
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Guided wave propagation and
scattering at composite
delaminations

Hervin, F., Fromme, P.

F. Hervin, P. Fromme, "Guided wave propagation and scattering at composite
delaminations," Proc. SPIE 11593, Health Monitoring of Structural and
Biological Systems XV, 115930Q (22 March 2021); doi: 10.1117/12.2582363

Event: SPIE Smart Structures + Nondestructive Evaluation, 2021, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Jun 2021  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

Guided Wave Propagation and Scattering at Composite Delaminations  
 

F. Hervin  and P. Fromme  

 Department of Mechanical Engineering, University College London, WC1E 7JE, UK 

ABSTRACT 

Composite structures, consisting of highly anisotropic layers of polymer matrix reinforced with high strength carbon fibers, 

are widely used for aerospace applications due to their low weight and high strength. However, impact during aircraft 

operation can lead to barely visible and difficult to detect damage. Depending on impact severity, delaminations can occur 

that reduce the structural integrity and load carrying capacity. Efficient structural health monitoring (SHM) of composite 

panels can be achieved using guided ultrasonic waves propagating along the structure. Guided ultrasonic wave propagation 

and scattering at circular delaminations was modelled using full three-dimensional (3D) Finite Element (FE) simulations 

in ABAQUS. Individual ply layers were modelled using unidirectional composite material properties to accurately capture 

the anisotropy effects. The guided ultrasonic wave propagation and scattered field at an artificial delamination was 

measured using a noncontact laser interferometer and quantified. Good agreement between experiments and Finite Element 

predictions was found and the energy trapping on top of a shallow delamination was verified. The influence of delamination 

shape and depth was investigated from a FE parameter study. The sensitivity of guided waves for the detection of 

delaminations due to barely visible impact damage (BVID) in composite panels has been verified. 
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1. INTRODUCTION 

Composite laminates are increasingly used in a range of industries to reduce the weight of components whilst maintaining 

mechanical performance. Composite multi-layer structures have high in-plane strength, but possess poor interlaminar 

strength and are therefore prone to impact damage [1]. When stressed by transversely concentrated loading, for example a 

bird strike or dropped tool, extensive damage can develop below the surface of the laminate, which is difficult to detect by 

visual inspection [2]. Reliable structural health monitoring (SHM) techniques are therefore required to locate and 

characterise damage. Delamination, i.e., cracking in the interfacial plane between two adjacent layers in a composite 

laminate, represents the most common and critical failure mode, potentially causing separation of the ply layers [3]. In 

polymer composites, in contrast to metals, delamination can take place under a relatively small impact load [1, 4]. The 

subsequent application of external loads may cause delamination growth, resulting in significant strength reduction, and 

eventual catastrophic failure of the composite component [5]. Several non-destructive techniques have been used to 

monitor composite components, particularly radiographic [6, 7] and ultrasonic methods [8].  

Guided waves are widely used for damage detection in thin-walled structures, due to their ability to propagate over long 

distances, allowing rapid and efficient detection of defects [9]. Guided waves are dispersive ultrasonic waves characterized 

by several propagation modes. Due to increasing wave attenuation with frequency, especially for composite structures, the 

first antisymmetric (A0) and first symmetric (S0) modes at lower frequencies are often used for damage detection. Scattering 

and mode conversion at the damage location can be used for the detection and characterization of structural defects or 

material inhomogeneities [10].  Numerical simulations and experimental investigations have demonstrated the capacity for 

the detection of delaminations [11, 12]. The reflection of the incident symmetric mode (S0) from a delamination is strongly 

dependent on the through thickness position of the disbond. If the shear stress at the delamination interface is zero, no 

wave reflection is obtained [9]. In contrast the A0 mode, a flexural mode at low frequencies, can detect delaminations at 

any depth [13]. The A0 mode has shorter wavelengths (at the same excitation frequency) than the S0 mode and so is more 

suitable for the detection of small damage in composites. When a guided wave mode interacts with a delamination, waves 

propagate in each of the sub-laminates. Multiple reflections and mode conversion to the S0 mode may occur in the 

delaminated region [14]. Numerous studies have reported a significant increase in amplitude of the A0  mode on top of the 

delamination, which could be exploited for damage detection [15]. The arrival times of the  multiple reflections can be 

used to estimate the size of delaminations [14]. 
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The scattering characteristics of the fundamental anti-symmetric mode at material and geometric discontinuities have been 

investigated numerically and experimentally. In general, the A0 scattering at a delamination in an anisotropic multi-layer 

plate is more complicated than the scattering at a defect in isotropic plates [16]. For quasi-isotropic composite laminates, 

