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Abstract
Regional earthquake early warning (EEW) alerts and related risk-mitigation actions are 
often triggered when the expected value of a ground-motion intensity measure (IM), com-
puted from real-time magnitude and source location estimates, exceeds a predefined criti-
cal IM threshold. However, the shaking experienced in mid- to high-rise buildings may be 
significantly different from that on the ground, which could lead to sub-optimal decision-
making (i.e., increased occurrences of false and missed EEW alarms) with the aforemen-
tioned strategy. This study facilitates an important advancement in EEW decision-support, 
by developing empirical models that directly relate earthquake source parameters to result-
ing approximate responses in multistory buildings. The proposed models can leverage 
real-time earthquake information provided by a regional EEW system, to provide rapid 
predictions of structure-specific engineering demand parameters that can be used to more 
accurately determine whether or not an alert is triggered. We use a simplified continuum 
building model consisting of a flexural/shear beam combination and vary its parameters 
to capture a wide range of deformation modes in different building types. We analyse the 
approximate responses for the building model variations, using Italian accelerometric 
data and corresponding source parameter information from 54 earthquakes. The resulting 
empirical prediction equations are incorporated in a real-time Bayesian framework that can 
be used for building-specific EEW applications, such as (1) early warning of floor-shaking 
sensed by occupants; and (2) elevator control. Finally, we demonstrate the improvement in 
EEW alert accuracy that can be achieved using the proposed models.
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1  Introduction

Earthquake early warning (EEW) typically involves (1) detecting earthquakes in the 
early stages of fault rupture; (2) rapidly predicting the intensity of the impending shak-
ing at selected target sites (or across regions); and (3) issuing alerts to end users that trig-
ger important risk-mitigation actions before the arrival of the potentially damaging seis-
mic motions (Allen and Melgar 2019). Depending on source-to-site distance (Wald 2020), 
EEW systems can provide up to a few tens of seconds of warning time. Examples of miti-
gating actions facilitated by EEW include the “drop, cover, and hold-on” manoeuvre (for 
avoiding injuries), the stopping of elevators at the nearest floor, the opening of firehouse 
doors, the slowing of high-speed trains, and the saving of vital computer information (e.g., 
Porter 2020).

We particularly focus on regional EEW systems in this study. These systems gener-
ally carry out step (2) of EEW by leveraging information provided in the early portion of 
near-fault seismic signals (e.g., 3–4 s of P- and/or S-waves) to determine source parameter 
estimates, which are used to predict resulting ground-motion intensity measures (IMs) at 
distant sites (e.g., Cremen and Galasso 2020). The uncertainty of this process may be cap-
tured by applying the well-known probabilistic seismic hazard analysis (PSHA; Cornell 
1968) framework in real-time (i.e., RTPSHA; e.g., Iervolino et al. 2006; Convertito et al. 
2008), as follows:

where fA(a|b) is the probability density function of a conditional on b, � are physical 
characteristics of the early seismic signals, fM(m|�) and fR(r|�) are respectively the real-
time probability distributions of magnitude and source-to-site distance, and fIM(��|m, r) 
is typically computed using a ground-motion model (GMM). Equation  1 produces real-
time-dependent hazard curves, which are then used to determine whether an alert should 
be issued to relevant end users (in step 3). For instance, a simple decisional rule consists of 
issuing an EEW alarm at a target site if p

(
IM ≥ IMcr

)
 is larger than a predefined threshold 

( pcr ), where IMcr is a critical IM value for an asset of interest (Iervolino 2011).
The aforementioned strategy may lead to poor alert performance (i.e., frequent occur-

rences of costly false alarms and/or potentially deadly missed alarms) for structural appli-
cations, since the shaking (i.e., engineering demand) experienced in mid- to high-rise 
buildings is generally significantly different from that on the ground (e.g., Shome et  al. 
1998). To address this challenge, Cremen and Galasso (2021) recently proposed an engi-
neering-oriented decision-making methodology for building-level EEW. This methodology 
leverages the performance-based earthquake early warning framework developed by Ierv-
olino (2011) and explicitly uses risk-based predictions to determine whether an EEW alert 
should be triggered. However, the advanced earthquake-engineering assessment procedure 
adopted in the methodology requires a significant amount of structure-specific information, 
which makes the Cremen and Galasso (2021) approach unsuitable for application to large 
numbers of buildings in a region.

