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A B S T R A C T   

Disentangling biologically distinct subgroups of Alzheimer’s disease (AD) may facilitate a deeper understanding 
of the neurobiology underlying clinical heterogeneity. We employed longitudinal [18F]FDG-PET standardized 
uptake value ratios (SUVRs) to map hypometabolism across cognitively-defined AD subgroups. Participants were 
384 amyloid-positive individuals with an AD dementia diagnosis from ADNI who had a total of 1028 FDG-scans 
(mean time between first and last scan: 1.6 ± 1.8 years). These participants were categorized into subgroups on 
the basis of substantial impairment at time of dementia diagnosis in a specific cognitive domain relative to the 
average across domains. This approach resulted in groups of AD-Memory (n = 135), AD-Executive (n = 8), AD- 
Language (n = 22), AD-Visuospatial (n = 44), AD-Multiple Domains (n = 15) and AD-No Domains (for whom no 
domain showed substantial relative impairment; n = 160). Voxelwise contrasts against controls revealed that all 
AD-subgroups showed progressive hypometabolism compared to controls across temporoparietal regions at time 
of AD diagnosis. Voxelwise and regions-of-interest (ROI)-based linear mixed model analyses revealed there were 
also subgroup-specific hypometabolism patterns and trajectories. The AD-Memory group had more pronounced 
hypometabolism compared to all other groups in the medial temporal lobe and posterior cingulate, and faster 
decline in metabolism in the medial temporal lobe compared to AD-Visuospatial. The AD-Language group had 
pronounced lateral temporal hypometabolism compared to all other groups, and the pattern of metabolism was 
also more asymmetrical (left < right) than all other groups. The AD-Visuospatial group had faster decline in 
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metabolism in parietal regions compared to all other groups, as well as faster decline in the precuneus compared 
to AD-Memory and AD-No Domains. Taken together, in addition to a common pattern, cognitively-defined 
subgroups of people with AD dementia show subgroup-specific hypometabolism patterns, as well as differ
ences in trajectories of metabolism over time. These findings provide support to the notion that cognitively- 
defined subgroups are biologically distinct.   

1. Introduction 

Alzheimer’s disease (AD) dementia is commonly regarded as an 
amnestic disorder. However, there is considerable heterogeneity in 
clinical presentations among individuals with AD, and sometimes non- 
amnestic impairments are a prominent feature (Crane et al., 2017; 
Scheltens et al., 2017). Our group has developed and applied a frame
work that categorizes individual people with AD into cognitively- 
defined AD-subgroups based on cognitive data by exploiting relative 
impairments across cognitive domains at time of dementia diagnosis 
(Crane et al., 2017). Previous examinations have shown that groups with 
relative impairments in domains other than memory show faster 
cognitive and functional decline than individuals with substantial rela
tive impairments in memory (Mez et al., 2013b, 2013a). Furthermore, 
findings in groups of individuals with atypical non-amnestic variants of 
AD such as logopenic primary progressive aphasia (lvPPA) and posterior 
cortical atrophy (PCA) (Gorno-Tempini et al., 2011; Crutch et al., 2017) 
revealed distinct patterns of atrophy at time of dementia diagnosis. 
These findings collectively suggest that clinical heterogeneity across 
people with AD is related to differences in the neurobiological substrate. 

[18F]FDG-PET has long been used to differentiate between neuro
degenerative diseases (Rice and Bisdas, 2017; Shivamurthy et al., 2015), 
and has been an instrumental tool to detect AD patterns of hypo
metabolism in individuals before they develop AD dementia (Laforce 
et al., 2018; Rice and Bisdas, 2017; Sala et al., 2019; Tripathi et al., 
2014). The typical pattern of hypometabolism in AD spans across tem
poroparietal and posterior cingulate regions (Laforce et al., 2018), and 
[18F]FDG-PET shows good sensitivity for detecting early AD-related 
changes (Bloudek et al., 2011; Laforce et al., 2018; Rice and Bisdas, 
2017). Previous studies have found associations between clinical 
symptoms and spatial patterns of hypometabolism (Besson et al., 2015; 
Laforce et al., 2018; Vanhoutte et al., 2017), indicating that FDG-PET is 
a good candidate to map trajectories of metabolism associated with 
differences in the clinical expression of AD. 

This paper aims to add to the literature in two ways: First, it in
vestigates whether regional glucose metabolism patterns as measured by 
FDG-PET at time of AD diagnosis differ across cognitively-defined sub
groups. Second, this paper considers longitudinal data, which could 
supply additional support to the notion that cognitively-defined sub
groups have distinct natural histories. 

2. Materials and methods 

2.1. Participants 

Data for the present study were obtained from the publicly available 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Inclusion 
criteria for the present study were: i) clinical diagnosis of AD, either at 
ADNI enrolment (prevalent AD dementia) or at any of the follow-up 
visits (incident AD dementia), ii) amyloid-positive, as indicated by 
CSF measures or by amyloid-PET scan findings at time of dementia 
diagnosis, and iii) availability of at least one FDG-PET with corre
sponding MRI scan. Based on these criteria, we included a total of 384 
participants (Table 1). Additionally, we selected a cognitively unim
paired, amyloid-negative group who remained amyloid-negative and 
did not convert to mild cognitive impairment or dementia during follow- 
up (n = 111, Table 1). This group is used as a control group. 

2.2. Standard protocol approvals, registrations, and patient consents 

Written informed consent was obtained for all participants, and 
study procedures were approved by the institutional review board at 
each of the participating centers. ADNI is listed in the ClinicalTrials.gov 
registry (ADNI-1: NCT00106899; ADNI-GO: NCT01078636; ADNI-2: 
NCT0123197). 

