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We study a phenomenological class of models where dark matter converts to dark radiation in the low
redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark-matter
density with two extra parameters, and may be able to help alleviate the observed discrepancies between
early and late-time probes of the Universe. We investigate how the conversion affects key cosmological
observables such as the cosmic microwave background (CMB) temperature and matter power spectra.
Combining 3x2pt data from Year 1 of the Dark Energy Survey, Planck-2018 CMB temperature and
polarization data, supernovae (SN) Type Ia data from Pantheon, and baryon acoustic oscillation (BAO) data
from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has
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converted to dark radiation and the rate of this conversion. The fraction of the dark matter that has converted
since the beginning of the Universe in units of the current amount of dark matter, ζ, is constrained at
68% confidence level to be <0.32 for DES-Y1 3x2pt data, < 0.030 for CMBþ SNþ BAO data, and
<0.037 for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are
concordant increases from 4% for the ΛCDM model to 8% (less tension) for DMDR. The tension in

S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
between DES-Y1 3x2pt and CMBþ SNþ BAO is slightly reduced from 2.3σ to 1.9σ.

We find no reduction in the Hubble tension when the combined data is compared to distance-ladder
measurements in the DMDR model. The maximum-posterior goodness-of-fit statistics of DMDR and
ΛCDM model are comparable, indicating no preference for the DMDR cosmology over ΛCDM.

DOI: 10.1103/PhysRevD.103.123528

I. INTRODUCTION

Over the past few years, there has been a notable
improvement in both the variety and precision of cosmo-
logical probes. Signals predicted long ago, such as gravi-
tational waves and global 21-cm absorption, were finally
observed, providing new insights and solidifying our
understanding of the Universe. The enhanced precision
of relatively mature observational techniques such as
measurements of galaxy clustering, weak lensing, and
anisotropies in the cosmic microwave background
(CMB) temperature and polarization fields has allowed
us to test the ΛCDM paradigm to an unprecedented degree.
Recent cosmological observations have revealed a dis-

crepancy in the inferred Hubble constant at ≳4σ level
between early and late Universe probes [1–3]. With a
strengthening of the various steps in the local distance-ladder
measurements of H0, as well as tightening constraints of
medium-to-high redshift probes such as strong and weak
gravitational lensing, the Hubble tension is becoming more
significant [4–7] and enormous effort has been devoted to
understanding its origin. A number of theories have thus far
been proposed to help ameliorate or resolve the tension [8–
18], but so far none have done so to a satisfactory degree.
A parallel development over the last few years has been

the consistently lower value of the amplitude of mass
fluctuations σ8 measured in gravitational lensing compared
to that measured by the CMB experiments [19–24]. While
not currently statistically as strong as the Hubble tension,
the persistence of the σ8 measurement discrepancies, as
well as their possible origin as a mismatch between the
geometrical measures and the growth of structure expected
in the currently dominant ΛCDM paradigm, deserves
special attention. It would be very exciting, and compelling,
if both the H0 and σ8 tensions were solved simultaneously,
though the success of extant models on this front is at best
mixed [25–30].
One possible explanation for why weak lensing surveys

measure a smaller amplitude of fluctuations than the CMB
is that the present-day matter content has decreased at a
higher rate than predicted by ΛCDM model. Models where

dark matter converts into a new species with radiation
properties that is not directly detectable (hence “dark
radiation”) can enable such a trend. These models also
have the potential to reconcile the Hubble tension, as they
predict a smaller matter content as time evolves.
Accordingly, dark energy dominates faster than in
ΛCDM in these models, giving a larger late-time accel-
eration rate (indicated by a higherH0). Therefore, decaying
or annihilating dark-matter models, such as those studied
previously in Refs. [31–48], offer a tantalizing hope of
resolving the H0 and σ8 tensions simultaneously.
In this paper, we are specifically interested in the class of

models where the energy density in dark matter monoton-
ically converts into dark radiation, with the bulk of the
activity happening at low redshift (late time). Our motiva-
tion is to investigate whether a model where dark matter
converts to dark radiation—henceforth, a DMDR model—
can satisfy the twin requirements of both being favored by
the data and helping alleviate the Hubble and σ8 tensions.
In general, interacting dark-matter models have the

potential to resolve the observations in cosmology that
might be otherwise difficult to explain in the standard
ΛCDM model. Because models with beyond-cold-dark-
matter particle content often wash out small-scale structure
[49,50], they are well positioned to help alleviate the well-
documented challenges observed on small scales (the core/
cusp, missing satellites and too-big-to-fail problems of
CDM [51]). The integrated Sachs-Wolfe (ISW) effect has
been measured to have an amplitude significantly higher
than that predicted in ΛCDM when stacking large voids in
the large-scale structure [52,53]; the decrease of dark matter
would suppress the Weyl potential on large scales, thus
enhancing the ISW effect and could thus help to explain
this. Finally, cosmic rays from unidentified sources, spe-
cifically the galactic positron excess at ∼300 GeV [54] and
the ∼3.5 keV [55] x-ray line from nearby galaxies, have
been hypothesized to be sourced by the decay of dark
matter [56–60] (although they may be inconsistent with
some specific dark-matter particle models [61,62]). All of
these lines of inquiry motivate further study of the proper-
ties of, and constraints on, the classes of models with
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DMDR conversion. For example, Wang et al. [56,63]
investigated a decaying dark-matter model that could be
mapped into the parameter space of the phenomenological
DMDR conversion scenario studied in this paper, and
showed that their model can mitigate some of the afore-
mentioned small-scale CDM challenges.
On the theory side, dark-matter-dark-radiation conver-

sion is predicted in various physically motivated scenarios
[39,64,65]. In particle-dark-matter theories, an unstable
dark-matter component is predicted in various extensions of
the Standard Model. For example, in nonminimal super-
symmetric models, the dark sector has a spectrum of
particles analogous to particles in the Standard Model,
and heavier particles can decay into the lightest super-
symmetric particle [66] which could have properties of
dark radiation [67]. More generally, beyond-Standard-
Model physics including fifth-force type additional
interactions, can naturally accommodate dark-matter and
dark-radiation couplings. Some have proposed such
coupled models as a mechanism to solve the 21-cm
absorption anomaly seen by the EDGES experiment
[68,69]. Furthermore, inspiraling and colliding primordial
black holes (PBHs)—dark-matter candidates in their own
right [70]—could transfer energy from dark matter to
gravitational waves, which are also a form of dark radiation
[42,71]. PBHs could also evaporate into beyond-standard-
model relativistic species through Hawking radiation [72].
Various constraints on PBH abundance were extensively
studied by the dynamical, lensing, evaporation, and accre-
tion footprints of the PBHs [70,73], but several mass
windows remain unconstrained, and previously closed
windows sometimes reopen when revisited with improved
analysis tools [74–76].
Any of the aforementioned theoretical models could

underlie a phenomenological dark-matter-dark-radiation
conversion model. The key signature of such a model,
compared to the standard ΛCDM model, is the decreased
fraction of dark matter in favor of both dark radiation and
dark energy.
Our goal is to study a phenomenological cosmological

DMDR model using state-of-the-art cosmological obser-
vations. In this work we utilize the CMB temperature,
polarization, and lensing potential angular power spectra
measured by Planck [1], together with type Ia supernovae
from Pantheon [77], baryon acoustic oscillations (BAO)
from the BOSS [78], MGS [79], and 6dFGS [80] surveys,
and tomographic galaxy clustering and weak lensing
measured by the Dark Energy Survey (DES) [22].
This work is presented as follows. We introduce our

DMDR model in Sec. II, stressing its signatures in the
CMB and matter power spectrum. In Sec. III, we present
the details of our analysis pipeline, including the datasets
we use and the theoretical predictions of the DMDRmodel.
In Sec. IV, we report combined constraints on the DMDR

model from DES-Y1 and external data, along with model
comparison between DMDR and ΛCDM. We conclude
in Sec. V.

II. THE DMDR MODEL

Our specific implementation of the dark-matter-dark-
radiation conversion model is based on the phenomeno-
logical model studied by Bringmann et al. [42], hereafter
B18. We focus on the case where the conversion process
accelerates in time, and the major departures from ΛCDM
happen at late times, as shown in Fig. 1. To obtain a
phenomenological model with this behavior, we impose an
additional boundary condition onto the original B18 three-
parameter ansatz to obtain a steeper rate of dark-matter
conversion in the recent past (z≲ 10); see the next
subsection. Overall, our DMDR model introduces two
additional parameterscompared to ΛCDM.
We now describe the background equations for the

model, followed by the description of its perturbations.

