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Abstract

Machine learning algorithms and systems are progressively becoming part of our

societies, leading to a growing need of building a vast multitude of accurate, reliable

and interpretable models which should possibly exploit similarities among tasks.

Automating segments of machine learning itself seems to be a natural step to undertake

to deliver increasingly capable systems able to perform well in both the big-data

and the few-shot learning regimes. Hyperparameter optimization (HPO) and meta-

learning (MTL) constitute two building blocks of this growing effort. We explore

these two topics under a unifying perspective, presenting a mathematical framework

linked to bilevel programming that captures existing similarities and translates into

procedures of practical interest rooted in algorithmic differentiation. We discuss the

derivation, applicability and computational complexity of these methods and establish

several approximation properties for a class of objective functions of the underlying

bilevel programs. In HPO, these algorithms generalize and extend previous work

on gradient-based methods. In MTL, the resulting framework subsumes classic and

emerging strategies and provides a starting basis from which to build and analyze

novel techniques. A series of examples and numerical simulations offer insight and

highlight some limitations of these approaches. Experiments on larger-scale problems

show the potential gains of the proposed methods in real-world applications. Finally,

we develop two extensions of the basic algorithms apt to optimize a class of discrete

hyperparameters (graph edges) in an application to relational learning and to tune

online learning rate schedules for training neural network models, an old but crucially

important issue in machine learning.
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One primary contributions of this dissertation is to develop, motivate and analyze a

unifying framework for hyperparameter optimization and meta-learning. We use a

concise but expressive formalism, grounded in mathematical bilevel programming,

that abstracts from case-specific implementation details and allows us to highlight

similarities and differences between various learning and meta-learning algorithms.

We anticipate that the dissemination of this framework in the academic community will

help scholars and researchers to approach more smoothly these two important fields

of machine learning research. We further believe that the framework can contribute

to accelerating the research activity in the area of meta-learning, providing a starting

conceptual and analytical basis which researchers may leverage in order to quickly

prototype and develop novel algorithms.

We study several practical procedures for solving bilevel problems that arise in

machine learning, closing existing gaps in the literature and proposing novel schemes.

By and large, the thesis presents a series of general-purpose computational tools which

may be integrated into several machine learning pipelines, to optimize hyperparameters

or to meta-learn tailored algorithms. The resulting procedures may increase the value

of data both in the corporate and in the public sector, possibly unlocking previously

unfeasible applications. In a broader context, these tools may also constitute a step

forward to the important goal of democratizing machine learning. In fact, they can

simplify and partially automate the selection of various hyperparameters of many

popular learning algorithms, for instance by finding performing learning rate schedules

for training deep neural networks.

Finally, the material that we present in the second last chapter of this thesis
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might constitute a stepping stone for the study and development of methods that

learn discrete dependency structures from data. The framework and the practical

procedure that we develop may help promote the adoption of relational learning

techniques, enabling their usage in scenarios previously out of reach. Progresses in

this direction could have a potential impact in many important sectors of public and

private interest, such as digital health or transportation, where relevant interactions

and phenomena are inherently discrete. In machine learning, future applications

may include the development of meta-learning algorithms capable of manipulating

symbolic structures such as computational graphs or logic expressions. In turn, these

efforts might contribute to closing the gap between “classic” approaches to artificial

intelligence and modern practices.
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Chapter 1

Introduction

The increasing complexity of machine learning algorithms has driven a large amount

of research in the area of hyperparameter optimization and automatic machine learning.

Likewise, increasing attention has been dedicated to the problem of meta-learning,

or learning to learn (we will use these two terms interchangeably) as the research

community shifts its focus from solving single problems in isolation to studying and

developing more elaborate systems able to learn and adapt quickly to several different

tasks.

The core idea of hyperparameter optimization (HPO) is relatively simple: given a

measure of interest relative to the performance of a model (e.g. the misclassification

error) HPO methods use a validation set to construct a response function [Bergstra

and Bengio, 2012] of the hyperparameters and explore the hyperparameter space to

seek for an optimum. This process constitutes an empirical approach for calibrating a

learning algorithm in order to reduce the generalization error of the learned statistical

models that it produces. Consider, for example, the problem of learning a phoneme

classification model as a part of an automatic speech recognition system (ASR) [Yu

and Deng, 2016]. Instances in the domain space – feature vectors extracted from

few milliseconds of recorded speech – should be mapped to a probability distribution

over phonemes through multiple layers of affine and nonlinear transformations. A

priori, however, there is no prescription on the exact number and dimensionality of

these transformations. Furthermore, secondary tasks, such as recognizing the speaker

identity, might provide beneficial supervisory signal; but their strength should be
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calibrated and validated against the primary performance criterion.

Meta-learning (MTL) instead, in its general (inductive) formulation, deals with

the problem of finding a good algorithm that performs well on a whole class of tasks

[Baxter, 1998]. The central idea is that, by extracting and exploiting information

originated by a multitude of different (but related) tasks, one can learn an inductive

bias specifically tailored to the family of problems of interest. Continuing with the

previous example, suppose now that we wish to incorporate into our ASR system

the ability to adapt to different speakers’ accents or to compensate for the presence

of various noise sources such as the car engine while driving, or the background

chats of a pub. It is quite unrealistic (as well as computationally wasteful) to think

of training a single monolithic model by collecting enough data for all the different

possible scenarios. We may, instead, imagine bootstrapping a core phoneme classifier

by learning small situation-specific filters based on a few samples collected on the

fly. To simulate the working conditions of the system, we can group the available

data into different tasks, characterized by accent or noise types, thereby constructing a

“set of datasets”. Then, we can optimize the core model so that the (generalization)

error incurred by the compositions of the task-specific filters (one per dataset) and

the phoneme classifier is, on average, minimized. At test time, the resulting learning

algorithm, upon receiving data from a novel task, will only need to tune a new small

filter, since the largest part of the model has already been meta-learned.

A Unified View. In HPO the available data is most often associated with a single task

and split into a training set (used to tune the parameters) and a validation set (used to

tune the hyperparameters). In MTL, on the other hand, we assume we have access to

a large quantity of (potentially small) datasets sampled from a common probability

distribution (a meta-distribution). In MTL, the search space often incorporates choices

associated with the hypothesis space and the features of the learning algorithm itself

(e.g., how optimization of the training loss is performed) while in HPO it may include

variables associated to regularizers, model capacity, data prepossessing or augmenta-

tion, and optimization routines. Although experimental protocols and specific design

choices may substantially differ, we will show that it is possible, and indeed natural,
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to develop a framework that encompasses these two branches of machine learning.

The central observation is that, while in standard supervised learning we seek the best

hypothesis in a given space and with a given learning algorithm, in both HPO and MTL

we seek a configuration so that the optimized learning algorithm will produce one or

multiple models that generalize well to new data. Under this common perspective,

both HPO and MTL essentially boil down to nesting two search problems: at the inner

level we seek a good hypothesis (as in standard supervised learning) while at the outer

level we seek a good configuration (including a good hypothesis space) where the

inner search takes place.

Technical Approach and Challenges. The mathematical framework of bilevel pro-

gramming [Colson et al., 2007], where an outer optimization problem is solved subject

to the optimality of an inner optimization problem, offers a natural ground upon which

to develop our unifying view. In fact, once we restrict the scope to learning algorithms

that internally seek to solve an empirical risk minimization (ERM) problem, we will

see that that the resulting framework describes most instances of hyperparameter

optimization and encompasses many existing approaches to inductive meta-learning.

Bilevel programs that arise in machine learning are usually characterized by few

and simple constraints but high dimensional inner and/or outer variables. In addition,

the programs structure is also, usually, quite weak, as the objectives are non-linear and

most often not even quadratic. This is quite the opposite scenario of typical problem

instances considered in the operations research literature [Vicente and Calamai, 1994,

Bard, 2013], where reference application areas include transportation, management

and engineering design.

Unless inner and outer objectives coincide, the bilevel structure cannot be in

general simplified. For all but the simplest cases (e.g. ridge regression), inner problems

of interest do not have analytic solutions, meaning that it is not possible to rewrite the

bilevel programs as a single level problem. Numerical methods are therefore required

to find approximate minimizers. Due to the growing complexity of underlying learning

models (e.g. deep neural networks), finding such approximate minimizer – and thus

being able to evaluate the outer objective at a given point – may take hours, or even
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days.

Hence, we seek for practical techniques that require few function evaluations and,

critically, scale in the dimensionality of the inner and outer variables. The technical

direction that we take in this work stems from the simple observation that in most cases

we “know” the learning system that we employ to solve the inner optimization problem

and thus, in principle, we can “access” to it. This contrasts with the assumption of

many classic approaches to HPO, from grid and random search [Bergstra and Bengio,

2012] to Bayesian optimization [Snoek et al., 2012, Shahriari et al., 2015], which

consider the outer objective as a black-box function, essentially ignoring the inner

problem1. In effect, many algorithms that follow the ERM principle are expressible as

iterative procedures that find approximate (local) minimizers of a regularized empirical

error in some predefined parameter space. The iterative procedure itself is most often

the application of a gradient descent rule to a loss function computed on some training

data (or a subset of it). Hence, by substituting the inner problem with the repeated

application of an optimization dynamics, it becomes feasible – under appropriate

smoothness assumptions – to compute approximations of the gradient of the outer

objective. We refer to this object as the hypergradient, to semantically distinguish

it from the gradient of a single-level, non-nested, objective function. We may then

search for optimal configurations in the hyperparameter space with a gradient descent

procedure, as Figure 1.1 exemplifies. Leveraging the well-known advantages of

dimensionality independence of these optimization techniques [Polyak, 1987a], we

may then formulate and effectively tackle learning problems where the dimensionality

of the outer variables is very high, a particularly desirable scenario in meta-learning.

Conversely, classic approaches to HPO quickly become impractical as the number of

hyperparameters grows and are thus hardly applicable to MTL settings.

Computing the hypergradient constitutes a major technical challenge for the

application of the approximate bilevel programming approach. There are multiple

ways to tackle the problem, which have different trade-offs in terms of running time,

space requirements, and required proprieties of the underlying bilevel problem. One

1 This is, instead, not necessarily true for several classic approaches to MTL where the inner problem
is often an integral part of the design of meta-learning algorithms.
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Figure 1.1: Bottom: response surface, obtained by extensive computation on a fine grid,
and descent trajectory in the hyperparameter space for a small two-layers neural
network trained on MNIST handwritten digits classification dataset. The inner
and outer objectives are mean cross entropy over training and validation set, re-
spectively. The inner objective (i.e. the training error) is optimized with stochastic
gradient descent with momentum and includes an L2 regularization term. The
regularization coefficient coefficient is being optimized, alongside the learning
rate, to reduce the validation error. The arrows in red indicate approximations of
the negative hypergradients computed at each point, and the trajectory in black
is generated by applying an accelerated optimization method (Adam). Lower to
higher values are indicated with colors ranging from canary yellow to dark orange
and black bean. Top: progression of the cross-validation validation error for the
same simulation.

approach is based on a Lagrangian formulation associated with the parameter opti-

mization dynamics. It encompasses the reverse-mode differentiation approach used

by Maclaurin et al. [2015a], where the dynamics corresponds to stochastic gradient

descent with momentum. A well-known drawback of reverse mode differentiation is

its space complexity: we need to store the whole trajectory in the weight space in order

to compute the hypergradient. An alternative approach that we consider overcomes

this problem by computing the hypergradient in forward mode and it is efficient when
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the number of hyperparameters is much smaller than the number of parameters. Both

methods require maintaining auxiliary system, called adjoint and tangent systems for

reverse and forward mode, respectively. They involve the computation of the Jacobians

of the optimization dynamics. These two approaches have a direct correspondence

to two classic alternative ways of computing gradients for recurrent neural networks

[Pearlmutter, 1995]: the Lagrangian (reverse) way corresponds to back-propagation

through time [Werbos, 1990], while the forward way corresponds to real-time recurrent

learning [Williams and Zipser, 1989]. We analyze also procedures that derive form

the application of the implicit function theorem [Pedregosa, 2016, Koh and Liang,

2017] and a closely related approach that involves the differentiation of a fixed-point

equation [Almeida, 1987, Liao et al., 2018]. In a comprehensive literature review on

gradient-based HPO, we will further discuss other recently proposed techniques to

compute or estimate hypergradients such as those employing randomized telescoping

sums [Beatson and Adams, 2019] or hyper-networks [MacKay et al., 2019].