2.3. Cognition 

Detailed methods for obtaining cognitive scores and classifying ADNI 
participants with AD dementia into cognitively defined subgroups have 
been published (Crane et al., 2017; Mukherjee et al., 2020). Briefly, 
neuropsychological test data were obtained at time of AD dementia 
diagnosis. This could be either at inclusion into the ADNI cohort for 
people with prevalent AD or at any of the follow-up visits when an in
dividual converted to dementia for people with MCI or (rarely) normal 
cognition. Individual elements from ADNI’s neuropsychological battery 
were categorized into one of four domains – memory, executive func
tion, language or visuospatial function – by an expert panel (ET, JM, AS). 
For each domain, we used confirmatory factor analysis models in Mplus 
(Muthén and Muthén, 1998) to co-calibrate data from ADNI together 
with data from our legacy cohort (the Rush Memory and Aging Project 
[MAP] and Religious Orders Study [ROS] and the Adult Change in 
Thought [ACT] cohort) (Crane et al., 2017). We then transformed scores 
from ADNI to the metric obtained from ACT. The final transformed 
scores are scaled in SD units from ACT; a memory score of + 1 represents 
a score 1 SD above the mean memory score for people with incident AD 
in the ACT study, and an executive functioning score of − 1 represents a 
score 1 SD below the mean executive functioning score for people with 
incident AD in the ACT study. ACT is a prospective cohort study that 
included 825 incident AD dementia cases at the time of analysis and was 
used as the reference because it was the largest prospective cohort of 
late-onset AD available to us (Crane et al., 2017). Further details on 
processing of neuropsychological data are provided in the supplement 
(Supplemental Text 1) and our previous publications and their supple
mentary materials (Crane et al., 2017; Mukherjee et al., 2020). 

2.4. Subgroups 

Classification into subgroups is based on the relative distribution of 
cognitive impairments across the four cognitive domains at the time of 
dementia diagnosis. First, we determine each participant’s individual 
average score across memory, executive functioning, language, and vi
suospatial functioning. We then determine deviations from that average 
for each domain. From a range of candidate thresholds, we previously 
determined a threshold of 0.8 SD to define substantial impairment in a 
given cognitive domain relative to the average across domains (Crane 
et al., 2017; Mukherjee et al., 2020). Classification is then achieved by 
determining which, and how many, domains(s) have relative impair
ments that exceed that threshold, yielding the following subgroups 
characterized by the index domain that showed relative impairment: 
isolated relative impairments in memory (AD-Memory), executive 
function (AD-Executive), language (AD-Language), or visuospatial 
function (AD-Visuospatial), relative impairments in multiple domains 
(>1 domain with relative impairment; AD-Multiple Domains), and no 
domains with relative impairments (AD-No Domains). A graphical rep
resentation of how subgroup classification was achieved is provided in 
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Fig. A1. As classification is achieved by assessing relative intra- 
individual impairments, subgroup membership is determined by 
cognitive profiles rather than overall severity of impairments. For 
instance, membership in the AD-No Domains group does not indicate 
less overall impairment than membership in other subgroups, but rather 
that impairments in each domain are fairly similar to those of the other 
domains at the time of AD diagnosis. AD-Multiple Domains is a het
erogeneous group with relative impairments across various and distinct 
domains. Therefore, we focus our analyses here on the other subgroups 
and show results for the AD-Multiple Domains group in Fig. A3. 

2.5. Imaging analysis 

[18F]FDG-PET images were acquired according to standardized 
scanning parameters (see: http://adni.loni.usc.edu/methods/pet- 
analysis-method/pet-analysis/ for details). [18F]FDG-PET images at 
time of dementia diagnosis (±12 months; mean time from diagnosis 
0.20 ± 0.28 years) were used to assess hypometabolism patterns at time 
of diagnosis (t = 0) and were available for 293 participants (see section 
2.6). In total, 1028 scans were available across all AD-participants and 
all of these were used to assess longitudinal trajectories of metabolism 
(see section 2.6). This 1028 includes the 293 scans at time of dementia 
diagnosis, 435 scans from before an AD diagnosis was established (mean 
time before diagnosis 3.17 ± 2.44 years) and 300 from after an AD 
diagnosis was established (mean time after diagnosis 1.46 ± 1.03 years). 

Fig. A2. And Table A2 give an overview of the number of scans available 
across subjects, groups and time. The mean total time between the first 
and last scans was 1.6 ± 1.8 years (range: 0–7 years) and mean time 
between two consecutive scans was 0.9 ± 0.7 years (range 0–4 years). 
For the controls, a total of 283 scans were available. For this group, the 
first available scan was used to determine t = 0. For the controls, one- 
hundred and ten scans were available at t = 0 (one for each control), 
which were used as a reference to determine hypometabolism at time of 
dementia diagnosis. For the controls, an additional 173 (mean follow-up 
2.00 ± 1.40 years) scans were available after t = 0 and these were used, 
along with the t = 0 scans, to determine normative change over time in 
regional metabolism (see section 2.6). 

We co-registered all [18F]FDG-PET images to structural T1-weighted 
MRI images obtained a maximum of ± 6 months from the acquisition 
date for each of the FDG-scans. Structural MRI was usually performed on 
the same day or within a few days of the FDG scan. Structural MRI 
images were acquired according to standardized protocols (see http:// 
adni.loni.usc.edu/methods/mri-tool/mri-analysis/ for details). MRI 
images were first segmented into gray matter, white matter and CSF 
volumes. The gray matter images were then spatially normalized to MNI 
space using a standardized SPM12-based pipeline (Groot et al., 2018b). 
Normalization parameters from the MR images were then used to 
normalize corresponding [18F]FDG-PET images. To account for inter- 
individual differences in overall FDG-signal intensity, we converted 
the normalized FDG-scans into standardized uptake value ratio (SUVR) 

Fig. 1. Significant differences in metabolism between AD-subgroups and controls at time of AD dementia diagnosis. 
Threshold is at p < 0.05, family-wise error corrected and adjusted for age, sex, whole brain FDG-SUVR and time-lag between diagnosis and scan. 

