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On the Secrecy Performance of Interference

Exploitation with PSK: A non-Gaussian Signaling

Analysis

Abstract

Interference exploitation has recently been shown to provide significant security benefits in multiuser

communication systems. In this technique, the known interference is designed to be constructive to the legitimate

users and disruptive to the malicious receivers. Accordingly, this paper analyzes the secrecy performance

of constructive interference (CI) precoding technique in multi-user multiple-input single-output (MU-MISO)

systems with phase-shift-keying (PSK) signals and in the presence of multiple passive eavesdroppers. The

secrecy performance of CI technique is comprehensively investigated in terms of symbol error probability

(SEP), secrecy sum-rate, and intercept probability (IP). Firstly, new and exact analytical expressions for the

average SEP of the legitimate users and the eavesdroppers are derived. In addition, for simplicity and in

order to provide more insights, very accurate asymptotic approximation for the average SEPs are presented in

closed-form. Departing from classical Gaussian rate analysis, we employ finite constellation rate expressions

to investigate the secrecy sum-rate. In this regard, closed-form analytical expression of the ergodic secrecy

sum-rate is obtained. Then, based on the new secrecy sum-rate expression we revisit adaptive modulation (AM)

scheme with the aim to enhance the secrecy performance. Finally, we present analytical expressions of the

IP with fixed and adaptive modulations. The numerical results in this work demonstrate that, the interference

exploitation technique provide additional up to 17dB gain in the transmit SNR in terms of SEP, and up to 10dB

gain in the transmit SNR in terms of the secrecy sum-rate and the IP, compared to the conventional interference

suppression technique. Furthermore, significant performance improvement up to 66% can be achieved with the

proposed AM scheme.

Index Terms

Finite constellation signaling, physical layer security, constructive interference.
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I. INTRODUCTION

Multi-user multiple-input single-output (MU-MISO) communication systems play important roles in

achieving high spectral efficiency, reliability, and energy efficiency [1], [2], [3]. In MU-MISO systems, it

is necessary to perform pre-processing at the base station (BS) to reduce the impact of the interferences

and achieve the high spectral efficiency promised by implementing multiple-antennas at the BS [4].

Among various schemes, constructive interference (CI) precoding technique has received significant

research interest in the past few years. The CI precoding exploits the well-known interferences to

enhance the performance of MU-MISO systems [5], [6], [7], [8]. The interference is considered to be

constructive if it pushes the received symbols deeper in the constructive region of the desired symbol.

Therefore, with the knowledge of both the channel state information (CSI) and users’ data symbols

at the network access points, the precoder can be designed to make all the multi-user interference

constructive to the received symbols. The CI exploitation technique has been extensively investigated

over the past few years. This line of research has been presented in [5], where the CI precoding

has been proposed for down-link multiple input multiple-output (MIMO) systems. The results in [5]

showed that the CI precoding can greatly enhance the signal to interference-plus-noise ratio (SINR)

without increasing the transmission power. In [6], a low-complexity vector precoding scheme for CI in

down-link MU-MISO system was proposed including initial optimization-based CI precoding schemes.

The authors in [7] presented transmit beam-forming techniques for MU-MISO systems in order to

minimize the transmit power by exploiting the well-known interference. In [8], [9], CI precoding has

been applied in energy-harvesting systems in order to minimize the transmit power whilst providing

the required energy-harvested and the quality-of-service constraints for PSK symbols. Further work in

[10] implemented the CI exploitation technique to massive-MIMO systems. The authors in [11] derived

closed-form expression for CI precoding in the MU-MIMO downlink. This closed-form expression has

paved the way to develop theoretical analysis of the CI precdoing technique. Based on this precoding

expression, the performance analysis of the CI precoding in MU-MISO systems has been investigated

in [12]. Very recently, the concept of CI has been proposed to enhance the physical layer security in

communication systems. In [13] the interference exploitation technique has been used to design different

artificial noise (AN) precoders. In [14], secure beam-forming for simultaneous wireless information

and power transfer in MU-MIMO systems has been proposed based on the concept of CI exploitation
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techniques.

Building on the above CI approaches, our focus is on the analysis of the CI concept for physical layer

security. The concept of physical layer security has been developed by Wyner in [15], where the wiretap

channel for point-to-point channel has been presented. Then, Csiszar and Korner in [16] extended

the wiretap channel to broadcast channels. These works reported that, achieving secure wireless

communications is possible if the main/user channel quality is better than the wiretap/eavesdropper

channel. Based on this fact, physical layer security of MU-MIMO systems has particularly attracted

a significant amount of attention. However, most of the works in literature have focused on Gaussian

signals, which is not practical assumption [17], [18], [19], [20]. The assumption of Gaussian input

may lead to essential secrecy rate loss when the Gaussian input is replaced by finite-alphabet input.

On the contrary, recently several works have considered the security of MU-MISO systems with finite

alphabet signals. For instance, in [21] linear precoding design that aims to maximize the secrecy for

MIMO systems under the constraint of finite-alphabet input and in the presence of multiple antennas

eavesdropper has been studied. The authors in [22], [23] considered the impact of finite discrete

constellation on the instantaneous and ergodic secrecy rates of MIMO systems. With statistical CSI

of the eavesdropper’s channel at the BS, in [24] approximated ergodic secrecy rate has been used to

design secure communication of multi-antenna eavesdropper wiretap channels. Further work in [25]

investigated secure transmission for large-scale MIMO systems with finite alphabet signals.

Accordingly, in this paper we analyze the secrecy performance of CI precoding technique in MU-

MISO systems under a PSK input alphabet and in the presence of multiple passive eavesdroppers.

Particularly, the inherent multi-user interference is exploited to secure the down-link transmission in

MU-MISO systems. The secrecy performance of interference exploitation technique is extensively

analyzed in terms of symbol error probability (SEP), secrecy sum-rate, and intercept probability

(IP). The challenge here is that, as CI is modulation dependent, traditional approaches based on the

assumption of Gaussian signaling do not apply. Thus, we employ finite constellation analysis in this

work. In this context, new and explicit analytical expressions have been derived for SEP, secrecy sum-

rate and IP. In addition, from the secrecy sum-rate analysis in this paper, it has been shown that the

secrecy rate of the communication systems with finite alphabet signals tends to zero in high SNR

regime. In order to tackle this issue and improve the secrecy performance, adaptive modulation (AM)

technique has been implemented and investigated. Throughout this paper, Monte-Carlo simulations are
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presented to confirm the correctness of the derived expressions in this work, and the impact of various

system parameters on the secrecy performance has been investigated and discussed.

For clarity we list the major contributions of this work as follows.