A. Background equations

The background evolution of the DMDR model is
specified by the ansatz of the decreasing dark-matter
density and the modified continuity equation

ρdmðaÞ ¼
ρ0dm
a3

�
1þ ζ

1 − aκ

1þ ζaκ

�
; ð1Þ

1

a3
d
dt

ða3ρdmÞ ¼ −
1

a4
d
dt

ða4ρdrÞ ¼ −Q; ð2Þ

FIG. 1. Temporal evolution of the comoving dark-matter
density (in units of current dark-matter density ρ0DM. The legend
shows the assumed values of ζ, the fraction of dark matter that has
converted into dark radiation since the early Universe relative to
current density, and κ, the conversion rate of dark matter. We
fixed the standard cosmological parameters to their fiducial
values as reported in Sec. II A.
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where ρdm and ρdr are dark-matter and dark-radiation
energy densities, ρ0dm is the dark-matter density today, a
is the scale factor, and we introduce two new parameters1:
(1) ζ, the total amount of dark matter that has already

converted into dark radiation, divided by the amount
of dark matter at the current time.

(2) κ, the parameter characterizing the conversion rate.
The duration of the conversion roughly corresponds
to Oð1=κÞ orders of magnitude change in the scale
factor.

Equation (1) provides an ansatz for the time evolution of
the comoving density of dark matter. In our late-time
DMDR conversion model, the bulk of the conversion
occurs around the present time (a ≃ 1). Equation (2)
specifies that the energy transfers from dark matter to dark
radiation. It also determines the energy transfer flux,Q, as a
function of the scale factor a, taking the derivative of
equation (1).
Like the original B18 model, our DMDR model has the

generality to cover a wide class of decaying/annihilating
dark-matter model. For most of the popular decaying/
annihilating dark-matter models with smooth and simple
transition curve, in the a < 1 region a specific value of κ
that numerically mimic the transition curve of the dark-
matter density can be found. Note, since the condition of
accelerating conversion rate in the near past is similar to
pushing the transition time (labeled by the maximum dark-
matter conversion rate) to the future, in the single-body
decaying dark-matter scenario it suggests a very small
decay rate, Γ ≪ H−1

0 .
To illustrate the evolution of background quantities, we

first discuss the fiducial cosmological model.We fix the non-
DMDR cosmological parameters to the following values
based on DES-Y1 fiducial values: matter and baryon
densities relative to critical Ωm ¼ 0.3028 and
Ωb ¼ 0.04793, scaled Hubble constant h ¼ 0.6818, spectral
index and amplitude of primordial density fluctuations ns ¼
0.9694 and As ¼ 2.198 × 10−9, physical neutrino density
Ωνh2 ¼ 0.0006155 (corresponding to the sum of the neu-
trino masses of 0.058 eV), and optical depth to reionization
τ ¼ 0.06972. These parameters, which are common to both
DMDR and ΛCDM models, are also adopted in the illus-
trations and Fisher forecasts throughout the following
sections. We stress that the values of the standard cosmo-
logical parameters such as h and Ωm are by definition set at

the present time. Thus the high-z region of the DMDR
models in these figures has higher dark-matter density. The
detailed effect of the DMDR parameters ζ and κ is illustrated
in the first batch of figures in this paper, which we now
describe.
Figure 1 shows how the density of dark matter evolves

with scale factor, relative to ΛCDM, for different con-
version rates. Varying ζ scales the curves up and down; in
the illustrative plots that follow we choose ζ ¼ 0.1. We
show the matter density evolution for four different values
of the conversion rate κ; results in Fig. 1 and subsequent
figures shows rapid changes in the dark-matter density in
a≳ 0.1, suggesting that we may be able to place constraints
on such models using current LSS observations.
Figure 2 shows how the density of dark radiation evolves

with scale factor for different conversion rates, relative to
ΛCDM. As the conversion rate parameter κ increases, the
density of dark radiation in the late Universe increases
faster. When the dark radiation is produced in the nearer
past (for higher κ), it dilutes less than if produced over a
longer span of time (lower κ); thus there is more dark
radiation at a ¼ 1 in a larger-κ Universe. One may worry
that large-κ models may be automatically ruled out because
they apparently lead to a high number of effective relativ-
istic species ΔNeff ¼ ρdr=ρν, but note that the conversion to
dark radiation happens at very low redshifts in our DMDR
model and thus renders a simple comparison with ΔNeff
constraints derived from the CMB impossible. Hence a
detailed analysis of the combination of CMB, LSS, and
geometric probes is necessary. A more direct impact of dark
radiation will be on the expansion history, however, and
this will be constrained by the supernova data in our
analysis. For the hypergeometric function required to
calculate the background density of the dark radiation,
we used the special function routine from Ref. [81].
Figure 3 shows how the Hubble expansion rate evolves

with scale factor for different conversion rates, relative to
ΛCDM. Note that we implicitly hold the present-day values
of Ωm and h constant in this plot. Then, increasing the

FIG. 2. Same as Fig. 1, but now showing the temporal evolution
of the dark radiation density.

1The original ansatz in B18 has three parameters: ζ, κ, at, where
the last parameter is the characteristic scale factor when the
conversion happened. Here we set the mathematical condition
ρdma3 ¼ 0 as a → ∞ to obtain an accelerated decreasing curve
near a ¼ 1. This condition leads to an identity among the three
parameters,1 − ζaκt ¼ 0.We then substituteat ¼ expð− logðζÞ=κÞ
back into the B18 ansatz, arriving at our Eq. (1) which contains the
remaining parameters ζ and κ. Keeping ζ or at in our model is
equivalent; we opted for ζ based on the fact that it is the more
physically intuitive parameter in this case.
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conversion rate of dark matter κ increases the amount of
dark matter at a < 1 relative to today, and hence leads to a
more rapid expansion rate, so thatHDMDRðaÞ=HLCDMðaÞ >
1 as seen in Fig. 3.

B. Perturbation equations

In order to get the matter and radiation perturbation
power spectra, we next need to write down the linear
perturbation equations of motion for both dark matter and
dark radiation, then implement them in the Boltzmann
numerical solver CAMB [82]. We adopt the synchronous
gauge throughout this section, following the convention of
CAMB. The metric perturbation in synchronous gauge is
[83]

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ð3Þ

where τ is the comoving time, and hij with i, j ¼ 1, 2, 3 is
the metric perturbation.
Most often, dark radiation is treated as a new species of

massless neutrinos (e.g., [42,84]). This conjecture works
fine in the scenario with no massive neutrinos, but it
produces an incorrect matter power spectrum that evolves
discontinuously away from ΛCDM when massive neutri-
nos are present. Such behavior is expected because dark
radiation (unlike the massless neutrinos) does not interact
with massive neutrinos nor does it share the same temper-
ature and entropy with them. In CAMB, the distribution of
the energy between neutrino species are specified by a set
of time-independent degeneracy numbers, but this is not
applicable to the model with energy transfer from dark
matter to dark radiation.2 Therefore, as long as the model
does not allow for dark matter to massless neutrino

conversion, the two species are physically distinct and
treating dark radiation as a new type of a massless neutrino
is incorrect. Thus we choose to treat dark radiation as an
independent perturbation component in the Boltzmann
equations.
In our model, we assume the dark matter to always be

cold, meaning that the conversion process to the dark
radiation does not provide enough recoil kinetic energy to
heat up the dark matter. At the same time, dark radiation in
our model does not self-interact or dissipate energy via
interactions with dark matter, standard-model particles, or
photons after their production, so that dark radiation simply
free streams. As a result, the phase-space perturbation
equations for the dark radiation differ from the massless-
neutrino ones only by a collision term. Adopting the
perturbation-expansion notation from [83], we have

dN ¼ fðxi; Pj; τÞdx1dx2dx3dP1dP2dP3; ð4Þ

fðxi; Pj; τÞ ¼ f0ðqÞ½1þΨðxi; q; nj; τÞ�; ð5Þ

Fðk⃗; n̂; τÞ ¼
R
q2dqqf0ðqÞΨðk⃗; q; n̂; τÞR

q2dqqf0ðqÞ
; ð6Þ

where xi are comoving coordinates, Pi are their conjugate
momentum, and dN is the particle number in the phase
space differential volume. Here the momentum variable Pi

is replaced by q and ni variables through Pi ¼ ðδij þ
1
2
hijÞqnj in the second equation, and k space is Fourier

transformed from x space.
The dark radiation phase-space equation of motion reads

∂Fdrðk⃗; n̂; τÞ
∂τ þ ikμFdrðk⃗; n̂; τÞ ¼ −

2

3
_hðk⃗; τÞ

−
4

3
ð _hðk⃗; τÞ þ 6_ηðk⃗; τÞÞP2ðk̂ · n̂Þ þ

�∂Fdrðk⃗; n̂; τÞ
∂τ

�
C
;

ð7Þ

where ð∂Fdrðk⃗; n̂; τÞ=∂τÞC is the additional collision term
due to the conversion between dark matter and dark
radiation, to be contrasted with the collisionless massless
neutrino equations.
We adopt a simple form for the collision perturbation

equation involving no dependence on polarization or
momentum anisotropy. Specifically,

�∂Fdrðk⃗; n̂; τÞ
∂τ

�
C
¼ QðaÞa

ρdrðaÞ
ð−Fdrðk⃗; n̂; τÞ þ δdmðk⃗; τÞÞ;

ð8Þ

where Q is defined in equation (2). When writing down
Eq. (8), we adopted the minimal form for the perturbation
variation of the conversion term Q:

FIG. 3. Same as Fig. 1, but now showing time evolution in the
ratio between DMDR and ΛCDM Hubble parameter.

