [171] or a meta dynamics approach [124], both superior in reconstructing

energy landscapes, might have been a better choice to investigate conformational

states of the β-hairpin M2199/F2200. Other alterations to the protocol, such as

probing different boost potentials or putting restraints on residues in the protein

body to enhance the boosting of hairpin motion, might have contributed to a better

understanding of the capabilities of the simulation method and/or of preferred and

transient states of the hairpin. In the context of transient states and in prepara-

tion of the NMR experiments outlined in chapter 6 the hybrid method developed

by Juárez-Jiménez et al. [172] would have been a sensible addition. They com-
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bined the advantage of AMD in sampling conformational space with the ability of

Markov State Modelling (MSM) to deduce thermodynamic and kinetic properties

of the system using independent short MD simulations. In detail, system states

generated by AMD are the starting point for those short MD simulations which are

then consolidated using MSM to create a picture of the energy landscape.



Chapter 4

Investigating the β-hairpin energy

landscape using Umbrella Sampling

Investigations using accelerated molecular dynamics showed that the twist angle

of the β-hairpin M2199/F2200 of the apo and the antibody-removed FVIII C2-

domain did not converge sufficiently to allow for definite statements. However, it

could be hypothesised that the twist angle of the hairpin of around -80° found in

the apo crystal-structure changes to -45° in solution which is suggested by AMD

simulations of the apo and antibody removed holo FVIII C2-domain structure in

explicit solvent.

To further investigate how the conformation of the β-hairpin containing the

residues M2199/F2200 influences the free energy landscape of the apo FVIII C2-

domain structure, Umbrella sampling (US) simulations were performed. US is a

technique that is routinely used to improve the sampling along a reaction coordinate,

typically with the aim to investigate the free energy of two states separated by an

energetic barrier [173, 174]. The method is outlined in detail in section 1.4.

4.1 Evaluating simulation configurations
The reaction coordinate should optimally be defined to reproduce the apo conforma-

tion of the β-hairpin after gradually twisting the β-hairpin of the holo conformation

and vice versa. To this end, two reaction coordinates have been evaluated: A) the

hairpin twist defined by the torsion angle of α-carbons of residues N2198, A2201,
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Figure 4.1: Torsion angles of reaction coordinate A: α-carbons of residues N2198, A2201,
R2209, P22269 define the torsion angle with values ϕholo = −3° and ϕapo =
−44°

Figure 4.2: Torsion angles of reaction coordinate B: α-carbons of residues R2207, V2223,
F2200, M2199 define the torsion angle with valuesϕholo = 4° andϕapo =−80°

R2209, P2226 producing a value of ϕholo = −3° for the holo and ϕapo = −44°

for the apo hairpin conformation (figure 4.1); B) the torsion angle of α-carbons

of residues M2199, F2200, R2207, V2223 resulting in angles of ϕholo = 4° and

ϕapo = −80° (figure 4.2). The calculation of the torsion angle follows the IUPAC

recommendation [175]. US simulations were configured to map additional 50° at

both ends of the reaction coordinate (a range from 130° to 50° in the case of reaction

coordinate B) so that energy basins should clearly be recognizable.

Another consideration when running Umbrella sampling simulations is the

length of each individual Umbrella simulation and also the amount of step-wise
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change of the reaction coordinate which both determine to what degree the sam-

pling of the reaction coordinates (each Umbrella) overlaps and in turn how accu-

rately the potential of mean force can be reconstructed (see section 1.4). Typically,

the change of the reaction coordinate (twist of the β-hairpin) increases with each in-

dividual simulation, which means that the sudden change introduced by the reaction

coordinate increases as well. To dampen the effect of applied forces when twisting

the hairpin a conservative step size of 2° and a successive sequence of Umbrella

simulations was implemented. The term ’successive simulations’ should convey

that the last frame of each individual Umbrella simulation is used as the starting

point for the next one (figure 4.3). This approach reduces constraining forces and

the possibility for unphysical conformations that could tear the structure apart which

caused problems in some simulation runs.

Figure 4.3: Setup of successive Umbrella simulations: Conformations of the FVIII C2-
domain as found in a selection of frames of two individual Umbrella simula-
tions (Umbrella n and Umbrella n+1) are visualized next to each other. The
focus is on the highlighted β-hairpin, overlapping parts of the protein body
are greyed out. The last frame of the individual Umbrella sampling simulation
(Umbrella n, frame 200) is used as initial conformation for the next individual
simulation (Umbrella n+1, frame 1). By that, the change of the reaction coor-
dinate and thereby the twist of the β-hairpin from one individual simulation to
the next is reduced to 2°. This gradual, ’soft’ twist of the β-hairpin reduces the
possibility of unphysical states like steric clashes which might arise from large
changes of the reaction coordinate.

Further, simulation lengths of 1 ns, 4 ns and 8 ns for individual Umbrella simu-
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Figure 4.4: Torsion angle value distributions of individual Umbrella runs of the apo FVIII
C2-domain: Above every Gaussian-like curve is the number of its individual
Umbrella simulation run, where run 0 is the simulation of the initial structure.
Simulations decreasing the torsion angle have a minus sign in front. An inspec-
tion by eye proved that Umbrellas overlap sufficiently.

lations have been evaluated where a sufficient overlap of Umbrella simulations was

confirmed by a visual inspection of data as illustrated in figure 4.4 for the case of

the apo FVIII C2-domain.

Results illustrated in figure 4.5 showed that with a simulation length of 4 ns

the estimated potential of mean force in simulations of the apo and ABD FVIII C2-

domain are most similar. Ideally all curves in figure 4.5 should be akin except for

statistical noise. However, the deletion of the antibody most probably introduced

sources of variation non-existent in simulations of the apo FVIII C2-domain. This

may indicate that the removal of parts of a crystal-structure needs special consider-

ations and precautions.

Consulting the results of figure 4.6 and table 4.1 it showed that the reaction

coordinate defined by α-carbons of residues 2199, 2200, 2207 and 2223 best re-

sembles the β-hairpin conformations of crystal-structures. Findings outlined from

now on use the following setup for Umbrella sampling simulations: Each individual
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Figure 4.5: Potential of mean force of different simulation configurations: ’start’ indicates
the angle of the crystal-structure that was used for Umbrella simulations. For
simulations of the apo FVIII C2-domain, shown in the left column, this was the
angle -80°, where ’finish’ is the torsion angle of the hairpin in complex (4°). It
showed that for the apo FVIII C2-domain the proposed angle of US simulations
carried out in explicit solvent differs from its crystal-structure value. Overall,
the simulations of the antibody removed FVIII C2-domain were less consistent
than simulations of the apo FVIII C2-domain.
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Change of hairpin conformation from ... 2199/2200 2198/2201
apo to holo 0.399 Å 0.625 Å
holo to apo 0.774 Å 1.081 Å

Table 4.1: RMSD values after the twist of the β-hairpin: RMSD values were calculated
between the average β-hairpin conformation in 200 frames where the reaction
coordinate was set to the same torsion angle as found in the crystal-structures and
the crystal-structure itself (figure 4.6). As an example: apo to holo, 2199/2200:
The torsion angle is -80° in the apo conformation. After twisting the hairpin to
4° (which resembles the value of the holo conformation) the RMSD was 0.399
Å. RMSD values were calculated for the backbone of residues 2196 to 2203 (as
highlighted in figure 4.3). Twisting the hairpin using the torsion angle comprised
of α-carbons of 2199, 2200, 2207 and 2223 (column 2199/2200) as reaction
coordinate gave the best results.

Umbrella simulation has been set to simulate a time span of 4 ns at a temperature

of 25°C using explicit solvent. The reaction coordinate has been defined by the

torsion angle determined by the α-carbon atoms of residues 2199, 2200, 2207 and

2223 with successive, ’soft’ step-wise changes of 2°, covering a range of -130° to

50°.