1) Symbol Errror Probability: Firstly, we derive new exact analytical expressions for the average

SEP of the legitimate users and eavesdroppers. In addition, for simplicity and in order to provide

more insight, we also derive very accurate closed-form asymptotic approximation for the average

SEPs.

2) Secrecy Sum-Rate with non-Gaussian Signaling: Furthermore, we extend our analysis to the

secrecy sum-rate, and closed-form analytical expression of the ergodic secrecy sum-rate is

provided.

3) Adaptive Modulation for Secrecy: Based on the derived expression of the ergodic secrecy sum-

rate, we propose employing AM technique to enhance the secrecy sum-rate for the MU-MISO

systems with PSK signals. In this regard, new analytical expression of the secrecy sum-rate for

AM scheme is derived.

4) Intercept probability: analytical expressions of the IP with fixed and adaptive modulations are

presented, including a simplified analytical expression of the IP based on the received SINRs.

The results in this paper show that, the interference exploitation technique yields superior performance

over the conventional interference suppression techniques in terms of SEP, secrecy sum-rate and the

IP. Particularly, the CI precoding can provide up to 17dB gain in the transmit SNR in terms of SEP,

and up to 10dB gain in the transmit SNR in terms of the secrecy sum-rate and the IP. In addition, the

proposed AM scheme outperforms the fixed modulation scheme by up to 66% at given values of the

transmit SNR.

Next, Section II describes the MU-MISO system model. Section III, derives the exact and approx-

imate analytical expressions for the average SEP of the users and the eavesdroppers. Section IV,

presents the derivation of the ergodic secrecy sum-rate for fixed and adaptive modulation schemes.

Section V, considers the intercept probability for the CI precoding in MU-MISO systems. Numerical

and simulation results are presented and discussed in Section VI. Finally, the main conclusions of this

work are stated in Section VII.
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Figure 1: MU-MISO down-link with N antennas BS, single-antenna user-eavesdropper pairs.

II. SYSTEM MODEL

We consider a MU-MISO system consisting of a BS and K user-eavesdropper pairs, where each

legitimate user is wiretapped by an eavesdropper as illustrated in Fig. 1. The BS is equipped with N

antennas, while each user and eavesdropper equipped with single antenna. The BS intends to transmit

K confidential messages to the wiretapped users, and each eavesdropper tries to wiretap the user in

the same pair, as in [26], [19], [27]. This scenario can occur in many practical applications, such as

in the applications where the user-paring technique is implemented and the BS transmits confidential

messages to only one user in each pair. The down-link K × N channel matrix between the BS and

the legitimate users is denoted by H, which is modeled as H = D
1/2

H̃, where the K ×N matrix H̃

represents the small-scale fading coefficients from the BS to the legitimate users which are assumed

to be independent, circularly symmetric complex Gaussian random variables with zero mean and unit

variance, and D is a K ×K diagonal matrix models the path-loss with [D]kk = ̟k = d−mk where dk

denotes the distance from the BS to the kth user and m denotes the path-loss exponent. The K × N

channel matrix between the BS and the K eavesdroppers is G, which is modeled as G = D1/2
G̃ where

the K ×N matrix G̃ represents the small-scale fading coefficients from the BS to the eavesdroppers

which are also assumed to be independent, circularly symmetric complex Gaussian random variables

with zero mean and unit variance and D is a K × K diagonal matrix models the path-loss with

[D]kk = ωk = d
−m
k where dk is the distance between the BS and the kth eavesdropper. It is assumed

that the the BS knows the users’ CSI but it knows only the statistics of evesdrppers’ channels due to
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the eavesdroppers’ passive nature. It is also assumed that the signal is equi-probably drawn from an

M-PSK constellation.

The received signals at the kth user and the kth eavesdropper in the considered system can be written,

respectively, as

yd,k =
√
PhkWs+ nd,k =

√
P

K∑

i=1

hk [W]i si + nd,k (1)

ye,k =
√
PgkWs + ne,k (2)

where s = [s1, s2, ...., sK ]
H

is the PSK-modulated signal vector, P is the BS transmission power, hk is

the channel vector from the BS to user k, gk is the channel vector from the BS to eavesdropper k, W

is the precoding matrix, nd,k and ne,k are the additive wight Gaussian noise (AWGN) at the kth user,

nd,k ∼ CN
(
0, σ2

d,k

)
, and the kth eavesdropper, ne,k ∼ CN

(
0, σ2

e,k

)
, respectively. The CI precoding

matrix with PSK signaling can be expressed as [11], [12]

W =
1

K
βHH

(
HH

H
)−1

diag
{
V

−1
u
}
ss
H , (3)

where β = 1√
uHV−1u

is the power scaling factor, while V = diag
(
s
H
) (

HH
H
)−1

diag (s) and 1
T
u = 1.

III. ANALYSIS OF SYMBOL ERROR PROBABILITY

Secure transmission schemes can be designed based on constraining the SEPs of the legitimate users

and the eavesdroppers to predefined threshold values. This leads to the concept of the, security gap,

which is simply the minimum required difference between the SEPs of the legitimate users and the

eavesdroppers [28]. Consequently, in this section we analyze the symbol error performance of both

the kth user and the jtheavesdropper as follows.

A. Average SEP of the Legitimate Users

In CI precoding the resulting interference contributes to the useful signal power, thus it has been

shown that the received SNR at the kth user can be written as
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γd,k =

∣
∣
∣

√
PhkWs

∣
∣
∣

2

σ2
d,k

(4)

Substituting (3) into (4) we can get

γd,k =

∣
∣
∣

√
Pβ
K

bDcbAc
bDc

sk

∣
∣
∣

2

σ2
d,k

= αk |Ψ |2 (5)

where A = HH
H , b = ak

(
diag

(
s
H
))

, c = (diag (s))u, ak is a 1 × K vector the kth element of

this vector is one, and all the other elements are zeros, β = 1√
uHdiag(sH)−1ND(diag(s))−1u

[29], [12],

αk =

∣

∣

∣

√

Pβ
K

bDc

∣

∣

∣

2

σ2
k

and Ψ = bAc
bDc

. It was shown in literature that Ψ has Gamma distribution with shape

parameter ν and scale parameter θ, Ψ ∼ Γ (ν, θ), where in the considered scenario ν = N and θ = 1

[29]. Consequently, the received SNR, γd,k, has General Gamma distribution Γ (ρ, ̺, κk) with ρ = 1
2
,

̺ = ν
2

and κk = αk. Therefore, the cumulative distribution function (CDF) and the probability density

function (PDF) of the received SNR, γd,k can be written, respectively, as

Fγd,k (γ) =

(
ϕ (̺/ρ, (γ/κk)

ρ)

Γ (̺/ρ)

)

, fγd,k (γ) =






(
ρ
κ̺k

)

γ̺−1e
−
(

γ
κk

)ρ

Γ
(
̺
ρ

)




 (6)

where ϕ (.) is the lower incomplete Gamma function.