To facilitate more informed EEW decision-making for the latter case (i.e., building 
portfolios), this study employs simplified building models that can be used to approxi-
mate structural responses due to dynamic loadings (e.g., Hoenderkamp and Snijder 
2000; Iwan 1997; Saiidi and Sozen 1981; Vukobratović and Fajfar 2016; Miranda and 
Taghavi 2005; Miranda and Akkar 2006). We specifically develop empirical equations 

(1)fIM(��|�) = ∫m ∫r

f (��|m, r)fM(m|�)fR(r|�) dm dr
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that directly relate earthquake source and site information (M, R, and soil type) to esti-
mates of Interstory Drift Ratio (IDR) and Peak Floor Acceleration (PFA) engineering 
demand parameters (EDPs) for a wide range of structures. Based on these equations, 
Eq. 1 can be modified to:

where fEDP(���|m, r) is the joint PDF of the estimated EDP conditional on M and R.
It is important to note that fEDP(���|�) could also be obtained using probabilistic 

seismic demand analysis (PSDA; e.g., Shome et al. 1998), in which RTPSHA would be 
coupled with a probabilistic seismic demand model (PSDM). PSDMs relate EDP(s) and 
selected ground-motion IM(s) based on nonlinear analysis of structural response using 
ground-motion records (e.g., Jalayer and Cornell 2009), from which fEDP(���|��) can 
be determined via statistical inference methods (e.g., linear regression). However, the 
introduction of fEDP(���|��) would require an IM integral in addition to those of Eq. 2, 
making PSDA a less efficient/suitable approach for the real-time (EEW) applications of 
interest in this study.

This paper is organized as follows. We first develop the empirical EDP prediction 
model, leveraging well-established methodologies for approximating seismic responses 
in multistory buildings. We next implement the EDP model in the real-time framework 
of Eq. 2, to demonstrate its application to EEW. We finally demonstrate the improved 
EEW alert accuracy obtained by triggering alarms based on EDPs instead of IMs.

2 � Developing the empirical EDP prediction model

2.1 � Quantifying approximate seismic responses

We quantify the approximate elastic seismic responses of multistory buildings, using the 
simplified structural model presented in Miranda (1999), which has been widely applied 
in the literature (e.g., Galasso et  al. 2013; Cheng et  al. 2014; Neam and Taghikhany 
2016; De Bortoli and Zareian 2018). This continuous model with uniform mass and lat-
eral stiffness distribution comprises one flexural and one shear cantilever beam, which 
are connected by an infinite number of axially rigid link members that transmit horizon-
tal forces. The base is assumed to be fixed, such that foundation flexibility is neglected 
and torsional deformations are ignored. While the assumption of constant mass along 
the height is reasonable for most structures, the assumption of consistent lateral stiffness 
is only valid for low-rise buildings (e.g., less than three stories). However, Miranda and 
Taghavi (2005) concluded that the dynamic characteristics of a uniform model suffi-
ciently approximate those of non-uniform models in many cases.

The Miranda (1999) model requires three building-specific parameters - T1 , �i , and � 
- to compute approximate demands for a given ground motion (i.e., mode shapes, modal 
participation factors, and the ratio of the period of vibration of higher modes to the fun-
damental period are fully defined by only three parameters). T1 is the first mode period 
of vibration and �i is the damping ratio of the ith mode. � regulates the relative partici-
pation of shear and flexural deformations in the model, and is defined as follows:

(2)fEDP(���|�) = ∫m ∫r

fEDP(���|m, r) fM(m|�) fR(r|�) dm dr
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where GA is the shear rigidity of the shear beam, EI is the bending stiffness of the flexural 
beam, and H is the building height. Note that H is estimated in this study from T1 , using the 
following relationship for generic structures provided in ASCE 7-2010 (2010): 

Figure 1 illustrates the influence of the � parameter on first mode characteristics.
We examine PFA, IDR, and maximum interstory drift ratio (MIDR) EDPs in this study. 

