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Epistasis and cooperativity of folding both result from networks of
energetic interactions in proteins. Epistasis results from energetic
interactions among mutants, whereas cooperativity results from en-
ergetic interactions during folding that reduce the presence of in-
termediate states. The two concepts seem intuitively related, but
it is unknown how they are related, particularly in terms of selec-
tion. To investigate their relationship, we simulated protein evolution
under selection for cooperativity and separately under selection for
epistasis. Strong selection for cooperativity created strong epista-
sis between contacts in the native structure, but weakened epista-
sis between non-native contacts. In contrast, selection for epista-
sis increased epistasis in both native and non-native contacts, and
reduced cooperativity. Because epistasis can be used to predict
protein structure only if it preferentially occurs in native contacts,
this result indicates that selection for cooperativity may be key for
predicting structure using epistasis. To evaluate this inference, we
simulated the evolution of Guanine nucleotide-binding protein (GB1)
with and without cooperativity. With cooperativity, strong epistatic
interactions clearly map out the native GB1 structure, whilst allow-
ing the presence of intermediate states (low cooperativity) obscured
the structure. This indicates that using epistasis measurements to
reconstruct protein structure may be inappropriate for proteins with
stable intermediates.

Protein folding | Protein structure prediction

wo mutations have an epistatic interaction if their com-

bined effect on a trait is not equal to the sum of their
independent effects (1). The effect may be on fitness, function,
or a physical property such as stability. Epistasis has been
demonstrated many times experimentally. It has been found
to impact the rate of adaptation (2), to constrain mutational
trajectories leading to drug resistance (3, 5), and to impact
yeast metabolism (4). It has been observed in the evolution of
influenza (6, 7), between beneficial mutations in an evolving
population of Escherichia coli (8), during the evolution of
RNA viruses (9), and in the evolution of new enzyme activity
(10, 11). Epistasis influences the amino acid preferences at dif-
ferent sites (12) and can have a substantial impact on protein
evolution by restricting certain evolutionary pathways and by
opening up new ones, resulting in sequences and functions
that were not previously available (13). It has been suggested
that epistasis is highly pervasive, affecting up to 90 per cent
of substitutions (14).

Experimentally measured epistasis can be used to predict
the 3D native structure of a protein. For example, Olson et al.
(2014) (15) measured the epistasis between the majority of pos-
sible residue pairs of the Guanine nucleotide-binding protein
(GB1) protein, which was used by Rollins et al. (2019) (16) to
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predict the protein’s 3D structure. Such prediction methods
assume that the majority of epistatic pairs are in contact in
the native state, an assumption supported by experimental
evidence (15). In the native state structure, the side chains
of residues in contact interact, and so they no longer behave
independently. This can result in non-additivity in terms of
protein properties such as stability. However, native contacts
are not the only interactions that determine protein prop-
erties. Mutations in contacts present in intermediate states
and unfolded state structures that alter the stability of those
states relative to the native state will impact properties such
as stability. It is therefore unclear why experimental evidence
suggests that mostly native contacts interact epistatically.

Cooperativity in protein folding

Proteins are under evolutionary pressures to fold and unfold co-
operatively (17), where breaking a small number of interactions
leads to complete unfolding. When proteins fold cooperatively,
they move from the unfolded to the folded state, avoiding
intermediate state. The disadvantage of stable intermediate
states is that they are prone to aggregation and can lead to
mis-folding, which is known to play a role in many diseases, in-
cluding amyloid diseases such as Alzheimer’s and Parkinson’s
(18-20). Many small, single domain proteins, for example,
display highly cooperative two-state folding (21, 22), in which
only the native and fully unfolded states are occupied, due to
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Fig. 1. Investigating the cooperativity of sequences evolved under zero, low, medium and high values of the tuning coefficient n by considering, (a) the fraction of the system
found in the fully unfolded state during denaturation under increased temperature, (b) the fraction in the ensemble of intermediate states during the unfolding transition, (c) heat
capacity curves during the unfolding transition, the area under which is the enthalpy change associated with the transition, and (d) the van’t Hoff ratio of the unfolded transition
associated with each value of the cooperativity tuning coefficient 7. All values are averaged over the set of 1000 most evolved sequences for each evolutionary simulation.

the instability of any intermediate states. In contrast, larger,
multi-domain proteins, often fold stepwise via the formation of
partially unfolded forms (PUFs), where each PUF is made up
of one or more cooperative structural units known as foldons
(19). Cooperativity of folding is also observed in macromolec-
ular complexes, and strong co-evolutionary preferences have
been observed between cooperative proteins composing part
of a macromolecular complex, where the components display
a conserved self-assembly order (23).

Cooperative folding requires the presence of unfavourable
destabilizing interactions at structurally important sites in
partially folded states, and/or highly favourable interactions
that stabilize the native state, whilst not over-stabilizing those
intermediate states in which the stabilised native contact is
present. This was demonstrated by Yadahaldi and Gosavi
when the designed non-cooperative protein Top7 was made to
fold cooperatively by introducing stabilising mutations at a
set of native contacts and destabilising mutations at residue
pairs that were found to stabilise intermediate states (24).