1) Exact SEP: The exact average SEP of a legitimate user in the considered scenario can be evaluated

using the following Theorem.

Theorem 1. The exact analytical expression of the average SEP of the kth legitimate user is

SPk =
1

π

π(M−1)
M̂

0

∞̂

0

e−zγ
(
ρ
κ̺
k

)

γ̺−1e
−
(

γ
κk

)ρ

Γ
(
̺
ρ

) dγdΦ (7)

and

SPk =
1

π

n∑

i=1

π(M−1)
M̂

0

Hi sin
2 Φ

sin2
(
π
M

)

(
ρ
κ̺
k

)(

γi sin
2 Φ

sin2( π
M )

)̺−1

e
−
(

γi sin
2 Φ

sin2( π
M )κk

)ρ

Γ
(
̺
ρ

) dΦ +Ri (8)
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where z =
sin2( π

M )
sin2 Φ

, γi and Hi are the ith zero and the weighting factor of the Laguerre polynomials,

respectively, and the remainder Ri is negligible for n > 15 [30].

Proof: Using a standard approach provided in literature [31], [32, (5.67)], the average SEP of

M-PSK can be calculated by [31, (5.67)]

SPk =
1

π

π(M−1)
M̂

0

Mγd,k

(

−sin2
(
π
M

)

sin2 Φ

)

dΦ =
1

π

π(M−1)
M̂

0

Mγd,k (z) dΦ (9)

where Mγd,k (z) is the the moment-generating function (MGF) of the received SNR and z =
sin2( π

M )
sin2 Φ

.

Therefore, the MGF of the received SNR, γd,k, can be derived as

Mγ (z) =

∞̂

0

e−zγfγd,k (γ) dγ (10)

Substituting the PDF in (6) into (10), we can find

Mγk (z) =

∞̂

0

e−zγ






(
ρ
κ̺
k

)

γ̺−1e
−
(

γ
κk

)ρ

Γ
(
̺
ρ

)




 dγ (11)

Applying Gaussian Quadrature rule, the MGF can be obtained by,

Mγk (z) =
n∑

i=1

Hi

z






(
ρ
κ̺
k

) (
γi
z

)̺−1
e
−
(

γi
zκk

)ρ

Γ
(
̺
ρ

)




+Ri (12)

where γi and Hi are the ith zero and the weighting factor of the Laguerre polynomials, respectively,

and the remainder Ri is negligible for n > 15 [30]. By substituting (11) and (12) into (9), we can find

the exact average SEP as in (7) and (8).

2) Closed-form approximate SEP: The exact SEP expression in Theorem 1 is presented with only

single integration which can be evaluated efficiently using numerical integration techniques. In order

to provide more insights, in the next Theorem we present very accurate closed-form approximation of

the average SEP.

Theorem 2. Very accurate closed-form expression of the average SEP of the kth legitimate user is
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SPk =

(
π(M−1)

M

2π
− 1

6

)
n∑

i=1

Hi

sin2
(
π
M

)










(
ρ
κ̺
k

)(

γi
sin2( π

M )

)̺−1

e
−
(

γi

κk sin2( π
M )

)ρ

Γ
(
̺
ρ

)










+
1

4

n∑

i=1

3Hi

4 sin2
(
π
M

)










(
ρ
κ̺
k

)(

3γi
4 sin2( π

M )

)̺−1

e
−
(

3γi

4κk sin2( π
M )

)ρ

Γ
(
̺
ρ

)










+

(
π(M−1)

M

2π
− 1

4

)
n∑

i=1

Hi sin
2 π(M−1)

M

sin2
(
π
M

)










(
ρ
κ̺k

)(

γi sin
2 π(M−1)

M

sin2( π
M )

)̺−1

e
−
(

γi sin
2 π(M−1)

M

κk sin2( π
M )

)ρ

Γ
(
̺
ρ

)










(13)

Proof: Firstly, (9) can be written as

SPk = E





1

π

π
2̂

0

exp

(

−sin2
(
π
M

)

sin2 θ

)

dθ +
1

π

π(M−1)
M̂

π
2

exp

(

−sin2
(
π
M

)

sin2 θ

)

dθ




 (14)

The first and the second terms in (14) can be efficiently approximated by [32], [33]

1

π

π
2̂

0

exp

(

−sin2
(
π
M

)

sin2 θ

)

dθ ≈ 1

12
e(− sin2( π

M )) +
1

4
e

(

−
4 sin2( π

M )
3

)

(15)

1

π

π(M−1)
M̂

π
2

exp

(

−sin2
(
π
M

)

sin2 θ

)

dθ ≈ 1

2π



e(− sin2( π
M )) +

1

4
e

(

−
sin2( π

M )
sin2

π(M−1)
M

)



(
π (M − 1)

M
− π

2

)

(16)

Now substituting (15) and (16) into (14), we can find approximate expression of SEP as [32], [33]

SPk = E




1

12
e(− sin2( π

M )) +
1

4
e

(

−
4 sin2( π

M )
3

)

+
1

2π



e(− sin2( π
M )) +

1

4
e

(

−
sin2( π

M )
sin2

π(M−1)
M

)



(
π (M − 1)

M
− π

2

)




(17)

and
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SPk =

(
π(M−1)

M

2π
− 1

6

)

Mγ

(

sin2
( π

M

))

+
1

4
Mγ

(

4 sin2
(
π
M

)

3

)

+

(
π(M−1)

M

2π
− 1

4

)

Mγ

(

sin2
(
π
M

)

sin2 π(M−1)
M

)

(18)

Finally, substituting (12) into (18), the approximate expression can be written as in (13).

B. Average SEP of the Eavesdroppers

Here we derive the exact and the approximate expressions for the average SEP of the kth eavesdropper.