4.2 Comparing the potential of mean force of non-

binders
Umbrella sampling simulations of the wild-type apo and antibody-deleted holo

FVIII C2-domain structure (ABD) as well as of mutants R2220A and R2220Q have

been conducted and the potential of mean force has been reconstructed using the

weighted histogram analysis method (WHAM) [132]. Results illustrated in figure

4.7 show, that even though trajectories are differing between the simulations of the

apo and ABD FVIII C2-domain, estimated minima are in good agreement. Curves

of WTs as well as R2220A mutants are fairly similar and prepossess almost the

same minima around -75° to -70°. This value is broadly in line with the minimum

of -80° proposed by the crystal-structure of the apo FVIII C2-domain. However,

AMD simulations carried out in chapter 1.3 concluded a highly populated state

around -50° which was not picked up by US simulations. Interestingly only sub-

stitution R2220Q, that was estimated to have a lower effect on total binding free
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(a) (b)

(c) (d)

Figure 4.6: Conformations after the twist of the hairpin: (a) and (b) holo to apo conforma-
tion: The apo FVIII C2-domain crystal-structure (dark grey) with the average
holo FVIII C2-domain of the Umbrella simulation having the same torsion an-
gle as the crystal-structure using (a) reaction coordinate A and (b) reaction
coordinate B; (c) and (d) apo to holo conformation: The holo FVIII C2-domain
crystal-structure (dark grey) with the average apo FVIII C2-domain of the Um-
brella simulation having the same torsion angle as the crystal-structure using (a)
reaction coordinate A and (b) reaction coordinate B; RMSDs of hairpin back-
bone (residues 2196-2203): (a) 0.625 Å; (b) 0.399 Å; (c) 1.081 Å; (d) 0.774
Å
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energy than R2220A in most simulation runs, shifts the minimum to an area around

-55°. However, assuming thermodynamic noise of 1 kcal/mol, this difference is not

significant.

A calculation of the free energy difference (as outlined in equation 1.11) at-

tributable to the β-hairpin between the holo and apo conformation resulted in a

value of 4 kcal/mol (+/- 1 kcal/mol). Since this value was consistent in all US

simulations, a correction of binding free energies (as reported in chapter 2) is un-

necessary since conclusions are based on relative differences.

4.3 Conclusion

Umbrella sampling simulations were used here to estimate the impact of non-

binding mutations R2220A and R2220Q on the β-hairpin M2199/F2200 which

shares contacts to the side-chain of R2220. It was shown that minima of the poten-

tial of mean force of the apo FVIII C2-domain wild-type were reproducible using

a range of simulation configurations. Results of the ABD FVIII C2-domain were

more variable with differing minima and trajectories but non-the-less overall in line

with conclusions of the apo FVIII C2-domain simulations. This was continued with

the introduction of non-binding substitutions. Minima and free energy differences

attributable to the conformation of the β-hairpin were comparable between both

simulation sets. Presuming an error of 1 kcal/mol in calculations due to thermody-

namic noise, US simulations of non-binders R2220A and R2220Q did not introduce

a significant difference to the potential of mean force. The findings outlined in this

chapter indicate that the β-hairpin M2199/F2200 is not confined, more flexible or

largely influenced by the substitutions R2220A/R2220Q.

Still, starting structures used in these simulations might not reflect the confor-

mation of the FVIII C2-domain with introduced non-binding mutations and there-

fore US simulations might be flawed. Further, as outlined in chapter 1.3, transient

states might play an important role in the process of binding also with respect to the

β-hairpin M2199/F2200. The influence of non-binding substitutions on transient

states might be missed using US simulations even more so if these include confor-
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(a)

(b)

Figure 4.7: Potentials of mean force of wild-types and non-binders: (a) Potential of mean
force retrieved from US simulations of the apo FVIII C2-domain and (b) of
the ABD FVIII C2-domain. US simulations suggest a preferred torsion angle
value of approximately -70°, although curves show some variability for dif-
ferent simulations setups. Most prominently, substitution R2220Q favours a
conformation with a torsion angle value around -55°. It can be observed that
the twist of the hairpin with substitution R2220A prefers a torsion angle of -
75°. It should be noted that assuming an error of 1 kcal/mol, these differences
are within the noise.



4.3. Conclusion 116

mational changes apart from the torsion angle of the hairpin. Results from chapter

1.3 support the hypothesis that conformational changes comprising multiple regions

are missed with US using a singular reaction coordinate. Exclusively twisting the

β-hairpin in US simulations did not result in a minimum in the potential of mean

force around -50° for wild-type structures which would be expected from results of

AMD simulations (chapter 1.3).

Despite these concerns, the investigation of the influence of non-binding sub-

stitutions on hairpin dynamics with US was legitimate and ruled out the possibility

of a simplistic mechanism based on the torsion angle of the β-hairpin M2199/F2200

to explain the abrogation of binding.

Methods that enhance the expressiveness of US by combining it with Hamilto-

nian Replica Exchange MD (US/H-REMD) [176] or AMD (US/AMD) [177] might

add to the understanding of hairpin motion. US/H-REMD is especially well suited

to explore two reactions coordinates and enhances the sampling near energy bar-

riers. Using this technique, multiple reaction coordinates could be explored that

might improve the description of the apo and holo conformation of the hairpin.

In the case of the study employing US/AMD [176], different conformations were

created in AMD simulations where restraints were put on the core domain. The

so created conformations of the region of interest increased the understanding of

its different states and suggested two reaction coordinates to define the transition

from one state over to the other. Such a sophisticated approach for deducing reac-

tion coordinates might produce more accurate results in the case of the non-binding

mutations. As noted, it is unclear how the hairpin conformation changes upon in-

troduction of non-binding mutations and an aggressive boosting might indicate that

a different reaction coordinate is more appropriate. Enhancing US simulations or

the use of comparable methods like Metadynamics [124] which is also available in

combination with REMD [178] might get even more important in light of results

from NMR experiments that were attempted in the course of this work and which

are outlined in chapter 6.



Chapter 5

Analysing the impact of binding site

dynamics on binding free energy with

interpretable machine learning

As outlined in section 1.6 the spatio-temporal nature of MD simulations combined

with a typically extensive number of frames and a huge number of atoms compli-

cates the detection of conformational changes that affect the measure under investi-

gation, in this case the binding free energy. As an example, consider the calculation

of interatomic distances of α-carbons atoms in the binding site and their correla-

tion with calculated binding free energy values. This can be set up quite easily and

would work well where a linear relationship is assumed (figure 5.1 (a)). However,

as the formulation of force fields typically describes van der Waals interactions

using a non-linear relationship (Lennard-Jones potential) a correlation coefficient

would only suboptimally capture the different states of atoms concerning their in-

teratomic distance. An interatomic distance that mainly populates two states will

result in a less expressive correlation coefficient even though a relationship might

be apparent (figure 5.1 (b)). In such a case a clustering algorithm could identify

the different states. In a subsequent step the identified clusters could be correlated

with binding free energies to understand their impact. However, clusters might be

ill defined in a case where there is a linear relationship (figure 5.1a) and a normally

time-consuming fine-tuning (e.g. probing for the optimal number of clusters in a
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k-means clustering [179] or for the parameter cluster-density in a DBSCAN clus-

tering [180]) would be needed. Another approach, principal component analysis

[181], has other drawbacks which are discussed in section 1.6.

Tools like WISP [182] focus on long range conformational changes but lack the

ability to analyse the influence of these on binding free energy. So far, establishing

a rationale based on conformational changes at the atomic level to explain their

impact on binding free energy is laborious and trust in the technique has to be

established by manual evaluation of the outcomes. Hence, structural design that

takes full advantage of the atomic resolution of MD simulations is a complicated

process.

Potentially, a machine learning model that is able to encapsulate both linear

and non-linear relationships could be trained to predict binding free energy from

motion in the binding site or beyond, assuming that changes in distance between

binding site residues as well as backbone and side chain angles impact binding

free energy, which is a reasonable assumption. Such a model would possess the

information how even small conformational changes in the epitope, e.g. interatomic

distances, weaken or strengthen the bond. If this information would be accessible to

a researcher it would take away the laborious if not impossible task of assembling

this information at this level of detail himself or herself.

With the advent of deep neural networks, machine learning has become in-

creasingly popular. The predictive power of such networks is superior and has many

success stories in a range of fields, the most prominent being computer vision [183].

However, deep neural networks, with the exception of a few architectures like au-

toencoders, are considered ’black boxes’ and methods like ’Layer-wise Relevance

Propagation’, that aim to elucidate which features of the data contribute to the net-

work’s decisions, are not usable out of the box and have yet to become standard

tools [184, 185, 186]. Another disadvantage of deep neural networks is the lengthy

process of finding the best architecture for a given task and the tuning of model

parameters.