the scattering directivity patterns are dominated by the fiber orientation of the outer laminae and are highly dependent on 

the ply layup of the laminate [17]. Scattered amplitudes and directivity distributions are influenced by the delamination 

size to wavelength ratio and the through-thickness location, as  the forward scattered amplitude is dependent on the phase 

difference between the waves propagating in each sub-laminate [18].  For a circular delamination, the amplitudes show a 

large forward scattered wave relative to the reflected pulse, as highlighted by numerical simulations [19]. Numerical studies 

have demonstrated that the maximum amplitude in the scattered field increases with delamination size [20]. The forward 

scattered field becomes dominant with increased delamination size. These considerations can be employed for the 

characterization of delamination damage in SHM applications. In quasi-isotropic composite laminates, the fiber steering 

effects in the outermost plies have a significant influence on the scattering pattern [21, 10], which is in agreement with the 

results presented in [16].   

Whilst there are several numerical studies focused on A0 mode scattering at delaminations in composite laminates, limited 

experimental studies have been performed. In this work a full 3D finite element model of a quasi-isotropic composite 

laminate containing a zero-volume ellipse shaped delamination is presented. The scattering of the A0 wave mode at a zero-

volume ellipse shaped delamination is investigated. The model is validated against full field, noncontact laser 

measurements performed on a CFRP panel containing an artificial insert delamination [22]. The effect of delamination 

shape and depth is investigated from a numerical parameter study.  

2. EXPERIMENTAL MEASUREMENTS  

Experimental measurements were performed on a symmetric, quasi-isotropic graphite/epoxy laminate [23] with 

dimensions 600 x 600 x 1.6 mm3 and stacking sequence [-45/+45/90/0]s. The mechanical properties of the single ply layer 

are provided in Table 1.  

Table 1: Engineering constants for a single ply layer in the CFRP laminate. Moduli are given in GPa. 

E1   E2  E3  G12  G13  G23  ν12   ν13  ν23  ρ [kgm-3] 

175 6.90 6.90 4.18 4.18 2.35 0.25 0.25 0.46 1520 

 

A circular polytetrafluoroethylene (PTFE) film, 15 mm in diameter, was placed between the second and third ply (0.4mm 

depth) during the layup process. The position of the delamination was verified though an ultrasonic immersion C-Scan. 

Around the artificial delamination, a circular crown was identified where the plies are detached, giving an actual flaw size 

of approximately 20 mm x16 mm [24]. A schematic view showing the laminated panel is given in Fig. 1.  

  

Figure 1: a) schematic of quasi-isotropic composite laminate (top view) with damage and PZT transducer marked. Red lines 

indicate scanning paths; b) schematic of damage location through plate thickness.  

a) b) 
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Figure 2: Experimental setup with laser head and composite specimen. 

A photograph of the experimental setup is shown in Fig. 2. A piezoelectric transducer (lead zirconate titanate (PZT) disk, 

PI Ceramic PIC-255, diameter 10 mm, thickness 0.25 mm) was bonded by cyanoacrylate glue to the surface of the 

composite plate 100 mm from the center of the delamination location and was used to generate the A0 guided wave mode 

at 50 kHz. The excitation signal was a 5-cycle sine wave, modulated by a Hanning window and was generated using a 

programmable function generator (Agilent 33220A). The excitation signal was amplified to 50 Vpp (Krohn-Hite 7602M 

wideband amplifier) and applied to the transducer. A laser vibrometer (Polytec sensor head OFV-505, OFV-5000 

vibrometer controller) attached to a scanning rig was used to measure the velocity of the out-of-plane displacement of the 

plate surface. The laser head was moved parallel to the sample both horizontally and vertically. Retroreflective tape was 

applied to the plate to improve the laser beam reflection and thus signal-to-noise ratio. The time signals were filtered using 

a 25-75 kHz band-pass filter and recorded and averaged 20 times using a digital storage oscilloscope. Time trace signals 

were saved to a PC for further analysis in MATLAB.  

Three different scans were performed on the sample, shown in Fig. 1a. A square area 40 mm x 40 mm centered on the 

delamination was scanned in 1 mm steps. A horizontal line scan passing through the center of the delamination, 60mm in 

length, was performed in steps of 1mm. A circular scan centered on the delamination with radius 30 mm was performed 

in steps of 2°. The total energy of the signal was obtained by summing the square of the amplitude for each point in the 

time trace. Amplitudes were normalized using an estimate of the incident wave amplitude as a reference value. The energy 

of the incident wave was estimated by calculating the mean of the energy values in front and behind the delamination from 

the horizontal line scan.   