After substituting (3) into (2) and collecting terms, the received signal at the kth eavesdropper can be

expressed as

ye,k =

√
Pβ

K
gj
[
H

H
]

k
uksk +

√
Pβ

K

K∑

r=1,r 6=k
gk
[
H

H
]

r
ursr + ne,k (19)

Hence, the SINR at the kth eavesdropper using CI precoding can be written as

γe,k =

∣
∣
∣

√
Pβ
K

gk
[
H

H
]

k
uk

∣
∣
∣

2

K∑

r=1,r 6=k

∣
∣
∣

√
Pβ
K

gk [HH]r ur

∣
∣
∣

2

+ σ2
e,k

(20)

This SINR expression in (20) can also be expressed as

γe,k =

|gk [HH]
k
uk|2

‖gj‖2

K∑

r=1,r 6=k

|gk [HH]rur|2
‖gk‖2

+ δk
‖gk‖2

(21)

where δk =
K2σ2e,k
Pβ2 . It was shown that,

|gk [HH]
r
ur|2

‖gk‖2
and

|gk [HH]
k
uk|2

‖gk‖2
are independent and have expo-

nential distributions, while δk
‖gk‖2

has inverse Gamma distribution. Therefore, the CDF of γe,k can be

obtained as

Fγe,k (γ̄) = Pr (γe,k < γ̄) = Pr

(
X

Y + Z
< γ̄

)

(22)

where X =
|gk [HH]

r
ur|2

‖gk‖2
, Y =

K∑

r=1,r 6=k

|gk [HH]
k
uk|2

‖gk‖2
and Z = δk

‖gk‖2
. Hence, by conditioning on Y and Z

we can write
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Fγe,k (γ̄ |Y, Z ) = Pr (X < γ̄Y + γ̄Z) (23)

Since X has exponential distribution with parameter λx, the conditional distribution can be expressed

as

Fγe,k (γ̄ |Y, Z ) = 1− e−λx(γ̄Y+γ̄Z), (24)

In addition, Y has sum of exponential distributions, i.e., Gamma distribution, Y ∼ Γ
(

κ, β̃
)

, with

shape parameter κ = K − 1 and inverse scale parameter β̃, and PDF given by fY (y) = yκ−1e−β̃yβ̃κ

Γ(κ)
.

Thus, the CDF conditioning on Z can be found as

Fγe,k (γ̄ |Z ) =

∞̂

0

(
1− e−λx(γ̄y+γ̄Z)

)

(

yκ−1e−β̃yβ̃κ

Γ (κ)

)

dy, for γ̄Y + γ̄Z ≥ 0 (25)

Fγe,k (γ̄ |Z ) = 1− β̃κe−γ̄λxZ
(

β̃ + γ̄λx

)−κ
, γ̄ > 0 (26)

Since Z has inverse Gamma distribution, the PDF of Z is fZ (z) =
( 1
z )

v+1
δvke

−
δk
z

Γ(v)
, where v is the

shape parameter which is equal N . Finally, the CDF of γe,k can be found as

Fγe,k (γ̄) = 1−
2β̃κδ

v
2
k (λxγ̄)

v
2

(

β̃ + λxγ̄
)−κ

J
[
v, 2

√
δkλxγ̄

]

Γ (v)
, γ̄ > 0 (27)

where J [.] is the Besselk function.

1) Exact SEP: The exact average SEP of an eavesdropper in the system can be calculated as in the

following Theorem.

Theorem 3. The exact expression of the average SEP of the kth eavesdropper is

SPe,k =
1

π

π(M−1)
M̂

0




1− z

∞̂

0

e−zγ̄






2β̃κδ
v
2

k (λxγ̄)
v
2

(

β̃ + λxγ̄
)−κ

J
[
v, 2

√
δkλxγ̄

]

Γ (v)




 dγ̄




 dΦ (28)

and
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SPe,k =
1

π

π(M−1)
M̂

0






1−

n∑

i=1

Hi

2β̃κδ
v
2

k

(
λxγ̄i
z

) v
2

(

β̃ + λxγ̄i
z

)−κ
J

[

v, 2
√

δλxγ̄i
z

]

Γ (v)






dΦ+Ri (29)

where z =
sin2( π

M )
sin2 Φ

, γ̄i and Hi are the ith zero and the weighting factor of the Laguerre polynomials,

respectively, and the remainder Ri is negligible for n > 15 [30].

Proof: Using a standard approach, the SEP with M-PSK can be expressed as [31, (5.67)]

SPe,k =
1

π

π(M−1)
M̂

0

Mγe,k (z) dΦ (30)

Using integration by parts, the MGF, Mγe,k (z), can be derived as

Mγe,k (z) = 1− z

∞̂

0

e−zγ̄
(
1− Fγe,k (γ̄)

)
dγ̄ (31)

Substituting (27) into (31) we can get

Mγe,k (z) = 1− z

∞̂

0

e−zγ̄
2β̃κδ

v
2
k (λxγ̄)

v
2

(

β̃ + λxγ̄
)−κ

J
[
v, 2

√
δkλxγ̄

]

Γ (v)
dγ̄ (32)

Applying Gaussian Quadrature rule, the MGF can be obtained by

Mγe,k (z) = 1−
n∑

i=1

Hi

2β̃κδ
v
2
k

(
λxγ̄i
z

) v
2

(

β̃ + λxγ̄i
z

)−κ
J

[

v, 2
√

δkλxγ̄i
z

]

Γ (v)
+Ri (33)

Substituting (32) and (33) into (30), we can obtain the exact SEP of the eavesdropper as in (28) and

(29).

2) Closed-form approximate SEP: The single integration in Theorem 3 can be calculated using

numerical integration methods, to provide more insights very accurate closed-form approximation of

the average SEP is presented in the next Theorem.

Theorem 4. Very accurate closed-form expression of the average SEP of the kth eavesdropper is
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SPe,k =

(
Θ

2π
− 1

6

)









1−
n∑

i=1

Hi

2β̃κδ
v
2
k

(

λxγ̄

sin2( π
M )

) v
2
(

β̃ + λxγ̄

sin2( π
M )

)−κ
J

[

v, 2

√
δkλxγ̄

sin2( π
M )

]

Γ (v)









+
1

4









1−
n∑

i=1

Hi

2β̃κδ
v
2
k

(

3λxγ̄

4 sin2( π
M )

) v
2
(

β̃ + 3λxγ̄

4 sin2( π
M )

)−κ
J

[

v, 2

√
3δkλxγ̄

4 sin2( π
M )

]

Γ (v)









+

(
Θ

2π
− 1

4

)







1−

n∑

i=1

Hi

2β̃κδ
v
2
k

(

sin2 Θλxγ̄

sin2( π
M )

) v
2
(

β̃ + sin2 Θλxγ̄

sin2( π
M )

)−κ
J

[

v, 2

√

sin2 Θδkλxγ̄

sin2( π
M )

]

Γ (v)








(34)

Proof: Using the expression in (18), we can find the approximation as [32], [33]

SPe,k =

(
Θ

2π
− 1

6

)

Mγe,k

(

sin2
( π

M

))

+
1

4
Mγek

(

4 sin2
(
π
M

)

3

)

+

(
Θ

2π
− 1

4

)

Mγe,k

(

sin2
(
π
M

)

sin2Θ

)

(35)

Substituting (33) into (35) we can get (34).