Our reformulations, which allow to derive practical algorithms to compute effi-

ciently the hypergradient, give rise to families of problems that may be interpreted

as “approximate bilevel programs”. We prove that, for a class of inner objectives of

practical interest, when replacing the inner problem with an iterative optimization

dynamics the minimizers of the resulting approximate programs converge to those of

the exact one. We provide non-asymptotic linear rates of convergence for the approxi-

mation errors of the hypergradient for two approaches, when the learning dynamics is

a contraction. We will also investigate empirically the impact of various hypothesis on

the quality of the solutions found by different approximation schemes.

We test the framework in a series of experiments on real-world inspired tasks that

range from detecting noisy examples and discovering relationships between different

learning tasks to quickly tuning few key hyperparameters of a large scale deep neural

network for phoneme recognition. In MTL, by taking inspiration on early work on

representation learning in the context of multi-task and meta-learning [Baxter, 1995,

Caruana, 1998], we instantiate the framework in a simple, yet effective, way. We

propose to treat the weights of the hidden layers of a neural networks as outer variables
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(hyperparameters), while we identify as inner variables the weights of multiple task-

specific classifiers built upon the learned (hyper)representation.

Estimating Hypergradients Online. Even with the introduction of the optimization

dynamics and the application of efficient algorithms, the nested structure of the com-

putation may result in highly non-convex surfaces which may be difficult to opti-

mize: often approximately solving bilevel problems requires hundreds of iterations

of gradient descent to reach promising regions of in the hyperparameter space. This

computational overhead could be an acceptable trade-off in some scenarios, since

the bilevel framework may allow one to define more powerful and complex learning

systems. However, in some others settings, speed is a key factor. We consider therefore

the problem of devising an online hypergradient estimator, so that parameters and

hyperparameters may be optimized jointly, in only one pass. To this end, we exploit

the particular sparse structure of the hypergradient and devise an algorithm, which

we call MARTHE (moving average real-time hyperparamter estimation), that makes

use of moving average estimates to propose hyperparameter updates. We present

an extensive study for the case of optimizing learning rate schedules, conducting

small scale experiments to compare qualitatively optimal (static) schedules to those

generated by MARTHE, and time-controlled real-world experiments to compare with

alternative techniques.

Optimizing Discrete Hyperparameters. A fundamental assumption, necessary to

perform the computation of the hypergradient, is that the objects involved (inner/outer

objectives and optimization dynamics) should be sufficiently smooth. This means

that the inner variables should be real-valued; excluding, in principle, important

configuration parameters. We propose a second extension to allow for the gradient-

based optimization of a class of discrete hyperparameters by introducing suitable

discrete probability distributions. The result is the definition of a bilevel problem

where the inner and outer objectives are minimized in expectation. As the expectations

are intractable in all but the simplest cases, we resort to gradient estimators using

stochastic computational graphs [Schulman et al., 2015] and the straight-through

estimator [Bengio et al., 2013]. We call the resulting method LDS (learning discrete
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structures), and apply it to the problem of reconstructing or learning the edges of

a graph in a relational learning context, where relationships among data-points are

explicitly modelled by undirected unweighted adjacency matrices. LDS makes feasible

to successfully apply graph neural network models [Scarselli et al., 2009], expressive

discriminative models capable of exploiting relational information among data points,

to semi-supervised transductive learning.

1.1 Contributions and Scope
The thesis contributes to the advancement of the field of gradient-based hyperparameter

optimization and meta-learning. More specifically, the work is aimed at showing simi-

larities and proposing a unifying approach to HPO and MTL, under both a conceptual

and an algorithmic point of view. A core part of this research is also dedicated to the

development of extensions of the fundamental algorithms, with the aim of broadening

the range of applicability of gradient-based HPO techniques to previously unexplored

scenarios.

Although, in principle, many techniques discussed may be extended to the unsu-

pervised and reinforcement learning paradigms, throughout the thesis we will consider

supervised or, occasionally, semi-supervised learning problems. In experiments, we

will mostly use either linear (logistic/ridge regression) or deep neural network models

to implement predictors and classifiers. Linear models, amenable to analytic investiga-

tion, provide often a simple but meaningful ground on which to probe the proposed

methods. Experimenting with deep learning models, on the other hand, may potentially

provide useful insight into the application of the developed algorithms to real-world

problems. The thesis touches upon a number of topics in the general field of automatic

machine learning, specifically in hyperparameter optimization and meta-learning (see

Table 1.1 for an overview).

We make the following contributions:

• Formulation and analysis of a unifying framework for hyperparameter opti-

mization and inductive meta-learning [Franceschi et al., 2018a], mathematically

based on bilevel programming and algorithmic differentiation. Bilevel program-
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ming has been suggested before in machine learning in the context of kernel

methods and support vector machines [Keerthi et al., 2007, Kunapuli et al.,

2008], multitask learning [Flamary et al., 2014], and more recently HPO [Pe-

dregosa, 2016], but, prior to [Franceschi et al., 2018a], never in the context of

MTL. The framework will be presented in Chapter 5.

• Derivation of two general iterative procedures (reverse and forward mode) to

compute hypergradients of approximate bilevel problems, which are directly

applicable to both HPO and MTL settings. The reverse mode extends previous

work by Domke [2012] and Maclaurin et al. [2015a], while the forward mode

has never been studied before in these contexts, prior to [Franceschi et al., 2017].

The algorithms will be described in Chapter 5. Several numerical experiments

are, instead, reported in Chapter 7.

• Study of the approximation proprieties of the approximate bilevel program

that arise by replacing the inner problem with the iterations of an optimization

dynamics [Franceschi et al., 2018a], establishing explicit error bounds for the

computation of the hypergradient [Grazzi et al., 2020] for a class of inner

objectives and dynamics. These results are reported in Chapter 6.

• Derivation of an online algorithm, MARTHE, for estimating hypergradients

online and for jointly optimize parameters and hyperparameters of a learning

system, with applications to optimizing learning rate schedules [Donini et al.,

2020]. The algorithm uses a mechanism akin to momentum, exponentially

discounting past information, and smoothly interpolates between two previously

proposed methods, RTHO [Franceschi et al., 2017] and HD [Baydin et al.,

2018a]. We show that MARTHE produces hyperparameter schedules which

result in models with improved generalization on a variety of time-controlled

real-world experiments. MARTHE and relative experiments are presented in

Chapter 8.

• Adaptation of gradient-based HPO methods to work with a class of discrete

hyperparameters (edges of a graph) and development of an algorithm, LDS, that
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simultaneously learns the graph and the parameters of a graph neural network

for semi-supervised classification [Franceschi et al., 2019]. This development is

presented, alongside a series of numerical simulations, in Chapter 9.

Most of the material covered by the thesis has been presented in international

conferences and workshops and is the result of collaboration with other scholars –

the coauthors of the papers listed below. Chapter 3 provided the inspiration and

initial material for a monograph on hyperparameter optimization, in preparation for

Foundation & Trends in Machine Learning. The symbol * denotes equal contribution.

• Conference papers:

– Grazzi R., Franceschi L., Pontil M., Salzo S. On the Iteration Complex-

ity of Hypergradient Computation, Proceedings of the 37th International

Conference on Machine Learning, ICML 2020, Online

– Donini M∗., Franceschi L∗., Majumder O., Pontil M., Frasconi P.

“MARTHE: Scheduling the Learning Rate Via Online Hypergradients”,

Proceedings of the 29th International Joint Conference on Artificial Intelli-

gence, IJCAI 2020, Online

– Franceschi L., Niepert M., Pontil M., He X. “Learning Discrete Struc-

tures for Graph Neural Networks”, Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, Long Beach, USA

– Franceschi L., Frasconi P., Salzo S., Grazzi R., Pontil M. “Bilevel Pro-

gramming for Hyperparameter Optimization and Meta-Learning”, Pro-

ceedings of the 35th International Conference on Machine Learning, ICML

2018, Stockholm, Sweden

– Franceschi L., Donini M., Frasconi P., Pontil M. “Forward and Reverse

Gradient-Based Hyperparameter Optimization”, Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney, Aus-

tralia

• Workshop papers:
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– Franceschi L., Niepert M., Pontil M., He X. “Graph Strucutre Learning

for GCNS”, Representation Learning on Graphs and Manifolds at ICLR

2019, New Orleans, USA

– Franceschi L., Grazzi R., Pontil M., Salzo S., Frasconi P. “Far-HPO:

A Bilevel Programming Package for Hyperparameter Optimization and

Meta-Learning”, AutoML workshop at ICML 2018, Stockholm, Sweden.

– Franceschi L., Frasconi P., Donini M., Pontil M. “A Bridge Between

Hyperparameter Optimization and Learning-to-learn”, Meta-Learning

workshop at NIPS 2017, Long Beach, CA, USA.

– Franceschi L., Donini M., Frasconi P., Pontil M. “On Hyperparame-

ter Optimization in Learning Systems”, 5th International Conference on

Learning Representations (workshop track), Toulon, France.

• In preparation:

– Franceschi L., Donini M., Perrone V., Klein A., Seeger M., Archambeau

C., Pontil M., Frasconi P. Hyperparameter Search and Optimization in

Machine Learning: Problems and Methods, to appear in Foundations and

Trends in Machine Learning

Collaboration with other researcher and research groups has lead to the following

publications in application areas of robotics and speech recognition:

• Villarreal O., Barasuol V., Camurri M., Focchi M., Franceschi L., Pontil M.,

Caldwell D.G., Semini C. “Fast and Continuous Foothold Adaptation for Dy-

namic Locomotion through Convolutional Neural Networks” IEEE Robotics

and Automation Letters, vol. 4, no. 2, 2019

• Badino L., Franceschi L., Donini M., Pontil M. “A Speaker Adaptive DNN

Training Approach for Speaker-independent Acoustic Inversion”, Proc. Inter-

speech 2017, Stockholm, Sweden

Although related, these works are not explicitly covered in this thesis.
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1.2 Outline

The work is divided into three parts. The first part is devoted to a detailed discussion of

background concepts and topics instrumental in the development of the work. Chapter

2 serves as an introduction to the notation and to fundamental topics such as supervised

learning and gradient-based optimization for machine learning. Chapters 3 and 4 are

dedicated to a review of hyperparameter optimization and meta-learning, respectively.