Table 1 
Demographic and clinical characteristics.   

All AD AD-Memory AD-Executive AD-Language AD-Visuospatial AD-No Domains AD-Multiple Control 

N (% of all AD) 384 135 (35) 8 (2) 22 (6) 44 (11) 160 (42) 15 (4) 110 
Agea 76.9 (5.9) 76.3 (6.0) 77.9 (7.3) 81.0 (6.1) 76.1 (5.9) 77.2 (5.7) 75.1 (4.2) 74.1 (6.5) 
Sex, female (%) 168 (43.8) 61 (45.2) 2 (25.0) 7 (31.8) 14 (31.8) 77 (48.1) 7 (46.7) 54 (48.6) 
APOEε4, positive (%) 270 (70.5) 99 (73.9) 5 (62.5) 13 (59.1) 31 (70.5) 111 (69.4) 11 (73.3) 19 (17.3) 
Incident AD (%) 213 (55.5) 80 (59.3) 3 (37.5) 12 (54.5) 27 (61.4) 83 (51.9) 8 (53.3) – 
Education, years 15.5 (2.9) 15.6 (2.8) 16.3 (3.3) 14.9 (2.8) 15.9 (2.7) 15.3 (3.1) 16.5 (2.3) 16.5 (2.8) 
Left-handedness (%) 27 (7.0) 14 (10.4) 1 (12.5) 4 (18.2) 0 (0.0) 7 (4.4) 1 (6.7) 13 (11.7) 
MMSEb 23.5 (2.9) 23.2 (2.7) 23.1 (2.2) 23.4 (3.5) 23.4 (3.5) 23.9 (2.9) 23.5 (2.3) 29.2 (1.1) 
Whole brain FDG SUVRc 1.29 (0.13) 1.30 (0.11) 1.20 (0.14) 1.24 (0.14) 1.29 (0.12) 1.28 (0.15) 1.28 (0.14) 1.43 (0.13) 

Values depicted are mean (SD), unless otherwise indicated. SUVR-standardized uptake value ratio. Pairwise differences between all groups are provided in Table A1. 
a – Age at time of dementia diagnosis for AD-subgroups and age at first FDG scan for controls. 
b – MMSE at time of dementia diagnosis for AD-subgroups and MMSE at first FDG scan for controls. 
c – Whole brain FDG-SUVR for scan at time of dementia diagnosis (±12 months; n = 283) for AD-subgroups and at first FDG-scan for controls (n = 110). 
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Fig. 3. Longitudinal change in glucose hypometabolism across AD-subgroups. 
The β coefficient is the effect of time from linear mixed model analyses predicting voxel-wise FDG, corrected for age, sex and whole-brain FDG-SUVR. Because these 
models were adjusted for whole-brain FDG-SUVR, the β coefficients indicate change in metabolism over time relative to the overall levels of metabolism. We did not 
apply any threshold when visualizing these effects, rather the whole spectrum of the association is shown. 

Fig. 2. β-maps indicating the strength of the difference between AD-subgroups and controls. 
As the binary significance maps depicted in Fig. 1 are heavily dependent on sample size differences between AD-subgroups, we additionally display the β-maps from 
the same comparisons, representing the strength of the association, which are not dependent on sample size. 
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images using the mean tracer retention values in the pons (Nugent et al., 
2020). The pons reference region-of-interest (ROI) was manually 
delineated on the MNI (MRI) template and mean tracer retention values 
within the pons for all FDG-scans were obtained after normalization to 
stereotactic MNI standard space. For ROI analyses, the Automated 
Anatomical Labelling (AAL) atlas was used to compute SUVRs in pre- 
specified ROIs that encompassed the gray matter of the main cerebral 
lobes: medial temporal lobe (MTL; hippocampus; amygdala; para
hippcampal gyrus), frontal lobe (superior, middle and inferior frontal 
gyri; orbitofrontal and rectus gyri; frontal opercula; insular cortex; 
anterior and middle cingular gyri; para- and precentral lobules), tem
poral lobe (fusiform, Heschl’s-gyri; superior, middle and inferior tem
poral gyri; temporal pole), parietal lobe (superior and inferior parietal 
gyri; supramarginal and angular gyri) and occipital lobe (calcarine 
sulcus; cuneus; lingual; superior, middle and inferior occipital gyri) 
(Groot et al., 2018a). Due to their significance in the assessment of [18F] 
FDG-PET for dementia diagnosis (Rice and Bisdas, 2017) we examined 
the posterior cingulate and precuneus as two separate ROIs. Further
more, given the association between language impairments and left- 
lateralized hypometabolism in lvPPA (Lehmann et al., 2013) and sub
tle right-lateralization of atrophy in PCA (Groot et al., 2020), we also 
computed an asymmetry index for an AD-specific ROI (temporoparietal 
[TPC] (Ossenkoppele et al., 2015a) combining the parietal, precuneus 
and temporal ROIs enumerated above) to evaluate lateralization of 
hypometabolism in each AD-subgroup. This TPC asymmetry index was 
calculated as ([right TPC – left TPC]/[right TPC + left TPC]), higher 
values indicate more metabolism in the right-hemisphere compared to 
the left and negative values mean the opposite. 

Differences in overall degree of hypometabolism between groups 
might drive differences in hypometabolism patterns between AD- 
subgroups. Furthermore, clinical assessment of FDG-scans primarily 
relies on relative regional hypometabolism rather than overall levels of 
metabolism. Therefore, in order to account for overall levels of meta
bolism, we combined all cerebral AAL atlas regions into one combined 
global ROI and added this global FDG measure as a covariate in the 
statistical analyses (see section 2.6). 