The numerical results show that the approximate expression in (34) is very tight to the exact one.

IV. ANALYSIS OF SECRECY SUM-RATE

To measure the security level of a communication network, the secrecy rate is usually considered

which is basically defined by the maximum difference between the mutual information of the main

and eavesdropper channels. In this work, it is assumed that the BS does not have any knowledge of

the eavesdroppers channels (only statistics). In this case, the ergodic secrecy sum-rate can be obtained

by [17], [18], [19], [20]

R̄s =

K∑

k=1

[
R̄dk − R̄ek

]+
(36)

where [l]+= max (0, l), R̄dk = E (Rdk), Rdk is the rate of the kth user, R̄ek = E (Rek), Rek is the

rate of the kth eavesdropper. Therefore, to evaluate the ergodic secrecy sum-rate we need to derive the
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ergodic rates at user k and eavesdropper j, which are considered in the following sub-sections.

A. Ergodic Rate of the Users

Following the principles of CI, very accurate approximation of the ergodic rate for user k under PSK

signaling using CI precoding technique can be written as[34], [35]

R̄dk = log2M − 1

MN

MN
∑

m=1

Eh






log2

MN
∑

i=1

e

−|√Phk[W]ksm,i|2
2σ2

d,k







︸ ︷︷ ︸

ψ

(37)

where sm,i = sm − si, sm and si are symbols taken from the M signal constellation.

Theorem 5. The ergodic rate of user k using CI precoding technique is

R̄dk = log2M − 1

MN

MN
∑

m=1

log2

MN
∑

i=1

Λkm,i
. (38)

where

Λkm,i
=





(

2(
1
2
(N−K−1))K(N−K+1) |sm,i|−2+K−N

(N −K)!

)



(

ς2k
σ2
d,k

) 1
2
(K−N−1)









×
(

(
ς2k |sm,i|

)
Γ

(
1

2
(N −K + 1)

)

1F1

(

1

2
(N −K + 1) ,

1

2
,
K2σ2

d,k

2ς2k |sm,i|2

)

−
√
2K ςk σ

2
d,kΓ

(
1

2
(N −K + 2)

)

1F1

(

1

2
(N −K + 2) ,

3

2
,
K2σ2

d,k

2ς2k |sm,i|2

)))

(39)

where 1F1 is the Hypergeometric function and ςk =
√
PβakDu

K
.

Proof: Substituting (3) into (37), we can write the average rate as

R̄dk = log2M − 1

MN

MN
∑

m=1

Eh







log2

MN
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

akFusm,i

∣

∣

∣

∣

2

2σ2
d,k







︸ ︷︷ ︸

ψ

. (40)

where F = V
−1. By using Jensen inequality, ψ, can be written as
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ψ = Eh







log2

MN
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

akFusm,i

∣

∣

∣

∣

2

2σ2
d,k







≤ log2

MN
∑

i=1

Eh






e

−|ςk Y sm,i|2
2σ2

d,k







︸ ︷︷ ︸

Λkm,i

(41)

where Y = akFu

akDu
, which has Gamma distribution, Y ∼ Γ (ν, θ) [29]. Therefore the average can be

calculated by

Λkm,i
=

∞̂

0

e
− |ςk Y sm,i|2

2σ2
d,k

e−Ky (Ky)N−K K

(N −K)!
dy, (42)

which can be obtained as in (39).

B. Ergodic Rate of the Eavesdroppers

Similarly, following the principles of CI, very accurate approximation of the average rate for eaves-

dropper k under PSK signaling, using CI precoding technique can be written as[34], [35],

R̄ek = log2M − 1

MN

MN
∑

m=1

E







log2

MN
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







︸ ︷︷ ︸

ϕ

+
1

MN−1

MN−1
∑

m=1

E







log2

MN−1
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

gk Bsm,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







︸ ︷︷ ︸

ψ

, (43)

where B is the matrix H
Hwithout vector k, and sm,i is a vector contains all the users’ signals except

user k signal.

Theorem 6. The ergodic rate of eavesdropper k using CI precoding technique is

R̄ek = log2M − 1

MN

MN
∑

m=1

log2

MN
∑

i=1

Υkm,i
+

1

MN−1

MN−1
∑

m=1

log2

MN−1
∑

i=1

∆km,i
, (44)

where



16

Υkm,i
=

N∑

j=0

Hj

2σ2
e,k








δ
v
2
+ 1

2
k

(
Pβ2γ̃j

ωkλν2K2σ2
e,k

) v
2
− 1

2

(

J

(

v − 1, 2

√

Pβ2δkγ̃j
2K2σ2

e,k
ωkλν

)

+ J

(

v + 1, 2

√

Pβ2δk γ̃j
2K2σ2

e,k
ωkλν

))

λvΓ (v)

−
δ

v
2

(
Pβ2γ̃j

2K2σ2
e,k
ωkλν

) v
2
−1

vJ

(

v, 2

√

Pβ2δkγ̃j
2K2σ2

e,k
ωkλν

)

λv̄Γ (v)







(45)

and

∆km,i
=

N∑

j=0

Hj

2σ2
e,k








δ
v
2
+ 1

2
k

(
Pβ2γ̃j

λυ2K2σ2e,k

) v
2
− 1

2

(

J

(

v − 1, 2

√

Pβ2δkγ̃j
2K2σ2e,kλυ

)

+ J

(

v + 1, 2

√

Pβ2δkγ̃j
2K2σ2e,kλυ

))

λυΓ (v)

−
δ

v
2

(
Pβ2γ̃j

2K2σ2
e,k
λυ

) v
2
−1

vJ

(

v, 2

√

Pβ2δkγ̃j
2K2σ2

e,k
λυ

)

λυΓ (v)







(46)

while γ̃j and Hj are the jth zero and the weighting factor of the Laguerre polynomials, respectively,

λν = ‖s̃m,i‖2, and λυ = ‖sm,i‖2.