There, we will introduce the core problem settings, discuss similarities and differences

with related fields and present relevant algorithms, strategies and techniques. Since in

this work we propose a unifying framework between HPO and MTL, we believe that

a thorough review of these two areas of research is essential to better frame and put

into perspective our contributions. In particular, in Chapter 3, we will analyze the core

components of the main approaches to HPO. This should help underpin the peculiar

aspects of the gradient-based technique, highlighting its advantages and limitations. In

Chapter 4, we will attempt to present a broad account of meta-learning that captures

its central issues and questions. By discussing the internal working of several MTL

algorithm developed over the last decades, we hope to foster the intuition behind the

instantiation of our proposed framework in this area, exposing, at the same time, its

limits.

The discussion of the contributions of our thesis, outlined in Section 1.1, starts

in the second part. We introduce and discuss the proposed bilevel programming

framework for HPO and MTL and derive the main algorithms in Chapter 5. We provide

a theoretical analysis of various aspects of the procedures in Chapter 6, complementing

our investigation with some targeted numerical simulations. In Chapter 7 we conduct a

series of experiments with various instantiations of the proposed framework inspired by

real-world applications in HPO and MTL, presenting comparisons with case-specific

baselines and competing methods.

The final part covers extensions of the main algorithms with in-depth applications

to two specific case studies. First, in Chapter 8, we focus on the problem of estimating

hypergradients online, where we consider the important case of tuning learning rate

schedules for deep neural networks. Second, we turn our attention to problems that
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Figure 1.2: Structure of the thesis.

feature discrete outer variables (Chapter 9). We present applications to relational

learning with graph neural networks where we learn discrete dependency structures

between data points. Finally, we draw conclusions and discuss ongoing and possible

future research directions in Chapter 10.

Figure 1.2 illustrate the structure of the thesis and Table 1.1 lists many of the

topics discussed in the thesis, with references to chapter and sections
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Table 1.1: List of topics discussed in the thesis, with references to chapters and sections, in
loose apparition order.

Topics Occurrences

Supervised learning 2.1; 7.1; 8.5
— Transductive learning 2.1; 9
— Learning algorithm (definition of) 2.1; 3.1
Regularization 2.1; 3.2.2 7.1
Linear models 2.2; 6.2.1; 7.1.1
Neural network models 2.3; 3.2.1
— Feed-forward neural nets 7.1.2; 8.4
— Convolutional neural nets 7.2.2; 8.5
— Recurrent neural nets 5.4.1; 5.4.2
— Graph neural nets 9
— Equilibrium models 5.4.3; 6.3.4
Gradient descent and variants 2.4
— Learning rates 3.2.3; 5.3.1; 8;
Algorithmic differentiation 5.4.1; 5.4.2; 6.1; A
Bilevel programming 5.2; 6; 9.3
Hyperparameter optimization 3; 4.3.5; 5.2.1; 7.1
— Online hyperparameter optimization 3.3; 5.4.2.1; 7.1.2; 8
— Neural architecture search 3.2.1; 9.6
Multitask learning 3.2.1; 3.2.2; 4.3.2; 7.1.1; 7.2.3
Meta-learning 4; 5.2.2; 7.2
— Meta-learning algorithm (definition of) 4.2
— Meta-distribution 4.2; 7.2.2
— Few-shot learning 4.1; 4.2; 7.2
— Meta-learning representations 4.4.1; 4.4.2.3; 7.2
— Meta-learning initialization (MAML) 4.4.2.3; 5.3.1
— Learning to optimize 3.2.3; 4.4.2.3
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Chapter 2

Supervised Learning and

Optimization

In the last decade, machine learning has established itself as one of the main drivers of

innovation and economic growth in the industry [Society, 2017], while its research

community is expanding at an unprecedented speed. Undoubtedly, a portion of

its success is due to the paradigm shift brought by advances in representation and

deep learning, which could easily capitalize on an increasing availability of data and

compute. Rather than extracting hand-engineered rules and features, deep neural

networks learn data-driven hierarchical representations which may be easily adapted

to several downstream tasks, in an “end-to-end” fashion.

Using these techniques, several application problems that have vexed researchers

since the seventeens have now sufficiently accurate solutions – handwritten characters

recognition [Graves and Schmidhuber, 2009], natural language translation [Wu et al.,

2016], game playing [Mnih et al., 2015] and language modelling [Brown et al., 2020]

are some prominent examples. Finding these solutions, however, may require con-

siderable computational and human effort, as frequently the best-performing systems

are composed by complex models resulting from the application of heavily hyperpa-

rameterized algorithms. The generalization performances of these models are often

sensitive to the configuration settings, to the point that the correct choice of a handful

of these may make the difference between success and failure of the entire learning
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process1. The main goal of hyperparameter optimization is to automate the search

process, thereby improving researchers productivity (and their well-being) and models’

generalization performances, as well as allowing for a more flexible design of the

underlying learning algorithms2. Furthermore, effective hyperparameter optimization

may contribute to the democratization of machine learning. It may lead to the devel-

opment of machine learning tools capable of “hiding under the hood” an increasing

number of complex configuration parameters whose presence could otherwise hinder

the access of non-expert users to more elaborate techniques.

Another bottleneck of many current approaches is represented by the vast quantity

of data often required by the learning algorithms to achieve satisfactory results. In

contrast, we are typically able to adapt quickly and generalize effectively to new

situations and tasks, often based on very limited evidence. This is possible by accessing

to acquired knowledge, by retrieving past relevant experience and by relating new

tasks to previously encountered ones, among other cognitive processes that may

potentially intervene. In short, we solve problems organically rather than in isolation.

Recent advances in the fields of multitask, transfer and meta-learning are beginning

to address this and related issues, whereby the idea of discovering entirely novel

learning algorithms and relationships directly from data (rather than relying on strict

hand-crafted routines and structures) is making its way in the research community.

Hyperparameter optimization and meta-learning lift the problem of learning

from the space of features and functions to the space of entire learning algorithms.

1 To cite a distinguished example, squashing nonlinearities such as the hyperbolic tangent and
the logistic function have been for many years the uncontested choice for the activation function
of neural networks. This prevented, for various reasons, the successful training of deeper models
[Bengio et al., 1994, Glorot and Bengio, 2010]. The “simple” action of changing the value of this
critical hyperparameter (e.g. by employing the rectifier linear unit [Glorot et al., 2011] or variants) has
essentially removed a major roadblock for the development of an entire field – although, in this case,
the change did not happen through the application of hyperparameter optimization tools.

2In fact, most of the hyperparameters contribute in defining what may be described as “a space
of hypothesis spaces”. Informally speaking, the bigger this space, the more likely that it will include
a hypothesis space that, in turns, contains a hypothesis which fits well the task at hand. Then again,
the bigger the space, the more difficult the resulting optimization process may become, increasing the
risks of “getting stuck“ around poor hypothesis spaces. A good HPO technique, improving on the
optimization in such space of spaces, should in principle allow for the “design” and effective utilization
of richer spaces and, hence, more flexible learning algorithms. An additional potential problem of a too
large space is the possibility of overfitting the objective function being optimized, that is typically a
validation error. We will return to this point in Section 3.6.
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In drawing a sort of parallelism with representation learning, they may have the

potential to deliver a series of enabling techniques which could dramatically further

the development of machine learning and its applications.

We will proceed with the formal treatment and review of hyperparameter opti-

mization and meta-learning in Chapter 3 and Chapter 4, respectively. Before doing so,

we introduce in this chapter some basic notation and concepts of supervised learning

(Section 2.1) and present key models such as linear regressors, logistic classifiers

(Section 2.2) and artificial neural networks (Section 2.3). The chapter concludes

with a section dedicated to optimization techniques (Section 2.4), where we present

standard procedures and theoretical results as well as algorithms and practices closer

to applications to deep learning.

2.1 The Supervised Learning Problem
Broadly speaking,

Machine learning algorithms are computer programs characterized by

the ability to improve their performances3 at a class of tasks through

experience. [Mitchell, 1997]

The way in which the experience is collected and processed and the different types

of performance measures and tasks define the three major paradigms of machine

learning: supervised, unsupervised and reinforcement learning. In this work, we focus

on the first of these three paradigms and touch upon some of its variants, such as

semi-supervised learning (Chapter 9).

Supervised learning is marked by the presence of a supervisory signal in the

learning environment, which typically associate a “correct” label or target y ∈ Y to

each available datapoint x ∈ X , where X and Y are an input and an output space. We

often assume that X is a subset of Rn for some n. The output space may also be a

subset of Rc, in which case we talk about regression problems (e.g. predicting the

selling price of a house, based on the location and size), or a categorical space, where

|Y | = c and we are considering a classification problem (e.g. detecting the presence

3The concept of performance should be regarded as an externally defined measure.
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of certain items in a picture). We assume that the phenomenon, or concept, from

which the inputs are observed and linked to the outputs is described by an underlying

joint probability distribution on X ×Y which we denote4 by px,y. Standard supervised

learning algorithms infer mappings, or hypothesis, h : X → Y in a certain hypothesis

space H that can capture the relation between inputs and outputs. The hypothesis

may be either stochastic or deterministic. H could be, for instance, the space of linear

functions between X and Y . By introducing a loss function ` : Y ×Y → R+ (e.g. the

least square error `(y,y′) = ||y− y′||2) which measures the error between predictions

and targets, we can define the expected risk, or generalization error, of h as

E(h, px,y) = E(x,y)∼px,y

[
`(h(x),y)

]
=

∫
X×Y

`(h(x),y) d px,y. (2.1)

which expresses the overall performance of h on the task described by px,y (according

to `). One would like to pick h∗ ∈ argminh∈HE(h, px,y). This is, however, not possible

since px,y is unknown.

We can only observe a finite number of realizations of the phenomenon, i.e. the

learning algorithm can only have access to a dataset of points D = {(xi,yi)}Ni=1, which

are typically regarded as i.i.d. samples from px,y. An ubiquitous approach in machine

learning, called empirical risk minimization (ERM), involves replacing (2.1) with the

computable quantity

Ê(h,D) =
1
N

∑
(x,y)∈D

`(h(x),y) (2.2)

called empirical risk or error and search for hypothesis within H which minimize (2.2).

One of the drawbacks of this approach is that the empirical risk minimizer may overfit

the objective (2.2) at the expense of (2.1), leading to models that generalize poorly,

possibly capturing noise present in D. To mitigate this phenomenon, often the empirical

4 If x is a random variable, we denote by px its probability distribution. Writing x ∼ px simply
means that x is distributed according to px (note the use of the same letter), while with z ∼ px we mean
that we draw from px – z is a realization, i.e. a point in the codomain of x. If x is discrete, then px is a
probability mass function, if x is continuous, then px is a probability density function. If y is a random
variable or a realization, px(·|y) denotes the conditional distribution of x given y. We use this same
notation also when y represents a parameters of the distribution. Throughout this work, to keep the
presentation lean, when introducing a mapping we will indicate its deterministic domain and codomain.
We may, however, evaluate it passing random variables (of the correct type) as arguments, leaving the
definition of the relative higher-order mapping implicit.
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error is augmented with a regularization term that favours certain solutions over

others (e.g. “simpler” solution over complex one), based on background knowledge

of the task, computational requirements or empirical observations. The study of

regularization methods is of central importance in machine learning [see e.g. Vapnik,

2013, Friedman et al., 2001, Goodfellow et al., 2016]. We will return later on this

topic when discussing the role and impact of regularization hyperparameters in Section

3.2.2. On the other hand, underfitting may happen when the empirical risk minimizer

fails to sufficiently capture the complexity of the data. This, again, leads to models

that generalize poorly, but, this time, for the opposite reason. Underfitting is most

often associated with a wrong choice of the hypothesis space, e.g. when H contains

too simple functions.