Cooperativity and epistasis thus both involve sometimes
strong interactions among adjacent amino acid residues in the
native structure. It seems possible that selection for one might
drive the other, or visa versa, but how they influence each other
is unknown. We chose to investigate this by simulating protein
evolution using a mechanistic model based in thermodynamics
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and statistical mechanics, that has been shown to be able
to reproduce many important features of protein evolution
such as epistasis and co-evolution (12, 29). We evolved a
protein under different levels of selection for cooperativity to
explore how and why epistasis differs between cooperative and
non-cooperative sequences.

To investigate how selection for cooperativity impacts 3D
structure reconstruction using epistasis data, we simulated
the evolution of the GB1 protein for a two-state (containing
native and unfolded states) and three-state (containing native,
unfolded and intermediate states) model and determined the
distribution of epistasis between all pairs of residues.

Results

We performed 10 evolutionary simulations for 50,000 genera-
tions of a protein sequence based on the structure of a cysteine-
free variant of Escherichia coli ribonuclease H (RNase H). For
these simulations we calculated the fitness based on the prob-
ability that a protein would be in its native state at thermal
equilibrium. We also included a fitness penalty that reduced
the fitness of proteins with folding intermediates, allowing us
to tune the impact of this penalty using a cooperativity tun-
ing coefficient, n. The folding pathway of RNase H has been
determined at near amino acid resolution (? ). We generated
a series of intermediate partially-folded states based on the
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Fig. 2. The distribution of epistasis as the selection coefficient n increases. The normalised distribution of the epistasis in protein stability between a) native contacts and b)

non-native contacts when evolving proteins under varying degrees of selection for cooperativity. As selection for cooperativity increases, more native contacts experience higher

magnitude (more negative) epistasis, whilst more non-native contacts experience very low levels of epistasis. The area under each curve sums to 1. ¢) The mean of the

epistasis distributions, and d) the variance of the epistasis distribution, of the final 2,000 generations of the 50,000 generations simulated, averaged over all 10 simulations for

native contacts (blue) and non-native contacts (red). The error bars represent the variance of these values across the 10 simulations. The average of the epistasis distribution
at the native contacts becomes more negative as the value of the selection coefficient ) increases and the variance in the distribution increases. The average of the epistasis
distribution at the non-native contacts goes to zero as the selection coefficient ) increases, and the variance decreases.
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Fig. 3. The mean absolute epistasis in protein stability (y-axis), averaged over all
10 simulations, between each pair of native contacts when evolving proteins under
increasing selection (n g = 0, low, medium) for the absolute epistasis in protein stability
at the native contacts (x-axis). The error bars depict the variance in the mean. The
average absolute epistasis between native contacts increases as the value of the
selection coefficient n g increases.

step-wise folding pathway, in which the folded regions of the
proteins were fixed to their position in the folded structure
and the unfolded regions were modelled as a freely joined
chain defined by the position of the Cg atoms, with bond
lengths between 3 — 7A. We also included an excluded volume
term prohibiting Csz atoms from being closer than 3A (see
Supplementary Information for more detail).

We carried out simulations for four different values of the
cooperativity tuning coefficient 7: no selection for cooperativ-
ity (n=0), low (n=5x 1077), medium (n =5 x 107%) and
high (n =1 x 107%) (Eq. 7).

Two-state folding generally results in sharp sigmoidal melt-
ing curves and a peak in the heat capacity at the melting
temperature 7T,,, although multi-state transitions can also
show such behaviour (30, 31). The level of cooperativity is de-
termined experimentally by calculating the ratio s of the van’t
Hoff enthalpy change AH,y evaluated at T}, to the calorimet-
ric enthalpy change AH,.,; of the entire transition (32, 33).
The van’t Hoff enthalpy change is calculated purely from the
difference in the enthalpy of the native and unfolded states,
whilst the calorimetric enthalpy change is the experimentally
measured enthalpy change during the unfolding transition.
If the system is purely two-state, the calorimetric enthalpy
change is equal to the difference between the enthalpies of the
native and unfolded state, and so the ratio K = AHyu /AHca
equals 1. Values of k = 1 are observed for many globular pro-
teins (34-36). For folding simulations where the distribution
of the protein states is available, we can directly distinguish
two-state folding by examining the underlying populations of
intermediate states during the folding transition. In this case
lower occupation of intermediates indicates higher levels of
cooperativity.

Multiple lines of evidence indicate that our selection for
cooperativity is effective in increasing the cooperativity of the
folding transition in our simulations. Firstly, the sharpness
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of the sigmoidal melting curves increases as the value of the
cooperativity tuning coefficient increases (Fig. la). Secondly,
the value of the van’t Hoff criterion x increases with selection
for cooperativity from x = 0.91 in the absence of selection for
cooperativity, to k & 0.94 for high selection (Fig. 1d). Finally,
if we consider the total fraction of the population occupying
the intermediate states (i.e. the fraction of the population
not in either the native or fully unfolded states), which shows
that as selection for cooperativity increases, the fraction in
the intermediate states decreases (Fig. 1b).

Selection for cooperativity causes epistasis to increase be-
tween native contacts but decrease between non-native con-
tact pairs. We then calculated the epistasis in protein stability
(Eq. 15) between each possible pair of residues in the protein
for the final 2,000 generations of the 50,000 generations simu-
lated, and calculated the mean epistasis between each pair of
residues averaged over all simulations, for the different values
of selection for cooperativity. We investigated the distribution
of epistasis between pairs of residues in contact in the native
state (Fig. 2a) and pairs of residues not in contact in the
native state (Fig. 2b). The sign convention we adopted for
defining stability is in the direction of folding (Eq. 5), and so
negative epistasis, for example, occurs when wild-type residues
at positions ¢ and j mutually stabilize each other compared
to the mutant "non-interacting" residues.