2In the all-massless neutrino case the problem of incorrect
time-independent degeneracy numbers could be hidden, because
there is no need to partition the energy for the massless species
sharing the same equation of motion.
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δQ ¼ Qδdm: ð9Þ

In principle, the form of δQ is determined by the
microphysics of the dark-matter-dark-radiation conversion
process. The minimal form above has been adopted by
previous literature [40,41,85], and B18 has demonstrated
that the current generation cosmology observations do not

have high enough precision to distinguish the detailed δQ
perturbation by carrying out case studies on Sommerfeld
enhancement and single-body decay process.
After harmonic expansion of Eq. (7), we get the

hierarchy equations for dark radiation. Along with the
dark-matter perturbation equations, the full set of pertur-
bation equations in DMDR model reads [83,84,86,87]:

δ0dm þ kZ ¼ a
ρ̄dm

ðQδdm − δQÞ ¼ 0; ½DarkMatter�; ð10Þ

δ0dr ¼ −
4

3
kZ − kqdr −

aQ
ρ̄dr

ðδdr − δdmÞ; ½DarkRadiation;l ¼ 0�; ð11Þ

q0dr ¼
k
3
δdr −

2

3
kβ2πdr −

aQ
ρ̄dr

qdr; ½DarkRadiation;l ¼ 1�; ð12Þ

π0dr ¼
2

5
kqdr −

3

5
kβ3Jdr3 þ 8

15
kσ −

aQ
ρ̄dr

πdr; ½DarkRadiation;l ¼ 2�; ð13Þ

Jdr
0

l ¼ k
2lþ 1

½lJdrl−1 − βlþ1ðlþ 1ÞJdrlþ1� −
aQ
ρ̄dr

Jdrl ; ½DarkRadiation;l > 2�; ð14Þ

where Jl are the harmonic expansions of the phase space
perturbation, Jdr0 ≡ δdr, Jdr1 ≡ qdr ¼ 4

3
θdr=k, Jdr2 ≡ πdr ¼

Πdr=ρ̄dr in CAMB convention; Z and σ are the metric
perturbation coefficients, and βl are the harmonic expan-
sion coefficients of the gradient operator defined in
Ref. [84]. Further details of this derivation are included
in Appendix B.
The modifications described above are relevant for the

continuity equations. For the Einstein equations, the correc-
tion is rather straightforward: we simply add the dark-

radiation perturbations to the total energy-momentum
perturbations.

C. CMB and matter power spectrum

We now have the ingredients necessary to numerically
compute the CMB polarized temperature anisotropies and
matter perturbation power spectra, and thus derive the
observable quantities that can be compared to data. We
implement the background and perturbation equations in the
previous two subsections in the Einstein-Boltzmann code

FIG. 4. Relative difference in the matter power spectrum (left panel) and CMB TT spectrum (right panel) between DMDR andΛCDM.
We explore the same four sets of (ζ, κ) values as in the previous three figures. In the left panel, the white region (between the two shaded
regions) denotes roughly the scales used by the DES 3x2pt analysis.
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CAMB [82] which is used in the cosmosis pipeline that we
discuss in more detail below.3

Figure 4 illustrates the relative differences between the
DMDR and ΛCDM matter power spectra and their CMB
spectra. As with the background-evolution illustrations
above, we fix the parameters common to both DMDR
andΛCDMmodel to their fiducial values listed in Sec. II A,
and we only vary DMDR-specific parameters ζ and κ. This
ensures that the two cosmologies always converge at late
times (see also Fig. 1). In the early Universe, DMDR has
more dark matter than ΛCDM, and this makes the matter
and CMB power spectra resemble those in a ΛCDM
cosmology but with more dark matter. This, in turn, shows
up as the small-scale power enhancement, as well as the
phase shift in the case of the CMB power spectrum.
A distinctive feature in DMDR is the dip in the matter

power spectrum at k ∼ 10−2 hMpc−1, the scale corre-
sponding to the horizon crossing at matter-radiation equal-
ity. This feature is mostly due to the different expansion
history in a higher dark-matter density universe in DMDR.
Although we see an increase in the matter power around
k ∼ 0.1 h=Mpc, and might worry that it could boost the
amplitude of mass fluctuations σ8 and thus exacerbate the
LSS tension with CMB, note that this is not the case
because we have artificially held most of the cosmological
parameters fixed. In fact, DMDR can be qualitatively
compared and contrasted with the early dark energy models
[9,28]. While the early dark energy models have a larger
dark-matter-to-dark-energy ratio after recombination than
ΛCDM, the DMDR model have a smaller such ratio
relative to ΛCDM. This works in the direction of reconcil-
ing the σ8 tension.
In the CMB temperature power spectrum shown on the

right in Fig. 4, the decreasing dark-matter density leads to
an increase in the late ISW effect caused by the decrease of
the gravitational potential as dark matter converts into dark
radiation (an exception is the κ ¼ 2 case which we discuss
separately below). Late-ISW effect is caused by the
decrease of Weyl potential in the dark-energy-dominant
epoch as the expansion of Universe accelerates. In ΛCDM,
the decrease of the Weyl potential only happens in the dark-
energy-dominated epoch while the potential remains con-
stant in dark-matter epoch, but in the DMDR model the
late-ISW effect also accumulates in the dark-matter-domi-
nated epoch. This is because the Weyl potential is mainly
contributed to by dark matter and a decreasing comoving
density of dark matter leads to a decreasing Weyl potential
even before dark energy takes over. Although DMDR
imprints in the late-ISW effect are probably buried in the
cosmic variance, it does gives these models an additional

signature that can be sought in e.g., studies of the ISW
imprints in the large voids [53].
The red curve in Fig. 4 requires further discussion. This

is the case where the dark matter converts at very late times
(z ≃Oð1Þ) and rapidly. Therefore, the increased dark-
energy-to-dark-matter ratio that is characteristic of
DMDR model occurs too late for the late-time ISW to
fully benefit from it. In addition, a DMDR model with the
same present-day Ωm as a ΛCDM model has more matter
relative to dark energy at z > 0; therefore, contributions to
late-time ISW occur later in DMDR than in ΛCDM. These
two effects combine to severely suppress the late-time ISW
effect in high-κ DMDR models.
Lastly, we also present the DMDR effect on the lensing

potential power spectrum for CMB; see Fig. 5. We observe
an increase of the lensing potential at small scales (large
multipoles L) that mimics the amplified large k modes of
matter power spectrum seen in Fig. 4.

D. Nonlinear matter power spectrum strategies and
DES-Y1 scales used

Obtaining accurate theoretical predictions for nonlinear
clustering in cosmological models outside of ΛCDM is
typically challenging, as these predictions require running
suites of cosmological simulations designed specifically for
the extended models. This situation can be contrasted to
that inΛCDM (and its simplest extension that assume a free
but constant dark energy equation of state, wCDM), where
the modeling of nonlinear matter power spectrum has been
extensively studied with N-body simulations [88–90] and
analytical fits or models [91–94]. Limited previous studies
of the small-scale structure formation in DMDR include
simulations of a less general class of decaying dark-matter
models than the one we adopt here [40], and the demon-
stration that relativistic species have negligible contribution
to the gravitational physics of the small-scale structure
formation [95]. One potentially useful alternative to run-
ning simulations is recent work [96] which proposes to

FIG. 5. Relative difference in the CMB lensing potential
spectrum between DMDR and ΛCDM, as a function of κ
for ζ ¼ 0.1.

3DMDR-CAMB using the background and perturbation equa-
tions in this work can be found here: https://bitbucket.org/anqich/
ddm-camb/src/master/. Please email the corresponding author to
get access if it is needed.
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accurately model beyond-ΛCDM models by suitably
rescaling the ΛCDM result in order to get one into the
desired new model. These results are potentially useful and
we may study and implement some of them in the future,
but they are currently not validated to the level sufficient to
enable us to model the nonlinear clustering in our DMDR
cosmological model.
We therefore choose to limit our analysis to purely linear

scales, thus following the same strategy as in the DES-Y1
modified gravity analysis [97] (see also Ref. [98]). To
summarize, we start with the difference between the non-
linear and linear-theory predictions of the observed data in
the standard ΛCDM model at best-fit values of cosmo-
logical parameters, dNL − dlin. Using also the full error
covariance of DES-Y1, C, we calculate the quantity

Δχ2 ≡ ðdNL − dlinÞTC−1ðdNL − dlinÞ ð15Þ

and identify the single data point that contributes most to
this quantity. We remove that data point, and repeat the
process masking out dNL < dlin region until Δχ2 < 1. The
resulting set of 334 (compared to the DES-Y1 3x2pt
baseline 457) data points that remain constitutes our
fiducial choice of linear-only scales.