Rather than searching directly in spaces of functions, it is very common to

parameterize H so that each hypothesis is described by its parameter (or weight) vector

w ∈W , where W is most often a subset of Rd, for some d. An inductive ERM problem

(with Tychonov regularization) takes very often the form

min
w∈W

L(w,D) = min
w∈W

1
N

N∑
i=1

`(hw(xi),yi) +ρΩ(w), (2.3)

where Ω is a regularizer which may help prevent overfitting and ρ is a positive coeffi-

cient. The usage of appropriate regularization techniques is particularly important for

the overparametrized case, when Problem (2.3) admits multiple solutions. When the

context is clear, we will drop from L the dependency on the dataset D.

Inductive and Transductive Learning. What we have discussed so far pertains the

so-called inductive learning setting: from a set of observations the goal is to induce a

hypothesis that agrees with the data, but also generalizes (i.e. has a low expected error

(2.1)). Among all the possible functions that may explain the data, the vast majority

would not generalize at all: think about h(x) = yi if x = xi is a training point, and

h(x) = 0 otherwise. The empirical risk (2.2) of h is 0, regardless of the task, but very

likely its generalization error (2.1) would be quite high. One expects, in fact, that

such a hypothesis would strongly overfit. When learning by induction, the inductive
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bias, implemented through the definition of the hypothesis space and regularization,

discards hypotheses that are deemed “unlikely” in some sense (e.g. are discontinuous).

Another setting is that of transductive learning [Gammerman et al., 1998]. Closely

linked to semi-supervised learning, transductive learning algorithms forgo the search

for hypotheses that generalize over the entire domain X , and only focuses on giving

predictions for a finite set of points which are already part of the observations. Typ-

ically, given a dataset of training (or support) examples D = {(xi,yi)}
N1
i=1 and testing

(or query) points D′ = {x j}
N2
j=1 a transductive learning problem consists in finding a

hypothesis that minimizes the error over D′. Differently from the inductive setting,

transductive hypotheses, being “one-use only”, take as input both D and D′. Since one

is not interested in generalizing beyond D′, usually the inductive bias of a transductive

learning algorithm, although present, may be comparatively weaker. Furthermore,

the algorithm may greatly benefit from additional information that relates support

and query points, which could be represented by a graph. Consider, for instance, the

problem of classifying the topic of a scientific article based on a feature vector that

summarizes its content (e.g. bag of words). The task may become substantially easier

if one has also access to the citations of other papers: one typically can expect that

the probability of citing another article of the same topic is higher than that of citing

a paper from a different topic. Thus, given a set of labelled and unlabelled articles

with their citation network (which can be regarded as an unweighted directed graph), a

transductive learning algorithm may leverage information from the entire set, not just

from the labelled examples. The resulting hypothesis (e.g. implemented by a graph

neural network) may propagate and aggregate the features of “neighbouring” articles

to predict the topics of papers in the query set. It is, however, specialized on the dataset

that has been used for training: classify new articles would, in principle, require rerun

the algorithm, as the resulting hypothesis would differ (note that this is not the case for

inductive learning algorithms). We will look more closely at the transductive learning

scenario in Chapter 9, presenting also numerical experiments on tasks very similar to

this example.
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Learning as Executing Algorithms. Under a more general perspective, the process

of learning may be regarded as the execution of an higher order function A (a learning

algorithm) that maps a set of training data5, representing available experience, to a

hypothesis: the result of a search conducted in a hypothesis space H. The search

is often carried out by minimizing the empirical risk, whereby the minimization

procedure should be considered as part of A itself. All the variables that are not part of

this search may be considered hyperparameters of the learning algorithm. For instance,

if A implements the minimization of (2.3) in a parameterized space of feed-forward

neural networks (Section 2.3), then both the coefficient ρ and the regularizer mapping

Ω may be regarded as hyperparameters.

We will expand on this view later on, starting from Section 3.1. We now proceed

with the introduction of common loss functions ` employed in supervised learning and

offer a brief overview of two prevalent classes of models which we will use extensively

throughout this work.

2.2 Linear Models and Supervised Loss Functions
Linear (or affine) mappings are among the simplest and oldest model types routinely

employed in supervised learning. They take the form of

hw(x) = Wx + b with W ∈ Rc×n, b ∈ Rc and w = (W,b) ∈ Rc(n+1), (2.4)

where n and c are the dimensions of input features and the target outputs, respectively.

It is intended that w is obtained by concatenating and vectorizing as appropriate the

single parameters. The hypothesis space for these type of models is therefore described

by all the affine functions from Rn to Rc. A common choice for the loss function for

regression tasks is the squared error

`(hw(x),y) = ||hw(x)− y||2. (2.5)

For classification problems, a natural choice would be that of discretizing the

5 In the case of transductive learning, this includes also the query set and, possibly, other (relational)
information.
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predictions of hw by thresholding and check whether the result matches the target

class. For instance, for a binary problem, encoding the positive class with y = 1 and

the negative with y = −1 one could set

`(hw(x),y) = [−y sign(hw(x))]+ ∈ {0,1}, (2.6)

where sigm(z) = 1 if z ≤ 0 and −1 otherwise, and [z]+ = max{z,0} is the positive part;

for multiclass problems, where y ∈ {1, . . . ,c}, one could use

`(hw(x),y) = ι{ j,y}

(
arg max

i={1,...,c}
hw(x)i

)
∈ {0,1} (2.7)

where ι is the indicator function. These are called 0-1 losses and have the clear

disadvantage of having uninformative gradients almost everywhere. Seldom used

as optimization objectives during training, (2.6) and (2.7) are often reported as final

measures of accuracy. One common workaround to obtain a meaningful gradient is

that of constructing a probability distribution from the models output using the softmax

function

softmax(hw(x)) =
ehw(x)∑c

i=1 ehw(x)i
∈ (0,1)c (2.8)

where the exponentiation at the numerator is element-wise, and employ the cross-

entropy loss6

`(hw(x),y) = − log[softmax(hw(x))y] = − log
(

ehw(x)y∑c
i=1 ehw(x)i

)
. (2.9)

The quantity hw(x)y is the component of the output vector relative to the y-th class

and it is interpretable as the unnormalized probability that the model assigns to

the event “x belongs to the class y” (y ∈ {1, . . . ,c}). The denominator
∑c

i=1 ehw(x)i

provides the normalization factor, so that from (2.8) one may easily forms a discrete

probability distribution (a probability mass function) over the c classes. Hence, the

cross-entropy loss (2.9), convex with respect to w, increasingly penalizes the model as

6Also called negative log-likelihood, the cross-entropy is equivalent to the logistic loss for the case
of binary classification, up to a constant.
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[p(hw(x))]y departs from 1. The convexity implies that gradient descent procedures

that minimize (2.9) converge to a minima (see Section 2.4.1). After training, frequently

the output of classifications models is reconverted to be deterministic, setting h̃w(x) =

argmaxi hw(x)i.

In the case that instances may belong to more than one class (e.g. for detecting

all the items in a picture rather than just one main object), one common approach it to

employ the squared loss in conjunction with the logistic function:

`(hw(x),y) =

∥∥∥∥∥(1 + e−hw(x)
)−1
− y

∥∥∥∥∥2

where the target y ∈ [0,1]c can hold more than one nonzero element and the exponen-

tiation is element-wise. The i−th entry of
(
1 + e−hw(x)

)−1
may be interpreted as the

probability that the model assign to the event “x contains the i-th object”.

For scalar models (c = 1), typical regularization methods involve penalizing the

Lp norm of W. Notably, the L2 norm (standard Euclidean norm) promotes low variance

while the L1 norm promotes sparsity in the solution vector. When c > 1 (multivariate

regression, multiclass classification), alongside entrywise equivalents of the previous

norms (i.e. Frobenius norm for L2 regularization), several regularization methods that

relate different rows of W (interpreted as solution vectors of c different tasks) have

been extensively studied in the context of multi-task learning. Among these, Laplacian

or elliptic regularizers of the type Ω(w) =
∑

i, j ci j||wi −w j||
2, where wi are the rows

of W, promote similarities among tasks, while spectral regularizers such as the L1

norm on the eigenvalues of W (nuclear norm) promotes low rank solutions [Mazumder

et al., 2010]. See also Section 3.2.2 for more details and Section 7.1.1 for experiments

in this setting, where we optimize the coefficients ci j of Ω. Adding L2 or Frobenius

norm regularizers to convex objectives like (2.9) constitutes also a simple procedure to

obtain strong convexity which, in turns, guarantees uniqueness of the minimizer.

Linear models attempt to explain outputs as weighted combinations of the raw

inputs. They may therefore fail to capture complex relations and generally do not

perform well when the raw features do not carry enough readily accessible information

(e.g. x are image pixels). One way to overcome these limitation, linked to kernel
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methods [Murphy, 2012, ch. 14], is to transform the instances through some predefined

features map χ : X → V , where V is a (possibly infinite dimensional) feature space

and then fit a linear model from V to Y . Another approach, which we describe next, is

to directly learn parameterized feature maps from data, incorporating them into the

model itself.

2.3 Deep Neural Networks
The collective name “deep neural networks” [Bengio, 2009, LeCun et al., 2015,

Goodfellow et al., 2016] describes now a large class of models which share some

typical design features and concepts such as the use of repeated compositions of

simple parameterized mappings, called layers, the usage of distributed hierarchical

representations and the centrality of modular approaches. Feed-forward (densely

connected) neural networks are possibly the simplest non-trivial instantiation. In these

type of models, affinities (2.4) are composed with nonlinear functions over multiple

layers, pushing the input through several intermediate representations. Specifically,

the model’s output is given by hw(x) = zL(x), obtained as

z1(x) = σ1(W1x + b1);

z2(x) = σ2(W2z1(x) + b2);
...

...

zL(x) = WLzL−1(x) + bL.

(2.10)

The function σi are nonlinear element-wise operators, called activations (common

instances are the logistic, ReLu [Glorot et al., 2011] or leaky ReLu [Maas et al.,

2013] functions), while the variables zl(x) are are called neurons or (hidden) units –

the jargon being inherited from the neuroscientific origins of these type of models

[Rosenblatt, 1958]. The weight vector is hence given by w = {Wi,bi}
L
i=1. The depth L

and the dimensionalities of the hidden layers zi specify the architecture of the network,

defining the hypothesis space H for these type of models. The architecture is typically

considered fixed or treated as a series of hyperparameters. Researchers have proposed

over time several approaches that adapt depth, dimensionalities and also connectivity
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patterns during training (see e.g. [Fahlman and Lebiere, 1990] for early work and

[Cortes et al., 2017] for a more recent attempt). Correlated to these studies, neural

architecture search has emerged lately as a very active sub-branch of hyperparameter

optimization and meta-learning. It aims to automatically discover novel architectures

tailored to a given downstream task, starting from simple building blocks (see Section

3.1 for further discussion).