As selection for cooperativity increases, the epistasis distri-
bution between native contacts becomes less peaked around
zero and the average of the distribution becomes more neg-
ative, whilst the variance of the distribution increases (blue
line on Fig. 2c & 2d respectively).

In contrast, for the non-native contacts the average epistasis
goes towards zero and the variance decreases. In other words,
the more cooperative sequences display higher magnitudes of
negative epistasis between pairs of native contacts, but smaller
magnitudes of epistasis between the non-native pairs compared
with sequences associated with lower cooperativity in protein
folding.

Selection for epistasis at native contacts leads to a decrease
in cooperativity. If cooperativity increases epistasis at native
contacts, is the converse true? As a thought experiment, we
investigated this question by directly selecting for epistasis
between native contacts, though we do not expect this sort
of selection in nature. The coefficient ng increases selection
for sequences with large epistasis at native contacts (see Eq.
8). We performed 10 evolutionary simulations for three val-
ues of the tuning coefficient ng: no selection (ng = zero),
low (ng = 1 x 1077), and medium (s = 1 x 107%), and
determined the average epistasis between each pair of native
contacts during the evolutionary process. Selecting for the
average epistasis between native contacts was much more com-
putationally expensive than selection for cooperativity, and
therefore we chose to simulate evolution for just 5,000 gen-
erations. To enable a fair comparison between the epistasis
distributions for selection for stability only (ng = 0) and
the two levels of selection for epistasis (g = 1 x 107" and
1 x 1079), we only considered the first 5,000 generations of
the 7 = 0 simulations presented in the previous section. To
determine the epistasis distributions for each value of ng, we
calculated the epistasis in protein stability (Eq. 15) between
each possible pair of residues in the protein for the final 2,000
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Fig. 4. The distribution of epistasis as the selection coefficient ng increases. The normalised distributions of epistasis between a) native and b) non-native contacts when
evolving sequences under different magnitudes of selection for the average magnitude of epistasis between the native contacts. As the value of the selection coefficient ng
increases, a higher number of native contacts experience greater magnitude negative epistasis, whilst a higher number of non-native contact pairs experience non-zero
epistasis. The area under the curves sum to 1. ¢) The mean of the epistasis distributions, and d) the variance of the epistasis distribution, of the final 2,000 generations of the
5,000 generations simulated, averaged over all 10 simulations for native contacts (blue) and non-native contacts (red). The error bars represent the variance of these values
across the 10 simulations. The average of the epistasis distribution at the native contacts becomes more negative as the value of the selection coefficient g increases and the
variance in the distribution increases. The average of the epistasis distribution at the non-native contacts remains roughly constant as the selection coefficient n g increases,
but the variance in the distribution increases.
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Fig. 5. Investigating the cooperativity of the unfolding transition with increased

selection for the average magnitude of epistasis at the native contacts, by considering
a) The fraction of the population in the unfolded state during denaturation and b) the
fraction of the population in the ensemble of partially folded states during denaturation.
As the value of the selection coefficient n i increases, the unfolding transition becomes
less sharp and the fraction of the population in the intermediate states increases,
showing the folding is becoming less cooperative.
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generations of the 5,000 generations simulated, and calculated
the mean epistasis between each pair of residues, averaged
over all simulations. As selection for epistasis increases, the
average magnitude of epistasis per native contact per substitu-
tion increases (Fig. 3), demonstrating that the selection works
as intended.

The effect on the distribution of mean epistasis among
native contact pairs is similar to what was observed for coop-
erativity, but the effect is stronger (Fig. 4a). However, there
was also more epistasis at non-native contact pairs, although
epistasis between these pairs was not directly selected for (Fig.
4b). The average epistasis at native contacts becomes sharply
more negative (blue line Fig. 4c), while for the non-native
contacts the average is unchanged (red line Fig. 4c) but the
variance, and thus the levels of both positive and negative
epistasis increases (red line Fig. 4d).

We investigated the cooperativity of the evolved sequences
via the protein’s melting curves and the fraction of the system
in the intermediate states during unfolding, because this is
sufficient to determine cooperativity. Although we observed
earlier that selection for cooperativity induces epistasis at
native contacts, the inverse is not true. Instead, selection
for epistasis at native contacts results in less cooperativity.
The melting curve becomes less sharp and shifts to the right
(Fig. 5a), indicating the protein passes through more stable
intermediate states as it unfolds. The fraction of the ensemble
of intermediate states also increases (Fig. 5b). Thus, although
selecting for cooperativity induces epistasis at the native con-
tacts, selecting for epistasis at the native contacts does not
induce cooperativity, but instead decreases it.