E. Expectations and forecasts

Before analyzing the data, we perform a forecast of the
expected constraints. We do so in order to understand the
parameter degeneracy structure, especially in regards to
the new parameters ζ and κ. We would also like to
understand what constraints are expected on these param-
eters. However, not all the likelihoods we plan to use in the
real-data analysis have the corresponding mock likelihoods
available. So for the forecast, we only use the DES-Y1
3x2pt and the Planck-2018 TT-TE-EE-lite data centered at
the fiducialΛCDM cosmology. The likelihood of simulated
Planck data vector was calculated by implementing a
wrapper of the work of Ref. [99] in COSMOSIS.
To obtain the forecasts on parameter constraints, we

adopt the Fisher matrix methodology. The Fisher matrix is
defined as

F ij ¼
X
mn

∂vm
∂pi

½C−1�mn
∂vn
∂pj

þ ½I−1�ij ð16Þ

evaluated at the fiducial cosmology, where vm are the
theoretically predicted data values, pi are the cosmological
and nuisance parameters, Cij is the covariance matrix of the
data, and I ij is the covariance matrix of parameter priors.
Fisher matrix calculations typically incorporate Gaussian
priors on the parameters. Because we have flat priors on
some of our parameters (see Table I), we adopt Gaussian
priors of which the variance scales with the range (hence
variance) of the flat priors that we have. Such Gaussian
prior approximations are illustrated by black lines in Fig. 6.

Thus we add I ij ¼ δijVar½PðpiÞ�, where δij is the
Kronecker Delta and PðpiÞ is any one of the Gaussian
approximation of the flat priors from Table I. We center the
cosmological parameters at the values listed in Sec. II A.
For the near-fiducial ΛCDM Fisher calculation, we adopt
the DMDR parameter values of ζ ¼ 10−4 and κ ¼ 1.0,
where all the cosmological observables have negligible
difference from ΛCDM due to small ζ yet is sensitive
enough to the two additional parameters. We use the
COSMOSIS

4 [100] Fisher sampler to forecast the constraints
on the DMDR parameters.
In the Fisher forecast results shown in Fig. 6, we

observe that
(i) The DMDR model breaks the tight correlation

between Ωm and h for Planck. In ΛCDM Ωm and
h are strongly anticorrelated because Ωmh2 is tightly
constrained by the morphology of the acoustic peaks
in the CMB spectrum. In DMDR, the background
evolution has more freedom given by the variation of

TABLE I. Cosmological and nuisance parameters in DES-Y1
3x2pt analysis and their priors.

Parameter Prior

Cosmological
Ωm Flat (0.1, 0.9)
h Flat (0.55, 0.91)
Ωb Flat (0.03, 0.07)
ns Flat (0.87, 1.07)
As Flat (5 × 10−10, 5 × 10−9)
Ωνh20 Flat (0.0006, 0.01)
ζ FLAT (0.0, 1.0)
κ flat (1 × 10−7, 2.0)
σ8 (derived) ∈ (0.4, 1.4)
Lens galaxy bias
bi; ði ¼ 1;…5Þ Flat (0.8, 3.0)
Intrinsic alignment
AIAðzÞ ¼ AIA½ð1þ zÞ=1.62�ηIA
AIA Flat ð−5; 5Þ
ηIA Flat ð−5; 5Þ
Lens photo-z shift (red sequence)
Δz1l Gauss (0.008, 0.007)
Δz2l Gauss ð−0.005; 0.007Þ
Δz3l Gauss (0.006, 0.006)
Δz4l Gauss (0.00, 0.01)
Δz5l Gauss (0.00, 0.01)
Source photo-z shift
Δz1s Gauss ð−0.001; 0.016Þ
Δz2s Gauss ð−0.019; 0.013Þ
Δz3s Gauss (0.009, 0.011)
Δz4s Gauss ð−0.018; 0.022Þ
Shear calibration
mi; ði ¼ 1;…4Þ Gauss (0.012, 0.023)

4https://bitbucket.org/joezuntz/cosmosis/wiki/Home.
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ζ and κ, thus weakening this degeneracy by adding
more degrees of freedom in this 2D space.

(ii) Furthermore, DES has a different degeneracy direc-
tion from Planck in the Ωm − h plane, so that when
the two probes are combined the degeneracy in this
space is significantly reduced. Because ζ is signifi-
cantly correlated with Ωm, this degeneracy breaking
greatly helps in constraining ζ.

(iii) In Fig. 6 we assumed a DMDR cosmology very
close to ΛCDM (with ζ ¼ 10−4). In that case, there
is effectively no constraint on the conversion rate κ,
as expected.

Note again that the Fisher forecasts above are centered at
ζ ¼ 10−4, κ ¼ 1.0 (near) ΛCDM. We have checked that, as
the fiducial values of both ζ and κ increase away from their
ΛCDM values of zero, the forecasted constraints
strengthen. Such behavior in Fisher matrix forecasts is
not uncommon and occurs when the dependence of the
measured quantities on the parameters of interest is non-
linear. Nevertheless, the constraints presented in Fig. 6 give
us a rough idea of what to expect from the real data. We
have also checked that increasing the fiducial converted
fraction to ζ ¼ 0.1 only modestly strengthens constraints
on κ.

We now proceed to describe our data and methodology.

III. METHODOLOGY

We follow the general scheme for the ΛCDM extension
model analysis of the DES-Y1 3x2pt combined probes,
which was described in detail in the DES-Y1 extensions
paper [97]. In this section we will mainly focus on the
methodology and systematics tests results specifically for
the DMDR model, for full details, see Refs. [22,97].

A. Theory prediction pipeline

Our theory predictions for the DES 3x2pt data vector are
derived from the 2D projection of the 3D matter and Weyl
potential power spectra, incorporating complexities like
nonlinear physics, galaxy bias, intrinsic alignments, photo-
z bias, and shear calibration bias. The detailed derivation of
3x2pt theory prediction were described in Sec. IV.A of
Ref. [22]. Here we only go through the procedures that are
specifically modified for the DMDR model.
We first modify the Boltzmann code CAMB by imple-

menting the equations described in Sec. II, and refer to this
modified version as DMDR-CAMB. We also add a flag on
σ8 to ensure numerical stability in the nonlinear subroutine
of DMDR-CAMB by attributing zero likelihood to models
with σ8 > 1.4 or σ8 < 0.4. The resulting filter prior
σ8 ∈ ½0.4; 1.4�, is about ∼10σ wide on each side of the
fiducial value (relative to the DES-Y1 ΛCDM analysis
[22], σ8 ¼ 0.807þ0.062

−0.041 ), and thus not expected to affect the
overall constraints.
Next, the relation between the different cosmological

quantities in the flat universe is enforced differently in
DMDR comparing toΛCDM because of a larger fraction of
radiation density. The flat-universe relation is

Ωm þ ΩΛ þ Ωdr ¼ 1: ð17Þ

Specifically, while in ΛCDM the flatness condition implies
ΩΛ ¼ 1 − Ωm, in flat DMDR we enforce ΩΛ ¼ 1 − Ωm −
Ωdr instead.
Finally we improve upon the usual assumption that the

Weyl potential Φ is completely contributed by matter in the
late universe, Φ ¼ 3

2
ΩmH2

0δm=ac
2. Recall the Weyl poten-

tial defined via the metric potentials ϕ and ψ in Newtonian
gauge:

Φ ¼ ðϕþ ψÞ=2;
ds2 ¼ a2ð−ð1þ 2ψÞdt2 þ ð1 − 2ϕÞdx2Þ: ð18Þ

The assumption that the Φ power spectrum is proportional
to the matter power spectrum is only reliable for negligible
amounts of relativistic species in the late Universe, which
holds in ΛCDM but can break in DMDR models with large
ζ. At super-horizon scales,Φ diverges from the local matter
perturbation. Our strategy is to take the appropriate ratio

FIG. 6. The DMDR Fisher forecasts showing 95% C.L. con-
tours assuming simulated DES-Y1 3x2pt data, simulated Planck-
2018 data, and the combination of both, all generated close to
ΛCDM cosmology. The forecast is done assuming a Gaussian
surface around the fiducial ΛCDM cosmology, specified by the
same parameters in Sec. II A. The combined datasets noticeably
increased the constraint power, especially on the fraction of
converted dark matter ζ. The ΛCDM model’s degeneracy
between h and Ωm (note a very thin red contour in that plane)
opened up in DMDR.
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between the linear Weyl potential power spectrum Plin
ΦΦ and

the linear matter power spectrum Plin
δδ , and then modify the

shear clustering, galaxy clustering, and galaxy-galaxy
power spectra. The Weyl-corrected (WC) power spectra are

PWC
XX ¼ RWeylPXX; ð19Þ

PWC
gX ¼ R1=2

WeylPgX; ð20Þ

with the dimensionless Weyl-correction factor defined as

RWeyl ≡ Plin
ΦΦ

½3
2
ΩmH2

0ðzþ 1Þ2=c2�2
1

Plin
δδ

; ð21Þ

where X ∈ fγ; IAg is a component of the correlation
function that needs the Weyl correction (specifically, the
shear and intrinsic alignments), and g stands for the galaxy
position. Hence PWC

XX , PWC
gX are building blocks for the

corresponding projected (two-dimensional) angular corre-
lation functions; for example PWC