PFA is obtained using the methodology of Miranda and Taghavi (2005). IDR and MIDR 
are computed according to the procedure of Miranda and Akkar (2006). We exclusively 
account for the first six modes, given that their cumulative effective modal mass equates to 
more than 90% of the total for most real buildings (Galasso et al. 2013), and assume �i = 
5% for each. To capture the responses of a wide range of structures, we consider 15 values 
of T1 from 0.1 s to 5 s (in increments of 0.1 up to 0.5 s, increments of 0.25 between 0.5 and 
1 s, and increments of 0.5 for larger periods), three values of � (0.1, 8, 30) that respectively 
represent shear wall buildings, dual systems, and moment-resisting frames (see Fig.  1), 
and 101 equally spaced values of relative height (i.e., nondimensional quantities that result 
from normalization by the total building height and vary from 0 to 1).

2.2 � Model format

We develop empirical equations that directly relate the approximate building responses of 
Sect.  2.1 to earthquake source parameters that can be rapidly estimated with a regional 
EEW algorithm (i.e., typically magnitude and epicentral location), and site-specific soil 
characteristics. We use the functional form of the ground motion model (GMM) devel-
oped by Akkar and Bommer (2010), but substitute the Joyner-Boore distance metric with 
epicentral distance ( Repi ), since current investigations on the practical implementation of 

(3)� = H

√
GA

EI

(4)H =
0.75

√
T1

0.0488

Fig. 1   Variation with relative building height of a the amplitude of the first mode shape and b the first 
derivative of this amplitude, for three values of �
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European EEW are focused on point-source algorithms (Cremen et  al. 2021). We also 
exclude the style-of-faulting indicators, given that the relevant data are not usually pro-
duced from an EEW algorithm (Minson et al. 2014). The final format of the equations to be 
developed is:

where, for a prescribed value of � and T1 (and conditional on �i = 5% for all modes), Y 
is the EDP of interest (i.e., PFA at a given floor height, IDR for a given story height, or 
MIDR), taken as the geometric mean of the values computed for the two horizontal com-
ponents of a ground motion. M is moment magnitude. Ss and Sa are 0 except in the case of 
soft-soil ( Ss = 1 ) or stiff-soil ( Sa = 1 ) sites. N(�,�) is a normal distribution with mean � 
and standard deviation � , � is the inter-event standard deviation, � is the intra-event stand-
ard deviation, and � =

√
�2 + �2 is the total standard deviation.

2.3 � Model calibration

We calibrate the model using a subset of the ITACA v1.0 Italian strong-motion database 
(Pacor et al. 2011), which contains 3955 three-component processed accelerograms from 
approximately 1800 Mw ≤ 6.9 seismic events that occurred in Italy during the period 1972-
2009. We select this database, given that its complete set of ground-motion records is rap-
idly accessible via the REXEL 3.5 software tool (Iervolino et  al. 2010), whereas newer 
and/or alternative databases require tedious record-by-record downloading or impose strict 
time-based limits on data accessibility. We specifically consider records with Repi ≤ 200 
km from Mw ≥ 5 events for which the faulting style is known. This results in a final dataset 
of 580 two-component records from 54 seismic events (see Fig. 2). 74% of the considered 
records are from normal faulting earthquakes, 20% are from reverse faulting earthquakes, 

(5)
log10 Y = b1 + b2M + b3M

2 + (b4 + b5M) log10

√
R2
epi

+ b2
6
+ b7Ss

+ b8Sa +N(0, �) +N(0,�)

Fig. 2   A summary of the records 
used to develop the empirical 
models, with respect to magni-
tude and epicentral distance
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and 6% are from strike-slip events. 46% of the examined accelerograms were recorded on 
rock, 29% were recorded on stiff soil, and 25% were recorded on soft soil ( Vs30 < 360 m/s).