Explainable AI (XAI) is an umbrella term for machine learning techniques
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(a)

(b)

(c)

Figure 5.1: Linear and non-linear data: (a) A linear relationship between x and y values
is illustrated. Clusters, as determined by DBSCAN, are indicated by colour. It
shows that the calculated Pearson correlation coefficient of 0.92 with a very low
p-value indicates that there is a strong linear relationship whereas a clustering
is not well suited to highlight this relationship. (b) A non-linear two-state rela-
tionship is illustrated. The clustering algorithm is picking up the two states but
a Pearson correlation coefficient 0.07 would naively lead to the conclusion that
there is no relationship between x and y values. (c) A random distribution with
a Pearson correlation of 0.05 and a non-expressive clustering cannot be distin-
guished from a non-linear relationship and a linear relationship respectively.
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that train models that can be analysed in such a way that humans can gain intuitions

about how a given model generates its outputs. This contradicts the commonly

accepted idea that machine learning methods produce ’black box’ predictors with

little or no options to understand their inner workings. Tree models are a branch of

machine learning methods that are interpretable and do not share the issue of time-

consuming optimizations. Other than network architectures, tree models favour in-

terpretability over prediction accuracy which makes them attractive for tasks where

decisions have to be comprehensible [187]. Tree models have modest requirements

when it comes to compute resources which is why they have been used extensively

in the past. Probably because of this, the implementation, training as well as analy-

sis tools for tree models are mature and usable in an out-of-the-box fashion.

5.1 Methods

5.1.1 Training of meaningful tree models using XGBOOST

Gradient boosted trees are a set of supervised learning algorithms that can be used

for classification as well as regression problems. XGBOOST [140], standing for

eXtreme Gradient Boosting, is an implementation of gradient boosted decision trees

that has superior computational speed and greatly reduced resource needs over other

implementations of boosted tree algorithms [188].

Boosting refers to combining weak learners that have been build in a stage-wise

fashion. A weak learner is a model predicting better than chance but not by much.

Training of a gradient boosted tree is initiated by a predefined tree (a weak learner)

that splits the data based on a default value. In the successive stages weak learners

are added that are trained on residual errors of the combined previous weak learners.

Note, that the notion of combining weak learners is similar to Random Forest [189].

However, gradient boosted trees are build in an additive manner which means that a

final prediction is the combination of the prediction of a sequence of weak decision

trees rather than a majority vote of a ”forest” of weak decision trees, which is the

case for Random Forest. In general, models employing weak learners are better in

modelling data with high dimensionality over extensive singular trees [190]. This is
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because when a new weak decision tree is added in gradient boosting it accounts for

details of the data that are not reflected by the tree so far and therefore each added

tree improves the model fit. In regression with XGBOOST, errors are reflected by

the residuals of the combined previous models. Following is an outline of the steps

to train a Gradient boost model with XGBOOST:

1. Use one leaf tree with value of 0.51 and calculate residuals.

2. For a tree m ∈ {1,M}

(a) Put all the residuals in the root leaf of a new tree.

(b) find optimal output value of leaf by minimizing:

argmin
Ovalue

n

∑
i=1

L(yi, pi +Ovalue)+ γT +
1
2

λO2
value

where yis are the residuals, pis are the predictions and Ovalue is the out-

put value. The loss functions has to be differentiable since XGBOOST

uses a Second Order Taylor Expansion to approximate it. λOvalue as

well as γT are regularization terms.

(c) Having found an optimal output value we can then calculate a so called

similarity score for that leaf:

similarity score =
(∑n

i=1 gi)
2

[∑n
i=1 Hi]+λ

where gi are the gradients and Hi are the Hessians of the loss function.

(d) Iteratively split the feature space2, build a tree for each split and calcu-

late optimal output values and similarity scores for the leaves3.

(e) Calculate the gain for each tree by:

Gain= Similarity Scorele f t +Similarity Scoreright−Similarity Scoreroot

(f) Continue with tree that has the highest Gain.
1this is the default value in XGBOOST, other approaches use e.g. the mean of the target values
2XGBOOST splits at predefined quantiles to reduce the number of splits to try out
3these trees are trained in a greedy manner as they only provide locally optimal solutions
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(g) Grow branches (sub-trees) from leaves (step (b) to (f)) until a termina-

tion criterion is met (multiple criteria can be defined, e.g. total training

time, tree depth, minimum number of values in leaves).

(h) Prune the final tree by removing branches if their Gain is below a pre-

defined threshold.

(i) Add remaining tree after pruning km to the model:

Fm(x) = Fm−1(x)+νkm(x)

To prevent overfitting a learning rate ν reduces the influence of individ-

ual trees.

(j) Calculate residuals.

(k) Repeat (a) to (j) until a termination criterion is met.

As can be seen in step (i) the final model sums up all the predictions of the

successively trained weak learners, which is why gradient boosting is a type of

stage-wise additive modelling.

Gradient boosting with XGBOOST was chosen in this work because of the

possibility to analyse the impact of features, which is straightforward with the

Python package SHAP [191]. Further considerations included the availability of

a Python package, manual labour to set up the training and analysis of the model

and computational requirements.

XGBOOST has been used in the field of MD before to train a model that pre-

dicts meta-stable states and identifies essential internal coordinates of these states

[192]. The training data of Brandt et al. are distances and angles retrieved from

previously clustered meta-stable state coordinates. To extract the most important

features (distances/angles) they successively remove features that are deemed unim-

portant, based on their impact on accuracy.

In this work, a tree model was trained on distances and motion of binding site

residues to predict the change in Gibbs free energy (∆G values). Using machine

learning terminology the former would be called ’the features’ and the latter ’the
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Figure 5.2: Simplified training of a gradient boosted regression tree model with XG-
BOOST: The initial tree is one node with the default value 0.5. In the next
step, residuals from this single node tree are modelled using a weak learner (a
decision tree with reduced depth). Rules, like rule 1, are determined by the
split of the feature space that produces a tree with the highest ’gain’. There are
optimizations in the case of larger datasets, but in general trees (and thereby
rules) are build for all possible splits (not shown here). The output values
of the leaves depend on the chosen loss function. With the loss function
1
2(target− prediction)2 the optimal output for leaves turns out to be the mean
of its values. To prevent overfitting, a learning rate of 0.1 is applied when a tree
gets added to the model.

target’ or ’target variable’. In detail, features included all interatomic distances

of α-carbons and distances of centres of mass of side chains of residues in the

binding site not more than 3.9 Å apart (excluding hydrogens) as well asφ,ψ and χ1

angles of binding site residues. An interatomic distance threshold of 3.9 Å should

comfortably take account of most atomic interactions, especially hydrogen bonds

which are expected to not exceed 3.1 Å and included all residues defined as part

of the binding site as specified in the experimental work of Spiegel et al. [61].

Further, the β-hairpin torsion angle as discussed in the chapter 1.3 and chapter 4

was included.

∆G values were calculated on a frame-wise basis for an extended simulation

(1,1 µs) of the structure of the antibody BO2C11 bound to the wild-type FVIII C2-

domain. The calculation of these ∆G values was done using MM/GBSA but was

much less rigorous than the one employed for binding free energies as in chapter
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2. Since each ∆G value that is used for training of the tree model here is based

on a single frame (in chapter 2 150 frames were used for the calculation of the

binding free energy) no dynamic effects, like differing side-chain conformations,

are reflected in these ∆G values. As in chapter 2 conformational entropy is not

considered in the calculation of ∆G values. Because of the lack of dynamics and

conformational entropy, these ∆G values should not be understood as measurements

that should be compared to experimentally determined binding free energy values.

Still, if a machine learning model could be trained to predict these less rigorous ∆G

values from distances and angles of binding site residues a successive analysis of

the machine learning model can give information about the importance of distances

and angles which is exactly the motivation here.

The training data contained 550,000 lines, each line comprised of 284 feature

values and the ∆G values as the target and added up to about 2 GB of data. It is com-

mon practice to train machine learning models only on a fraction of the data. A so

called validation data set is retained for an estimation of the model performance at

each training iteration. This is also important for the task of hyper parameter tuning,

which is the process of finding optimal values of model parameters, e.g. maximum

tree-depth. To assess the final performance across tuned models yet another sepa-

rate portion, the so called test data set is retained. According to this, the data was

randomly shuffled and split into a training data set of 70%, a validation data set of

15% and a test data set of 15%. A k-fold cross validation has not been implemented

in the course of this work because an exploration of the suitability of analysing gra-

dient boosted trees to interpret MD trajectories is not primarily dependent on the

robustness of the model.