δδ is used for the calcu-
lation of 2D lensing shear power. The physical reason that
the IA and shear components require the gravitational
potential correction is that these processes are directly
determined by the gravitational field; galaxy shear is
formed by the bending of light in the gravitational field,
and IA is induced by the tidal gravitational field generated
by nearby mass.
The Weyl potential and Newtonian potential in principle

differ because they depend on different gravitational fields.
In practice, we find that their relative difference is < 1%
throughout the expansion history in a not-strongly-aniso-
tropic metric in both DMDR and ΛCDM. We are thus
justified in calculating the correction ratio in Eq. (21) from
the Weyl-potential power spectrum. We further assume that
Weyl-potential correction is linear and commutes with
intrinsic alignments and galaxy bias (this dramatically
simplifies the implementation in the code). While this is
not guaranteed to be true, given the current linear modeling
of intrinsic alignments and galaxy bias any leading-order
adjustment is likely absorbed by the nuisance parameters.
Any scale-dependent caveats of this assumption should be
further suppressed by the fact that we adopt conservative
scale cuts to limit the impact of uncertainties in the
modeling of nonlinearities,
Lastly, as discussed in Sec. II D, we adopt Takahashi

et al. halofit prescription [93] to produce the nonlinear
matter power spectrum. We ensure the robustness of our
analysis to small-scale physics by cutting out the data
points at nonlinear scales as described in [97].
In Appendix A we include a comparison between Y1

analysis pipeline and our DMDR pipeline when both are
applied to the ΛCDM mock data vector. It illustrates that
the pipeline modifications do not induce noticeable
bias (≲0.1σ).

B. Parameters and priors

The DES 3x2pt data analysis applied to the DMDR
model includes a total of 28 parameters; they are listed in
Table I. There are eight cosmological parameters and 20
nuisance parameters. DMDR introduces two additional
cosmological parameters to the usual six (Ωm; h;
Ωb; ns; As;Ωνh2): the fraction of the converted dark matter
ζ and the dark-matter conversion rate κ. When combining
DES 3x2pt dataset with the external datasets, three more
parameters, the reionization optical depth τ, supernova
absolute magnitude M, and the Planck-lite likelihood
nuisance parameter aPlanck are added into the variables.
Their priors are presented in Table II.
The prior on ζ is flat in the range ζ ∈ ½0.0; 1.0�. This

range is bounded by the limit when there is no dark-matter
conversion, and the limit when half of the dark matter has
converted since the primordial time. The latter choice is
based on the fact that the early time Planck measurement of
the matter density, Ωm ¼ 0.3166� 0.0084 [1], is within
20% of the late-time DES measurement,Ωm ¼ 0.264þ0.032

−0.019 .
Hence, there is no indication that a large fraction of the dark
matter has converted at z≲ 1000; this conclusion is also in
line with previous work [40,41,46,101].
The prior on the conversion rate κ is also flat, with the

range κ ∈ ½10−7; 2�. We set the lower bound very slightly
above zero in order to ensure numerical stability of the
modified code, and checked that in this small-κ limit the
observables agree with those of ΛCDM. The upper prior
limit is determined by the fact that neither the matter power
spectrum nor the CMB angular power spectrum varies at a
detectable level when κ > 2. This, in turn, can be under-
stood from the evolution of the dark matter density
illustrated in Fig. 1. When the conversion rate is as high
as 2, new physics happened well after recombination and in
the late stages of structure formation, allowing the DMDR
model to mimic a ΛCDM universe with a higher density of
dark matter. Thus models with κ ≳ 2 display a strong
degeneracy between the new parameters ðζ; κÞ andΩm, and
are difficult to constrain tightly. It is important to keep this
in mind when interpreting the κ posterior when it is pushed
to the upper prior bound.
The cosmological parameters have flat priors that are

nearly the same as in DES-Y1 (there are a few very minor

TABLE II. Additional parameters used in the analysis with
external datasets, along with their priors.

Parameter Prior

Cosmological
τ Flat (0.01, 0.2)
Supernovae parameter
M Flat (−20.0, −18.0Þ
Planck-lite nuisance parameter
aPlanck Gauss (1.0, 0.0025)
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differences between the two), and the nuisance parameters
that model tomographic intrinsic alignments effect, photo-z
uncertainty, shear calibration, and galaxy bias have the
same Gaussian priors as in the DES-Y1 3 × 2 analysis [22].
We also impose a hard filter on the derived parameter σ8
within [0.4, 1.4] as described in Sec. III A.

C. Datasets

Our cosmological parameters analysis will be performed
on DES-Y1 3x2pt datasets, external datasets, and the
combination of all datasets separately.
We first describe the DES-Y1 “3x2pt” measurements;

here 3x2pt refers to three sets of two-point correlation
functions as follows. Let i and j denote source-redshift bins
(out of four total), and a and b denote the lens bins (out of
five total). The correlation functions that form a set of
observables that we call the “data vector” are as follows:

(i) ξij�ðθÞ, the correlation between galaxy shear mea-
sured in source bins i and j.

(ii) γibt ðθÞ, the cross-correlation between the galaxy
shear in source bin i and the galaxy positions in
lens bin a.

(iii) wabðθÞ the correlation between galaxy positions in
lens bins a and b.

The five redshift bins of the lens galaxy catalog are
processed using redMaGiC [102]

z ¼ ½ð0.15 ∼ 0.3Þ; ð0.3 ∼ 0.45Þ; ð0.45 ∼ 0.6Þ;
ð0.6 ∼ 0.75Þ; ð0.75 ∼ 0.9Þ�;

while the four redshift bins of the source galaxy catalog,
obtained using the process called METACALIBRATION [103],
are

z ¼ ½ð0.2 ∼ 0.43Þ; ð0.43 ∼ 0.63Þ; ð0.63 ∼ 0.9Þ; ð0.9 ∼ 1.3Þ�:

Each tomographic two-point correlation function has 20
log-spaced angular bins in the range 2.50 < θ < 2500, and a
total of 45 tomographic angular correlation functions in
each theta bin, for a total of 20 × 45 ¼ 900 data points.
Cutting out small angular scales to avoid uncertainties with
modeling nonlinearities (see Sec. II D) leaves 334 mea-
surements. We refer the reader for other details, including
those of theoretical modeling, to [22]. Treatment of some
details specific for the DMDR is discussed in Sec. III A.
Now we describe the external datasets that we adopt;

they are
(i) CMB: Planck-2018 high-lTT, TE, EE, polarization

modes temperature spectra with l ≥ 30 from Plik-
lite likelihood, and TT, EE of the low-l, l ≤ 29
from Commander and SimAll likelihood, plus lens-
ing potential Cls with multipoles 8 ≤ L ≤ 400 from
SMICA likelihood [1,104].

(ii) Type Ia supernovae: we adopt the binned Pantheon
SNe Ia dataset [77] covering the redshift range
0.01 < z < 2.3.

(iii) BAO: we adopt the BOSS DR12 [78] measurements
of Hrs=rfids ,Dmrfids =rs at redshifts [0.38, 0.51, 0.61],
the SDSS-MGS [79] measurement of α ¼
ðDV=Dfid

V Þðrfids =rsÞ at redshift 0.15, and the 6dFGS
[80] measurement of rs=DV at redshift 0.106. The
BOSS DR12 data come with a full covariance
matrix, while all other data points only have diago-
nal uncertainties.

We do not include the redshift space distortion (RSD)
measurements that we previously used in the DESþ
External data analysis [97]. We make this choice because
DMDR allows for a scale-dependent growth of linear
density perturbations, and the bias on fσ8 measurements
could be significant when the default ΛCDM templates are
used in the compression of RSD information in the
presence of a scale-dependent growth [105,106].

D. Samplers

For our principal results—constraints in the multidimen-
sional parameter space—we use POLYCHORD [107].
POLYCHORD is a nested sampler with outstanding perfor-
mance on Bayesian evidence estimation, which is useful for
tension and model comparison analysis. We set POLYCHORD
live points ¼ 250, num repeats ¼ 60, and tolerance ¼ 0.1.
This combination of settings was optimized to obtain precise
and accurate results—especially in regards to the Bayesian-
evidence computation—given our available CPU time.
We also need to run a number of chains for our

systematic tests (shown further below in Fig. 7). High-
quality nested-sampler runs are too time-consuming to be
used for these runs. We thus make use of a couple of
alternative numerical tools. First, we use the MULTINEST

[108] sampler, which is faster than POLYCHORD. We use the
MULTINEST sampler with settings live points ¼ 250,
efficiency ¼ 0.3, and tolerance ¼ 0.01. Second, we adopt
our own importance sampler.
We use these two in conjunction as follows. We first run

a baseline chain on uncontaminated theory predicted data
vector, and save 334 3x2pt data points for each sample in
the chain file. For the importance sampling, we reweight
the samples by a factor wnew ¼ ½Lnew=Lold�wold, where Lold
is the old likelihood from the Monte-Carlo Markov chain
(MCMC), and Lnew is the new likelihood calculated using
the systematics contaminated data vector and the theory
3x2pt saved for the MCMC samples. In this way, the
importance sampler can produce a chain for certain
systematic tests in minutes, as opposed to days which
running the theoretical pipeline at each sample would take.
This process is therefore very CPU time efficient, but it is
only valid in cases when importance sampling is repre-
sentative on the baseline samples, and when the parameter
space remains the same. Because sample systematics
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considered in our tests happen to lead to small deviations
from the fiducial model—thanks to our adoption of linear-
only scales and nuisance parameters to model general
systematics—this assumption is justified. Quantitatively,
the criterion for the effectiveness of the importance sam-
pling is given by the effective sample size (ESS) given by
ESS ¼ ðPwÞ2=Pðw2Þ. We regard importance sampling
as trustworthy if post-importance sampling ESS preserves
⪆0.8 of the baseline ESS, and this is satisfied for all of our
systematic tests that use importance sampling.
In summary, for the real data chains we used POLYCHORD

as the sampler. The systematic tests using the importance
sampler are the baryonic, non-Limber, magnification, and
RSD non-Limber effects. The IA systematics are modeled
by nuisance parameters, so they cannot use importance
sampling. We run MULTINEST chain for the two IA
systematics validation.
Now we proceed to the validation of pipeline robustness

against systematics.