Proof: By invoking Jensen inequality, the first term in (43), ϕ, can be expressed by

ϕ = E







log2

MN
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







≤ log2

MN
∑

i=1

E







e

−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







(47)

Since the noise, ne,k, has Gaussian distribution, the average over the noise can be derived as

En







e

−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







=
1

πσ2

ˆ

n

e
−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2
+|ne,k|2

σ2
e,k dn. (48)

Using the integrals of exponential function in [30], we can find
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En







e

−

∣

∣

∣

∣

√

Pβ
K

gk H
H

s̃m,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







≈ 1

2
e
−

Pβ2|gk H
H

s̃m,i|2
2K2σ2

e,k . (49)

Now to derive the average over the channels we need firstly to find the distribution of Ω =
∣
∣gkH

H
s̃m,i

∣
∣
2
. The CDF of Ω can be obtained as

FΩ (γ̃) = Pr
(∣
∣gkH

H
s̃m,i

∣
∣
2
< γ̃

)

= Pr








∣
∣gkH

H
s̃m,i

∣
∣2

‖g̃k‖2
︸ ︷︷ ︸

v̄

<
γ̃

‖g̃k‖2








(50)

It is shown that v̄ has exponential distribution with CDF, Fv̄ (v̄) = 1 − e−
v̄
λv̄ and λv̄ = ωk ‖s̃m,i‖2.

Let Z = 1
‖g̃k‖2

, now by conditioning on Z we can find,

Pr (v < Z γ̃) =

∞̂

0

(

1− e−
Z γ̃
λv̄

)

fZ (z) dz (51)

Since Z has inverse Gamma distribution with PDF is given by fZ (z) =
( 1
z)

v+1
δvke

−
δ
z

Γ(v)
, the CDF can

be found as

FΩ (γ̃) =

∞̂

0

(

1− e−
Z γ̃
λv̄

)
(
1
z

)v+1
δvke

− δ
z

Γ (v)
dz = 1−

2δ
v
2
k

(
γ̄
λv̄

) v
2

J
[

v, 2
√

δkγ̄
λv̄

]

Γ (v)
(52)

Now the PDF can be obtained as

fΩ (γ̃) =
∂FΩ (γ̃)

∂γ̃
(53)

=
δ

v
2
+ 1

2
k

(
γ̃
λv̄

) v
2
− 1

2
(

J
(

v − 1, 2
√

δkγ̃
λv̄

)

+ J
(

v + 1, 2
√

δkγ̃
λv̄

))

λv̄Γ (v)
−
δ

v
2
k

(
γ̃
λv̄

) v
2
−1

vJ
(

v, 2
√

δkγ̃
λv̄

)

λv̄Γ (v)
(54)

Consequently, the average over the channels in (49) can be found as

E
{

e
− Pβ2Ω

2K2σ2
e,k

}

= Υm,i =

∞̂

0

(

e
− Pβ2Ω

2K2σ2
e,k

)

fΩ (γ̃) dγ̃ (55)
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Υm,i =

∞̂

0

(

e
− Pβ2Ω

2K2σ2
e,k

)





δ
v
2
+ 1

2
k

(
γ̃
λv̄

) v
2
− 1

2
(

J
(

v − 1, 2
√

δkγ̃
λv̄

)

+ J
(

v + 1, 2
√

δkγ̃
λv̄

))

λv̄Γ (v)

−
δ

v
2
k

(
γ̃
λv̄

) v
2
−1

vJ
(

v, 2
√

δk γ̃
λv̄

)

λv̄Γ (v)
dγ̃




 (56)

Applying Gaussian Quadrature rule, we can find (45). For the second term, ψ,

ψ = Eg,n







log2

MN−1
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

gk Bsm,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







By using Jensen inequality we can write

ψ = E







log2

MN−1
∑

i=1

e

−

∣

∣

∣

∣

√

Pβ
K

gk Bsm,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







≤ log2

MN−1
∑

i=1

E







e

−

∣

∣

∣

∣

√

Pβ
K

gk Bsm,i+ne,k

∣

∣

∣

∣

2

σ2
e,k







(57)

Similarly as in (48), since ne,k has Gaussian distribution, we can write

∆m,i = E






e

−Pβ2|gk Bsm,i|2
2K2σ2

e,k






(58)

To derive the average over the channel we need firstly to find the distribution of Ω̃ = |gkBsm,i|2.

The CDF of Ω̃ has the same formula as the CDF of Ω, hence the average over the channel can be

found as in (46).

Now, we are ready to presnet the final analytical expression of the ergodic secrecy sum-rate as in

the following Theorem.

Theorem 7. The ergodic secrecy sum-rate of MU-MISO systems using CI precoding technique is

R̄s =

K∑

k=1

1

MN









MN
∑

m=1

log2

MN
∑

i=1

Λkm,i



+





MN
∑

m=1

log2

MN
∑

i=1

Υkm,i



−



M

MN−1
∑

m=1

log2

MN−1
∑

i=1

∆km,i









+

(59)

Proof: The ergodic secrecy sum-rate expression can be obtained by substituting (39) and (44) into

(36).
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C. Adaptive Modulation (AM) Scheme

From the secrecy sum-rate expression and the ergodic rates at the legitimate user and the eavesdropper

we can notice that, both the user’s rate and the eavesdropper’s rate will saturate at log2M in high-SNR

regime. Therefore, the secrecy rate will tend to zero in high-SNR regime [21], [22], [23], [24], [25]. In

addition, from the above expressions and from the following results in Section VI, we can also observe

that for each modulation scheme there is an optimal value of the transmit SNR that maximizes the

secrecy sum-rate. In order to tackle this issue and enhance the secrecy rate, AM scheme is proposed

in this section. In AM technique, the BS selects the highest modulation scheme that can maximize

the secrecy rate and achieve the SEP requirement. If none of the modulation schemes can achieve the

target SEP, the BS selects the modulation scheme with the smallest constellation size [36], [37], [38],

[39]. At SNRs above the optimal value for a given modulation, the BS switches to the next higher

modulation scheme.

In practice based on the values of the secrecy rate and the target SEP requirement (P), the BS

selects a modulation order from N available choices {M1,M2, ....,MN } according to the following

rule. The modulation order is M = Mn = 2n if SPmax = max
k

(SPk,Mn) < P , where n ∈ [1, N ],

SPk,Mn is the SEP of user k using the modulation order Mn. Let ηt be the transmit SNR, the optimal

value of the transmit SNR using Mn-PSK can be defined as

βn = max
ηt

R̄s,Mn, ∀n. (60)

where R̄s,Mn is taken from (59). Based on the fact that, the SEP of each user depends on the received

SNR at the user, we can define the user with maximum SEP, SPmax, as the user who has minimum

received SNR, γmin = min (γd,1, γd,2, ......, γd,K). Therefore, the AM selection can be performed by

dividing the minimum SNR region into N + 1 fading regions defined by SNR thresholds, µ0 < µ1 <

..... < µN +1 = ∞. If the minimum SNR, γmin, is in the fading region of µn ≤ γmin < µn+1, the Mn

constellation size is chosen. The transmit SNR for each modulation scheme should be ηt ≤ βn. The

conditional maximum SEP can be calculated by [31]

SPmax =
1

π

π(M−1)
M̂

0

e

(

−
γmin sin2( π

M )
sin2 θ

)

dθ (61)
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Since (61) is non-invertible, the region boundaries can only be obtained numerically as function of

modulation order and the target SEP using the expression

P =
1

π

π(Mn−1)
Mn
ˆ

0

e

(

−
µn sin2( π

M )
sin2 θ

)

dθ (62)

According to the AM strategy described above, we can obtain the secrecy sum-rate expression as

in the following Theorem.