Densely connected layers and networks may be suitable for a series of applications,

including, for instance, the phone recognition task mentioned in the introductory

chapter. In other fields, however, more complex architectures have been proven

to yield considerably better results. For instance, in visual tasks such as image

classification, the affinities in (2.10) are replaced with convolutional operators7. Other

now “standard” modification to the simple feed-forward architecture include adding

pooling, attention [Vaswani et al., 2017] and normalization layers [Ioffe and Szegedy,

2015, Ba et al., 2016], as well as employing different connectivity patterns among

layers. Researchers have developed a series of neural models for processing other

types of inputs: recurrent neural networks maintain an internal state and are apt to

process sequential data [Werbos, 1990, Hochreiter and Schmidhuber, 1997]. Graph

and recursive neural networks employ message passing mechanisms to handle graph

structured data [Scarselli et al., 2009, Frasconi et al., 1998, Kipf and Welling, 2017].

We will discuss these models and other variations more in depth in the following

chapters, as the need arises.

Learning hw is most often cast to an optimization problem using supervised loss

functions such as those described in the previous section – in fact the last layer in (2.10)

is essentially a linear model that acts on the features zL−1(x) rather than directly on x.

This remains mostly true also for more complex neural models, with small variations

depending on the type of output data. Differently from the linear case, however, the

resulting objectives are no longer convex w.r.t. w, giving rise to a series of issues

related to nonconvex optimization (multiple minima, saddle points, local proprieties

of the optimization landscape, etc.) which have been (and still are) subject of much

7In fact, convolution and cross-correlation can still be still represented with the equations (2.10),
where the weights Wi are (sparse and structured) block circulant matrices.
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research in the field (see for instance [Baldi and Hornik, 1989, Dauphin et al., 2014,

Li et al., 2018b]). Since neural networks are most often emploied in the presence of

large datasets, and w may contain hundred of thousands or millions of parameters, the

optimization routines of choice are typically stochastic first order methods, such as

SGD or accelerated variants (see Sections 2.4.2, 2.4.3).

A Brief Historical Note. Neural networks were introduced in the fifties as simple

models for simulating neural activity, supporting the argument that the brain acts

(mainly) through connectionist, rather than symbolic, manipulation. The perceptron

[Rosenblatt, 1958], given by hw = sign(Wx + b) is a famous example of these early

models. Learning took place through the application of heuristic rules for adjusting the

weights given a supervisory signal8 such as Hebbian learning [Rosenblatt, 1958]. If, on

the one hand, stacking multiple perceptrons did not yield appreciable results, mainly

due to the underlying difficulties of finding solutions to the resulting combinatorial

optimization problems, on the other hand, soon it became clear that the basic model

had some serious limitations [Minsky and Papert, 1969]. This realization extinguished,

at that time, much of the early interest of the community.

Toward the end of the eighties researchers started replacing “hard” nonlinearities

with “soft” counterparts, e.g. by using the logistic activation function σ(z) = (1+e−z)−1.

This modification of the earlier design pattern allowed us to cast effectively the

search for good connections (weights) to a continuous optimization problem, quite

similar to (2.3). In 1988, Rumelhart et al. [1986] demonstrated the application of

the backpropagation algorithm9 to learn a five layers neural network for recognizing

kinship of a small group of people. The work is generally regarded as one of the first

successful example of learning intermediate (or hidden) data-driven representations.

Crucially, the gradient of the objective function could be computed accurately and

efficiently, costing only a small multiplicative factor of the computation of the objective

function itself.

Equipped with convenient differentiable parametrizations, neural networks could

8 The gradient of any loss function that depends on this kind of hw is not informative, being 0 almost
everywhere; inf fact, a resulting optimization problem would be combinatorial in nature.

9An instantiation of reverse-mode algorithmic differentiation, see Chapter A.
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effectively leverage the advances in smooth unconstrained optimization methods (see

Section 2.4.3), and underwent a renewed, yet not lasting, period of interest. Over-

shadowed by emerging techniques more strongly rooted in statistical learning, such as

support vector machines and kernel methods [Vapnik, 2013], research continued to

later resurface roughly a decade ago. The field, re-branded as deep learning, has seen,

since then, a number of advancements pertaining architecture design (convolutional

layers [LeCun et al., 1998], rectifier linear units [Glorot et al., 2011], skip connections

and residual layers [He et al., 2016], batch [Ioffe and Szegedy, 2015] and layer [Ba

et al., 2016] normalization, to name a few), regularization methods (e.g. dropout [Sri-

vastava et al., 2014]) and optimization techniques (e.g. weight initialization [Glorot

and Bengio, 2010], accelerated adaptive methods [Kingma and Ba, 2015]). These

advancements, alongside systematic development of software packages [Theano De-

velopment Team, 2016, Abadi et al., 2015, Paszke et al., 2017] and growing availability

of computational resources (GPU acceleration) and training data, have elevated neural

networks as the machine learning models of choice in many application scenarios, also

in several other areas beside supervised learning [e.g. Goodfellow et al., 2014, Kingma

and Welling, 2019, Mnih et al., 2013].

2.4 Optimization

Optimization is one of the pillars of machine learning, as problems of the type (2.3)

arise routinely when fitting statistical models to observed data. While undoubtedly

borrowing much from classic literature in operations research, convex and nonlinear

programming [Polyak, 1987a, Nesterov, 2013, Nocedal and Wright, 2006, Bottou

et al., 2018] optimization in machine learning exhibits a series of peculiar aspects and

features that contribute to set it apart, to a certain extent, from its original birthplace.

We review in this section some fundamental results and algorithms focusing on those

we will use later in the thesis, commenting upon practices and issues that arise in

optimization for machine learning. For the proofs of theorems and propositions we

refer the reader to [Polyak, 1987a] where not otherwise stated.
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Problem Setting. In this section, we consider the following mathematical program

min
w∈W

f (w) (2.11)

where w is the decision variable, the domain or search space W ⊆ Rd is a convex

closed set and f : W→ R+ is a smooth non-negative objective function. In our context,

the decision variable may be primarily thought of as the weights of the underlying

model (thus we keep the same letter as in the previous sections), but could be also the

hyperparameters of an hyperparameter optimization or meta-learning problem.

Problem (2.11) may not have solutions (e.g. consider the exponential function

ex on the real line); we characterize the existence of minimizers of f in the following

proposition.

Theorem 2.4.1 (Weierstrass: existence of minimizers). If f is continuous and there

exists a non-empty bounded sublevel set {w ∈W : f (w) ≤ a} for some a ∈ R, then f

admits a (global) minimizer.

The notation

arg min
w∈W

f (w) = {u ∈W : f (u) ≤ f (w)∀w ∈W}

indicates the set of global minimizers of f (which may, in principle, contain more than

a point). A point w is said to be a local minimizer if there exist an open neighbourhood

U of w such that f (w) ≤ f (u) for every u ∈ U. A minimizer is locally unique if

there is an open neighbour in which there is no other minimizer. Points of the set

{u ∈W : ∇ f (u) = 0} where the gradient vanishes are called stationary. A stationary

point may be a minimizer or maximizer (either local or global) or a saddle point. In

general, a function may have multiple local and global minimizers and stationary

points which are not necessarily minimizers; convex functions are an exception, as the

next proposition describes.

Proposition 2.4.2 (Stationary points and minimizers of convex and strictly convex
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functions). If f is a convex function, that is

f (w +τ(u−w)) ≤ f (w) +τ( f (u)− f (w)) ∀w,u ∈W and ∀τ ∈ [0,1] (2.12)

local minima are global minima. If f is also smooth, stationary points are (global)

minimizers.

If f is strictly convex (i.e. (2.12) is valid with the sign of strict inequality) then

the minimizer is unique.

When f admits a unique minimizer, we shall write w∗ = argminw f (w) to indicate

such element.

2.4.1 Gradient Descent

The gradient of f represents the direction of local steepest increase in the value of f .

The simplest algorithm to seek for minima is steepest gradient descent (GD) or batch

gradient descent to better distinguish it from the stochastic variant (Section 2.4.2).

When W = Rd (unconstrained minimization), one can can start by picking a point

w0 ∈ R
d, and then iteratively update the guess by following the direction given by the

negative gradient

wt = wt−1−ηt∇ f (wt−1) (2.13)

where ηt > 0 is a scalar step-size, also called learning rate in machine learning. Some-

times we will refer to the update step of an optimization method on the variable vector

with the notation ∆twt, so that wt −wt−1 = ∆twt. For GD ∆twt = −ηt∇ f (wt−1).

We provide two fundamental convergence results readapted from Polyak [1987a]

considering a fixed step-size ηt = η. The first requires only f to be Lipschitz-smooth

and merely shows that the iterates produced by gradient descent converge toward

stationary points. The second pertains the narrower class of strongly convex functions,

a subset of strictly convex functions, but provides much stronger results.

Proposition 2.4.3 (Convergence of gradient descent, general case). Let f ∈ C1
(
Rd

)
be a smooth function with Lipschitz continuous gradient:

‖∇ f (w)−∇ f (u)‖ ≤ ν‖w−u‖ ∀{w,u} ⊂ Rd. (2.14)
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If η ∈
(
0, 2

ν

)
then the iterates produced by (2.13) are such that

lim
t→∞
‖∇ f (wt)‖ = 0 and f (wt) ≤ f (wt−1)

Proposition 2.4.4 (Convergence of gradient descent for strongly convex functions).

Let f ∈ C1
(
Rd

)
be an ν-smooth (corresponding to condition (2.14)) strongly convex

function with modulus µ, i.e.

f (w +τ(u−w)) ≤ f (w) +τ( f (u)− f (w)) +µτ(1−τ)
‖u−w‖

2

for all w,u ∈ Rd and τ ∈ [0,1]. Let η ∈
(
0, 2

ν

)
, then the iterates produced by (2.13)

converge toward the unique minimizer w∗ at the rate of

∥∥∥wt −w∗
∥∥∥ ≤ cqk for q ∈ (0,1). (2.15)

Moreover, if f ∈C2
(
Rd

)
, the optimal fixed learning rate is given by

η∗ =
2

ν+µ

and, with this choice, the coefficient c and the contraction constant q of (2.15) become

c =
∥∥∥w0−w∗

∥∥∥ q =
ν−µ

ν+µ
. (2.16)

Even in the favorable setting of strongly convex functions, the speed of conver-

gence can be remarkably slow when the difference between ν and µ increases, so that

q→ 1.

Projected Gradient Descent. Gradient descent can be straightforwardly modified

to handle the situation where W is a proper convex subset of Rd. In this case the

gradient does not necessarily vanishes at minimum points. A condition for w to be

a minimizer of Problem (2.11) is that 〈∇ f (w),u−w〉 ≥ 0 for all u ∈W . The method,

called projected gradient descent, simply adds to (2.13) a projection step after the

gradient update to ensure that the iterates remain inside W:
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w̃t = wt−1−ηt∇ f (wt−1)

wt = ProjW (w̃t)

where

ProjW (w) = arg min
u∈W
||u−w||2.