E. Systematics tests

Systematic errors, both theoretical and observational, are
always a worry for large-scale structure analyses. To
address this, we adopt a two-pronged strategy. First, we
restrict ourselves to linear scales only, as described in
Sec. II D. Second, we perform a battery of validation tests
by adding various systematic effects to the data and

monitoring how the results on the key cosmological
parameters change. We now describe this latter strategy.
We start from a noiseless ΛCDM mock data vector for

DES and Planck; that is, corresponding power spectra that
contain no stochastic noise and are centered on the
concordance theory model. The Planck mock likelihood
is based on the compressed likelihood work [99], centered
at ΛCDM fiducial cosmology. The DES likelihood is
identical to the one adopted in this analysis, using theory
predicted mock data files. We calculate the cosmological
constraints from this baseline case. We then add the
systematic effects described in Sec. IV. A of DES-Y1
extended-models paper [97], corresponding to baryonic
effects, Limber approximation, magnification bias, Limber
approximation with redshift space distortion, two intrinsic
alignment models, and nonlinear galaxy bias, to generate
systematics contaminated data vectors. In each of those
cases, we redo the cosmological analysis and evaluate the
errors on the key parameters.
The results are shown in Fig. 7 for the DES-only case

(upper panel) and DESþ EXTERNAL dataset (lower
panel). We see that the systematics are causing at most
0.5σ bias in dark-matter converted fraction ζ in DES-only
analysis, and no noticeable bias is observed when for the
combination of DES and External datasets. The slight
deviation (∼0.2σ) between the best-fit value of ζ and the
assumedΛCDM input ζ ¼ 0.0 is most likely due to the fact
that we ran this test with synthetic DES likelihood but real
BAO and supernovae data, and the latter two are not
enforced to recover the input-model parameter values.
Because the fiducial simulated data vector is at the

ΛCDM cosmology, κ is not constrained and no interesting
conclusion could be made on systematic bias. We therefore
conclude that our results are robust to some of the key
systematic errors, at least to the extent that our systematic
models represent the real-world errors.

F. Blinding

We blinded our real data analysis in the following way.
After obtaining the MCMC chain on the real data, before
unblinding the cosmological results, we added a random
number scaled by the variance of the parameter to the
MCMC samples. During the blinded stage of the analysis,
we carried out the postprocesses including 2D contour plots
and marginalized parameter constraints on these shifted
samples. Our blinding preserves the shape of the contours
with random shifting. Thus before proceeding to unblind-
ing, we checked that the contour shapes are reasonable for
the data constraining power, and the last few samples have
the likelihoods at correct order of magnitude (they are
usually not the max a posteriori). In the end we unblinded
the cosmological results by resuming the raw samples of
the real data MCMC chain. No change to the pipeline was
done after unblinding, for the results reported in the next

FIG. 7. The effect of different systematics biases on ζ for DES-
only (top) and DESþ EXT (bottom) analysis. The only system-
atics that show a visible impact are the magnification and intrinsic
alignments for the DES-only data, causing a ≈0.5σ bias on ζ. All
other systematics studied here lead to negligible biases.
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section. The real data analysis pipeline is completely
consistent with the systematics test in the above subsection.

IV. RESULTS

We now present our constraints on DMDR cosmology,
followed by the tension and model-comparison results.

A. Constraints on DMDR model

The constraints on DMDR parameters ζ and κ are shown
in Fig. 8, and their 1D marginalized statistics summarized
in Table III. For the converted dark-matter fraction ζ, we
find

ζ < 0.32 DES-only; ð22Þ

<0.030 External-only; ð23Þ

<0.037 DESþ External: ð24Þ

Note that we see a slightly looser constraint on ζ with
DESþ External dataset than External-only dataset. This is
somewhat counterintuitive, as our forecast predicted that
weak lensing and galaxy clustering would tighten the
constraint on ζ by anchoring the matter density at low
redshift. However the Fisher forecast of course assumes
Gaussian likelihood in all parameters. In the presence of

FIG. 8. Constraints by DES-only, External-only, and DESþ External data on the converted dark-matter fraction ζ and rate κ, along
with those on Ωm, S8, and h.
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non-Gaussianities, especially in a high-dimensional space,
combined constraints are often (slightly) worse than those
from individual probes.
No constraint on conversion rate κ is obtained; see the

bottom right of Fig. 8. This agrees with the expectation that
κ is unconstrained in the limit when the amount of
converted dark matter, ζ, is very small.
We can see a raising posterior profile towards the upper

bound of the κ prior. Although not statistically meaningful,
such posterior profile suggest that we possibly under-
estimated the prior upper bound. Other explanations
include the IA systematics and high-dimensional parameter
space geometry. In any case, higher κ, namely even faster
conversion that happens at extremely low z is still open for
investigation. However exploration of this avenue requires
a more specific analysis, similar to one in models with a late
dark-energy transition [109] in order to take the distance-
ladder calibration into consideration. Hence we leave this
for future work.
Other cosmological parameters that are of interest

because they are tightly constrained or exhibit tensions
between surveys—h, Ωm and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
—are also

illustrated in the triangle plot Fig. 8, and summarized in
Table III.

B. Model comparison and tensions

As the tension between early and late Universe surveys
draws more and more attention in the cosmology commu-
nity, there has been increasing number of works dedicated
to quantify the concordance and discordance into statistical
metrics [110–112]. In this work, we quote Bayesian
evidence and maximum a posteriori (MAP) χ2 difference
as the model-comparison metrics, and use the “suspicious-
ness” metric defined in reference [111]. We also report the
one-dimensional differences in units of error bars for the
parameters suspected to be tension, i.e., h, Ωm, and S8. We
stress that we avoid combining any datasets that are known

to be in tension, such as Planck and distance ladder (for h)
or Planck and DES (for S8).
We now report the model-comparison results.
(i) χ2 at MAP Cosmology. A very traditional criterion

of the goodness of a model is the χ2 evaluated at the
maximum a posteriori parameter values χ2MAP ¼
ðd −MÞTC−1ðd −MÞjMAP, where d is the full data-
set, M is the theory prediction evaluated at the
maximum posterior sample, and C is the covariance
matrix of the full dataset. A preferred model should
have smaller MAP χ2, and be punished by the
number of extra parameters. Due to the non-Gaus-
sianity and the different normalization scheme of
different survey likelihoods, we choose to report the
effective χ2 defined as

χ2MAP ¼ −2 logLjMAP: ð25Þ

We ran an optimizer three times, adopting the scipy
optimizer with Nelder-Mead method to calculate the
MAP from the POLYCHORD chain samples; from these
we report the best final MAP value. The χ2 difference
between the DMDR and ΛCDM model is

Δχ2MAP ¼ −0.6 DES-only;

¼ þ0.8 External-only;

¼ þ0.1 DESþ External; ð26Þ

as summarized in Table IV. Therefore our DMDR
model does not give a substantially better global fit to
the data than ΛCDM.