The data sets were uploaded to the cloud computing provider Amazon Web

Services (AWS) [193] and an XGBOOST model was trained as well as hyper pa-

rameters fine-tuned using the built-in algorithm and functionality of the AWS ma-

chine learning service SageMaker. Using a 16-core server, the hyper parameter

tuning and training of the model took less than 10 hours. Binding free energy was

predicted with a root-mean squared error of 5 kcal/mol on test data set. Since build-
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ing a predictive model that could be used with other structures is not the aim here,

the model is build merely for the analysis of the model itself, overfitting or loss of

generality is of no concern. Given the range of calculated binding free energy val-

ues from around -56 kcal/mol up to -1 kcal/mol, an error of 5 kcal/mol represents

an error of 10% and demonstrated that the selected features can be used to predict

binding free energy with a reasonable degree of accuracy.

5.1.2 Understanding feature impact with Shapley Values

Lundberg et al. introduced the use of SHAP (SHapley Additive exPlanations) val-

ues to machine learning as a unified measure to correctly and consistently interpret

predictions of models [194]. XGBOOST in combination with the Python package

SHAP is now widely employed to analyse and raise trust in trained models in many

different fields, including medical research [195], chemistry [196] and road traffic

[197] to name a few. The SHAP library implemented in Python makes it easy to

calculate Shapley values for a given model and is also equipped with expressive vi-

sualization techniques. In figure 5.4 features are ordered by their impact on model

predictions alongside the nominal impact. For a more detailed view that incorpo-

rates the distribution of feature values the visualization technique of figure 5.5 can

be used. Every feature value is represented by a dot where clusters of dots pinpoint

areas of great similarity. The ordering is the same as in figure 5.4. Colour indicates

whether a feature value, in our case an interatomic or side chain distance, a φ, ψ

or a χ1 angle, is high or low. Other visualization techniques are implemented by

the Python package SHAP that break down an investigated prediction into feature

contributions or display the correlation between two features.

The calculation of a Shapley value for a feature j is as follows:

ϕi(υ) = ∑
S⊆N\{i}

|S|!(n−|S|−1)!
n!

[υ(S∪{i})−υ(S)] (5.1)

where N is a set of features, n the total number of features and υ is the value or

’worth’ of the machine learning model. S is a set of permutations of set N where

feature i is excluded. The marginal contribution of i is then calculated by subtracting
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Figure 5.3: Intuitive calculation of the Shapley value: Three contributors (or features) have
gained a payout of 500 pounds. To find out about the contribution of the third
person, the outputs of all possible subsets of the set of contributors with and
without the third person are subtracted. These are then summed and divided by
number o f subsets

2 which results in the Shapley value of 145 in this case.

the ’worth’ of S with and without i (υ(S∪{i})−υ(S)). The term |S|!(n−|S|−1)!
n! scales

the contribution relative to the number of feature permutations. An intuition how the

Shapley value is calculated is given in figure 5.3 (permutations are not considered).

Generally, the order in which a model reads in the features can make a dif-

ference in the prediction and the Shapley value is therefore calculated using all

permutations of features to remove bias. Since going through all possible combi-

nations quickly gets computationally intractable the SHAP library makes use of the

hierarchical structure of tree based models to speed up the calculation.

5.2 Discussion of the two most impactful distances
Using the techniques discussed above, the most influential feature was determined

as the distance of the centre of mass of the arginine 2215 side chain on the C2-
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domain to the side chain of aspartic acid 32 on the antibody heavy chain. This

finding is somewhat in line with results from binding free energy calculations from

chapter 2 where the artificial increase of this distance, by a reduction of arginine

2215 to alanine, resulted in the strongest change in binding free energy by far.

An interesting finding is that the side chain distance between the C2-domain

residue 2253 which is a threonine and the aspartic acid 97 on the antibody heavy

chain is the second most influential feature. This contradicts the prediction for

the substitution T2253A to a certain extend which was examined in the course of

chapter 2. The alteration hardly made any difference to the binding free energy

or to the experimentally determined binding affinity as can be seen in figure 2.7

(a). The take-away message from section 2.3 was that the energetic loss due to

the substitution T2253A at the site itself is compensated by stronger bonds at other

locations. This finding is once more presented in table 5.1.

From figure 5.5 it can further be seen that the side chain distance T2253 to

D97 increases binding free energy by up to 8 kcal/mol in some frames (the red line

goes up to about 8 kcal/mol). The red coloring indicates that this happens when the

distance is high.

Another point mutation at the location T2253 which has been reported on the

CDC Hemophilia Mutation Project data base is the one to proline [198]. The sever-

ity of this mutation has been classified as mild haemophilia A. A mapping of the

FVIII C2-domain epitope including the residue T2253 by Pellequer and co-workers

[199] points out that the mutation to proline most probably causes a conformational

change that results in a modified FVIII activity. Further, it has been found that a

mutation to alanine at this location did not cause major changes in activity. Pelle-

quer and co-workers attribute this finding to the insufficiency of alanine to represent

charged and structurally constraining amino acids like proline which has also been

shown in other cases of their investigation.

A CMD simulation of T2253P conducted here using the same configuration as

in chapter 2 produced binding free energy values that were indeed about 8 kcal/mol

higher than for the wild-type and T2253A simulations. A pairwise decomposition
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Figure 5.4: Plot of feature importance and averaged impact as by the Python package
SHAP: Here the most important feature is C2215 B32 which is the distance
of the side chain of the C2-domain (chain identifier C) residue 2215 to the
antibody heavy chain (chain identifier B) residue 32. In average this feature
influences the model outcome by 1.2 kcal/mol

of binding free energies and a comparison with the substitution to alanine showed

that the substitution to proline has a stronger effect at the site itself (2.41 kcal/mol)

and moreover influences neighbouring residues L2251 and L2252 that sit at the

tip of a β-hairpin important for binding with increases in pairwise energy by 1.06

kcal/mol and 3.04 kcal/mol respectively (figure 5.2). These major differences be-

tween T2253P and T2253A mainly explain the difference in calculated binding free

energy and possibly experimental binding free energy.
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Figure 5.5: Plot of feature value and impact as by the Python package SHAP. As in figure
5.4 the most important feature is C2215 B32, which is the distance of centres
of mass between the side chains of the residue R2215 (C2215, where C is the
chain identifier that specifies that this residue is in the C2-domain) and the
aspartic acid 32 (chain identifier B assign this residue to the antibody heavy
chain). Most of the distance values can be found in two clusters. The one in
blue indicates that a low distance has a stabilizing effect on binding of about 2
kcal/mol whereas distances in the red cluster are high and result in the opposite.
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Table 5.1: Gain in binding free energy of T2253A compensated by stronger bonds at other
locations: All values in kcal/mol; First column: interaction energies of binding
site residues of T2253A contributing more then 1 kcal/mol; second column: in-
teraction energies of these residues in the wild-type; third column: difference
between the first and second column; green line: the substitution T2253A in-
creases binding free energy by around 8 kcal/mol compared to the wild-type;
red lines: interactions at these locations strengthen as a cause of the substitution
and diminish the effect of the point substitution T2253A.

5.3 Conclusion

An interpretable machine learning model was trained using the implementation of

gradient boosted decision trees XGBOOST employing the cloud service provider

Amazon Web Service. The data used for training was an extended simulation (1.1

µs in total) of the wild-type structure of the C2-domain in complex with the anti-

body BO2C11.

The model predicted binding free energies from distances and angles of epitope

residues with a root mean squared error of 5 kcal/mol which translates to an error of

just under 10%. This is far from the optimal error value of 1 kcal/mol which would

be an exact prediction given thermodynamic noise but was enough in this scenario

to highlight interesting interactions in the binding site.
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Table 5.2: Difference of pairwise interaction of substitutions T2253A and T2253P; green
lines: T2253P produces a 2.41 kcal/mol higher pairwise energy than T2253A at
the site of the substitution and further increases values for neighbouring residues
L2251 and L2252 by 1.06 kcal/mol and 3.04 kcal/mol respectively over T2253A.

As was expected from previously conducted simulations of the substitution

R2215A, distances and angles of this residue determined the binding free energy to

a high degree. It further showed that the distance between this residue and residue

32 on the antibody heavy chain has a non-linear relationship and mainly populates

two states (figure 5.5).