2.6. Statistical analyses 

Statistical analyses were performed in SPM12 and R version 3.5.2. To 
visualize overall spatial patterns of hypometabolism at time of dementia 
diagnosis for each subgroup we assessed voxelwise general linear 
models comparing FDG scans at time of diagnosis against the control 
group, adjusting for age, sex and whole brain FDG-SUVR, as well as the 
time-lag between date of diagnosis and date of FDG-scan. We applied a 
significance threshold of p = 0.05 with family-wise error correction to 
produce binarized, voxelwise maps highlighting voxels with significant 
hypometabolism compared to controls. As differences in group size be
tween the subgroups affect the power to detect significant voxels in 
these comparisons, we also present voxelwise β-coefficient maps (rep
resenting the group effect in the models) that are not affected by dif
ferences in sample size across groups. Because these models were 
adjusted for whole-brain FDG-SUVR, the β coefficient for group differ
ence between AD-subgroups and controls indicates differences in 

metabolism relative to global levels of metabolism. 
Longitudinal trajectories of hypometabolism across subgroups were 

visualized by voxelwise linear mixed model analyses performed in 
SPM12. These models were adjusted for age, sex, time (from dementia 
diagnosis) and whole brain gray matter FDG-SUVR. To highlight the 
change over time, we visualize the β-coefficient of time in each gray 
matter voxel across the brain. Because these models were adjusted for 
whole-brain FDG-SUVR, the β coefficient for time indicates change in 
metabolism over time relative to global levels of metabolism change. 

To formally test for differences in longitudinal trajectories of hypo
metabolism within the 6 ROIs between the AD-subgroups, we fit linear 
mixed-effect models with random intercept and slopes for individuals 
using the “lme4” package in R. We included one term for all subgroups 
to predict regional FDG-SUVR, and pairwise differences between groups 
were assessed by the time*group interaction effect. These models were 
also adjusted for age, sex, time and whole brain gray matter [18F]FDG- 
PET-SUVR. 

In an additional analysis we assessed whether regional differences in 
(change in) metabolism between subgroups were influenced by whether 
cases were prevalent AD dementia (diagnosed at first study visit) or 
incident AD dementia (diagnosed at any of the follow-up visits). To 
examine this, we ran the same models as before but added an additional 
interaction term group*[incident/prevalent AD] and a three-way 
interaction term time*group*[incident/prevalent AD]. Effects of prev
alent and incident AD dementia are visualized by running the initial 
models while stratifying for prevalent vs incident AD. 

Because the AD-Executive group only had 6 participants with lon
gitudinal FDG measurements, this group was not included in the ROI- 
based linear mixed model analyses. We present voxelwise analyses 
from this group but results should be interpreted with caution due to the 
small sample size. We also tested non-linear (2nd-degree polynomial) 
models (Fig. A4) but the data showed that linear models were the best fit 
to our data; we therefore present linear model-based results here. 

3. Results 

Of the 384 participants, 135 (35%) were categorized as AD-Memory, 
8 (2%) as AD-Executive, 22 (6%) as AD-Language, 44 (11%) as AD- 
Visuospatial, 15 (4%) as AD-Multiple Domains, and 160 (42%) as AD- 
No Domains. Demographic and clinical characteristics of the sample at 
time of AD dementia diagnosis are displayed in Table 1. We provide all 
pairwise comparisons between AD-subgroups and between AD- 
subgroups and controls in Table A1. Age was, on average, higher in 
the AD-Language subgroup compared to AD-Memory, AD-Visuospatial 
and AD-No Domains. There were no differences between the AD- 
subgroups on any of the other characteristics. Controls were, on 
average, younger than AD-Memory, AD-Language and AD-No Domains. 
Furthermore, controls were also less often APOEε4 positive 

3.1. Voxelwise differences in hypometabolism at time of AD diagnosis 

Voxelwise contrasts between controls and AD-subgroups at time of 
dementia diagnosis revealed a temporoparietal pattern with involve
ment of the posterior cingulate across all subgroups, a pattern which is 

Fig. 4. Differences in metabolism within composite regions of interest across subgroups at time of AD diagnosis. 
The effects displayed are the fixed group effects from our linear mixed effects models using the AD-subgroup displayed on the left for reference to assess the difference 
with the group indicated with colors. These group effect beta-coefficients indicate the overall difference in regional FDG between subgroups. Models were adjusted 
for age and sex effects, as well as for whole brain FDG SUVR to adjust for possible differences in global hypometabolism between subgroups. The 95% CI not 
overlapping with zero indicates a significant effect. A positive effect in panel A indicates that the colored group has greater brain metabolism than the reference, and 
a negative effect the opposite. For instance, in the left-most medial temporal cortex panel, the blue effect means that AD-Visuospatial has more metabolism in that 
ROI than AD-Memory. Positive effects in panel B indicate that the colored group has a more left < right metabolic pattern than the reference, and negative means the 
opposite. For instance, in the left panel the negative green effect signifies that AD-Language has a more left < right TPC brain metabolism pattern than AD-Memory. A 
voxelwise representation of the AD-subgroup differences at baseline, using the AD-No Domains group as the references, is provided in Fig. A5 and A6. 
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typically observed in AD (Fig. 1). Furthermore, we observed subgroup 
specific regions of hypometabolism. Specifically, we visually observed 
more medial temporal lobe (MTL) involvement in AD-Memory, marked 
asymmetry (left > right hypometabolism) in AD-Language, more 
hypometabolism in the frontal area for AD-Executive and somewhat 
more prominent parietal than temporal hypometabolism in AD- 
Visuospatial (Figs. 1 and 2). 