Theorem 8. The secrecy sum-rate using AM scheme, R̄s,am, in MU-MISO systems using CI precoding

technique is

R̄s,am =

N∑

n=1



an




K

Π
k=1



1−




ϕ
(

N, (µ1/κk)
1
2

)

Γ (N)







+
K

Π
k=1



1−




ϕ
(

N, (µ0/κk)
1
2

)

Γ (N)













+




K

Π
k=1



1−




ϕ
(

N, (µn+1/κk)
1
2

)

Γ (N)







+
K

Π
k=1



1−




ϕ
(

N, (µn/κk)
1
2

)

Γ (N)

















×





K∑

k=1

1

MN
n









MN
n∑

m=1

log2

MN
n∑

i=1

Λkm,i



+





MN
n∑

m=1

log2

MN
n∑

i=1

Υkm,i



−



Mn

MN−1
n∑

m=1

log2

MN−1
n∑

i=1

∆km,i









+



(63)

Proof: The secrecy rate using AM scheme, R̄s,am, can be calculated by

R̄s,am =
N∑

n=1

(anp0+pn) R̄s,Mn (64)

where pn is the probability that γmin falls in the nth region, and it is given by

pn = Pr (µn ≤ γmin < µn+1) =

µn+1
ˆ

µn

fγmin
(γ̄) dγ̄ = Fγmin

(µn+1)− Fγmin
(µn) (65)

The CDF of γmin, Fγmin
(γ̄), can be derived by [40]
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Fγmin
(γ̄) = 1− Pr (γd,1 > γ̄, ..., γd,k > γ̄, ...., γd,K > γ̄) (66)

Since the received SNRs have correlated Gamma distribution, the CDF of γmin can be bounded by

[40, Section 5.4]

Fγmin
(γ̄) = 1−

K

Π
k=1

[
1− Fγd,k (γ̄)

]
(67)

Substituting the CDF in (6) into (67) we can get

Fγmin
(γ̄) = 1−

K

Π
k=1



1−




ϕ
(

N, (γ̄/κk)
1
2

)

Γ (N)







 (68)

Now the probability pn can be calculated by

pn =



1−
K

Π
k=1



1−




ϕ
(

N, (µn+1/κk)
1
2

)

Γ (N)











−



1−
K

Π
k=1



1−




ϕ
(

N, (µn/κk)
1
2

)

Γ (N)











 (69)

Moreover, p0 in (64) represents the probability that the minimum SNR, γmin, is below µ1which is

given by

p0 = Pr (µ0 ≤ γmin < µ1) = Fγmin
(µ1)− Fγmin

(µ0) (70)

In this case non of the modulation schemes can achieve the target SEP, and the BS uses the smallest

modulation scheme based on the value of the SNR, ηt, where anis defined as an = 1 if βn−1 < ηt ≤
βn, β0 = 0, and an = 0 otherwise.

V. INTERCEPT PROBABILITY

The intercept probability (IP) is a performance metric used to describe the secrecy performance

of the wireless communication systems. The IP is defined as the probability that the eavesdropper is

capable of successfully decoding the confidential signal intended for the legitimate user. Therefore, it

is the probability that the achievable secrecy rate is less than zero, i.e., the rate of the main channel is

less than that of the wiretap channel [41], [42]. The exact IP of pair k can be evaluated by [41], [42]
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Pin,k = Pr (Rdk − Rek < 0) = Pr (Rdk < Rek) (71)

In AM technique the IP can be defined as

Pin,k = Pr

(
N∑

n=1

Rdk,Mn <
N∑

n=1

Rek,Mn

)

(72)

The total intercept probability (Pin)of this system is, Pin =
K∑

k=1

Pin,k [41], [42]. As we can see in

finite alphabet scenarios the rate expressions at the user and the eavesdropper are complicated, and

thus any closed form solution of the IP is hard to find. However, the exact results of the IP can be

obtained using Monte-Carlo simulation, as will be presented in Section (VI). For simplicity and to

gain some insights in this section we consider the IP based on the received SINRs,
(

P SINRk

in

)

, which

is presented in the following Theorem.

Theorem 9. The IP of MU-MISO systems using CI precoding technique based on the received SINRs

can be calculated by

P SINRk

in =

(
ϕ (̺/ρ, (γ/κk)

ρ)

Γ (̺/ρ)

)

×
(

2βκδ
v
2
k (λxγ̄)

v
2 (β + λxγ̄)

−κ
J
[
v, 2

√
δkλxγ̄

]

Γ (v)

)

(73)

Proof: The IP can be defined as

P SINRk

in = Pr (γd,k < γ̄)× Pr (γe,k > γ̄) (74)

where γ̄ is the threshold value. Using (27) the eavesdropper probability can be calculated by

Pr (γe,k > γ̄) =
2βκδ

v
2
k (λxγ̄)

v
2 (β + λxγ̄)

−κ
J
[
v, 2

√
δkλxγ̄

]

Γ (v)
(75)

From (6) the user reception probability can be obtained as

Pr (γd,k < γ̄) =

(
ϕ (̺/ρ, (γ/κk)

ρ)

Γ (̺/ρ)

)

(76)

By substituting (75) and (76) into (74), we can obtain the final result in (73).
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Figure 2: The CDF of the received SINRs for user k and eavesdropper k with different values of the

transmit SNR, ηt, number of users K, and number of BS antennas N .

VI. NUMERICAL RESULTS

In this section we present some numerical and simulation results of the derived expressions in this

work. Monte-Carlo simulations are performed with 106 independent trials. For simplicity, equal noise

variances are assumed at the users, σ2, thus the transmit SNR (ηt ) can be defined as ηt =
P
σ2

, and the

path loss exponent is chosen to be m = 2.7. For sake of comparison, some simulation results of the

interference suppression, ZF, scheme are also presented in this section.

Firstly, in Fig. 2 we plot the CDF of the received SINRs of the kth user and the kth eavesdropper

for different values of the transmit SNR, ηt, number of users, K, and number of BS antennas, N . It is

evident that, the analytical and simulation results are in well agreement, which confirms the accuracy

of the distribution considered in Section (III). It is worth mentioning that, the results presented in
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Figure 3: SEP versus transmit SNR with different types of input, and number of BS antennas.
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Figure 4: SEP versus transmit SNR with different types of input, and number of BS antennas.