A potentially important location for binding affinity that was not highlighted

in the alanine scan conducted by Lin and co-workers [44] is residue T2253. The

artificial increase in side chain distance between T2253 to D97 by the reduction

of threonine to alanine did also not produce a different binding free energy than

the one of the wild type when calculated employing MM/GBSA (see section 2.3).

Replacements to alanine did not indicate that the side chain distance to residue 97

on the antibody heavy chain is one of the major determinants for binding free energy

as was proposed by the analysis of the trained tree model (figure 5.4).

A computational investigation using CMD of yet another substitution at this

location T2253P was found to have a pronounced effect on binding free energy.

T2253P has not been evaluated experimentally but is identified as a cause of mild
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haemophilia A within the CDC Hemophilia Mutation Project data base [198]. Pro-

line forms a pyrrolidine loop connecting the α-carbon with the main chain nitrogen

atom and substitutions with proline are typically used to rigidify flexible regions

[200]. The substitution T2253P may change the conformation and/or flexibility of

the β-hairpin so that it interacts in a different way with phospholipids, hence it

gives rise to mild haemophilia A. Proline substitutions often have a profound effect

on function and may not be substitutions of choice in designing functioning FVIII

molecules. However, the loss in function may also reduce the affinity to antibodies

like BO2C11 that overlap with the phospholipid epitope, containing the β-hairpin

with residue T2253 [63], which has been suggested by the results presented in this

chapter.

Popular clustering algorithms like k-means [179] or DBSCAN [180] have not

been evaluated against the machine learning model used in this work. Because of

the apparent drawbacks of clustering outlined in the introduction of this chapter, it

would only suboptimally support structural investigations of MD trajectories. Same

can be said about analyses using correlation coefficients.

The undertaking of a PCA analysis is rather different from the latter ap-

proaches. Its data is a set of simulations where amino acid substitutions have already

been introduced. Each of these simulations is then analysed with PCA to draw con-

clusions about how conformational changes induced by amino acid substitutions

influence binding free energy by dynamics. Computational methods to compare

principal components exist but are not routinely used nor easy to implement [201].

A manual inspection and comparison of components by eye could potentially high-

light important conformational changes. Still, such an undertaking would not be

practical for a set of 18 simulations. Another approach would be to calculate com-

ponents of a global covariance matrix consisting of the combined trajectories of all

18 simulations. This would ease the process of finding meaningful conformational

changes. Identified changes could then be correlated with calculated binding free

energies.

The subjective experience in this work was that the training of an XGBOOST
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decision tree and the interpretation of it using the Python package SHAP was

straightforward (for a comparison see table 5.3). The fine-tuning of parameters of

the decision tree has been automated by utilizing built-in functionality of Amazon

Web Services.

It can be argued that techniques that use a user defined set of features, which

has been the case for training the of the XGBOOST decision tree, are biased by the

expectations and preferences of the experimenter. However, including all features

would mean including all possible interatomic distances and angles found in a pro-

tein structure. For a complex containing approximately 10,000 atoms this would not

be feasible. The issue can be mitigated by using default thresholds; nevertheless,

important interactions, especially those that arise after large scale conformational

changes, might be missed. PCA does not share this shortcoming since it can be set

up to capture all relevant motion. Still, a subsequent selection of important motion

involves the experimenter and introduces some subjectivity to the analysis.

Concerning training data, reproducibility has not been investigated in this work

by, for example, using a repeated simulation run and/or using fractions of simulated

frames. It would be interesting to quantify the variability of predicted outcomes or

in other words if two relatively lengthy MD simulations could diverge to a degree

that influences the predictions of the machine learning model.

Except for clustering, each of the techniques highlighted in this chapter pro-

vides a built-in measurement of accuracy which conveys a sense of expressiveness

and trustworthiness of conclusions. Calculations of correlation coefficients are typ-

ically accompanied by p-values and each calculated PCA component has a mag-

nitude that quantifies how much of overall motion it represents. Machine learning

approaches try to build a model that optimizes the prediction of a target variable

and report the accuracy of the model. Different quantities and methods exist for

clustering and a whole field of research is dedicated to this topic [202]. A familiar-

ization with the subject of cluster validation was beyond the scope of this chapter

and would most probably be for most researchers that want to use MD simulations

as an inspiration for experimental work.
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The biggest disadvantage of XGBOOST decisions trees with an analysis em-

ploying Shapley values is that the data, as it has been used for the training of the

machine learning model here, cannot be compared to experimental results. The

confidence in conclusions of the technique is dependent on the trustworthiness of

underlying MD simulations whose accuracy is not an assumption that can be acted

on. An evaluation is further hindered by the fact that ∆G values as calculated by

MM/GBSA have many shortcomings, even more so, when only a single frame is

considered as has been the case in the generation of data for training the tree model.

Also, MM/GBSA calculations are suited for the calculation of relative binding free

energies but not of absolute binding free energies, as has been discussed in chap-

ter 2. Since the data used here is a single prolonged simulation of the wild-type

structure and ∆G values are calculated by MM/GBSA there is no approach for a

comparison of these to experimentally determined binding affinities. A set of sim-

ulations of structures containing amino acid substitutions could be run to obtain

relative binding free energies which could then be compared to experimental bind-

ing affinities as has been done in chapter 2. This is how trust in MD simulations

was established in the first place, which verified its use for the training of a ma-

chine learning model. However, such an evaluation decreases the usefulness of

the machine learning approach because detailed insight could already be gained by

investigating the effect of amino acid substitution in existing MD simulations.

Another approach for evaluating the data and the machine learning approach

could be by comparison of the ranking of the importance of residues as in figure 5.4

with a ranking of binding affinity of amino acid changes as determined in experi-

ments. However, as has been shown in the case of T2253, a reduction to alanine

resulted in a low ranking of the residue, in a sense that it has a weak impact on

binding affinity in experiments, whereas an interaction of this residue was ranked

the second most influential feature in the XGBOOST decision tree.

Because of issues with evaluating the data, the use of a trained interpretable

machine learning model to investigate binding free energies is not optimal. A better

use case for interpretable machine learning approaches could be the investigation
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Table 5.3: Strength and weaknesses of analysis techniques of MD simulations with added
binding free energy calculations: This table represents a subjective perception of
data science projects where the different methods have been applied. In the case
of correlation coefficients and clustering, results are typically visualized with an
additional Python package or any other data visualization software which dis-
tinguishes these techniques from the others, that provide built-in visualization
capabilities. Computational resources vary to a fair degree with chosen clus-
tering algorithm and it is tough to pin down a number here. A PCA analysis
using the package AMBERTOOLS18 [88] was experienced as more difficult to
set up than XGBOOST or correlation coefficients. The choice of an appropriate
clustering algorithm and its optimization make such projects more complex.

of an allosteric pathway that is linked to protein activity. An example is the protein

HDAC8 whose ’in’ and ’out’ states determine its activity and that are defined by

the side chain orientation of its residue Y100. Different disease causing mutations

remote from this residue have been shown to influence the occurrence of ’in’ and

’out’ states in experiments and in MD simulations [75]. With an interpretable ma-

chine learning model, like the one discussed here, the nature of the influence of ’in’

and ’out’ state impacting residues might be better understood from MD simulations

and might give rise to new targeted drugs to treat certain forms of cancer that are

caused by altered HDAC8 activity.

Yet another use case that won’t need a validation would be as an inspiration for

NMR experiments. Different states of side chains can easily be spotted by the anal-

ysis presented here and by further quantifying these states by e.g. hydrogen bonds

these could inform NMR experiments focussing on these states. If the findings of

the machine learning model are confirmed in NMR experiments this could possibly

lead to sophisticated and targeted alterations of the structure to promote one over

another state.



Chapter 6

FVIII C2-domain Expression and

Purification

In previous chapters it was proposed that non-binding mutations R2220A and

R2220Q introduce conformational changes in the FVIII C2-domain epitope to an-

tibody BO2C11 and thus affect the binding. However, molecular dynamics simula-

tions carried out in this work did not show large scale conformational changes upon

introduction of these mutations. This might be due to steric hindrance of epitope

motion in the case of the holo FVIII C2-domain or insufficient sampling time in the

case of the apo FVIII C2-domain structure.

With the aim of investigating conformational changes of non-binding muta-

tions R2220A and R2220Q in the FVIII C2-domain epitope to BO2C11, an attempt

was made to establish a protocol for wild-type FVIII C2-domain purification with

the goal to conduct nuclear magnetic resonance spectroscopy (NMR) experiments.