The intermediate and unfolded ensemble approaches the un-
folded state distribution for selection for cooperativity. To un-
derstand why selection for higher cooperativity increases epis-
tasis between native contacts and decreases epistasis between
non-native contacts, we considered how epistasis arises in
the model, and how the stability of each state impacts our
epistasis calculations. We can re-write Eq. 15, the epis-
tasis between residues ¢ and j, as €;; = effjs — efj?“, where
ef\fjs = GZS—Q—G%ST —-GNS —G;VS7 is the epistasis in the free en-
ergy of the native state, and ef(]” = Gg’“—l—GIVf,‘;—Gf’“—G;{‘“,
is the epistasis in the free energy of the intermediate and
unfolded ensemble, {K,u}, where K = {k} denotes the k in-
termediate states and u denotes the unfolded state. For native
contacts, the epistasis is determined by both the epistasis in
the native state and the intermediate and unfolded ensemble,
and whether epistasis is positive or negative is determined by
a trade-off between the two values. For non-native contacts,
the epistasis in the free energy of the native state, efYJ-S , is
zero. Therefore positive epistasis at non-native contacts arises
when ef;?“ is negative, and negative epistasis at the non-native
contacts arises when ef ;" is positive.

From Eq. 1 we can see that the epistasis between residues
i and j in the free energy of a single structure is v(A;, A;)Qs,5,
where v(A4;, A;) is the contact potential between amino acids
at residues 7 and j, and Q; ; is equal to 1 if residues are in
contact and 0 otherwise. Therefore, the epistasis between two
residues 7 and j is equal to the contact potential between the
two amino acids if they are in contact in the native state, and
zero otherwise..

The free energy of each state in the intermediate and
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Fig. 6. The average epistasis € between each possible pair of residues for a) a two-state and b) a 3-state system. The upper triangle of each heat map is the calculated
epistasis, the lower triangle is the contact map for the GB1 protein, where a value of 1 means the residues are in contact in the native state. The epistasis for the two-state
system accurately maps out the structure of the GB1 protein, with the majority of native contacts experiencing high magnitudes of negative epistasis. For the three state
system, the native contact map becomes obscured by high levels of positive epistasis at non-native contacts. These results suggest epistatic measurements work well when
reconstructing the native state of two-state systems, but are less successful for multi-state systems.
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unfolded ensemble was determined using a large number
of dummy structures. From Eq. 3 the epistasis between
residues ¢ and j in one of the intermediate states k, or
the unfolded state wu, is v(A:, 4;){(Qi,j)kve — (Qi,j)revu(l —
(Qi i kvu)Y(Ai, Aj)/2kBT, where (Q; ;)kv. is the average
probability of residues i and j being in contact in the en-
semble of the chosen intermediate or unfolded state, denoted
kV u.

Epistasis in the free energy of one of these states, between
residues 7 and j, arises when a large fraction of dummy struc-
tures contain this contact, and so (Q;,;) kv« is large, resulting
in changes to the average and variance of the free energy of the
state in question. If a particular pair has a high probability of
contact in several intermediate states, this can lead to epistasis
in the free energy of the intermediate and unfolded ensemble.

To understand why epistasis between non-native contacts
decreases as selection for cooperativity increases, we consider
the distribution of the probability that residues 7 and j are
in contact in the intermediate and unfolded ensemble, { K, u}
(Eq. 16). For one of the intermediate or unfolded states, the
average probability residues ¢ and j are in contact, (Qs ;) kv,
will be a number between 0 and 1, i.e. it is the fraction of
structures in the ensemble of state k V u that contains the
i-j contact. When selection for cooperativity is imposed, the
intermediate states are destabilised and as selection increases
the probability of being in any of the intermediate states goes
to zero. This results in the distribution of contact probabilities
becoming more concentrated around lower values (Fig. 7),
demonstrating the contact probabilities of the intermediate
and unfolded ensemble are becoming more like those of the
unfolded state.

Because the probability any pair of residues i and j are
in contact in the unfolded state is small, the corresponding
epistasis in the intermediate and unfolded ensemble will be
small. Therefore, as selection for cooperatively increases, the
epistasis in the intermediate and unfolded ensemble decreases.
Because the unfolded ensemble contains mostly non-native
contacts, there is a decrease in epistasis at non-native contacts
as selection for cooperativity increases. Similarly, given the
equation for epistasis between residues ¢ and j, €;,; = ef\fjs -
efj“, we can see that as elKJ“ goes to zero, for native contacts
€ij ~ eﬁ\fjs , explaining the increase in the magnitude of the
epistasis between native contacts as cooperativity increases.

Sequences under selection for the average magnitude of
epistasis between native contacts display broad epistasis distri-
butions at both native and non-native contacts (Fig. 4). Under
this selection regime, intermediate states are stabilised (Fig.
5b). This happens because selection for epistasis at native con-
tacts selects for pairs of residues with large contact potentials
since )7 = v(Ai, A;)Qi,j, and so those intermediate state
ensembles containing native contacts will be stabilised. This
results in a decrease in cooperativity and an increase in the
variance in the epistasis between both native and non-native
contacts.

If we again consider the distribution of contact probabilities
in the partially folded and unfolded ensemble, we observe
that as selection for epistasis at native contacts increases, the
distribution of probabilities spreads out, with some pairs of
residues having a contact probability between 0.8 and 1 (Fig.
8). This happens because some of the intermediate states,
which are being stabilised relative to the unfolded state, have

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

highly structured areas with contact probabilities of 1 or almost
1. In other words, the distribution of contact probabilities in
the intermediate and unfolded ensemble are becoming more
like the native state contact probabilities, and less like the
unfolded state contact probabilities. As mentioned earlier,
epistasis in the intermediate and unfolded ensemble arises
when a particular pair has a high probability of contact in this
ensemble. Therefore, the larger number of high probability
contacts in the intermediate and unfolded ensembles suffices
to explain the broader distribution of epistasis between non-
native contacts when there is high selection for epistasis at
native contacts.