We calculate the coefficients of Eq. 5 for each set of {T1, �, h, �i = 5%} as follows. We 
first determine a preliminary set of {bk} , using non-linear regression. We then obtain the 
resulting residuals, log10(Zp,q) , according to:

log10(edpobs,p,q) is the logarithm of the geometric mean observed EDP of interest for the 
horizontal components of the qth recording from the pth event, and Mp and Repip,q

 are the 
corresponding observed magnitude and epicentral distance. All other variables are as 
defined in Eq.  5. We finally perform an iterative mixed-effects regression of log10(Zp,q) 
according to the algorithm of Abrahamson and Youngs (1992), to determine maximum 
likelihood estimates of � , � , and {bk} . The parameters for each developed equation are pro-
vided in an electronic supplement.

2.4 � Model evaluation

We first evaluate the distance-scaling of the developed equations. We specifically examine 
the variation of intra-event residuals ( �p,q ) versus epicentral distance (Scasserra et al. 2009), 
given that consistency in this relationship would suggest a bias in the distance attenuation. 
Figure 3 provides the resulting plots for a hypothetical mid-rise building ( T1 = 0.75 s) and 
all considered values of � . It may be observed that there is no notable distance-dependence 
of the residuals, indicating that the distance-scaling of the developed equations is adequate 
for the presented cases. We quantitatively determine the presence of a trend in intra-event 
residuals versus distance for each developed equation, by using linear regression to fit:

and testing the null hypothesis that the slope cR equals zero. (Note that �p,q corresponds to 
the EDP of interest, aR is a constant, �Rp,q

 are residuals, and all other variables have been 
defined previously.) We find large p-values (i.e., ≥ 0.05) across all of the calibrated equa-
tions, implying that the aforementioned null hypothesis cannot be rejected and therefore 
that there is not a statistically significant relationship between the intra-event residuals and 
distance in any case.

We evaluate the magnitude-scaling of the developed equations, by examining the varia-
tion of inter-event residuals ( �p ) versus magnitude (Scasserra et al. 2009); see Fig. 4, which 
uses the same hypothetical structure as Fig. 3. There is no discernible magnitude-depend-
ent trend in the plotted residuals, suggesting that the magnitude-scaling of the developed 
equations is appropriate for the highlighted cases. We quantitatively define this trend for all 
calibrated equations, by performing a linear regression according to:

and testing the null hypothesis that cM is zero. ( �p corresponds to the EDP of interest, aM is 
a constant, �Mp

 are residuals, and all other variables are as defined previously.) We find 

(6)

log10(Zp,q) = log10(edpobs,p,q) −
(
b1 + b2Mp + b3M

2
p

+ (b4 + b5Mp) log10

√
R2
epip,q

+ b2
6
+ b7Ss

+ b8Sa
)

(7)�p,q = aR + cRRepip,q
+ �Rp,q

(8)�p = aM + cMMp + �Mp



Bulletin of Earthquake Engineering	

1 3

large (i.e., ≥ 0.05) p-values in all cases, indicating that the null hypothesis cannot be 
rejected and therefore that the developed equations are adequately capturing the magnitude 
scaling of the observed data.

Our final evaluation focuses on the equations’ � values. To determine whether these 
values are reasonable, we compare them with those of the Bindi et al. (2009) GMM (epi-
central distance version). This GMM is a suitable benchmark that should be associated 
with comparable � values to those of the developed equations, since it was calibrated using 
many of the same earthquake recordings and contains similar predictor variables. The 
results of the comparison are provided in Fig. 5. It can be seen that the � values of both 
sets of equations are of the same order, and have near equivalent levels of variation (the 
standard deviations of the EDP and Bindi � values are 0.018 and 0.014 respectively). These 
observations confirm the acceptability of the obtained � values.

Based on the above evaluations, we ultimately conclude that the equations are a sat-
isfactory fit to the underlying EDP and source data. Figures  6, 7, 8 demonstrate the 
close alignment between equation predictions and corresponding observed data, using 

Fig. 3   Intra-event residuals versus distance for a hypothetical mid-rise building ( T1 = 0.75 s) with a–c 
� = 0.1 , d–f � = 8 , and g–i � = 30 . a, d, g correspond to mid-height PFA estimates, b, e, h correspond to 
mid-height IDR estimates, and c, f, i correspond to MIDR estimates
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Mw 6 events, all considered soil conditions, and the hypothetical structure leveraged for 
Figs. 3 and 4. Note that � appears to have a minimal impact on predicted amplitudes for 
the examined T1 . For example, MIDR on a rock site at Repi = 10 km is only 7% larger 
for � = 30 than for � = 0.1 . However, � plays a more significant role at other building 