3.2. Voxelwise differences in longitudinal change in metabolism 

The effects of time from the voxelwise linear mixed model analyses, 
indicating longitudinal change in brain metabolism across subgroups, 
again revealed a temporo-parietal pattern with posterior cingulate 
involvement for all AD-subgroups (Fig. 3). This indicates that, in 
accordance with the hypometabolism observed at dementia diagnosis, 
decline in metabolism is fastest in these regions. Visual inspection of the 
β-maps (voxelwise β-coefficient for time) also reveals regions that 
demonstrated relatively faster decline in metabolism in one subgroup 
compared to the others. Specifically, we observed faster bilateral decline 
of MTL metabolism in AD-Memory compared to AD-Executive and AD- 

Visuospatial. MTL decline in metabolism was more pronounced in the 
right-hemisphere in AD-Memory compared to AD-Language but left- 
MTL metabolism decline was comparable between these two groups. 
Furthermore, temporal decline in AD-Language was pronounced and 
asymmetrical (faster decline on the left). The AD-Visuospatial subgroup 
showed a widespread cortical pattern of decline in metabolism, which 
included frontal and posterior regions that were more affected than in 
the other groups (Fig. 3). 

3.2.1. Region-of-interest analyses 
Linear mixed effects analyses assessing brain metabolism within 

ROIs revealed differences in regional hypometabolism at time of AD 
diagnosis and differences in rates of decline in regional metabolism 
between subgroups. Specifically, we observed that medial temporal and 
posterior cingulate metabolism was lower in AD-Memory compared to 
all other groups. Furthermore, lateral temporal metabolism was lower in 
AD-Language compared to all other groups and the TPC asymmetry 
index reveal that AD-Language is characterized by a more asymmetrical 
(left < right metabolism) pattern than all other subgroups (Fig. 4A; 
Fig. 4B; Fig. 6). 

Fig. 5. Differences in decline in metabolism over time within composite regions of interest across subgroups. 
The effects displayed are the group*time interaction effects from linear mixed effects models using the AD-subgroup displayed on the left for reference to assess the 
difference with the colored group. These group*time effect beta-coefficients indicate differences in change over time in FDG across all available timepoints. All 
models were adjusted for age and sex effects, as well as for whole brain FDG SUVR to adjust for possible differences in global hypometabolism between subgroups. 
The 95% CI not touching x = 0 indicates a significant effect. A positive effect indicates that the colored group has slower decline in brain metabolism than the 
reference, and a negative effect a faster decline in brain metabolism than the reference. For instance, in the left-most medial temporal panel, the blue effect means 
that AD-Visuospatial has slower decline in brain metabolism in that ROI than AD-Memory. Positive effects in panel B indicate that the TPC pattern in the colored 
group becomes more asymmetrical (left < right) over time compared to the reference, and negative effects mean the opposite. For instance, the purple effect in the 
middle panel indicates that TPC metabolism in AD-No Domains becomes more asymmetrical over time (left > right) with time compared to AD-Language. A 
voxelwise representation of the AD-subgroup differences in terms of change in metabolism over time, using the AD-No Domains group as the references, is provided 
in Fig. A7. 

Fig. 6. Longitudinal hypometabolism within regions-of-interest across subgroups.  
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Fig. 5A and B display differences in rates of decline in metabolism 
between AD-subgroups. We found that MTL metabolism declined faster 
in AD-Memory compared to AD-Visuospatial and AD-No Domains. Pa
rietal decline in metabolism was faster in AD-Visuospatial compared to 
all other groups and metabolism decline in the precuneus was faster in 
AD-Visuospatial compared to AD-Memory and AD-No Domains 
(Fig. 5A). 

Differences in change in TPC asymmetry over time indicated that 
metabolism in the TPC became more left-lateralized as time progressed 
in AD-Language compared to AD-No Domains (Fig. 5B; Fig. 6). 

3.2.2. Incident vs prevalent AD cases 
Incident vs prevalent AD dementia had a significant effect on dif

ferences in occipital metabolism decline between AD-Visuospatial and 
AD-No Domains (0.070, p = 0.03), such that faster decline in AD- 
Visuospatial was only observed in prevalent AD dementia but not in 
incident AD dementia (Fig. A8A). Furthermore, there was an interaction 
effect of [incident/prevalent AD dementia]*time*group on TPC asym
metry of metabolism, which indicated that TPC asymmetry (left < right 
metabolism) increased in AD-Language compared to AD-Memory 
(-0.019, p < 0.01), and AD-No Domains (-0.014, p = 0.04) in preva
lent AD dementia but not in incident AD dementia (Fig. A9B). 

Plotted slopes indicate change over time in raw [18F]FDG-PET- 
SUVRs and TPC asymmetry values (bottom right), with their 95% con
fidence interval. T = 0 corresponds to the time of dementia diagnosis. 

4. Discussion 

We used an established framework to categorize amyloid-β positive 
individuals with AD dementia into cognitive subgroups. We found that 
these subgroups displayed distinct patterns and trajectories of hypo
metabolism. Specifically, in AD-Memory we observed relatively pro
nounced MTL and posterior cingulate hypometabolism compared to all 
other groups. Furthermore, MTL decline in metabolism was faster in AD- 
Memory compared to AD-Visuospatial and AD-No Domains. In AD- 
Language, lateral temporal hypometabolism was worse and more 
asymmetrical (left < right metabolism) compared all other groups, and 
left-lateralization of hypometabolism became more pronounced with 
time compared to AD-No Domains. In AD-Visuospatial, parietal decline 
in metabolism was faster compared to all other subgroups and decline in 
precuneus metabolism was faster compared to AD-Memory and AD-No 
Domains. These observations regarding differences in hypometabolism 
patterns and patterns of longitudinal decline in metabolism within the 
spectrum of typical AD indicate that cognitive subgrouping yields bio
logically distinct groups. 