The 3D structure of multi-state proteins cannot be predicted
using epistasis. Methods for inferring 3D protein structure us-
ing measured epistasis rely on the assumption that the largest
magnitude epistasis occurs between native contacts. In the
previous section we observed the distribution of epistasis be-
tween non-native contact pairs became broader as the protein
became less cooperative. Therefore, it is possible that native
structure inference methods using epistasis measurements may
not be suitable for proteins with stable intermediate states.
To examine this hypothesis, we simulated the evolution of the
GBI domain of streptococcal protein G, (PDB ID 1PGA) for
a cooperative system and a non-cooperative system. The coop-
erative system was comprised of the native and fully unfolded
state, where the free energy of the unfolded state ensemble was
approximated using a large number of dummy structures gen-
erated by a random coil model. The non-cooperative system
had an additional ensemble of intermediate states in which
beta sheets 3 and 4 (residues 40-56) were unstructured. The
free energy of the intermediate state ensemble was approxi-
mated using the same method as the unfolded state ensemble.
The systems were evolved under selection for stability alone,
and so the fitness of the protein was determined exclusively
by the fraction in the folded state.

We calculated the epistasis in protein stability between all
pairs of residues for both the cooperative and non-cooperative
system (Fig. 6a and 6b respectively), for 100 sequences over
10 runs and averaged for each pair. For the cooperative
system high magnitudes of negative epistasis occurred almost
exclusively at native contacts and, when compared with the
known GB1 native structure, the epistasis accurately mapped
out the structure to a high degree of accuracy. Many of the
highly epistatic pairs predicted by the model correspond to
the measured highly epistatic pairs used to reconstruct the
3D structure of GB1 by Rollins et al. (2019)(16).

For the non-cooperative system, however, the magnitude of
the negative epistasis at the majority of the native contact pairs
decreased. Some contacts continued to have large negative
epistasis (e.g. 1-10, 40-56 and 50-56), but the overall structure
is less evident. Furthermore, more contacts display strong
positive epistasis compared to the cooperative system.

Discussion

We observed that selection for cooperativity in protein folding
changes the distribution of epistasis in simulated proteins.
Proteins with higher cooperativity were associated with more
epistasis between native contacts and less epistasis between
non-native contacts compared to less cooperative proteins.
Conversely, we observed that selection for epistasis at native
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contacts results in less cooperativity as selection increases.

This leads us to conclude that selection for cooperativity is
not equivalent to selection for epistasis at native contacts, and
suggests that high levels of epistasis at non-native contacts
is detrimental to cooperative folding, and could lead to the
aggregation of partially folded states. It is likely therefore
that highly cooperative proteins will only display epistasis
between native contacts. Because a large number of proteins
fold cooperatively, these results provide a possible explanation
for experimental observations that have found the majority of
epistatic pairs to be native contacts.

We would thus expect that natural proteins with stable in-
termediates in their unfolding transition would display greater
epistasis between non-native contacts than natural proteins
that have two-state transitions. This suggests that the use of
epistasis measurements to reconstruct the native state of these
non-cooperative proteins, under the assumption that epistasis
occurs only at native contacts may be problematic.

We gained further support for this theory by simulating
the evolution of the GB1 protein for a cooperative and a non-
cooperative system. The highest magnitude negative epistasis
in the cooperative system occurred between native contact
pairs and the pattern of high magnitude negative epistasis
traced out the native structure well. The inclusion of an inter-
mediate state in the non-cooperative system, however, reduced
the magnitude of the negative epistasis between those native
contacts present in the intermediate state, and introduced
strong positive epistasis at non-native contacts.

The intermediate state contains the majority of the native
state contacts, as only residues 40-56 are unfolded. These
native contacts are in contact in 100% of the intermediate
dummy structures, and so the probability of them being in
contact in the unfolded and intermediate ensemble is high,
meaning epistasis in the free energy of this ensemble of states
for these native state contacts will be relatively large.

The large epistasis between these native contacts in the
free energy of the unfolded and intermediate ensemble acts to
partially cancel out the epistasis between these pairs in the

. K, N .
native state (e;,; = €;; — €; "), resulting in lower magnitude

i,
epistasis for the native contajcts contained in the intermediate
state. As a result, it may be more difficult to infer the native
state structure.

GB1 is a small protein and so it is unlikely to have interme-
diate states like the artificial one created for the purposes here.
Therefore, it is likely that the structure of smaller proteins
will be better inferred using measured epistasis than larger
proteins that have folding intermediates.

Olson et al. (2014) noted, however, that positive epistasis
occurred between a cluster of conformationally correlated
residues. Otowinoski (2008) (? ) sought to explain the
epistasis observed by Olson et al (2014), using a two- and
three-state model of protein-ligand binding, but neither model
could explain the presence of the positive epistasis, and they
suggested that a model including additional conformational
states might capture this epistasis better. Therefore, even
small proteins such as GB1 may have additional states or
correlation in residue dynamics that might obscure prediction
of the native state structure using measurements of epistasis.