For strongly convex functions one can show a convergence result quite similar to 2.4.4

[Polyak, 1987a, Ch. 7, Th. 1]. The practicality of the method clearly depends on

the difficulty of projecting onto W . This is a very simple operations for sets such as

balls, boxes or half-spaces, but can be as hard as solving the original problem in more

complex cases.

Generalized Gradient Descent. Gradient descent may be adapted in a “visually sim-

ple” manner to optimize programs with non-smooth Lipschitz-continuous objectives,

where the set of non-differentiable points of f has zero Lebesgue measure. The method,

called generalized gradient descent, subgradient descent (especially when f is convex),

or still, simply, gradient descent, consists in updating the decision variables by iterating

wt = wt−1−ηtut with ut ∈ ∂ f (wt−1) (2.17)

where ηt is a step-size and

∂ f (w) = Conv
{

lim
i→∞
∇ f (wi) : wi→ w and ∇ f (wi) exists

}
(2.18)

is the generalized (Clarke) gradient [Clarke, 1990]. The set (2.18) is a singleton

containing only the gradient wherever f is differentiable and coincides with the

subgradient of convex functions (which we still denote by ∂ f ) defined by

∂ f (w) = {q ∈ Rd : f (u)− f (w) ≥ 〈q,u−w〉 ∀y ∈ Rd}.

The necessary (and sufficient, for convex functions) condition for w to be a minimizer

of f becomes, for the non-smooth case, that 0 ∈ ∂ f (w). When f is convex, it can be

proved that the sequence of minimum values mint f (wt) with wt obtained by (2.17)
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converge to the minimum of f [Ch. 5 Th. 1 Polyak, 1987a], provided that the learning

rate sequences is such that

ηt→ 0 and
∑

t
ηt =∞.

We are not aware of convergence results to generalized stationary points, that is points

for which 0 ∈ ∂ f (w), for the general, non-convex, case. Non-smooth objectives arise

often in machine learning due to non-differentiable loss functions or non-smooth

activations (such as the ReLu activation) in neural models.

2.4.2 Stochastic Gradient Descent

Prototypical objective functions encountered in machine learning are often of the type

f (w) =
1
N

N∑
i=1

fi(w), (2.19)

the right hand side representing an empirical version of an expectation Eξ fξ(w). For

instance, in a standard supervised learning setting, the random variable ξ may be

distributed according to px,y, from which one samples a dataset containing N datapoints.

The fi’s are then the sample-wise errors of hw in (2.3); that is fi(w) = `(hw(xi),yi) and

f (w) = L(w).

For most models, the cost of computing ∇ f scales linearly with N (the size of the

dataset) and – depending also on the complexity of the underline statistical model – this

may translate into a prohibitive cost for each GD step (2.13) as N grows. Stochastic

gradient descent (SGD) offers a remedy to this issue by computing at each iteration a

random update direction gt, incurring in a much lower cost then computing the full

gradient. At each iteration, a subset of K ≥ 1 indices are sampled uniformly and the

parameters are updated according to

gt(wt−1) =
1
K

∑
i∈Bt

∇ fi(wt−1) with Bt ∼ U {1,N}K

wt = wt−1−ηtgt(wt−1)

(2.20)
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where U is the discrete uniform distribution. The parameter K offers a trade-off

between computational cost and variance of the estimation. Especially in the neural

network literature, Bt is often referred to as a mini-batch of examples and, accordingly,

the algorithmic parameter K is called mini-batch size.

SGD and its accelerated variants are the optimization algorithms of choice in many

machine learning applications. Beside very pragmatical computational constraints that

may render (batch) GD impractical, there are several arguments in favour of SGD. We

sketch some of these below. Others include regularization arguments [see e.g. Zhu

et al., 2018], which are also central in machine learning applications, but are beyond

the scope of the current discussion.

1. In many important applications (e.g. training neural models) the objective

function is non-convex. Thus, gradient descent may be attracted toward a (poor)

local minima or, worse, be trapped around saddle points where ∇ f is close to

0. By following a stochastic direction at each iteration, it is less likely that gt

is close to 0 for many consecutive steps, especially if wt is still far from w∗. In

fact, SGD provably escapes from a class of saddle points [Ge et al., 2015] and,

in general, is more robust to the presence of non-favourable stationary points.

2. When wt is far from the optimal value, with high probability gt will have a very

similar direction to ∇ f , yet costing much less. Thus SGD may progress faster10

in the initial part of the optimization process. This behaviour does not carry over

to the later stage, as the noise to signal ratio of gt increases and typically batch

methods achieve overall lower values of f if they are executed for long enough

time.

3. Almost always in machine learning one is not necessarily interested in lowering

the value of f as much as possible, but rather in finding points with a reasonable

low objective value. This may be due to the fact that:

(a) the ideal objective of optimization is the incomputable generalization error.

However, when following the ERM principle, the objective (2.3) is the

10 Where here the speed is measured in terms of runtime, not iterations.
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function optimized in practice. Fully optimizing f may then be detrimental,

as it may lead to overfitting. Unlike batch GD, SGD exhibits certain links

with the generalization error (2.1) [Kuzborskij and Lampert, 2018]; in

fact, for N→∞ (infinite examples) SGD optimizes for the expected risk,

drawing samples directly form the data distribution, whereas GD would

not be even applicable. Even in the finite case, one can show that for large

enough sample sizes, SGD practically minimizes the expected risk up until

t is small compared to N;

(b) even factoring out the previous point, f may still be far from the objective

that one would naturally optimize. A prime example of this is given by

classification problems, where arguably the most natural choice for a loss

function is given by the discrete 0-1 loss (2.7), yet one in practice optimizes

a differentiable surrogate, e.g. (2.9). Lower values of f may not necessarily

correspond to lower values of the relative 0-1 loss, as this latter is clearly

much less sensitive to small changes in the parameter space. In these cases,

over-optimizing f may be wasteful, at best.

While points 1. and 2. are general, optimization-related, potential advantage of

SGD for complex objective functions, the third point highlights some peculiarities

of optimization in the contest of machine learning, mentioned at the beginning of

the section. Unlike in some other fields, often, in machine learning applications, the

performance of an optimization method in the initial stage weigh much more than

that toward convergence. These peculiarities, alongside the ever increasing size of the

available datasets, have determined the fortune of SGD in many learning scenarios.

The stochastic gradient gt in (2.20) is an unbiased estimator of ∇ f , hence, in

expectation, it is a descent direction for f :

〈∇ f (w),EBt[gt(w)]〉 = ‖∇ f (w)‖2 ≥ 0.

If the second moment of g is bounded at stationary points and grows at most quadrati-
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cally with the norm of the full gradient, i.e.

EBt[‖gt(w)‖2] ≤ ζ + ζg ‖∇ f (w)‖2 , (2.21)

one can show a series of convergence results regarding SGD [Bottou et al., 2018].

For ν-smooth µ-strongly convex functions, SGD with fixed step-size ηt = η ≤ (νζg)−1

converges linearly in value to a neighbourhood of f (w∗):

lim
t→∞

E[ f (wt)− f (w∗)] =
ηνζ

2µ
.

The speed of convergence increases for larger η, yet so does the expected optimality

gap. To recover a convergence result similar to 2.4.4, although with sublinear rate, one

needs to set a decreasing learning rate sequence. A classic result from Robbins and

Monro [1951] requires that

∞∑
t=1

ηt =∞ and
∞∑

t=1

η2
t <∞.

For instance, one may set ηt = η0(t +γ)−1 for positive constants η0 and γ.

To recover results similar to Proposition 2.4.3 for non-convex objectives, one

needs additional assumptions on f [Bottou et al., 2018, Th. 4.12]. Finally we remark

that the convergence results for SGD hold also in the case that the estimates gt are

biased; one only needs that in expectation gt is a descent directions for f (wt) and that

the expected norm of the estimator and that of the full gradient are comparable [Bottou

et al., 2018].

2.4.3 Beyond Gradient Descent

The update directions of gradient descent and its stochastic variant rely only on local

first order information carried by the gradient computed at the current iterate (wt−1).

However, access to higher order information such as the local curvature of f may

potentially speed-up the progression toward a minimizer. The Newton’s method,

the prototype of second order optimization algorithms, locally approximates twice

differentiable objectives up to the second order term of the Taylor expansion and



2.4. Optimization 53

sets the next iterate as the minimizer of this quadratic approximation. Concisely, a

Newton’s iteration takes the form of

wt = wt−1−
[
H f (wt−1)

]−1
∇ f (wt−1). (2.22)

provided that the Hessian, denoted by H f , is invertible at wt−1. If the objective function

is indeed quadratic and strictly convex, that is

f (w) = 〈w,Aw〉+ 〈b,w〉+ c (2.23)

with A > 0, it is immediate to see that (2.22) always converges in one step to the

solution of (2.23), irrespective of A and the initial point w0. On the other hand, the

convergence speed of GD is linked to the conditioning number11 of A. This very

favourable quadratic setting is, however, rather far from the practice: the conditions

of (2.23) (A > 0) are not even verified locally for non-strongly convex objectives and

saddle points are attractors for the Newton dynamics (2.22). Furthermore, the cost

of inverting the Hessian may become prohibitive for larger problems. Many schemes

have been proposed to approximate the inverse Hessian (quasi Newton’s methods),

whereby
[
H f (wt−1)

]−1
is replaced by a positive defined preconditioning matrix Bt and

the iteration assumes the form of

wt = wt−1−ηtBt∇ f (wt−1).

where ηt > 0 is a step-size. The presence of a step-size limits the update to a neighbour

– a trust region – of the current iterate. Among these, one of the most popular is the

BFGS algorithm and its limited memory variant [Fletcher, 2013].

The machine learning community has devised a series of quasi-Newton methods

for solving large scale non-convex learning problems. The so-called Hessian-free

method [Martens and Sutskever, 2011] employs algorithmic differentiation tools and

11 In fact, for (2.23), the constants ν and µ in Proposition 2.4.4 are simply the maximum and minimum
eigenvalues of A. Then, the higher the conditioning number κ(A) = νµ−1 ≥ 1, the closer the contraction
factor of (2.16) is to 1.
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settles for rough approximate solutions of regularized quadratic problems obtained

through few steps of conjugate gradient. The saddle free method [Dauphin et al., 2014]

inverts the Hessian “in absolute value”, thereby sidestepping the positive definiteness

issue12. Notwithstanding reported successes in some application scenarios, higher

order methods are sparingly used due to more complex implementations, unclear theo-

retical advantages (especially in the stochastic setting) and difficult to tune algorithmic

hyperparameters. Optimization routines that employ only first order information, albeit

in a more complex manner than GD and SGD, are, by far, more commonly applied:

stochastic gradient descent with momentum and diagonal scaling methods are two

prominent examples.