3. FINITE ELEMENT SIMULATIONS  

A full 3D finite element model was developed with dimensions 600 mm x 600 mm x 1.2 mm to match the physical sample. 

Each ply layer was modelled with the material properties of a unidirectional composite laminate, as given in Table 1. An 

element size of 0.5 mm x 0.5 mm x 0.2 mm was selected, which results in 1 element thickness per ply layer. Solid brick 

elements with reduced integration (C3D8R) were selected to provide a uniform mesh throughout the model. The model 

parameters were entered into a MATLAB program, which was used to generate an input file, which could then be imported 

into ABAQUS/Explicit to perform the analysis. The stable time increment was 50 ns and the simulation time was 0.3 ms. 

Propagation of the A0 mode was modelled by applying an out-of-plane force to a single node 100 mm from the center of 

the delamination. The excitation signal was a 50 kHz, 5 cycle sine wave modulated by Hanning window to match the 

experimental measurements. 

A zero-volume delamination was incorporated into the model by overwriting the elements in a square region with the 

approximate dimensions of the delamination. New nodes, connected to one side of the plate, were generated in this region.  

A circular area was then defined within this square area and interpolated onto the Cartesian grid. A tie constraint is applied 

to the nodes that lie outside the circular area to form the edges of the delamination, as shown in Fig. 3a.  
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Figure 3: a) ABAQUS screenshot of the FE model; red dots indicate tied nodes forming the edges of the delamination;  

b) schematic showing excitation and measurement locations for the FE model.  

Both circular and ellipse shaped delaminations can be defined using this procedure. A 20 mm x 20 mm circular 

delamination was initially modelled and used as the standard case throughout this paper. A 20 mm x 16 mm ellipse was 

also modelled to match the estimated dimensions from the C-scan. Finally, a 22 mm x 16 mm case was considered. 

A 60 mm x 60 mm grid of measurement points, centered on the delamination, was defined on the surface of the plate in  

1 mm steps. History outputs for the out-of-plane displacement were recorded for each measurement point. The recorded 

signals were further analyzed in MATLAB, where line and circle ‘scans’ could be selected from the full grid. The total 

energy of the signal at each measurement point was calculated, and the values were normalized using a reference value 

obtained from a baseline simulation containing no damage. 

4. INFLUENCE OF DELAMINATION SHAPE   

The effect of delamination shape on the interference on top of the delamination, and the scattered wave outside of the 

delamination was investigated for circular and ellipse shaped delaminations with various dimensions. In this paper three 

delamination cases were selected for comparison to the experimental results: a standard 20 mm x 20 mm circular 

delamination, a 20 mm x 16 mm delamination to match the estimated dimensions from the C-scan. Finally, a 22 mm x 16 

mm delamination was selected to demonstrate how small changes in delamination size and shape affect scattering.   

Figure 4a shows the measured energy over a 40 mm x 40 mm grid of measurement points. The incident wave is propagating 

from left to right.  High energy is observed in a circular region on top of the delamination. Regions of high and low energy 

indicate that energy trapping is occurring in the top sub-laminate. A forward scattered wave is present to the right of the 

delamination, with two regions of low amplitude either side. In front of the delamination some interference between the 

incident and reflected wave can be observed, resulting in a faint crescent shape.  

The 2D energy plots for each of the delamination cases considered in the FE simulations are shown in Fig. 4b/c/d. For each 

delamination case there is a region of high energy on top of the delamination, indicating wave trapping. A forward scattered 

component is present for each case, however the regions of low amplitude either side of the ‘tail’ are less pronounced for 

the FE results. The interference pattern on top of each of the simulated delamination cases is unique, indicating that small 

changes in the delamination shape and size can affect the reflections within the delamination. Visually, the pattern on top 

of the 20 mm x 16 mm delamination is the closest match to the measured pattern. Achieving a perfect match, however, 

would be unlikely as the edge effects of the real delamination have not been accounted for in the model.  

 

b) 
a) 
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Figure 4: Signal energy at 50 kHz for a) experimental measurement; b) FEA of 20 mm x 20 mm delamination;  

c) FEA of 20 mm x 16 mm delamination; d) FEA of 22 mm x 16 mm delamination.  

The measured and simulated normalized energy along a horizontal line of measurement points is presented in Fig. 5a. 

Good agreement (within 5%) was observed between the experiment and each of the FE delamination shapes for the incident 

wave (-30 mm to -12 mm). The forward scattered wave beyond +10 mm also shows good agreement for all cases. On top 

of the delamination region a significant increase in energy is observed, consistent with the 2D scans presented in Fig. 4. 