NMR was chosen over other structural biology methods like X-ray crystallography

and cryo-electron microscopy because of its ability to capture protein dynamics in

solution [203]. It would also be possible to compare dynamic behaviour captured in

NMR experiments to computationally created trajectories. A disadvantage of NMR

is the lengthy, labour intensive spectral post-processing of data. A big part of that

is the protein backbone assignment, where spin systems are identified and linked to

the protein sequence. Thankfully, Nuzzio et al. report 1H, 13C, and 15N backbone

chemical shift assignments for the FVIII C2-domain under investigation here [204].
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After the wild-type FVIII C2-domain has been purified and NMR experiments

have been conducted, it was envisaged to repeat the protocol with mutation R2220A

introduced to the FVIII C2-domain. By comparing the NMR spectra of the wild-

type FVIII C2-domain and R2220A FVIII C2-domain conformational changes (if

any) should become evident. In any case, this would narrow down the explanations

for the phenomenon of non-binding associated with mutations to R2220.

6.1 Attempts using plasmid pET-32b(+)

As a first attempt, the FVIII C2-domain sequence was introduced into a pET-32b(+)

vector designed for expression in Escherichia coli bacteria (E. coli). E. coli have

also been used in all the following purification attempts because of its ability to

digest labelled glucose, fast growth, good protein expression and easy handling as

well as costs and availability of growth and purification media. Further, the use

of E. coli is preferred because 13C-glucose and 15N-ammonium chloride can be

used as the sole carbon and nitrogen source, thereby leading to uniformly 13C, 15N

isotropically labelled protein. The pET-32b(+) vector which was ordered from Gen-

Script Biotech contains besides the sequence of the FVIII C2-domain a thioredoxin

(TrxA) tag alongside a 49 residue linker region containing a tag of six histidines

(His6) and an enterokinase cleavage site. Thioredoxin has the ability to promote

disulfide bridges which may be advantageous in forming the link between the thiol

groups of the FVIII C2-domain cysteines 2,174 and 2,326, which connect the the

N- and C-terminal regions [60]. Further, the correct formation of this disulfide

bond was promoted by conducting, in parallel, expression using both SHuffle cells

(NEB) in addition to expression with Novagen BL21 (DE3) E. coli cells. SHuffle

cells have been developed to enhance the correct folding of proteins and promote

the formation of disulfide bonds [205]. An enterokinase cleavage site was chosen

over other options like FXa or thrombin sites because of its highly specific Asp-

Asp-Asp-Asp-Lys cleavage site. A linker region between the cleavage site and the

FVIII C2-domain was introduced comprising the last three residues of the neigh-

bouring C1-domain. The His6 tag was used in Ni-NTA chromatography to extract
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Figure 6.1: Purification of the FVIII C2-domain from the pet32b(+) construct: 1. The cell
lysate of E. coli is ran over a nickel column (Ni-NTA chromatography) where
uncleaved protein would stick to the column because of the high affinity of the
His6 tag; 2. The protein gets eluded from the column (not shown here) and
is then cleaved by enterokinase, separating the section containing thioredoxin,
His6, and the enterokinase site from the FVIII C2-domain part; 3. In a second
Ni-NTA chromatography the former part, containing the His6 tag sticks to the
column and the FVIII C2-domain alongside enterokinase is found in the flow
through; 4. In a size exclusion remaining impurities, including enterokinase
get removed from the sample, leaving pure FVIII C2-domain.

the protein from E. coli debris. The concept of the purification protocol is illustrated

in figure 6.1.

The plasmid pET-32b(+) and Novablue cells were thawed at 4°C. 1µl DNA

was added to 50µl cells, put on ice for 30 minutes and heat-shocked at 42°C for

45 seconds with a subsequent 10 minutes on ice. This process ensures that DNA is

directly taken up by the Novablue cells which are genetically modified in that man-

ner. Novablue cells were then put in 750µl of autoclaved 25 mM LB medium and

incubated for 30-40 minutes at 37°C. 20µl of grown Novablue cells were put on a

Petri dish prepared with autoclaved LB media containing 2% agar and 1 mM ampi-

cillin, which was added after the media cooled down to skin temperature, and grown
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overnight in an incubator at 37°C. One colony was mounted on a pipette tip and put

into 1 ml autoclaved 25mM LB medium and incubated at 37°C overnight. The DNA

was extracted from this culture using the protocol of InvitrogenTM PureLinkTM

Quick Plasmid MiniPrep-Kit [206]. A DNA sample was sent off for sequencing

and results confirmed the sequence of the ordered plasmid.

The confirmed DNA was then transformed into BL21(DE3) E. coli cells fol-

lowing the same steps as above up to the incubation of the 1 ml culture. This time,

a single colony was put into 5 ml LB medium containing 1 mM ampicillin and in-

cubated over the day at 37°C, shaking at 200 rpm. 1 ml of this culture got added

to 100 ml M9 medium which contained 75 mM PO4, 8.5 mM NaCl, 0.1 ml of 1

M MgSO4, 0.1 ml of 0.1 M CaCl2, 0.1 ml of Micronutrient solution 1, 0.1 ml of

Thymine/Biotin solution, 0.1 ml of ampicillin, 1g glucose, 0.1 15N and the pH was

adjusted to 7.4. A pH of 7.4 was chosen to resemble conditions of the FVIII protein

environment which is within human blood that spans a pH of 7.36 to 7.44. The sam-

ple was then incubated overnight at 37°C, shaking at 200 rpm. The Thymine/Biotin

solution was taken from a prepared stock containing 0.1 g of each component in

100 ml distilled water. The next day, two 1 l M9 cultures were prepared with the

composition as the 100 ml culture with 45 ml of the 100 ml overnight culture got

added to each liter. The two cultures were grown at 37°C, shaking at 200 rpm over

the day. IPTG was added and the temperature reduced to 18°C when each culture

reached an optical density of 0.65A and left overnight for expression of the protein.

The next day, the 2 liter cultures as well as all following samples were put on ice.

The 2 liter cultures were transferred into centrifuge beakers and spun down at 4000

rpm at 4°C for 20 minutes. Resulting pellets were scarped into a Falcon tube and

40 ml lysis buffer was added. The lysis buffer consisted of 50 ml M9 base buffer,

two protease tablets, 1 small spatula tip DNAse as well as lysosyme and 150µl 3

mM MgCl2. The sample was then sonicated 4 times for 30 seconds with 30 second

intervals. The lysed sample was distributed in two centrifuge flasks and spun down

for one hour at 18,000 rpm at 4°C. Subsequent, the supernatant was loaded onto a

Ni-NTA column that got eluded using an AKTA system. Wells exhibiting a high
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Figure 6.2: Gel of Ni-NTA elution: It showed that protein accumulated just below 37 kDa,
which is the size of the FVIII C2-domain that is interlinked with the tags that
have been introduced due to purification reasons, the biggest part being thiore-
doxin. It is not clear why double bands appear at this position.

UV (280nM) value were analysed using reducing SDS-PAGE. As can be seen in

figure 6.2 the gel showed large quantities of protein just below 37 kDa which is in

line with a theoretical molecular weight value of around 35 kDa. The reason for an

occurrence of a double band that showed on the gel is not clear. However, if one

band is an impurity this would be accounted for in the cleavage since only the FVIII

C2-domain construct gets cleaved by enterokinase and could be discriminated by

its reduction in size from 35 kDa to around 17 kDa.

Wells exhibiting protein of 35 kDa size were then transferred to a 15 kDA

membrane for an overnight dialysis in a beaker containing two liter of dialysis buffer
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with 100 mM NaCl and 20 mM PO4 at pH 7.4 and 4°C. The amount of protein in

the dialysed sample was then measured using NanoDrop and enterokinase levels

calculated accordingly for the process of cleavage. Initially, cleavage was very slow

due to a lack of calcium but after this was fixed, cleaved protein precipitated out

of solution. For a better solubility a higher salt concentration would be favourable

but this hindered protease activity and did not result in the desired effect. Attempts

to prevent precipitation by adding different levels of glycerol, of up to 5%, to the

dialysis buffer were unsuccessful. Spinning down or filtering the sample resulted in

loss of the protein to the extent that there was insufficient for NMR spectroscopy.