Gradient Descent with Momentum. The update step of gradient descent with mo-

mentum (GDM or SGDM for the stochastic variant) is given by an exponential running

average of all the gradients up to the current iteration:

∆twt = −ηt

t∑
j=1

βt− jg j(w j−1) (2.24)

where the step-size ηt > 0 and the momentum factor βt ∈ [0,1) are hyperparameters

and g j is either the full gradient ∇ f or a stochastic estimation. By introducing an

accessory variable vt ∈ R
d, sometimes referred to as velocity, one can conveniently

write the GDM iteration as
vt = βtvt−1 + gt(wt−1)

wt = wt−1−ηtvt

(2.25)

with v0 = 0. Maintaining a running average of the past gradients results in dampening

the updates’ magnitude for those coordinates that exhibit fast changing gradient

directions. Conversely, updates are magnified for “stable” coordinates. Thus, GDM,

by capturing some long term information, may display a more stable behaviour in

presence of valleys and may progress faster than gradient descent on plateaus. A

further intuitive advantage of SGDM (the stochastic variant) is that, by averaging

consecutive gradient estimations, one can observe a reduction of the noise. This is also

12More precisely it involves rescaling the gradient along approximate Hessian’s eigen-directions with
the inverse absolute values of the corresponding Hessian’s eigenvalues
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suggested by the fact that the auxiliary variable vt is an online (biased) estimator of the

first moment of the stochastic gradient, that is its mean E[gt]: in the setting described

in Section 2.4.2, one has E[gt(w)] = ∇ f (w), and one could expect the random variable

vt to match “more closely” the gradient, leading to reduced variance. This argument,

however, is not easily formalized, also due to the non-stationarity of the estimate.

In the batch case, when ηt = η and βt = β are fixed, GDM is also known as the

heavy ball method and provably yields faster convergence rates for quadratic strongly

convex functions, achieving a contraction constant of

qGDM =

√
ν−
√
µ

√
ν+
√
µ

upon optimal choice of η and β, as shown by Polyak [1964] (cf. (2.16)).

RMSProp, method “informally” presented by Hinton in his lecture notes [Hinton

et al., 2012], is a simple scaling scheme that employs a diagonal preconditioning matrix

with Bt = diag((
√

vt +ε)−1) where vt is a running average of squared gradients (RMS

stands for running mean squares) and ε ≥ 0 is a regularization coefficient, usually

chosen very small. The RMSProp iterate reads

vt = βtvt−1 + (1−βt)gt(wt−1)2

wt = wt−1 +
ηt
√

vt +ε
gt(wt−1)

(2.26)

where βt ∈ [0,1) is a gain coefficient (Hinton proposes the default value of βt = 0.9),

ηt > 0 is a global learning rate, and gt is a stochastic gradient13. One way to interpret

the RMSProp update (2.26) – and, in fact, all diagonal scaling updates – is that every

entry of the variable vector maintains its own learning rate. In (2.26), the component-

wise learning rate is adapted by looking at the squared gradients, and it is increased

when consecutive partial derivatives are consistently small in norm and decreased

otherwise. Besides potentially helping in traversing large plateaus, such rescaling may

be beneficial in contexts where the effective range of variables and gradients is spread

13The method has been specifically developed for the stochastic setting
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over several orders of magnitudes throughout the optimization trajectory14, a situation

frequently observed in many neural network problems. Here, the accessory variable vt

is an online (biased) estimator of the second moment (2.21) of the stochastic gradient.

Its direct usage in adapting the step-size in (2.26) potentially allows us to increase the

effective learning rate over conservative choices of ηt and thus accelerate convergence,

although in some cases it may also lead to divergence when vt poorly underestimates

(2.21).

Adam (adaptive moment estimation) [Kingma and Ba, 2015] is another method

for stochastic optimization of large scale non-convex objectives. It essentially merges

SGDM with RMSProp by maintaining a running average of both the first and the

second moment of gt, and further rescales the learning rate with bias correction terms.

The method requires maintaining a set of two auxiliary variables, {v1,v2} ∈ R2d, both

initialized at 0, and generate iterates according to

v1
t = β1v1

t−1 + (1−β1)gt(wt−1)

v2
t = β2v2

t−1 + (1−β2)gt(wt−1)2

wt = wt−1−ηt

√
1−βt

2

1−βt
1

v1
t√

v2
t +ε

(2.27)

where {β1,β2} ∈ [0,1)2 are (constant) gains for the first and second running averages

and ηt > 0 is the global learning rate. The authors suggest the default values of 0.9

and 0.999 for the gains and 10−3 for the learning rate. Despite the fact that it has

been proved that for each setting of the algorithmic parameters (including considering

decreasing step-sizes) there is an online convex optimization problem on which (2.27)

does not converge to the global minimum [Reddi et al., 2018], the algorithms has

gained considerable popularity15 especially in the deep learning community, due to its

empirical strong performances in the initial stage of the optimization and the relative

simplicity of finding decent configuration parameters on many benchmark problems.

14For example, [gt]i ∈ [10−6,10−3] while [gt] j ∈ [102,104] for two indices i , j, for t ≥ 1
15Based on the number of citations of [Kingma and Ba, 2015].
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2.4.4 Early Stopping

As discussed in Section 2.4.2, for several reasons finding the (global) minimum of an

objective f – identified as the training error – is not of primary importance in many

optimization problems that arise in machine learning. An explicit technique often

used in practice to avoid over-optimization is early stopping [Yao et al., 2007, Bengio,

2012]. At an high level, early stopping consists in terminating the optimization routine

before full convergence, thereby accepting approximate solutions of (2.11) with an

optimality gap that is higher than that achievable by running the algorithm for more

iterations.

Usually, early stopping is implemented by regularly computing a score of interest,

a(wt), which is different from the objective function f . This may be, for example, the

accuracy on a validation set for a classification problem. The optimization is terminated

if a(wt) < a(wt−1) (assuming higher is better). Additionally, since one cannot always

expect a monotonic increase of a, very often a patience mechanism is employed,

whereby early stopping is applied only if the score does not improve for several

consecutive iterations. If a(wt−t̄) is the best value obtained so far, the optimization

is terminated if a(wt−k) < a(wt−t̄) for all k ∈ {0, . . . , t̄−1}, and the algorithm return the

iterate wt−t̄, irrespective of the value of the objective function f . The hyperparameter t̄

is called patience window.

Early stopping acts as an implicit form of regularization, whose strength is

regulated by t̄, since it limits the effective search space. It has been interpreted also in

terms of Bayesian variational inference [Maclaurin et al., 2015b] where the posterior

distributions are implicitly generated by the (stochastic) optimization dynamics.

2.4.5 The General Scheme of Iterative Optimization

Abstracting away from particular implementations of the update rules of the various

methods discussed so far, we present in Algorithm 1 the general scheme for the iterative

optimization of an objective function f . It includes projection onto the domain if

W , Rd and early stopping. We will refer to Algorithm 1 and the notation introduced

in this section in the second part of the thesis.

We denote by α ∈ A ⊂ Ra the configuration parameters and with s the state of
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Algorithm 1 Iterative optimization of f
1: Input: W: domain; w0 ∈ X: starting point; α: configuration parame-

ters; T : maximum number of iterations; EarlyStopping: optional
early stopping procedure (2.4.4)

2: Output: Optimized parameters
3: v0← 0 {Initialize accessory variables}
4: s0 = (w0,v0) {Construct state vector}
5: for t = 1 to T do
6: (w̃t, ṽt)← Φt(st−1,α) {Update state}
7: st← (ProjW (w̃t), ṽt) {Projection onto the domain}
8: if EarlyStopping(wt) then break {Check for termination}
9: end for

the optimizer. This latter is the concatenation of the decision variable (the weights)

and any other accessory variable v, such as the velocity for GDM described in Section

2.4.3. We denote by W ′ the resulting state’s domain, which is typically given by

W ×Rdim(v). For instance, for GDM dim(v) = d while for Adam dim(v) = 2d. For

(stochastic) gradient descent, which does not have any accessory variable, dim(v) = 0

and W ′ = W . With this notations, setting as s = (w,v) and s′ = (w′,v′), we define an

optimization dynamics as a mapping

Φt : W ′×A→ Rd′ , Φt(s,α) = s′, (2.28)

that iteratively seeks for a minimizer of a give objective function. The subscript t refers

to a potential stochastic evaluation. The objective function, gradient computations and

variables’ updates are wrapped into Φt to offer a concise, but convenient, representation

of an iterative optimization process.

2.5 Interim Summary
We provided in this chapter a review of some essential concepts of supervised learning

and optimization that we will use throughout the thesis. In particular, we presented

linear and neural models that will constitute the hypothesis spaces of several numerical

experiments that we will report in this work.

In the two following chapters, we will introduce the central notion of learning (and
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meta-learning) algorithms as abstract, higher-order mappings. Gradient-based iterative

optimization is the backbone of several modern learning algorithms, from fitting

logistic regressors to training deep neural networks. Thus, we dedicated Section 2.4

to the topic of optimization under a “machine learning perspective”, discussing some

differentiating aspects and features, especially in the context of stochastic methods.

We stated some fundamental theoretical results and reviewed both classical and more

recent techniques for gradient-based iterative optimization. We finally offered a

schematic, general-purpose, algorithmic view (Section 2.4.5) of the resulting iterative

search procedures that will help us formalize in Chapter 5 the main component of many

learning algorithms, abstracting away from specific implementations. As one of the

focus of the thesis is that of extending the applicability of gradient-based strategies to

a higher level of abstraction (both in hyperparameter optimization and meta-learning),

the theoretical results listed in Section 2.4 will also provide useful pointers for the

analysis of Chapter 6.



Chapter 3

Review of Hyperparameter

Optimization

We now turn our attention to hyperparameter optimization. We start the chapter by

formally defining the problem in Section 3.1, then discuss the role and impact of

various hyperparameters of representative supervised learning algorithms in Section

3.2 and in Section 3.3 we outline the online variant of the HPO problem. Section 3.4 is

devoted to the review of the main approaches to HPO in machine learning, including

model-free, model-based and population-based methods, delving in some details of

the state-of-the-art approaches such as Bayesian optimization methods (with Gaussian

processes) and population-based methods. As the thesis focuses on gradient-based

HPO, we postpone an in-depth discussion of the technique to later chapters and use

Section 3.5 to present relevant work and the state of the sub-field.

3.1 Problem Setting

Hyperparameter optimization [see e.g. Moore et al., 2011, Bergstra et al., 2011,

Bergstra and Bengio, 2012, Maclaurin et al., 2015a, Bergstra et al., 2013, Hutter

et al., 2015, Franceschi et al., 2017] is the problem of tuning the value of certain

parameters that control the behavior of a learning algorithm. As already mentioned

in Section 2.1, a (supervised) learning algorithm may be conveniently represented

as a mapping that takes a dataset (representing a task) and a configuration (a list of
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hyperparameters/an hyperparameter vector) and returns an hypothesis:

A : D×Λ→H; A(D,λ) = h (3.1)

where1

D =
⋃
N∈N

(X ×Y)N (3.2)

is the space of finite dimensional dataset – X and Y are the input and output spaces

– Λ is an hyperparameter space and H is an hypothesis space (e.g. linear functions

between X and Y). Since learning algorithm are generally applicable to multiple

domains, one may also explicitly consider2, setting

D =
⋃
i∈I

⋃
N∈N

(Xi×Yi)N . (3.3)

which takes into account a class of possible input and output spaces. The hyperparamter

space may not be equipped with any particular global structure (e.g. it need not be

a vector space). Sometimes it is useful to think of λ ∈ Λ = Λ1 × · · · ×Λm as an m

dimensional list where each component attends to a different aspect of A. In a loose

comparison with classical rule-based programming, hyperparameters may resemble

the (inference) rules that the user passes to the program for it to make decisions.