4.1. Interpretation of results 

Previous studies that implemented the same framework to categorize 
individuals have shown that there are clinical implications to subgroup 
membership, such as fewer depressive symptoms (Bauman et al., 2019), 
and slower functional and cognitive decline (Mez et al., 2013b, 2013a) 
in the AD-Memory group compared to the other subgroups. Further
more, another investigation revealed that associations for known ge
netic risk factors for AD are different between the subgroups (Crane 
et al., 2017) and revealed 33 novel loci that were specifically associated 
to individual subgroups (Mukherjee et al., 2020), suggesting that genetic 
factors might be involved in the emergence of clinical differences be
tween subgroups. With the present study, we extend on these findings by 
showing that these subgroups also show different patterns of brain 
metabolism and hypometabolism trajectories, as measured with [18F] 
FDG-PET. 

[18F]FDG-PET has long been used as a diagnostic measure to detect 
AD and the AD-signature FDG pattern is characterized by temporopar
ietal, and posterior cingulate hypometabolism. In the present study, we 
confirmed this common pattern across all AD-subgroups. However, the 
subgroup-specific patterns indicate that there is clinical- 
neuroanatomical heterogeneity across the spectrum of typical late 
onset AD that can be detected by [18F]FDG-PET. The relatively greater 
medial temporal hypometabolism found in the AD-Memory group sug
gests that, in accordance to findings on MRI (Scheltens et al., 2017), 
relatively more medial temporal lobe involvement is associated with a 
phenotype with relatively more amnestic impairments. Furthermore, 
the relatively more pronounced posterior cingulate hypometabolism in 
AD-Memory indicates that posterior cingulate hypometabolism, which 
is characteristic of an AD-like FDG pattern (Laforce et al., 2018) and 
regarded as an early feature (Minoshima et al., 1997), might be more 
strongly related to an amnestic phenotype of AD than to non-amnestic 
phenotypes. 

For AD-Language, we show that asymmetrical lateral temporal 
hypometabolism is prominent, which is in line with the hypometabolism 
pattern that is observed in lvPPA (Lehmann et al., 2013). A previous 
study has related an lvPPA AD-phentype to neurodevelopmental 
learning disabilities (i.e., dyslexia) (Miller et al., 2013), which is, in turn 
related to brain asymmetry (Geschwind and Galaburda, 1985). Whether 
premorbid dyslexia might partly underlie AD-Language subgroup 
membership in our sample is an intriguing possibility. Longer lead times 
of longitudinal FDG-PET data will be needed to determine whether left 
lateralization of hypometabolism among people who ultimately go on to 
develop AD-Language precedes accumulation of AD-pathology or 
whether the left-hemisphere is more vulnerable to hypometabolism 
decline after pathology has set in. For AD-Visuospatial we observed 
relatively pronounced hypometabolism in the lateral parietal lobe and 
precuneus. This radiological phenotype is in line to what is found in PCA 
(Crutch et al., 2017) and, analogous to dyslexia and lvPPA, a link be
tween learning disabilities (e.g., dyscalculia) and PCA has been 
demonstrated (Miller et al., 2018). Taken together, pre-morbid differ
ences in metabolism may play a role in determining subgroup mem
bership, but this remains to be determined in future studies. 

There was congruency of regional hypometabolism with the ex
pected cognitive profiles that define each AD subgroup. Progressive 
medial temporal and posterior cingulate hypometabolism was notable in 
the AD-Memory subgroup. Progressive frontal lobe hypometabolism was 
visually observed in the AD-Executive group. Progressive asymmetric 
left-temporal hypometabolism was notable in the AD-Language sub
group. Progressive parietal and precuneus hypometabolism was notable 
in the AD-Visuospatial group. This indicates that, at least in theory, FDG 
could differentiate subgroups, which might inform future investigations 
that provide a deeper understanding of the mechanisms underlying the 
emergence of clinical heterogeneity in AD. Furthermore, when com
bined with biomarkers of AD-pathology (e.g., amyloid biomarkers), our 
findings regarding differential FDG-PET patterns and trajectories across 
subgroups could also improve diagnostic procedures, especially for in
dividuals with a non-amnestic phenotype. 

4.2. Strengths and limitations 

Among the strengths of the present study are the relatively large 
sample of individuals from ADNI with FDG-PET available (N = 384), the 
assessment of longitudinal data, and the implementation of a classifi
cation scheme that categorizes people into theory-driven subgroups. The 
relatively simple method of classification we have used has the advan
tage of not relying on large samples to produce clusters of factor scores, 
and can be implemented on an individual basis (Crane et al., 2017). The 
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present study also has several limitations. First, mean time between first 
and last scan across subjects was only 1.6 ± 1.8 years, and longer lead 
and follow-up times are likely needed to disentangle more subgroup- 
differences in longitudinal trajectories in metabolism. Furthermore, 
we were unable to formally assess decline in metabolism over time in the 
AD-Executive subgroup, because this group consisted of only six in
dividuals with longitudinal data. The low prevalence of this subgroup 
among our sample is in accordance with the rarity of the dysexecutive 
variant of AD (Dickerson and Wolk, 2011; Ossenkoppele et al., 2015b; 
Townley et al., 2020). Similarly, we were unable to properly assess the 
cognitive vs neurobiological associations in the heterogeneous AD- 
Multiple Domains subgroup, as this relatively small group includes in
dividuals with a range of different cognitive phenotypes. Also, due to the 
focus of ADNI on amnestic MCI and AD presentations, the relative 
prevalence of AD-subgroups in the present study may not be represen
tative of other cohorts. Indeed, we published the proportions of people 
with late-onset AD in each subgroup in our prior paper (Mukherjee et al., 
2020); ADNI had a higher proportion of people in the AD-Memory group 
than was seen in other studies. Follow-up examinations are needed in 
more diverse samples. Another potential limitation is we did not correct 
for partial volume effects, which might disproportionally affect regions 
with more atrophy. Furthermore, we were unable to formally assess 
whether differences in symptom duration at time of AD dementia 
diagnosis may have partly explained our results as there was no objec
tive measure of symptom duration available. Our regional FDG results in 
stratified groups of prevalent and incident AD dementia showed that 
prevalent AD dementia may show more subgroup-differences (e.g., more 
TPC asymmetry in AD-Language) indicating that symptom duration 
might affect subgroup-specific metabolism and highlighting the need for 
further examination. Finally, the framework that was used to categorize 
individuals into subgroups is based exclusively on cognitive data and 
ignores behavioral and personality features, which are increasingly 
recognized as being part of the clinical presentation of AD. 