Co-evolution between both native and non-native contact
pairs may occur in non-cooperative proteins. For coopera-
tive proteins, however, we expect that co-evolution occurs
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almost exclusively between pairs that interact in the native
structure. It should be noted however, that whilst epistasis
is pre-requisite to co-evolution, strong epistasis can prevent
either site involved from changing and so there might be no
observable co-evolution.

Furthermore, Sailer and Harms (2017) (? ) investigated
the predictability of evolutionary trajectories using a lattice
protein model and found the presence of additional conforma-
tional ensembles in the model made evolution unpredictable.
They observed pairwise epistasis in a two-state model and
higher-order epistasis in a three-state model in the evolution-
ary trajectories of a small 12-amino acid protein. The pairwise
epistasis in the two-state model was due to direct contact be-
tween residues, whilst higher-order epistasis in the three-state
model resulted from the redistribution of the relative probabil-
ities of structures in the ensemble. While we did not consider
higher-order epistasis in this work, we did observe that the
epistasis associated with non-native contacts was the result of
epistasis in the free energies of the non-native ensembles, and
that this epistasis was more prevalent in less cooperative pro-
teins. Therefore, it is likely that we would observe prevalent
higher-order epistasis in our model under in lower selection
for cooperativity and little higher-order epistasis under higher
selection for cooperativity.

Sailer and Harms also found that a pairwise model was
able to perfectly predict evolutionary trajectories for two-state
model but not the three-state model, and that predictions
could not be improved even when including higher-order epis-
tasis. Therefore, from their observations, we may hypothesize
that it may be easier to use sequence data to predict protein
structure for proteins that evolved under selection for cooper-
ativity than for those that are not, due to the large number of
intermediate ensembles.

J. Wells (1990) (37) remarked that the simple additive
behaviour between many pairs of mutants is surprising given
the highly cooperative nature of protein folding, but provides
a few examples to the contrary where epistasis arises between
contacting residues. We propose that it is because protein
folding is highly cooperative that few residue pairs exhibit
epistasis unless they are in contact in the native state.

Materials and Methods

Protein model. The free energy G of an amino acid sequence
{A1, A2, ..., AN}, where N is the length of the protein, in a specific
structure can be calculated using a simple contact potential:

G=ZW(Ai7Aj)Q¢,j7 (1)
i<j

where v(A;, Aj;) is the contact potential between amino acids A;
and A; in positions ¢ and j respectively, determined by Miyazawa
and Jernigan (38), and Q; ; is equal to one if residues ¢ and j are in
contact, and zero otherwise. Two amino acids are considered to be
in contact if their Cg atoms (Cq in the case of glycine) are within
7A of one another.

The free energy of the native state Gy s was calculated using the
structure of a cysteine-free variant of Escherichia coli ribonuclease
H (RNase H), a 155 residue mixed «/f8 protein (PDB designation
1F21), using Equation 1. The unfolded and intermediate states will
each be associated with an ensemble of possible structures, and
the free energy of each structure can be calculated using Equa-
tion 1. The number of possible structures within each ensemble
is incredibly high, therefore an approximate to the distribution
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of energies is required. We used a random coil model (39, 40) to
produce random structures of sequences 152 amino acids long and
obtained thousands of possible structures for each partially folded
ensemble, K = {k}, where k denotes the individual intermediate
states, and fully unfolded state u. For each intermediate or unfolded
state, k V u, we used these structures to parameterise a Gaussian
distribution with mean Gy, and variance U%Vu for, to approximate
the degeneracy of states p(G) (i.e. the number of states (or struc-
tures) within the ensemble that have the same energy). An identical
procedure was carried out for the GB1 protein (PDB designation
1PGA) to approximate the free energy associated with the unfolded
state ensemble for the two-state model, and both the unfolded and
intermediate state ensembles in the three state model.

The partition function of each intermediate or unfolded ensemble
is given as:

Zevu = Nk\/u/P(G) exp(—G/kpT)dG

Niva -G —(G = Grva)?
_ kv ( )e p( ( kva) )dG
A\ /QﬂUzVu kT 205y
o2 G
= Niva kVu k\/u)
v EXP (Z(kBT)2 kpT

(2)
where kp is the Boltzmann constant, T" is the temperature in Kelvins,
and Ny, is the total number of possible structures in the partially
unfolded state k or the unfolded state u. For each state N\, was
set to equal y"kvu  where « is the number of conformations per
residue and ngy, is the number of unfolded residues in the state.

The free energy of each intermediate state k£ or the unfolded

state u can be found using the relation Gy, = —kpTIn(Zyyy):
2
Grvu = Grvu — 2k — kpTInNgyy, (3)

We can write the partition function of the system containing
both the native state and the ensemble of partially folded and
unfolded states can be as:

Z = exp(—GnNs/kBT) + exp(—Gu/kpT) + Z exp(—Gr/kBT)
k
4)
The stability of the native state is then given by the difference

between the native state free energy and the free energy of the
intermediate and unfolded ensemble, {K, u}:

AG = Gys + kpTln | exp(—Gu/kpT) + Z exp(—Gr/ksT)
k
(5)
The stability is in the direction of folding, and so the more negative

the stability the more stable the protein. The fraction of sequences
in the native state at equilibrium, F,q was computed using:

exp(—AG/kpT)
1+ exp(—AG/kpT)

(6)