The purification with plasmid pET-32b(+) never got past this stage. Following steps

of the purification envisaged a reverse column, where the cleaved TrxA, His6 and

enterokinase part would stick to the Ni-NTA column and the FVIII C2-domain plus

the enterokinase enzyme would be found in the flow through. Lastly, a size exclu-

sion should remove remaining impurities like the enterokinase enzyme which has a

molecular weight of 31 kDa over a 17 kDa of the FVIII C2-domain.

Upon cleavage the protein undergoes a drastic change in its isometric point (pI)

from 6.21 for the uncleaved state to 8.98 for the FVIII C2-domain and 5.48 for the

TrxA, His6, enterokinase part which might be the cause for the precipitation.

6.2 Attempts using plasmid pET-28a(+)

Because of the high theoretical pI value of 8.98 of the FVIII C2-domain a new

purification protocol was developed using a pET-28a(+) plasmid. The construct did

not include any tags or thioredoxin and was directed to express the sequence FVIII

C2-domain in E. coli alone. Since only very few of the other components found in

the E. coli cytoplasm should have a similar high pI value, the expressed FVIII C2-

domain could theoretically be purified directly from lysed cells by cation exchange

chromatography. Transformation, expression and harvesting of FVIII C2-domain

protein followed the same steps as in the pet32b(+) protocol, except for the use of

kanamycin instead of ampicillin since pET-28a(+) has a resistance to this antibiotic.

The first step of purification was a cation exchange chromatography column
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Figure 6.3: Purification of the FVIII C2-domain from the pET-28a(+) construct: 1. After
lysing the E. coli cells the protein is found in solution along the cell debris.
Making use of its high net positive charge FVIII C2-domain is loaded on a
cation exchange column; 2. FVIII C2-domain is eluded from the column and
remaining impurities are removed by gel filtration chromatography

that captured FVIII C2-domain because of its high net positive charge (high pI).

The following elution of the column showed that not only FVIII C2-domain bound

to the column. However, since expressed protein was found in wells with relatively

little impurities (figure 6.4, wells 1 to 3) a successive size exclusion gel filtration

should result in NMR purity grade protein.

A NanoDrop protein concentration measurement resulted in 0.057 mg protein

per ml in well 2 of figure 6.4. Well 2 and its neighbouring well were extracted for

gel filtration. Unfortunately, the protein concentration was further reduced during

the execution of the gel filtration (Figure 6.5). Protein concentration was measured

to 0.00124 mM using NanoDrop which is too low for NMR experiments. It is likely

that more protein precipitated out of solution. This however would not be visible

on the UV curve produced in the gel filtration.

Due to coronavirus shut down of the laboratory it was not possible to refine

the protocol further. Refinements envisaged buffer solutions with pH values further

from the pI value of the protein to prevent precipitation.
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(a) (b)

Figure 6.4: Cation exchange chromatography of FVIII C2-domain; (a) trace of lysed E.
coli cells: It showed that not only FVIII C2-domain stuck to the column which
caused the two peaks of well 2 and 8; (b) elution fractions analysed with SDS-
PAGE reducing agent: Expressed FVIII C2-domain having a molecular weight
of around 17 kDa is most probably found around well 2. Remaining impurities
in these wells should well be removed in a size exclusion chromatography using
gel filtration.

Figure 6.5: Gel filtration: The peak around 90 ml might be FVIII C2-domain protein but
the resulting protein concentration of 1.24 µM was too low to conduct NMR
experiments.



Chapter 7

Concluding remarks

The molecular structure of biomolecules in conjunction with their dynamics repre-

sent a major contributor to their function [207]. The formation of a complex is often

initiated and/or followed by a change of protein conformation and accompanied by

a change in function. Yet, experimental methods to investigate these phenomena are

not routinely accessible [208]. Although experimental methods undoubtedly have

advantages and are considered the ’Gold standard’, they are typically expensive and

labour intensive, and often involve error-prone preparatory steps such as protein ex-

pression and purification where unexpected issues my arise. As one small piece of

evidence to support the latter point, the experimental work conducted for this thesis

and discussed in chapter 6 required the adaptation of a purification protocol that led

to numerous, time-consuming downstream issues.

Computational methods such as MD simulations represent supplementary ap-

proaches for investigating protein dynamics that do not share most of the short-

comings associated with experimental work. MD simulations afford a means of

probing the energetic landscape that is shaped by preferred conformational states

and transitions between these states [209]. Expressive simulations can be run on

commodity hardware with an initial outlay of below £2000 with negligible running

costs. The setup and analysis of simulations can be highly automated. When is-

sues arise, comprehensive log files mean that the information for resolving them is

potentially available, although the sheer volume of data becomes a challenge in its

own right. (This contrasts with experimental work, where the problem is often the
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paucity of information.)

In this thesis, it has been shown that MD simulations combined with

MM/GBSA binding free energy calculations can produce good correlations with

experimentally-determined binding affinities. Five of the six residues considered

to be major components of the functional epitope of antibody BO2C11 were iden-

tified, with experimental evidence for the importance of the sixth residue that was

“missed” (N2198) being comparatively weak [44] (as discussed in section 2.2).

To investigate the different conformations of a β-hairpin that is part of the

binding site, both AMD and US simulations were conducted. AMD simulations

are designed to quickly overcome energetic barriers in the energy landscape and

therefore can provide a more complete picture of conformational states. The expe-

rience in the context of the apo FVIII C2-domain was that AMD simulations are

hard to equilibrate and that a sensible reconstruction of the energy landscape for

atomic structures the size of the FVIII C2-domain cannot be achieved, in line with

previous findings [170].

US simulations modify a predefined reaction coordinate and can be used to

calculate the potential of mean force along the coordinate. In this research, US

indicated that the twisting of the β-hairpin M2199/F2200 that is part of the binding

site of the holo FVIII C2-domain is associated with similar potential of mean force

curves for both the apo and antibody-removed holo FVIII C2-domain structure.

More interestingly, simulations suggested that the conformation of the β-hairpin

M2199/F2200 favours a twist angle that is approximately 10° away from the one

measured in the apo FVIII C2-domain crystal-structure.

Upon the introduction of mutations that were described as non-binding by Lin

et al. [44] the potential of mean force did not differ largely from the one of the wild-

type. From the view of US simulations this indicates, that these mutations do not

influence the β-hairpin M2199/F2200 to a degree that would explain the abrogation

of binding.

However, the challenge of interpreting MD simulations soon becomes insur-

mountable at the atomic or even at a more coarse grained level. A number of tech-
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niques exist that reduce the sheer number of atomic coordinates to a comparatively

small number of meaningful quantities. In the case of AMD simulations, confor-

mational states can be highlighted using clustering of RMSD values or via the re-

construction of the energy landscape. US simulations are by design optimized to

elucidate the forces arising when changing one or two pre-selected reaction coordi-

nates. To characterise the binding between mutants of the C2-domain of the blood

protein FVIII and the human antibody BO2C11, the binding free energy of MD sim-

ulations of the complex was calculated using the technique MM/GBSA. Important

pairwise interactions in the binding site were then highlighted by a decomposition

of the energy values and by focused visualization. Nonetheless, a manual analy-

sis of pairwise interaction energies of residues in the binding site of a set of 17

simulations is labour-intensive and has a tendency to become subjective.

Bearing these challenges in mind, the usefulness of employing a machine

learning approach to aid the analysis of simulation data was investigated. It showed

that it is feasible both to generate suitable training data and to develop an appropri-

ate machine learning model to address this task. Specifically, a decision tree-based

model was used to estimate binding free energies based on interatomic distances,

and side chain and backbone angles. The estimates were of reasonable accuracy,

and the subsequent analysis of the decision tree highlighted potential combinations

of interatomic distances and angles that have a strong impact on binding free en-

ergy. These results were promising, but in the absence of experimental validation,

they remain speculative.

It was hoped that the necessary validation would be attainable via NMR experi-

ments involving the FVIII C2-domain. However, attempts to express and purify the

recombinant apo FVIII C2-domain were unsuccessful; expressed protein precipi-

tated out of solution and the remaining protein concentration proved insufficient for

NMR. The next step would have been to adjust the pH of the buffer solutions, but

was unfortunately not possible owing to the closure of the lab in response to the

corona virus pandemic. This not only curtailed an investigation into the potential

usefulness of the new machine learning method, and a means of benchmarking the
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MD simulations, there was an additional motivation for conducting NMR experi-

ments: to introduce the non-binding mutation R2220A and observe the impact (if

any) on the conformation of the molecule, and thereby gain insights into the causes

underlying the abrogation of BO2C11 binding observed in R2220A muteins.