Fig. 4   Inter-event residuals versus magnitude for a hypothetical mid-rise building ( T1 = 0.75 s) with a–c 
� = 0.1 , d–f � = 8 , and (g-i) � = 30 . a, d, g correspond to mid-height PFA estimates, b, e, h correspond to 
mid-height IDR estimates, and c, f, i correspond to MIDR estimates

Fig. 5   Comparing the � values 
obtained for the empirical mod-
els developed in this study with 
those of the Bindi et al. (2009) 
GMM
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periods, e.g., MIDR on a rock site at Repi = 10 km is 19% larger for � = 30 than for 
� = 0.1 when T1 = 2 seconds. These observations are in broad alignment with findings 
of previous studies (Neam and Taghikhany 2016).

3 � Real‑time applications of the models

We now apply the developed empirical models to EEW. We use the real-time analysis 
framework presented in Eq. 2 and case-study earthquakes at a location in the Campania 
region of south-west Italy (see Iervolino et al. 2009, and Fig. 9), where an EEW system 
is already undergoing real-time (non-public) testing (e.g., Satriano et al. 2011; Velazquez 
et al. 2020).

Note that we neglect distance uncertainty in this case, given its insignificance compared 
to that of magnitude and ground shaking (Iervolino et al. 2009), which simplifies the Eq. 2 
framework to:

Fig. 6   Comparing mid-height PFA predictions from the empirical model (for Mw = 6 ) with corresponding 
observations (calculated from Mw 5.5 to 6.5 events), for a hypothetical mid-rise building ( T1 = 0.75 s) with 
a–c � = 0.1 , d–f � = 8 , and g–i � = 30 . a, d, g, b, e, h, and c, f, i provide comparisons for rock, stiff, and 
soft soil sites, respectively
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where Repit
 is the true epicentral distance to the target site of interest. We adopt the Bayes-

ian formulation for f (m|�) provided in Iervolino et al. (2009), i.e.,:

where �k is the maximum predominant period measured within four seconds of the 
P-wave arrival at the kth seismic station, n is the total number of seismic stations for 
which �k has been recorded at a given time from the event, Mmin is the minimum con-
sidered magnitude, Mmax is the maximum magnitude, � = b∕log10(e) , and b is the slope 

(9)fEDP(���|�) = ∫m

fEDP
(
���|m,Repit

)
fM(m|�) dm

(10)f (m��) = f (m��1, �2,… �n) =
e

� 2�ln(�)
∑n
i=1

ln(�i )−n�
2
ln(�)

2�2
ln(�)

�
e−�m

∫ Mmax

Mmin
e

� 2�ln(�)
∑n
i=1

ln(�i )−n�
2
ln(�)

2�2
ln(�)

�
e−�m dm

Fig. 7   Comparing mid-height IDR predictions from the empirical model (for Mw = 6 ) with corresponding 
observations (calculated from Mw 5.5 to 6.5 events), for a hypothetical mid-rise building ( T1 = 0.75 s) with 
a–c � = 0.1 , d–f � = 8 , and g-i � = 30 . a, d, g, b, e, h, and c, f, i provide comparisons for rock, stiff, and 
soft soil sites, respectively
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Fig. 8   Comparing MIDR predictions from the empirical model (for Mw = 6 ) with corresponding observa-
tions (calculated from Mw 5.5 to 6.5 events), for a hypothetical mid-rise building ( T1 = 0.75 s) with a–c 
� = 0.1 , d–f � = 8 , and g–i � = 30 . a, d, g, b, e, h, and c, f, i provide comparisons for rock, stiff, and soft 
soil sites, respectively

Fig. 9   Map of the Campania 
region considered in the case-
study EEW application of the 
developed empirical models
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of the Gutenberg-Richter magnitude-frequency relation. �ln(�) = (M − 5.9)∕7log10(e) and 
�ln(�) = 0.16∕log10(e) , based on the empirical relations of Allen and Kanamori (2003). Our 
analyses assume Mmin = 4 , Mmax = 7 , and � = 1.69 , in line with Iervolino et  al. (2009). 
We leverage the Irpinia Seismic Network (ISNet) of 27 stations (Fig. 9), which is the same 
array used to test EEW in the region.