Fiolg =

Selection for cooperative folding. The fitness of a sequence was set
to equal the fraction of sequences in the native state Fi,)q minus a
penalty for non-cooperative folding, Fecoop, which was set to equal
the average number of folded residues multiplied by a factor 1. The
fitness of a sequence was therefore calculated as:

F = Ffold - Fcoop
exp(—AG/kpT)

T1+ exp(—AG/kpT) (7)
7 ( > exp(=Gr/kpT) )
K exp(—Gu/kBT)+Zk exp(—Gy/kBT)

where the purpose of 7 is to tune the level of cooperativity i.e.
a larger value of 1 would require selection for mutations which
destabilise the intermediate states k, leading to greater cooperativity
in folding.
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Selection for epistasis. To select for mutations which are highly
epistasic among native contacts, the fitness of a sequence was set to
equal the fraction folded F,q minus a penalty for sequences with
little epistasis between native contacts, Fep;.

F = Fiola — Fepi
exp(—AG/kpT) 1 ®)

T 1t exp(—AG/ksT) PE

Here, E is the average magnitude of the epistasis, €; j, the between
each pair of native contacts, E = (|¢; j|). Therefore, the larger the
value of E, the lower the fitness penalty. ¢; ; is calculated using Eq.
15.

Quantifying cooperativity. Cooperativity in the protein folding tran-
sition is determined experimentally using the van’t Hoff criterion,
defined as the ratio of the van’t Hoff enthalpy, AH, f, evaluated at
Tm, to the calorimetric enthalpy AH.,; of the entire transition.

The calorimetric enthalpy, AH_.q;, is the enthalpy change during
the observed unfolded transition, and can be calculated from the
area under the heat capacity curve, with a baseline correction (? ?
7 ), between the temperature at which the majority if the system is
in the native state Ty and the temperature at which the majority
of the system is in the unfolded state Ty :

Ty
AI—Ica,l = / [Cv (T) - fN (T)CU,N(T) - fU(T)Cv,U(T)]dT (9)
Tn

where Cy(T) is the heat capactiy of the system, fx(T") and fy(T)
are the fraction of the system in the native and fully unfolded
state, respectively, and Cy v (T) and C,, y(T) are the hypothetical
heat capacities of the pure native and pure fully unfolded states
respectively.

The heat capacity C, was calculated as the differential with
respect to temperature of the average enthalpy of the system, H(T).
The average enthalpy, H(T'), of the system at temperature T' was
calculated as the differential of system partition function (Eqn. 4)
with respect to temperature, H(T) = —90InZ/0p:

>, (G

QkBT) exp( Gi/kBT)

Z

where ¢ = {NS, u, K} denoting a sum over all states of the system.
The van’t Hoff enthalpy is found from the effective equilibrium
constant K,y s, which is the ratio of the fraction of the population
in the unfolded state, f, to the fraction in the remaining states,
Keff = fu/(1— fu). The van’t Hoff enthalpy can then be calculated
using the van’t Hoff equation:

H(T) = ; (10)

o dInK gy
AHyp = kpT? — (11)
The van’t Hoff criterion can then be found as:
_ AH, g (12)
AHcq

If the value of kK = 1 then the transition can be considered to be
2-state, whereas for multistate processes k < 1.

Evolutionary simulations. We simulated the evolution of a 155 amino
acid protein, where the initial nucleic acid sequence was constructed
by choosing a set of codons at random, and the fitness of the
sequence was equal to Equation 7. Mutations in the nucleic acid
would be made following K80 mutation model with equal nucleotide
frequencies and a ratio of transition to transversion probabilities of
2.0, where mutations resulting in stop codons were rejected. When
a mutation is introduced, the probability of fixation of this mutation
depends upon its impact on protein fitness, where we can calculate
the selective advantage s of a mutant using:

F'—F

F
where F is the fitness of the premutation wild-type and F’ is the
fitness of the mutated sequence. The selective advantage s can

either be zero, positive or negative indicating the mutation to be
either synonymous, advantageous or deleterious.

s =

(13)
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At each generation we consider all possible mutations to the
nucleic acid sequence and calculate the probability of fixation of
each mutation using Kimura’s expression for diploid organisms:

1 —exp(—2s
Pﬁx_ ( )

" 1 — exp(—4Negs) (14)

where Neg is the effective population size which due to mating
behaviour and population structure is in general smaller than the
true population size, and here was set to equal 106. We then chose a
mutation to accept with a probability proportional to the probability
of fixation given in Equation 14.

Quantifying epistasis. Epistasis occurs between two mutations when
the sum of their independent effects on a trait, (AAG; + AAG),
is larger or smaller than their combined effect on the trait, AAG; ;.
To determine the epistasis between the amino acids at sequence
positions ¢ and j, for a given wild-type sequence Sy with stability
AGwr, we determine the stability AG; of the structure if we
substitute a non-interacting amino acid Ay at residue 7. Similarly,
we substitute a non-interacting amino acid Ay in to the wild-type
sequence at residue j to determine the stability AG;. For the double
mutation ¢, j, we substitute a non-interacting amino acid at both
positions ¢ and j simultaneously. We then calculate epistasis for
stability between two sites ¢ and j within the protein as:

€i,; = AAG; ; — (AAG; + AAGH). (15)
where for each pair or single mutation AAG,; = AG, — AGwr,
where AG is the stability following the mutation(s) z. The epistasis
between a pair of residues can be either positive or negative. Positive
epistasis occurs when the combined impact of two mutations at
residues 4 and j on protein stability AAG; ; is greater than the
sum of their individual impact AAG; + AAG;. Negative epistasis
occurs when AAG; ; is less than AAG; + AAG;.