5. Conclusions 

We found differences in hypometabolism patterns and trajectories 
across groups of people in different cognitively-defined subgroups. This 
finding provides further support that there are biological differences 
between cognitively-defined subgroups. Further research is needed to 
determine whether differences in regional metabolism patterns we 
observed reflect differences in regional tau distribution (Murray et al., 
2011; Whitwell et al., 2008) and/or amyloid-β (Lehmann et al., 2013) 
pathology. These developments may advance our growing knowledge 
on the fundamental mechanisms involved in the etiology of AD and the 
emergence of clinical and neurobiological heterogeneity among people 
with AD, and add to a growing literature documenting biological dis
tinctions across cognitively-defined AD subgroups. 
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Appendices  

Fig. A1. Graphical representation of how subgroup categorization was ach
ieved. 
These ovals depict scores ranging from low (bottom) to high (top) for memory 
(M), executive functioning (E), language (L) and visuospatial functioning (V) at 
the time of Alzheimer’s disease dementia diagnosis. Person 1’s scores are 
clustered closely together. Person 2’s V score is much lower than their other 
scores. The average across domains is shown by the horizontal line. We consider 
differences from that average, shown by the brackets and asterisks, to place 
each person into a subgroup. Person 1: AD-No Domain. Person 2: AD- 
Visuospatial. 
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Fig. A2. Number of scans available across time according to AD-subgroup. 
Time = 0 corresponds to time of AD dementia diagnosis. Note that the y-axis is on a different scale for each of the AD-subgroups. 

Fig. A3. Voxel based results for AD-Multiple 
Domains. 
The top row represents significant differ
ences in FDG signal between AD-Multiple 
Domains and cognitively normal controls, 
at p < 0.05 family-wise error corrected. The 
middle row represents the β coefficient from 
the same comparisons, this β value is not 
dependent on sample size. The bottom row 
represents the effect of time (β) on voxel wise 
FDG within the AD-Multiple Domains group.   
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Fig. A4. Distribution of FDG signal within regions-of-interest across the AD-subgroups. 
The black line indicates the regression slope from an univariate linear regression and the red line indicates the slope from an univariate 2nd-degree polynomial model. 
Slopes for 3rd-degree polynomial models were very similar to the slopes in the 2nd-degree polynomial models and are not shown in the figure. 

Fig. A5. Significant differences in metabolism between AD-No Domains and the other AD-subgroups. 
Significance was set at p<0.01. Red, orange, green and blue colors indicate that the AD-subgroup had lower metabolism compared to AD-No domains and purple 
indicates that AD-No Domains had lower metabolism compared to the AD-subgroup. 
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Fig. A6. β-maps indicating the strength of the difference between AD-No domains and the other AD-subgroups. 
As the binary significance maps depicted in Fig. A5 are heavily dependent on sample size differences between AD-subgroups, we additionally display the β-maps from 
the same comparisons, representing the strength of the association, which are not dependent on sample size. 