(ii) Bayesian evidence ratio. Bayesian evidence Z is
defined as

TABLE III. 1D marginalized statistics of cosmological parameters. The means of the marginalized 1D posteriors and 1σ confidence
levels are reported, with global maximum posterior sample in the parenthesis. The dashed lines mean that there is no constraint on the
parameter (but we report the global posterior maximum), while the N/A means that the parameter is not relevant to the model studied.
For the DES-only DMDR constraint, the global best fit of Ωm is about 2σ away from the mean value, possibly due to the ζ − Ωm
degeneracy. The degeneracy is broken for the External and DESþ External datasets, when information from a wide redshift range is
taken into consideration.

h Ωm S8 ζ κ

DES (DMDR) <0.68ð0.64Þ 0.276þ0.039
−0.046 ð0.346Þ 0.729� 0.040ð0.700Þ <0.32ð0.01Þ –(1.38)

DES (ΛCDM) <0.69ð0.72Þ 0.310þ0.035
−0.040 ð0.306Þ 0.726� 0.039ð0.723Þ N/A N/A

EXT (DMDR) 0.6794� 0.0046ð0.6767Þ 0.3025þ0.0091
−0.0069 ð0.3113Þ 0.812� 0.013ð0.829Þ <0.030ð0.028Þ –(0.0033)

EXT (ΛCDM) 0.6786� 0.0046ð0.6783Þ 0.3085� 0.0059ð0.3093Þ 0.819� 0.011ð0.826Þ N/A N/A
DESþ EXT (DMDR) 0.6830� 0.0045ð0.6822Þ 0.2970þ0.0091

−0.0062 ð0.2994Þ 0.803þ0.013
−0.010 ð0.808Þ <0.037ð0.020Þ –(1.90)

DESþ EXT (ΛCDM) 0.6822� 0.0043ð0.6825Þ 0.3038� 0.0054ð0.3036Þ 0.809þ0.010
−0.009 ð0.808Þ N/A N/A

SH0ES 0.740� 0.014 N/A N/A N/A N/A

CONSTRAINTS ON DARK MATTER TO DARK RADIATION … PHYS. REV. D 103, 123528 (2021)

123528-15



Z ¼
Z

LðdjθÞΠðθÞdθ; ð27Þ

where L is the likelihood, d is the data vector, and θ
are the model parameters. We report Z reported by
the nested sampler POLYCHORD, with statistics done
by ANESTHETIC [113].5 The evidence ratio could be
interpreted as the probability of two models given
data through [114]:

PðDMDRjd; IÞ
PðΛCDMjd; IÞ ¼

PðDMDRjIÞ
PðΛCDMjIÞ

ZðDMDRÞ
ZðΛCDMÞ ; ð28Þ

where I is the prior that these two models are in the
consideration. Assuming no prior preference for
either DMDR or ΛCDM, namely PðDMDRjIÞ ¼
PðΛCDMjIÞ, the ratio of DMDR and ΛCDM
probabilities is equal to the ratio of their respective
evidences Z. These, in turn, are reported by the
POLYCHORD sampler; their ratio is

K ¼ ZðDMDRÞ
ZðΛCDMÞ ¼ 0.31 DES-only;

¼ 0.03 External-only;

¼ 0.09 DESþ External: ð29Þ

We interpret the Bayesian evidence ratio in terms
of the Jeffreys’ scale (making this also consistent
with DES-Y1 paper [22]). Assuming an equal prior
on ΛCDM and DMDR model, 0.31 < K < 1.0
would indicate no conclusive preference for either
model, 0.1 < K < 0.31 would imply substantial
evidence favoring ΛCDM, 0.031 < K < 0.1 would
imply strong evidence favoring ΛCDM, and K <
0.031 would imply very strong evidence favouring
ΛCDM [115,116].
Under Jeffreys’ scale, our results therefore indi-

cate that the DES-Y1-only dataset does not prefer
either DMDR or ΛCDM, while the External-only
dataset very strongly disfavors the DMDR model.
Finally the combination of all datasets strongly
disfavors DMDR.

(iii) Suspiciousness. This tension statistic [111] has the
merit of being less affected by the choice of the
priors than Bayesian evidence. Suspiciousness S is
defined in terms of the Bayesian evidence ratio R
and information ratio I:

logS ¼ logR − log I; ð30Þ

where

R ¼ ZAB

ZAZB
ð31Þ

log I ¼ DA þDB −DAB ð32Þ

D ¼
Z

PðθÞ logPðθÞ
ΠðθÞ dθ; ð33Þ

where D is the Kullback-Leibler divergence of the
posterior against prior, quantifying the information
gained by the data. The calculation of suspiciousness
requires our knowledge of the posterior P, prior Π,
and evidence Z from MCMC chains. Here A and B
stand for the DES-Y1 and External datasets that we
are comparing, and AB for their combination. We
report the logS calculated by ANESTHETIC [113]:

logS ¼ −2.21; p ¼ 0.08 DMDR;

logS ¼ −2.93; p ¼ 0.04 ΛCDM; ð34Þ

where each p value is interpreted as the probability
that datasets A and B can be both described by the
parameters of the model. We therefore find that
DMDR reduces the tension between DES and the
external data, as indicated by a higher p value, at the
expense of two new parameters.

(iv) Hubble and S8 tensions. We now specifically inves-
tigate the impact of the new freedom in DMDR to
two widely discussed tensions in ΛCDM: the 4 − 5σ
tension in the (scaled) Hubble constant h between
CMB and local measurements, and the 2 − 3σ
tension in S8 between CMB and weak lensing plus
clustering. We take the probability distribution of the
parameter differenceΔh ¼ hA − hB or, alternatively,
ΔS8 ¼ S8;A − S8;B, from the 1D marginalized prob-
ability distribution obtained by different datasets.

TABLE IV. Difference in χ2MAP, evaluated at the maximum a posteriori point in parameter space, between DMDR and ΛCDM for
different dataset combinations.

DES-Y1 3x2pt Planck2018-CMB Planck2018-lensing Pantheon 6dFGS BOSS DR12 MGS Total

DES Δχ2MAP −0.6 −0.6
EXT Δχ2MAP 0.0 0.0 0.1 0.1 0.7 −0.1 0.8
DES+EXT Δχ2MAP 0.7 −0.4 −0.4 −0.0 0.0 0.3 −0.1 0.1

5https://github.com/williamjameshandley/anesthetic.
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Here A and B are the two datasets between which we
want to estimate the tension (in either h or S8). For a
cosmological parameter of interest θ, we integrate
over the interval bounded by the Δθ values that have
the equal posterior, and one of the boundaries is
Δθ ¼ 0. Thus we get the tension probability p:

p ¼
Z

eq−post

Δθ¼0

PðΔθ ¼ θA − θBÞdΔθ: ð35Þ

We then interpret p into z − σ tension using

p ¼ erf

�
zffiffiffi
2

p
�
: ð36Þ

For the tension in the Hubble parameter, the dataset
A is the full DESþ CMBþ Supernovaeþ BAO
data, while dataset B is the Gaussian-distributed
constraint on h from the distance-ladder measure-
ment [117]. For the ΔS8 tension, our A dataset is the
DES-Y1 3x2pt-only data, while B is the CMBþ
Supernovaeþ BAO External dataset. The enlarged
constraints on Ωm, S8, σ8, and h are illustrated in
Fig. 9, overplotted with the distance ladder meas-
urement of H0 from [117]. We find that
(a) When comparing the DESþ External datasets

with local Hubble measurement in [117],
h ¼ 0.7403� 0.0142, the tension in h assuming
either DMDR or ΛCDM is 3.8σ.

(b) When comparing DES-Y1 dataset with External
dataset, the tension in S8 is 1.9σ for DMDR
model, slightly reduced from 2.3σ for ΛCDM
model.
Hence our DMDR model does not substan-

tially alleviate the Hubble tension, but does help
in reducing the S8 tension.

V. CONCLUSIONS

In this work, we test a late-time dark-matter to dark-
radiation conversion model, dubbed the DMDR model,
against cosmological data. Our model is specified by two
new parameters defined in Eqs. (1) and (2): the fraction of
dark matter that has converted ζ, and the rate of its
conversion (to dark radiation) κ. We work out the pertur-
bation equations in this model, and incorporate them in the
Einstein-Boltzmann code CAMB [82]. Our analysis pipe-
line is modified for the DMDR model in the following
respects. (1) We scale-dependently correct the shear and
intrinsic alignment terms in the two-point correlation
functions to account for the non-trivial relation between
gravitational field and matter density perturbation field, and
(2) we adopt conservative scale cuts to protect the analysis
against systematic errors due to the modeling of clustering
on nonlinear scales. In our analysis, we principally consider
the DES-Y1 “3x2pt” (weak lensing and galaxy clustering)
data. We also study the impact of adding external datasets:
Planck-2018 CMB power spectra (TT, TE, EE, and lensing
spectrum); Pantheon compilation of type Ia supernovae