We first examine a target site in Naples (where Repit
= 124 km) and focus on the evolu-

tion of EDP estimates as an increasing number of ISNet stations record �i from an incom-
ing Mw 6.9 event. �i values are assumed to be independent and identically distributed log-
normal random variables (in line with Iervolino et al. 2006), and are therefore simulated 
according to:

where Mt is the true event magnitude (= 6.9) and all other variables are as defined previ-
ously. These simulated values are then used to calculate fEDP(���|�) , according to Eq. 9. 
We assume the structure of interest has T1 = 3 s, to reflect the high-rise buildings located 
in the newly developed business area of the city, and consider all � values for which the 
models were developed. These kinds of calculations can be leveraged for building-specific 
EEW applications, such as early warning of floor-shaking experienced by occupants and 
elevator control (Cheng et al. 2014). 

Figure 10 provide estimates of PFA (top floor), IDR (top story), and MIDR, averaged 
over 100 simulated sets of �i for different values of n, as well as the distributions obtained if 
Mt is directly input to the relevant empirical model. Also shown is the time required to pro-
cess information from each set of n triggered stations ( tpn ), which is calculated as follows:

where Repin
 is the maximum epicentral distance associated with all n triggered stations, d is 

the hypocentral depth of the earthquake (assumed = 12 km), �t is the processing time (= 5 
s, from Iervolino et al. 2009), and Vp is P-wave velocity. Vp is taken to be 5.88 km/s, based 
on the S-wave velocity ( Vs ) of 3.5 km/s provided for the same region in Iervolino et  al. 
(2006) and the Vp

Vs

 ratio of 1.68 used for the same earthquake location in Iervolino et  al. 
(2009). It is observed that the predictions of Eq. 9 improve as more triggered stations con-
tribute data to the calculations, since this increases the accuracy of fM(m|�) (Iervolino 
et  al. 2006; see Fig.  14a). It is also seen that reasonably accurate EDP estimates are 
obtained for n = 18 (i.e., within 12 seconds) in all cases. This result is consistent with the 
findings of Iervolino et al. (2009) for PGA estimates at the same target site, who used the 
same EEW algorithm and an Mw 6 event at the examined epicentral location.

Our second case study involves a region-wide real-time application of the proposed 
empirical models. We specifically examine the spatial distribution of median EDP esti-
mates for Mt = 6 and a hypothetical mid-rise building ( T1 = 0.75 s, � = 8 ), using one set 
of simulated �i values (from Eq. 11) for various n. Figures 11, 12, 13 respectively provide 
these estimates for PFA, IDR, and MIDR, as well as the corresponding median values cal-
culated for the true magnitude. It can be seen that early real-time calculations significantly 
underestimate median EDP values (particularly at close-source distances). This may be 
explained by the fact that for low values of n, f (m|�) is dominated by its Gutenberg-Richter 

(11)f (�i�Mt) =
1

√
2��ln(�)�i

e
−

1

2

�
ln(�i )−�ln(�)

�ln(�)

�2

(12)tpn =

√
Repin

+ d2

Vp

+ �t
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prior component (per Eq. 10), which provides an expected magnitude value that is signifi-
cantly smaller than Mt in this case (Iervolino et al. 2006; see Fig. 14b). Sufficiently accurate 
estimates are obtained in most of the region for approximately 18 triggered stations, across 
all EDPs. Evolutionary regional mapping of projected EDP estimates may be helpful for 
better informing the early stages of emergency response strategies that significantly depend 
on the functionality of target assets within the urban system (i.e., critical infrastructure).   