Fig. 2, can be used also to present the outage probability of the users and the eavesdroppers for CI

precoding technique. The outage probability is the probability that the received SINR, falls below an

acceptable threshold value, γth. Therefore, we can obtain the outage probability of the users and the

eavesdroppers by replacing γ and γ̄ with γth. From this perspective, it is clear that the legitimate users

have better performance than the eavesdroppers, and the values of N and K have notable impact on

the CDFs and thus on the secrecy performance in general.

In Fig. 3, we show the exact and approximate average SEPs with respect to the transmit SNR,

ηt, for QPSK and 8-PSK. Fig. 3a, presents the SEPs when N = K = 3, and Fig. 3b, presents the

SEPs when N = 5, and K = 3. Firstly, it is evident that, the analytical and simulation results are in
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Figure 5: Secrecy rate versus transmit SNR with different types of input for fixed and adaptive

modulations.

well agreement, which confirms the accuracy of the analysis in Section (III). It is also clear that the

approximate and exact analytical results are very close to each other. In addition, the CI exploitation

technique has always better secrecy performance than the ZF scheme. It is apparent that, the SEP of

the users reduces with increasing the transmit SNR, while the SEP of the eavesdroppers is very high

and almost constant. From Figs. 3a and 3b, it can also be noted that increasing number of BS antennas

increases the gap between the SEPs of the users and the eavesdroppers, and reduces the gap between

the CI and ZF techniques.

To illustrate the effect of users’ number on the average SEPs, in Fig. 4 we present the average SEPs

for the CI and ZF precoding techniques, when N = K = 6, as in Fig. 4a and when N = 12, K = 6

as in Fig. 4b. We can see from these results that, increasing number of BS antennas N and/or number

of users K result in enhancing the secrecy performance. Furthermore, the CI precoding can provide

additional up to 15dB gain in ηt compared to ZF scheme.

Fig. 5 illustrates the ergodic secrecy sum-rate versus the transmit SNR, for various input types when

N = K = 2 for fixed and adaptive modulation schemes. Firstly, in Fig. 5a, we present the ergodic

secrecy sum-rate for CI and ZF with different fixed modulation schemes. The analytical and simulation

results of the ergodic secrecy rate are in well agreement, which confirms the derived expressions in

Section (IV). It is also apparent that, the secrecy sum-rates achieved by CI and ZF precoding techniques

are severely degraded with increasing the transmit SNR in high-SNR regime. This is because in finite
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Figure 6: Secrecy rate versus transmit SNR with different types of input for fixed and adaptive

modulations.

alphabet systems both the user’s rate and the eavesdropper’s rate will saturate at, log2M , in high-SNR

regime. Therefore the secrecy rate will tend to zero in the high SNR regime. This therefore necessitates

the use of AM scheme. In addition, it is clear that the CI precoding achieves higher secrecy rate than

ZF technique. Furthermore, in order to explain the secrecy sum-rate achieved using AM scheme, we

plot in Fig. 5b the secrecy sum-rate of AM for CI versus the transmit SNR for different values of

the target SEP, P = 1 and 10−6. In the first case when the target SEP is very high, SPth = 1, the

BS selects the highest modulation scheme, this scenario can be considered as the secrecy rate of AM

without SEP constraint. On the other hand, when the target SEP is very low, P = 10−6, in this case

non of the modulation schemes can achieve the target SEP in the considered SNR range. Therefore,

the BS tries to select the modulation scheme that has lower SEP when the secrecy sum-rate of this

scheme is in the rising region.

To show the impact of the number of users and number of BS antennas on the ergodic secrecy

sum-rate, in Fig. 6 we present the ergodic secrecy sum-rate for the CI and ZF precoding techniques,

when N = K = 3. Fig. 6a, shows the ergodic secrecy sum-rate for CI and ZF with different fixed

modulation schemes, while Fig. 6b shows the secrecy sum-rate of AM for CI versus the transmit SNR

for different values of the target SEP, SPth = 1 and 10−6. Comparing the results in Fig. 6 with the

results in Fig. 5, it is evident that increasing number of BS antennas N and/or number of users K

lead to enhance the secrecy sum-rate. In addition, the CI precoding can provide additional up to 10dB
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gain in ηt compared to ZF scheme.

In Fig. 7, we present the exact IP with respect to the transmit SNR, ηt, for fixed and adaptive

modulation schemes. Fig. 7a, shows the exact IP when N = K = 2, while Fig. 7b, shows the exact

IP when N = K = 3 for different values of the target SEP P = 10−6, 1. From these results it can

be observed that, the IP for CI and ZF precoding techniques are severely degraded with increasing

the transmit SNR in high-SNR regime. This is because the IP depends on the achievable rates at the

user and the eavesdropper, which are saturated at, log2M , in high-SNR regime, hence IP tends to one.

In addition, the IP achieved by the CI precoding is always lower than that achieved by ZF scheme.

Considering the IP achieved using AM scheme, when the target SEP is very high, P = 1, the BS
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selects the highest modulation scheme, whilst in case the target SEP is very low, P = 10−6 , the

BS selects the modulation scheme with lower SEP when the IP of this scheme is in the decreasing

region. Comparing Figs. 7a and 7b, it is clear that increasing the size of MU-MISO system results

in enhancing the IP, and the CI precoding offers additional up to 13dB gain in ηt compared to ZF

scheme.

Finally, in Fig. 2 we plot the IP based on the SINRs for different values of the transmit SNR, ηt,

when N = K = 3. It is evident that, the analytical and simulation results are in well agreement, which

confirms the simple expression presented in Section (V). In addition, the IP reduces with increasing

the transmit SNR, and the threshold value of the received SINRs γ̄.

VII. CONCLUSIONS

In this paper we investigated the secrecy performance of CI precoding in MU-MISO systems in the

presence of multiple passive eavesdroppers. Firstly, new exact and approximate analytical expressions

for the average SEPs of the users and the eavesdroppers were derived. Then, closed form analytical

expression of the ergodic secrecy sum-rate was provided. Based on these, AM scheme was proposed

to enhance the secrecy rate in finite-alphabet systems. Finally, simple analytical expressions of the

IP with fixed and adaptive modulations were derived. The results in this paper explained that, the CI

precoding can achieve a considerable performance gain over interference suppression, ZF, technique.

In addition, increasing number of users and BS antennas can enhance the system security, and the

proposed AM scheme achieves significant performance improvement in terms of the secrecy sum-rate

and the intercept probability.
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