Fig. A7. Significant group*time interaction effects from voxel-wise linear mixed model analyses. 
Significance was set at p<0.001. Red, orange, green and blue colors indicate that that AD-subgroup had faster decline in metabolism compared to AD-No domains 
and purple indicates that AD-No Domains had faster decline in metabolism compared to the other AD-subgroup. 
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Fig. A8. Differences in metabolism within composite regions of interest across subgroups at time of AD diagnosis, stratified for incident vs prevalent AD dementia 
cases. 
The effects displayed are the fixed group effects from our linear mixed effects models using the AD-subgroup displayed on the left for reference to assess the difference 
with the group indicated with colors. Incident AD dementia cases are displayed in solid bars and prevalent AD dementia cases with dotted bars. These group effect 
β-coefficients indicate the overall difference in regional FDG between subgroups. Models were adjusted for age and sex effects, as well as for whole brain FDG SUVR 
to adjust for possible differences in global hypometabolism between subgroups. The 95% CI not overlapping with zero indicates a significant effect. A positive effect 
in panel A indicates that the colored group has greater brain metabolism than the reference, and a negative effect the opposite. For instance, in the left-most lateral 
temporal panel, the dotted green effect means that prevalent cases in the AD-Language group has lower metabolism in that ROI than prevalent cases in the AD- 
Memory group. Positive effects in panel B indicate that the colored group has a more left<right metabolic pattern than the reference, and negative effects mean 
the opposite. For instance, in the left panel the dotted green effect signifies that prevalent cases in the AD-Language group have a more left<right TPC brain 
metabolism pattern than prevalent cases in the AD-Memory group. 
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Fig. A9. Differences in decline in metabolism over time within composite regions of interest across subgroups, stratified for incident vs prevalent AD dementia cases. 
The effects displayed are the group*time interaction effects from linear mixed effects models using the AD-subgroup displayed on the left for reference to assess the 
difference with the colored group. Incident AD dementia cases are displayed in solid bars and prevalent AD dementia cases with dotted bars. These group*time effect 
β-coefficients indicate differences in change over time in FDG across all available timepoints. All models were adjusted for age and sex effects, as well as for whole 
brain FDG SUVR to adjust for possible differences in global hypometabolism between subgroups. The 95% CI not touching x=0 indicates a significant effect. A 
positive effect indicates that the colored group has slower decline in brain metabolism than the reference, and a negative effect a faster decline in brain metabolism 
than the reference. For instance, in the left-most precuneus panel, the dotted green effect means that prevalent cases in the AD-Language group have faster decline in 
brain metabolism in this ROI than AD-Memory. Positive effects in panel B indicate that the TPC pattern in the colored group becomes more asymmetrical (left<right) 
over time compared to the reference. For instance, the dotted green effect in the left panel indicates that TPC metabolism in prevalent cases in the AD-Language group 
show a metabolism pattern that becomes more asymmetrical over time (left<right) compared to AD-Memory. 
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Table A1 
Pairwise differences in demographic and clinical characteristics at time of dementia diagnosis. 
Values depicted are p-values for group differences from pairwise t-tests (continuous variables) and fisher’s exact tests (categorical variables) and Kruskal Wallis test 
(for non-normally distributed education). Significance = p<0.05 false discovery rate-corrected for the number of group comparisons and bold values fall below this 
threshold. A – age at time of diagnosis for AD-subgroups and age at first FDG scan for controls, B - MMSE at time of diagnosis for AD-subgroups and MMSE at first FDG 
scan for controls, C – whole brain FDG SUVR for scan at time of diagnosis (±12 months; n=283) for AD-subgroups and at first FDG scan for controls.    

Control AD-Memory AD-Executive AD-Language AD-Visuospatial AD-No Domains 

Agea AD-Memory 0.015       
AD-Executive 0.207 0.595      
AD-Language 0.000 0.005 0.363     
AD-Visuospatial 0.177 0.810 0.576 0.009    
AD-No Domains 0.000 0.363 0.803 0.017 0.427   
AD-Multiple 0.632 0.576 0.427 0.014 0.632 0.363 

Sex AD-Memory 0.961       
AD-Executive 0.746 0.863      
AD-Language 0.739 0.746 1.000     
AD-Visuospatial 0.739 0.739 1.000 1.000    
AD-No Domains 1.000 0.961 0.746 0.739 0.739   
AD-Multiple 1.000 1.000 0.840 0.863 0.832 1.000 

APOEε4, positive AD-Memory 0.000       
AD-Executive 0.030 0.843      
AD-Language 0.001 0.600 1.000     
AD-Visuospatial 0.000 0.924 0.924 0.843    
AD-No Domains 0.000 0.843 0.924 0.843 1.000   
AD-Multiple 0.000 1.000 0.924 0.859 1.000 1.000 

Incident AD AD-Memory -       
AD-Executive - 1.000      
AD-Language - 1.000 1.000     
AD-Visuospatial - 1.000 1.000 1.000    
AD-No Domains - 1.000 1.000 1.000 1.000   
AD-Multiple - 1.000 1.000 1.000 1.000 1.000 

Education, years AD-Memory 0.131       
AD-Executive 1.000 0.573      
AD-Language 0.131 0.479 0.463     
AD-Visuospatial 0.479 0.718 0.773 0.463    
AD-No Domains 0.068 0.785 0.573 0.573 0.573   
AD-Multiple 1.000 0.463 1.000 0.235 0.640 0.463 

Handedness, left AD-Memory 1.000       
AD-Executive 1.000 0.881      
AD-Language 0.839 0.666 1.000     
AD-Visuospatial 0.135 0.135 0.462 0.135    
AD-No Domains 0.135 0.235 0.668 0.135 0.668   
AD-Multiple 1.000 1.000 1.000 0.881 0.666 0.839 

MMSEb AD-Memory 0.000       
AD-Executive 0.000 0.958      
AD-Language 0.000 0.958 0.958     
AD-Visuospatial 0.000 0.958 0.958 0.958    
AD-No Domains 0.000 0.072 0.958 0.958 0.691   
AD-Multiple 0.000 0.958 0.958 0.958 0.958 0.958 

Whole brain FDG SUVRc AD-Memory 0.000       
AD-Executive 0.000 0.095      
AD-Language 0.000 0.159 0.643     
AD-Visuospatial 0.000 0.747 0.172 0.328    
AD-No Domains 0.000 0.509 0.159 0.288 0.986   
AD-Multiple 0.000 0.763 0.258 0.479 0.986 0.986  

Table A2 
Number of timepoints available across subjects.  

N (%) Timepoints AD-Subgroups 

AD-Memory AD-Executive AD-Language AD-Visuospatial AD-No Domains AD-Multiple 

1 52 (39) 4 (50) 12 (55) 18 (41) 66 (41) 8 (54) 
2 29 (22) 1 (13) 4 (18) 9 (21) 38 (24) 1 (7) 
3 7 (5)   4 (9) 12 (8) 1 (7) 
4 20 (15) 1 (13) 2 (9) 5 (11) 19 (12)  
5 8 (6) 1 (13) 2 (9) 4 (9) 6 (4)  
6 11 (8) 1 (13)  1 (2) 6 (4) 3 (20) 
7 6 (4)  1 (5) 1 (2) 8 (5) 1 (7) 
8 2 (2)  1 (5) 2 (5) 5 (3) 1 (7) 
Total 135 8 22 44 160 15  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2021.102725. 
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