4 � Demonstrating the benefits of EDP‑based EEW trigger thresholds 
for buildings

We now provide a simple demonstration of the improvement in alert accuracy offered by 
making decisions to trigger EEW alarms based on EDP instead of IM. We use a hypotheti-
cal mid-rise building ( T1 = 1 s, � = 30 ), and assume that an EEW alert should be issued 
if the PFA caused by the impending earthquake at the top, middle or bottom floor will 

Fig. 10   Real-time evolving estimates of a, d, g PFA (top floor), b, e, h IDR (top story) and c, f, i MIDR for 
a hypothetical high-rise building ( T1 = 3 s) at the chosen target site, compared with those obtained using 
the true (i.e., final) value of magnitude ( Mw = 6.9 ), for a–c � = 0.1 , d–f � = 8 , and g–i � = 30
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exceed 0.05 g, which is the threshold at which acceleration becomes “very annoying” from 
a human comfort perspective (Cheng et al. 2014, see Table 1).

A reasonable IM-driven decisional rule in this case would be to trigger an alarm if the 
median prediction of PGA at the target site exceeds 0.05 g. We compare alert performance 
for this rule with that achieved for a comparable EDP-based decisional rule that triggers 
an alarm if the median PFA prediction at the top, middle or ground floor of the building 
exceeds 0.05 g. We quantify alert accuracy using the methodology of Minson et al. (2019), 
and randomly sample 10,000 sets of top-, middle-, and bottom-floor PFA values for the 
building according to the corresponding empirical prediction equations developed, for a 
range of magnitudes and epicentral distances (note that we neglect magnitude and epicen-
tral distance uncertainty for this demonstration). A missed alarm occurs if the median pre-
diction of PGA or PFA does not exceed 0.05 g and at least one simulated value does, a false 
alarm occurs in the opposite case, and a correct decision occurs if both the median and 
simulated values fall above or below 0.05 g. Note that we use the epicentral distance model 
of the Bindi et al. (2009) GMM introduced in Sect. 2.3, for the IM-driven decisional rule. 
We acknowledge that more modern versions of this GMM are available (Bindi et al. 2010, 
2011), but both of these incorporate style-of-faulting information and/or rely on Joyner-
Boore distance measurements in certain cases, which (as explained in Sect. 2.2) are typi-
cally not appropriate considerations for real-time EEW applications.

Fig. 11   Region-wide estimates of PFA (top floor) for a hypothetical mid-rise building ( T1 = 0.75 s, � = 8 ) 
during an Mw 6 event when a n = 2 , b n = 9 , c n = 18 , d n = 27 , and (e) the true (i.e., final) value of mag-
nitude is obtained
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The results of these analyses are presented in Fig. 15 (for Mw = 6.5 , across a range of 
Repi values) and Fig.  16 (for Repi = 60 km, across a range of Mw values) For both deci-
sional rules, it is seen that false alerts can occur for low values of Repi and relatively high 
values of Mw (i.e., conditions under which governing median predictions are higher than 
0.05 g), whereas missed alerts can occur for high values of Repi and relatively low values 
of Mw (i.e., conditions under which governing predictions are less than 0.05g). Propor-
tions of false and missed alerts are greatest for cases in which the corresponding governing 
predictions are respectively just greater than or just less than 0.05 g. In all other cases (as 
intuitively expected), governing predictions and simulated EDPs of interest are in better 
agreement with respect to this decision threshold. It can be observed that the EDP-based 
decisional rule provides significantly better alert accuracy than that based on IM; it reduces 
missed alerts by 42% for the Mw = 6.5 case and by 66% for the Repi = 60 km case. This 
example underlines the notable benefit of integrating EDP predictions in building-focused 
applications of EEW. It is important to note that the EDP rule transforms some IM-related 
missed alerts into false alerts in both cases. However, these system malfunctions are gener-
ally accepted by end users (at least in regions with public EEW) as opportunities to per-
form unscheduled earthquake preparation exercises (Velazquez et al. 2020). 