FIG. 9. Left panel: cosmological parameters Ωm, S8, σ8, h constraints in DMDR model, reported for DES, External, and DESþ
External datasets, together with the local Hubble measurement [117] in pink. Right panel: same plot in the ΛCDM cosmology. By
comparing the panels involving σ8, S8 on both sides, we can see how DMDR reduced the tension in the matter density fields between
DES and the CMBþ Supernovaeþ BAOs.
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data; and compressed BAO measurements from BOSS-
DR12, MGS, and 6dFGS surveys.
The constraint on the fraction of the converted dark

matter obtained from all data combined is ζ < 0.037. We
find no constraint on the conversion rate parameter κ as
expected in the limit when ζ → 0. We further find that the
evidence-ratio test applied with the full combined data does
not favor the DMDR model compared to ΛCDM. DMDR
does however reduce the suspiciousness tension metric
between DES-Y1 and the combination of CMB,
Supernovae, and BAO data, raising the probability that
DES and external data are concordant from 4% to 8%.
Finally, DMDR does not help in alleviating the Hubble
tension but does reduce the tension in the DES and
external-data measurements of S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, making

it go from 2.3σ (in ΛCDM) to 1.9σ (in DMDR).
We stress that the above conclusions are drawn for the

late Universe dark-matter-dark-radiation conversion model
introduced in Sec. II A. Further generalizations of this
catalog [31,32,34–48], for example where dark matter is a
composition of some fraction of interacting dark matter and
cold dark matter, or where the transition time is short, or the
transition occurs in the early Universe, were not considered
in this work. These variants could in principle better fit the
background evolution of the Universe than the model we
studied, and are thus a promising target for further
investigations.
There are several other directions in which our analysis

could be extended. One possibility is to model the non-
linear matter power spectrum in real and redshift space in
DMDR models [96,118,119]. This could be particularly
helpful for DES year-3 and year-6 data which have more
statistical power and where pushing to smaller, nonlinear
scales could improve the constraints. Another future
direction is to enable the use of the uncompressed BAO
data (that is, the broadband galaxy and quasar power
spectra). This would potentially improve the constraints
for not only the DMDR model but also other beyond-
ΛCDM models, and could become an important analysis
tool for future surveys such as those to be undertaken by
DESI, the Rubin Observatory (LSST), Euclid, and the
Roman Space Telescope.
Our investigation was limited to galaxy clustering, weak

lensing, and galaxy-galaxy lensing which are united in the
so-called 3 × 2 analysis. Recent years have seen the
emergence of new, promising cosmological probes which,
when incorporated, could improve the constraints presented
here. For example, the Lyman-α BAO measurements from
high-redshift quasars and clustering obtained from the 21-
cm signal could both be very helpful for constraining
DMDR-type models where slow transition happen between
z ∼ 1 and recombination. The medium redshift measure-
ments can fill in the blank in the current cosmological
observations concentrated on two ends of the time stretch.
It will be exciting to see if incorporating new cosmological

probes and combining them with the improved 3 × 2
analyses from Stage IV dark-energy surveys can help shed
light on DMDR-type models.
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Institut de Ciències de l’Espai (IEEC/CSIC), the Institut
de Física d’Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universität München
and the associated Excellence Cluster Universe, the
University of Michigan, NFS’s NOIRLab, the University
of Nottingham, The Ohio State University, the University
of Pennsylvania, the University of Portsmouth, SLAC
National Accelerator Laboratory, Stanford University, the
University of Sussex, Texas A&M University, and the
OzDES Membership Consortium. Based in part on obser-
vations at Cerro Tololo Inter-American Observatory at
NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI:
J. Frieman), which is managed by the Association of
Universities for Research in Astronomy (AURA) under a
cooperative agreement with the National Science
Foundation. The DES data management system is sup-
ported by the National Science Foundation under Grants
No. AST-1138766 and No. AST-1536171. The DES
participants from Spanish institutions are partially sup-
ported by MICINN under Grants No. ESP2017-89838,

A. CHEN et al. PHYS. REV. D 103, 123528 (2021)

123528-18



No. PGC2018-094773, No. PGC2018-102021, No. SEV-
2016-0588, No. SEV-2016-0597, and No. MDM-2015-
0509, some of which include ERDF funds from the
European Union. I. F. A. E. is partially funded by the
CERCA program of the Generalitat de Catalunya.
Research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Program (Grant No. FP7/
2007-2013) including ERC Grants Agreement No. 240672,
No. 291329, and No. 306478. We acknowledge support
from the Brazilian Instituto Nacional de Ciência e
Tecnologia (INCT) do e-Universo (CNPq Grant
No. 465376/2014-2). This manuscript has been authored

by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

APPENDIX A: PIPELINE COMPARISON
ON ΛCDM

We want to make sure that, any cosmological parameters
constraints that are found different from the DES-Y1 3x2pt
Key paper [22] ones are physical, namely caused by the
DMDRmodel, but not due to the pipeline choices variance.
Hence we run full MULTINEST MCMC chains on the same
ΛCDM simulated data vector, using DES-Y1 analysis

FIG. 10. Comparison of the constraints using DES-Y1 analysis pipeline (blue) and our DMDR analysis pipeline with new parameters
fixed (ζ ¼ 0.0, κ ¼ 1.0; red contours). We use a simulated ΛCDM data vector on which we apply the MULTINEST MCMC chains for
both runs.
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pipeline and our DMDR analysis pipeline with ζ ¼ 0.0,
κ ¼ 1.0 fixed (ΛCDM subspace, so κ value is irrelevant).
The results are shown in Figs. 10 and 11 for DES only and
DESþ External data. In both cases, except for the param-
eters that are not effectively constrained like h, Ωνh2, and
ns for DES only data, the posteriors from two pipelines
agree with each other at ≲0.1σ level.

APPENDIX B: DARK RADIATION HIERARCHY
EQUATIONS

In B18, perturbation equations were derived from the
perturbation expansion of the energy-momentum tensor for
dark matter and dark radiation,

Tdm
μν ¼ ρ̄dmð1þ δdmÞudmμ udmν ; ðB1Þ

Tdr
μν ¼

4

3
ρ̄drð1þ δdrÞudrμ udrν þ ρ̄drð1þ δdrÞ

3
gμν þ Πdr

μν; ðB2Þ

where in synchronous gauge udmμ ¼ að1; 0⃗Þ,
udrμ ¼ að1; v⃗drÞ. For dark matter and dark radiation defined
in this way, we can write the continuity equations and
Einstein equations as

∇νTdm
μν ¼ −∇νTdr

μν ¼ −Qudmμ ðB3Þ

Rμν −
1

2
Rgμν þ Λgμν ¼

8πG
c4

Tμν; ðB4Þ

FIG. 11. Same as Fig. 10, but for DES-Y1þ External simulated data.
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where udmμ is the proper velocity of the dark matter. Note
that the right-hand side of the continuity equation has a
collision term instead of zero for CDM. In B18 the dark
radiation is only expanded up to δdr, θdr ¼ ∂ividr and one
anisotropy shear Πdr

ij ¼ ð∂i∂j − 1
3
δij∇2ÞΠdr, which is suf-

ficient when dark radiation self-interacts or continues to
interact with dark matter after produced so the higher l
terms damp out.
In our work, we assume dark radiation to be a completely

free-streaming relativistic species and write down the full
phase space perturbation hierarchy equations for it, which
differs from the massless neutrino ones by a collision term.
The phase space dynamics of the dark radiation with
collision terms are [83]

∂Fdrðk⃗; n̂; τÞ
∂τ þ ikμFdrðk⃗; n̂; τÞ ¼ −

2

3
_hðk⃗; τÞ − 4

3
ð _hðk⃗; τÞ

þ 6_ηðk⃗; τÞÞP2ðk̂ · n̂Þ þ
�∂Fdrðk⃗; n̂; τÞ

∂τ
�

C
: ðB5Þ

The phenomenology of the microphysics of the dark-matter
to dark-radiation conversion process is mostly demon-
strated in the collision term

�∂Fdrðk⃗; n̂; τÞ
∂τ

�
C
¼ a

ρdrðaÞ
ð−QðaÞFdrðk⃗; n̂; τÞ þ δQÞ;

ðB6Þ

especially its perturbation part δQ which depends on the
details of the interacting physical quantities like particle
momentum. However, from several case studies in B18 on

Sommerfeld enhancement and single-body decay proc-
esses, it seems that the precision of the current generation of
cosmological observations is not sufficient to discriminate
between the specific forms of δQ. Hence we assume the
simplest form of the collision perturbation δQ ¼ Qδdm,
without dependence on polarization or momentum
anisotropy:

�∂Fdrðk⃗; n̂; τÞ
∂τ

�
C
¼ QðaÞa

ρdrðaÞ
ð−Fdrðk⃗; n̂; τÞ þ δdmðk⃗; τÞÞ:

ðB7Þ

Expanding Fdr in Eq. (B7) into harmonics, we get

Fdrðk⃗; n̂; τÞ ¼
X∞
l¼1

ð−iÞlð2lþ 1ÞFdrlðk⃗; τÞPlðk̂ · n̂Þ: ðB8Þ

Noticing that only Fdrðk⃗; n̂; τÞ itself needs expansion, while
other terms in Eq. (B7) are constant to the orientation
variable k̂ · n̂, we get the following hierarchy equation
[83,84,86,87]:

ðJdrl Þ0 ¼
k

2lþ 1
½lJdrl−1 − βlþ1ðlþ 1ÞJdrlþ1�

þ 8

15
kσδl2 −

4

3
kZδl0 −

aQ
ρ̄dr

Jdrl ; ðB9Þ

where Jdr0 ≡ δdr, Jdr1 ≡ qdr ¼ 4
3
θdr=k, Jdr2 ≡ πdr ¼ Πdr=ρ̄dr

in CAMB convention, δl0, δl2 are Dirac delta functions.
Equations l ¼ 0, l ¼ 1 agree with the Eqs. (14) and (15)
in B18.
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