For the 20 mm x 20 mm and 20 mm x 16 mm delaminations, the location of the major peak at +7 mm matches the 

experimental peak, however there is some variation in the magnitude of the energy at this location. The experimental 

energy trapping on top of the delamination is generally lower for the FE simulations, particularly towards the entrance of 

the delamination. The pattern of peaks inside the delamination is unique for each FE case.  

 
 

Figure 5: Comparison between measured and simulated energy for several delamination shapes along a) horizontal line 

passing through delamination center; b) circle of measurement points with radius 30mm, centered on the delamination.  

a) 
b) 

a) b) 

c) d) 
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In contrast, the scattered energy on a 30 mm circle (in the undamaged part of the plate) shows limited variation with 

delamination shape, as demonstrated in Fig. 5b. Good agreement with the experiment is seen in the 0° and 180° directions. 

However, the reduction in FE amplitude at 30° and 330° is not as strong as observed in the measurements. 

 

5. INFLUENCE OF DELAMINATION DEPTH 

The depth of a 20 mm x 20 mm circular delamination was varied systematically between each of the ply layers in the 

laminate. Figure 6 shows the simulated energy field at each delamination ply depth. When the delamination is located 

between the first and second plies (0.2 mm depth, Fig. 6a) a region of low amplitude can be observed. This is in contrast 

to literature, which predicts large wave trapping amplitude for the thin sub-laminates due to the lower bending stiffness in 

a thinner structure. Wave trapping on top of the delamination is observed at 0.4 mm and 0.6 mm depth (Fig 6b/c). At the 

midplane of the plate (Fig. 6d) energy trapping on top of the delamination is limited, however a high energy forward 

scattered wave is present, with two distinct shadow regions of low amplitude either side of the high energy region. As the 

delamination depth is increased beyond the midplane (Fig 6e/f/g), limited amplitude increase is observed on top of the 

delamination as wave trapping is occurring in the lower sub-laminate on the opposite side of the plate to the monitoring 

points. At each delamination depth, the crescent shape in front of the defect indicates that interference between incident 

and reflected wave is occurring.  

The angular variation of scattered energy with delamination depth, on a circle of measurement points (r = 30 mm) is 

presented in Fig. 7. The scattering patterns at symmetric delamination depths are identical, but indicate that delamination 

depth influences the scattered energy. This could be due to the different layup of the sub-laminates for different ply depths.  

For delaminations at a single ply layer depth (Fig. 7a) the energy drops in the 30° direction. A forward scattered lobe in 

the 0° direction is observed for both the ply 2-3 case (Fig. 7b) and the ply 4-5 case (Fig. 7d). The amplitude of the forward 

scattered lobe at the midplane is approximately 25% higher than observed for 0.4 mm delamination depth. This could be 

due to the symmetric ply layup of the sub-laminates for a mid-plane delamination. An asymmetric forward scattered lobe 

is observed for the ply 3-4 delamination, due to the asymmetry in the layup of the top sub-laminate for this case (Fig. 7c).  

 
 

Figure 6: Normalized energy over 40 mm x 40 mm grid at 50 kHz for different delamination depths: a) 0.2 mm (ply 1-2);  

b) 0.4 mm (ply 2-3); c) 0.6 mm (ply 3-4);  d) 0.8 mm (ply 4-5) ; e) 1.0 mm (ply 5-6); f) 1.2 mm (ply 6-7);  

g) 1.4 mm (ply 7-8).  

 

a) b) c) d) 

e) f) g) 
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Figure 7: Normalized energy on 30mm circle of measurement points for symmetric delamination depths; a) 1 ply layer 

depth; b) 2 ply layer depth; c) 3 ply layer depth; d) midplane delamination. 

6. CONCLUSIONS 

Guided wave propagation and scattering in a quasi-isotropic laminate with an artificial insert delamination has been 

investigated through both noncontact laser measurements and finite element simulations. Good agreement was observed 

for the scattered energy outside of the delamination region. Reasonable agreement for the interference pattern on top of 

the delamination was observed. Small changes in delamination shape and size were demonstrated to have a significant 

effect on the wave trapping on top of the delamination, but showed only limited variation in scattered energy around the 

defect. In the simulations, the delamination depth was varied between each of the ply layers in the laminate. Wave trapping 

was generally observed for shallower defects, and the highest forward scattered energy was observed for the delamination 

at the mid-plane of the plate. Varying the delamination depth affects both the wave trapping on top of the delamination, 

and the scattering outside of it. Delaminations located at symmetric ply depths were shown to have identical scattering 

patterns in the undamaged part of the specimen. The sensitivity of guided waves for the detection of delaminations due to 

barely visible impact damage (BVID) in composite panels has been investigated. 
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