Fig. 12   Region-wide estimates of IDR (top story) for a hypothetical mid-rise building ( T1 = 0.75 s, � = 8 ) 
during an Mw 6 event when a n = 2 , b n = 9 , c n = 18 , d n = 27 , and (e) the true (i.e., final) value of mag-
nitude is obtained
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Fig. 13   Region-wide estimates of MIDR for a hypothetical mid-rise building ( T1 = 0.75 s, � = 8 ) during an Mw 
6 event when a n = 2 , b n = 9 , c n = 18 , d n = 27 , and e the true (i.e., final) value of magnitude is obtained

Fig. 14   f (m|�) for (a) an Mw 6.9 event (depicted in Fig. 10) and (b) an Mw 6 event (depicted in Figures 11, 
12, 13) when n = 2, 9, 18 , and 27. Also shown are the true magnitudes

Table 1   Relationship between 
acceleration and human comfort, 
adapted from Cheng et al. (2014)

Maximum acceleration (g) Human comfort level

< 0.005 Not perceptible
0.005–0.015 Perceptible
0.015–0.05 Annoying
> 0.05 Very annoying
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5 � Conclusions

This study has developed empirical EDP prediction models for use in real-time building-
level applications of EEW. These models directly relate approximate seismic responses 
of multi-story buildings (in terms of PFA, IDR, and MIDR) to site-specific characteris-
tics and earthquake source parameters that can be rapidly estimated by regional EEW 
algorithms. We used Italian ground-motion data and well-known simplified response 
quantification methods (Miranda and Taghavi 2005; Miranda and Akkar 2006) to cali-
brate the models for three structural systems and a wide array of corresponding first 
mode periods.

We integrated the developed models into a real-time Bayesian framework that incorpo-
rates the evolutionary uncertainties inherent in EEW measurements. Local and regional 
applications of the framework for case study earthquakes in Southern Italy revealed that 
reasonably accurate EDP estimates could be obtained if the data from approximately 18 
stations were used to estimate the magnitude of the incoming event (although these find-
ings significantly depend on the underlying EEW algorithm employed). The EDP-based 
Bayesian framework may be used to design bespoke EEW alerts and determine prelimi-
nary earthquake impact estimates for targeted structures within a region.

Fig. 15   Comparing the accuracy of the a PFA-based and b PGA-based decisional rules in terms of epicen-
tral distance, for a hypothetical mid-rise building ( T1 = 1 s, � = 30) and Mw = 6.5

Fig. 16   Comparing the accuracy of the a PFA-based and b PGA-based decisional rules in terms of magni-
tude, for a hypothetical mid-rise building ( T1 = 1 s, � = 30) and Repi = 60 km
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Finally, we quantified the improvement in EEW alert accuracy obtained if the devel-
oped models were used to determine alert thresholds instead of the IM-based predic-
tion methods typically adopted. Using a sample structure and a hypothetical alert trigger 
criterion, we found that an EDP-based decisional rule could reduce the proportion of 
missed alerts associated with a PGA-driven threshold by more than 45% on average, 
across a series of scenario earthquakes. In summary, the results of this study facilitate a 
key advancement in EEW decision support, by providing an important link between the 
typical seismological parameters computed by EEW algorithms and their ultimate effect 
on the built environment.

There are some limitations associated with this study, however. Firstly, the structural 
model used assumes linear elastic behaviour and classical damping. This means that the 
empirical prediction equations are only appropriate for performance levels in which a 
building is expected to remain elastic or exhibit minimal nonlinear behaviour. However, 
nonlinear extensions of the employed structural model are available (e.g., Xu et al. 2014; 
Xiong et al. 2016) and could be used to derive similar prediction equations for building-
specific EEW applications involving high-intensity ground motions. Secondly, the empiri-
cal models were determined using data from Italy only and may not be directly applicable 
outside this context (although the proposed methodology for model development is general 
and can be applied to data from any region). Thirdly, the models do not account for cor-
relations of EDPs, either within the same structure or between closely located buildings 
(Sun et al. 2018). To overcome this shortcoming, (1) median model predictions could be 
used to quantify intra-building correlations according to the EDP correlation methodology 
described in Cremen and Baker (2018) and (2) inter-building EDP correlations could be 
quantified with model residuals, in line with procedures used for assessing spatial correla-
tions of ground-motion intensities (e.g., Jayaram and Baker 2009; Loth and Baker 2013).

On a final note, future work will consider expanding the Eq. 2 framework to account 
for losses, which contain the highest level of information for decision making about alarm 
issuance (e.g., Iervolino et al. 2007). This effort would represent a significant step towards 
achieving a portfolio-level analogue of the engineering-driven EEW decision-making 
methodology proposed by Cremen and Galasso (2021).
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