Calculating the probability a pair of resides i and j are in contact in
the ensemble of partially folded and fully unfolded states. For any
pair of residues ¢ and j, we can calculate the contact probability
P; ; in the ensemble of partially folded and fully unfolded states as:

Piy=3 PelQiik+(1-Y P)@Qijdu  (16)
k k

Py, is the probability of being in intermediate state k, (Q; ;) is the
average probability residues 7 and j are in contact in intermediate
state k and (Q;,j)« is the average probability they are in contact
in the unfolded state.
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Figure Captions

Figure 1 Investigating the cooperativity of sequences evolved under
zero, low, medium and high values of the tuning coefficient n by
considering, (a) the fraction of the system found in the fully unfolded
state during denaturation under increased temperature, (b) the
fraction in the ensemble of intermediate states during the unfolding
transition, (c) heat capacity curves during the unfolding transition,
the area under which is the enthalpy change associated with the
transition, and (d) the van’t Hoff ratio of the unfolded transition
associated with each value of the cooperativity tuning coefficient 7.
All values are averaged over the set of 1000 most evolved sequences
for each evolutionary simulation.

Figure 2 The distribution of epistasis as the selection coefficient
n increases. The normalised distribution of the epistasis in protein
stability between a) native contacts and b) non-native contacts when
evolving proteins under varying degrees of selection for cooperativ-
ity. As selection for cooperativity increases, more native contacts
experience higher magnitude (more negative) epistasis, whilst more
non-native contacts experience very low levels of epistasis. The area

Eccleston et al.


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

under each curve sums to 1. ¢) The mean of the epistasis distribu-
tions, and d) the variance of the epistasis distribution, of the final
2,000 generations of the 50,000 generations simulated, averaged over
all 10 simulations for native contacts (blue) and non-native contacts
(red). The error bars represent the variance of these values across
the 10 simulations. The average of the epistasis distribution at the
native contacts becomes more negative as the value of the selection
coefficient 7 increases and the variance in the distribution increases.
The average of the epistasis distribution at the non-native contacts
goes to zero as the selection coefficient 7 increases, and the variance
decreases.

Figure 3 The mean absolute epistasis in protein stability (y-
axis), averaged over all 10 simulations, between each pair of native
contacts when evolving proteins under increasing selection (ng =
0, low, medium) for the absolute epistasis in protein stability at
the native contacts (x-axis). The error bars depict the variance in
the mean. The average absolute epistasis between native contacts
increases as the value of the selection coefficient g increases.

Figure 4 The distribution of epistasis as the selection coefficient
ng increases. The normalised distributions of epistasis between
a) native and b) non-native contacts when evolving sequences un-
der different magnitudes of selection for the average magnitude of
epistasis between the native contacts. As the value of the selec-
tion coefficient ng increases, a higher number of native contacts
experience greater magnitude negative epistasis, whilst a higher
number of non-native contact pairs experience non-zero epistasis.
The area under the curves sum to 1. ¢) The mean of the epistasis
distributions, and d) the variance of the epistasis distribution, of the
final 2,000 generations of the 5,000 generations simulated, averaged
over all 10 simulations for native contacts (blue) and non-native
contacts (red). The error bars represent the variance of these values
across the 10 simulations. The average of the epistasis distribution
at the native contacts becomes more negative as the value of the
selection coefficient ng increases and the variance in the distribution
increases. The average of the epistasis distribution at the non-native
contacts remains roughly constant as the selection coefficient ng
increases, but the variance in the distribution increases.

Figure 5 Investigating the cooperativity of the unfolding transi-
tion with increased selection for the average magnitude of epistasis
at the native contacts, by considering a) The fraction of the popula-
tion in the unfolded state during denaturation and b) the fraction
of the population in the ensemble of partially folded states during
denaturation. As the value of the selection coefficient ng increases,
the unfolding transition becomes less sharp and the fraction of
the population in the intermediate states increases, showing the
sequences are becoming less cooperative.

Figure 6 The average epistasis € between each possible pair
of residues for a) a two-state and b) a 3-state system. The upper
triangle of each heat map is the calculated epistasis, the lower
triangle is the contact map for the GB1 protein, where a value of 1
means the residues are in contact in the native state. The epistasis
for the two-state system accurately maps out the structure of the
GB1 protein, with the majority of native contacts experiencing high
magnitudes of negative epistasis. For the three state system, the
native contact map becomes obscured by high levels of positive
epistasis at non-native contacts. These results suggest epistatic
measurements work when reconstructing the native state of two-
state systems, but are less successful for multi-state systems.

Figure 7 Histogram of the distribution of contact probabilities
P; j between site ¢ and site j when evolving proteins under selection
for cooperativity, when 7 is set to a) 0, b) low, ¢) medium and d)
high.

Figure 8 Histogram of the distribution of contact probabilities
P; ; between site 7 and site j when evolving proteins under selection
for epistasis between native contacts, when 7 is set to a) 0, b) low
and ¢) medium.
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