A key emphasis of this work was to provide results in a human interpretable

format without losing too much information, i.e. without losing the advantage of

the atomic granularity and high temporal resolution of MD simulations. To this

end, a novel approach for finding sufficient equilibration time was developed that

describes the dynamics of each residue in an area of interest by the Jensen-Shannon

distance of its backbone angles. MM/GBSA proved to be a potent method for the

ranking of binding free energies but an analysis of pairwise interaction energies of

residues in the binding site turned out to be cumbersome for two contrasting rea-

sons. Firstly, there was no visualization tools for comparing the interaction energies

of single residues to generate plots like that in figure 2.14. Secondly, to build an

understanding of how changes in pairwise interactions influence binding free en-

ergy via a comparison of differences in interaction energies of binding site residues

in a set of 17 simulations would have been a very labour-intensive endeavour. A

reduction of the dimensionality to faciltate human interpretability was then pursued

by employing a machine learning approach. Using visualization techniques pro-

vided by the Python package SHAP it was shown that important interaction could

be identified that might inspire future research [191].

Progress concerning the structure-to-function relationship of the FVIII C2-

domain has been made in multiple ways. CMD simulations with MM/GBSA bind-

ing free energy calculations successfully ranked experimental binding affinities and

could thereby be used to investigate muteins where no experimental binding affinity

measurements exist, as was the case with T2253P in this work. AMD simulations

proposed that the preferred conformation of the beta-hairpin M2199/F2200 deviates

from the one reported in the crystal-structure. However, it was not clear if AMD

simulations reached equilibrium, which would have permits a stronger conclusion

to be draw. US simulations suggested that the non-binding mutations R2220A and
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R2220Q do not influence the β-hairpin M2199/F2200 to a degree that would ex-

plain the abrogation of binding. Finally, a machine learning approach highlighted

impactful motion in the binding site which could be used to introduce knowledge-

drive mutations to the FVIII C2-domain.

Overall, the computational as well as experimental methods used in this work

have been found to complement each other, even though the yield of experiments

was rather poor. Knowledge spanning both domains makes one appreciate the

strengths of each method but also the potential weaknesses. This provides the mind-

set and tools to tackle ever more challenging questions in the field of structural

biology.
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G. Castaman, M. T. Álvarez-Román, R. Parra Lopez, J. Oldenburg, T. Al-

bert, U. Scholz, M. Holmström, J. F. Schved, M. Trossaërt, C. Hermans,
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Löster, Katharina Pock, Stephen Robinson, Horst Schwinn, and Monika



Bibliography 153

Stadler. Degradation products of factor VIII which can lead to increased

immunogenicity. In Vox Sanguinis, volume 77, pages 90–99. Karger Pub-

lishers, oct 1999.
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Perišić, Andrej Šoštarić, and Lazar Lazić. Explainable extreme gradient

boosting tree-based prediction of toluene, ethylbenzene and xylene wet de-

position. Science of the Total Environment, 653:140–147, feb 2019.

[198] CDC Hemophilia Mutation Project (CHAMP & CHBMP).

https://www.cdc.gov/ncbddd/hemophilia/champs.html.

[199] J L Pellequer, A J Gale, J H Griffin, and E D Getzoff. Homology models

of the C domains of blood coagulation factors V and VIII: a proposed mem-

brane binding mode for FV and FVIII C2 domains. Blood cells, molecules &

diseases, 24(4):448–61, dec 1998.

[200] Haoran Yu, Yang Zhao, Chao Guo, Yiru Gan, and He Huang. The role of

proline substitutions within flexible regions on thermostability of luciferase.

Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(1):65–72,

2015.

[201] W J Krzanowski. Between-Groups Comparison of Principal Components.

Journal of the American Statistical Association, 74(367):703–707, 1979.

[202] A. D. Gordon. Cluster Validation. In Data Science, Classification, and Re-

lated Methods, number 1971, pages 22–39. 1998.

[203] James Keeler. Understanding NMR spectroscopy. John Wiley & Sons, 2011.



Bibliography 175

[204] Kristin M. Nuzzio, David B. Cullinan, Valerie A. Novakovic, John M.

Boettcher, Chad M. Rienstra, Gary E. Gilbert, and James D. Baleja. Back-

bone resonance assignments of the C2 domain of coagulation factor VIII.

Biomolecular NMR Assignments, 7(1):31–34, apr 2013.

[205] Julie Lobstein, Charlie A. Emrich, Chris Jeans, Melinda Faulkner, Paul

Riggs, and Mehmet Berkmen. SHuffle, a novel Escherichia coli protein ex-

pression strain capable of correctly folding disulfide bonded proteins in its

cytoplasm. Microbial Cell Factories, 11, may 2012.

[206] Fisher Scientific. Invitrogen™ PureLink™ Quick Plasmid Miniprep Kit.

https://www.fishersci.de/shop/products/invitrogen-purelink-quick-plasmid-

miniprep-kit-2/p-4926496?change lang=true, 2020.

[207] K. Linderstrom-Lang. Enzymes. Annual Review of Biochemistry, 6(1):43–

72, jun 1937.

[208] Zimei Bu and David J.E. Callaway. Proteins move! Protein dynamics and

long-range allostery in cell signaling, volume 83. Elsevier Inc., 1 edition,

2011.

[209] Daniel J. Rigden. From protein structure to function with bioinformatics:

Second Edition. 2017.


	Introduction
	Haemophilia A
	Haemophiliacs experience prolonged bleeding episodes
	Factor VIII is crucial for blood coagulation
	Haemophilia A therapy depends on the severity level
	Inhibitory antibodies to factor VIII complicate therapy
	Inhibitors mask functional surfaces on the FVIII C2-domain
	Immune tolerance induction is commonly used to treat patients with inhibitors
	A range of FVIII replacement products is available today
	Multiple studies identify areas of antigenic residues on the FVIII C2-domain


	Molecular dynamics simulations to investigate protein dynamics
	Force Fields: The basis for calculating interatomic forces
	Water can be represented at varying levels of detail
	Explicit solvation best resembles physiological conditions
	Representing solvent as a continuum speeds up calculation

	Thermostats and barostats provide a first impression of thermodynamic stability
	Simulation Engines differ in usability and accessibility

	Accelerated Molecular Dynamics enhances sampling
	A modified potential to overcome energy barriers

	Umbrella sampling improves the understanding of transitions
	Biased potentials lead the reaction coordinate along a predefined path

	MM/GBSA: The compromise between accurate and rapid free energy calculations
	Change in free energy as an estimate of binding affinity

	Existing structural analysis techniques reduce dimensionality insufficiently
	A decomposition of MM/GBSA energies helps to elucidate binding patterns


	In-depth analysis of the BO2C11 FVIII C2-domain binding site
	MD and MM/GBSA protocols
	Preparation of crystal-structures for simulation
	An equilibration time of 40 ns was ascertained employing statistical methods
	Fluctuations of MM/GBSA values dropped below 1 kcal/mol using 150 decorrelated frames
	Investigating reproducibility by using different setups and repetition

	Multiple simulation setups show good agreement with experiments
	A structural analysis explains the impact of substitutions
	Insufficient representation of entropy and/or water-bridges may explain outlier R2215A
	A detailed structural analysis explains differences between M2199I and M2199A
	R2220 substitutions did not reflect abrogation of binding

	Conclusion

	Accelerated Molecular Dynamics of antibody-removed and apo FVIII C2-domain
	-hairpin M2199/F2200 differs in the holo and apo crystal-structures
	No equilibration but hairpin conformations deviate from crystal-structure
	Substitution R2220A might influence hairpin conformation
	Conclusion

	Investigating the -hairpin energy landscape using Umbrella Sampling
	Evaluating simulation configurations
	Comparing the potential of mean force of non-binders
	Conclusion

	Analysing the impact of binding site dynamics on binding free energy with interpretable machine learning
	Methods
	Training of meaningful tree models using XGBOOST
	Understanding feature impact with Shapley Values

	Discussion of the two most impactful distances
	Conclusion

	FVIII C2-domain Expression and Purification
	Attempts using plasmid pET-32b(+)
	Attempts using plasmid pET-28a(+)

	Concluding remarks
	Bibliography