As noted in Section 2.1, often the hypothesis spaces are parameterized by weight

vectors w ∈W . When this is the case, we may equivalently think about A as a mapping

A : D×Λ→W; A(D,λ) = w, (3.4)

where H in (3.1) is replaced by an appropriate weight space W . Then, we implicitly

1 Many learning algorithms are, in fact, stochastic, returning upon execution a randomized hypothesis.
In this case, given a dataset and a configuration, A(D,λ) defines a probability distribution over H.
To ease the exposition, we consider here a (slightly idealized) deterministic case. We note that most
arguments can be adapted to the stochastic setting by considering, where needed, expectations over the
random components of A.

2 As we shall see, this very natural extension will prove especially useful when introducing the
meta-learning problem in Chapter 4. Note that in (3.3), while the second union must be countable, as
we deal with finite datasets, the same should not necessarily hold for the first one. We may in principle
consider an uncountable collection of input/output spaces associated to different tasks.
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assume the presence of a (total and surjective) mapping w→ hw that associates weights

to hypothesis.

In principle A may be any arbitrary procedure that falls within the broad definition

of learning algorithm given at the beginning of Section 2.1. It may be composed of

various subroutines, branches and heuristics. However, the master example of A

that we will refer and study in the following chapters takes the form of an iterative

minimization of an empirical risk over a parameterized space of models (cf. (2.3)). As

such, it is quite more structured in nature.

For instance, recalling the ASR example of the introduction, a learning algorithm

that an user could think of executing for training a phoneme classifier may be informally

described as

Example 3.1.1. Fit a multi-layer neural network using SGD with early stopping to

minimize the average cross-entropy error on the available data.

The description above loosely designate an hypothesis space – feed-forward

neural networks that map vectors of input speech features to probabilities over phoneme

states – and sketches a training process – iterative minimization of a given objective

function (the training error) with stochastic gradient descent. Yet, it does not describe

many aspects that are necessary to run the algorithm in practice and may have a

tremendous impact on the overall performances of the trained model. For example,

details like how many layers and how many units per layer, what is it the learning

rate (schedule), which value to use for early stopping patience window and whether

to use any explicit forms of regularization are left undetermined. These additional

information should be passed to A in the form of an hyperparamter (or configuration)

vector, whose range of permitted values define the hyperparamter space Λ of A.

It should be noted that there is no sharp border between “learning algorithm”

and “hyperparameter space” and, consequently, “hypothesis space”. For instance, one

may consider algorithms that train CNNs as distinct from those involving RNNs, as

they work preferentially on different type of input data. In this case, we would have

two separate hyperparamter spaces whereby the first may contain choices relative

to CNN architecture design (e.g. number of filters per layer, skip connections, . . . ),
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while the second may include hyperparameters that control the form of the recurrent

cells. Conversely, one may prefer to think about any procedure that “works with and

produces” neural networks as a single learning algorithm with a (considerably) larger

hyperparameter and, hence, hypothesis space. The specific choice of which class of

neural model to use (FFNN, CNN, RNN, GNN, etc.) could then be delegated to an

hyperparameter, which, in turn, would lead to other conditional choices depending on

the value it takes.

When formulating and developing a learning algorithm there is a trade-off between

conceptual consistency and generality of use3. Bringing generality to one extreme,

one may ideally collapse all machine learning methods into a single “general-purpose”

algorithm that is able to tackle, in principle, every conceivable problem. Unfortunately,

this idea, somewhat linked to the concept of artificial general intelligence [see Ford,

2018, for a recent reportage], while fascinating, would hardly constitute a solid ground

for any constructive endeavour. In fact, we reckon that with our current level of

understanding the cost to pay for such an extreme unification would be very likely an

enormous inflation of the potential general-purpose algorithm’s hyperparamter space,

proverbially “sweeping the problems under the rug”.

Likewise, the “level of detail” of a particular aspect of an algorithm’s configuration

space is not (or, rather, cannot) be uniquely determined and must be considered as a

context-dependent concept. In the ASR example above, the iterative optimization rule

is fixed to be an SGD update (2.20) and thus should be consider part of A itself. Only

the learning rate schedule is an hyperparameter, as it is not determined by the learning

algorithm during execution. Conversely, one may want to allow for a larger class of

update rules (SGDM, RMSProp, Adam, etc.): in this case the categorical choice of

the rule itself is to be considered part of Λ. Going further, one may even embrace

the approach of “learning to optimize” (see Section 4.4.2), and richly parameterize

the iterative update rule, e.g. with an LSTM recurrent network – the (real-valued)

parameters of the resulting operations would, then, become themselves part of Λ

[Andrychowicz et al., 2016, Bello et al., 2017, Wichrowska et al., 2017, Metz et al.,

3Informally defined as “the number of application scenarios” in which the algorithm may potentially
work.
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2019].

For the purpose of our discussion, we shall think of the hyperparameters of a

learning algorithm as the variables that should be set before execution. These may take

on different values without modifying “too much” the underlying learning process (see

Section 3.2 for several examples). This essentially accounts to require a certain degree

of coherency in the hypothesis space of the learning algorithm. The permitted level

of detail should be stated upon defining Λ and all the remaining specifications shall

be considered fixed and part of A itself. Thus, when discussing about hyperparamter

optimization, we shall consider the mapping A as fixed and given. We consider

the upstream problem of choosing which learning algorithm to use for each specific

application scenario as a related, but different, field of study. This problem setting,

oftentimes referred to as algorithm selection, has been addressed in e.g. [Thornton

et al., 2013, Luo, 2016, Kotthoff et al., 2017, Fusi et al., 2018], although in relatively

limited and homogeneous setups. It has also been studied by various authors in

meta-learning contexts, see Section 4.4.2.

Regardless of the internal working of A, one can expect that, for the same dataset

D, different values of λ ∈ Λ will result in different hypotheses. It is then natural to ask,

among a set of candidate models {hi = A(D,λi)}i, which one is to be preferred. Ideally,

one would like to pick the hypothesis that minimizes the generalization error (2.1), but,

of course, this is not possible, as px,y is unknown. A common procedure is to use an

empirical estimate of (2.1) by computing the average loss (2.2) on a set of data, Dval,

that has not been used by A:

Ê(A(Dtr,λ),Dval) =
1
|Dval|

∑
(x,y)∈Dval

`(A(Dtr,λ)(x),y). (3.5)

Here, we have renamed the dataset used by the learning algorithm – the training set –

as Dtr to better distinguish it form Dval. Dval is called validation or held-out set. From

now on, we shall refer to the entirety of the available data as D = Dtr ∪Dval. The

resulting quantity (3.5), called validation error, is an unbiased estimation of (2.1),

provided that the points in Dval are i.i.d. samples from px,y and that Dtr∩Dval = ∅. This



3.1. Problem Setting 65

last fact is of primary importance: one cannot expect Ê(A(Dtr,λ),Dtr) to be unbiased

(it is, usually, too optimistic), given that A(Dtr,λ) picks a particular hypothesis by

seen Dtr and (most likely) also Ê(·,Dtr) itself. One may then pick the hypothesis that

minimizes (3.5) among a number of available choices {hi = A(D,λi)}i.

Going further, we may think of optimizing the validation error with respect to the

variable λ, that is, finding the algorithm’s configuration parameter that are the solution

to the following optimization problem:

λ∗ ∈ argmin
λ∈Λ

Ê(A(Dtr,λ),Dval). (3.6)

This problem is the core of hyperparameter optimization and constitutes an empirical

approach to hyperparameter tuning, akin to ERM for model fitting. Yet, unlike the

parameterized ERM Problem (2.3) introduced in Section 2.1, the structure of the search

space of (3.6) can be very complex and far from Rm. Hyperparameters may be integer

(number of layers in the ASR example) or categorical (which type of regularization to

use). Further, there might be conditional relations between different components of λ.

For instance, the number of units of the l-th layer is relevant only if the network is at

least l + 1 layers deep). Thus, the validation error (3.5) is, in principle, neither smooth

nor necessarily continuous, making up for a considerable challenge on the optimization

side. Finally, as A typically involves itself the solution of a complex problem, even

evaluating the objective of (3.6) at a point (namely one set of hyperparameters) may

be computationally very intensive. Practical HPO methods should, therefore, rely on

as few objective evaluations as possible and should benefit, whenever possible, from

cheaper approximations of A(Dtr,λ).

There are other objectives considered in the HPO (and model selection) literature,

beside (3.5). The cross-validation error [Stone, 1974] is a direct generalization of (3.5)

obtained by repeatedly partitioning the available data into non-overlapping training

and validation splits {(Dk
tr,D

k
val)}

K
k=1 and by computing

1
K

K∑
k=1

Ê(A(Dk
tr,λ),Dk

val). (3.7)
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Practical implementations include the so-called K-fold cross-validation, whereby the

data is partitioned into K ≤ N subsets {Dk}Kk=1 of roughly the same size, and the k-th

split is given by
(
∪i,kDi,Dk

)
. The special case where K = N is known as leave-one

cross-validation. Cross-validation objectives offer reduced variance over (3.5) as K

grows, but are clearly more expensive to compute, since they require running multiple

times the learning algorithm on the various data splits.

Possible variations of the validation objective include weighted error, precision,

recall, F-measures and their smooth relaxations [Keerthi et al., 2007]. These may

encode desiderata about the resulting statistical model (e.g. sensibility of a spam-email

classifier) and may be implemented by appropriate choices of the point-wise loss `

within Ê . Researchers have also proposed several criteria that do not require splitting

the available data into training and validation. These typically rely on various concepts

of model’s complexity. Among these, we mention the Stein’s unbiased risk estimate

[Stein, 1981], the Akaike information criterion [Akaike, 1998] and the Bayesian (or

Schwartz) information criterion [Schwarz et al., 1978]. Other model specific criteria

also exists: see e.g. [Chapelle et al., 2002] and references therein for SVM-related

“goodness” measures. These criteria, replacing the empirical risk approach of Ê , make,

however, assumptions on the underlying (statistical) properties of certain types of

models and are less widely applicable than (3.5) and (3.7).

From now on, when the context is sufficiently clear, we may use the notation f (λ)

to refer the the objective of an hyperparamter optimization problem such as (3.6). The

mapping f is often referred to as response function. Its image, f (Λ), is called response

surface. If not stated otherwise, we will assume that

f (λ) = Ê(A(Dtr,λ),Dval). (3.8)

In (3.8) the dependence on the input data (and the relative split) is wrapped into f : this

is because we (primarily) think of an HPO problem as a single-task problem, whereby

D is given and fixed4. Conversely, as we shall see in Chapter 4, in meta-learning we

are interested in the behaviour of the learning algorithm on an entire distribution of

4This, nevertheless, does not exclude D from being a multi-task learning dataset.
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tasks as well as in the generalization of A w.r.t. novel tasks. Thus, in the meta-learning

context, the factor of variation represented by the input data cannot be likewise “hidden

away” but shall rather be clearly highlighted. We will discuss in much greater details

about the relations between HPO and MTL in Chapter 5.

3.2 Hyperparameters of Learning Algorithms
Each learning algorithm defines its particular set of hyperparameters and specifies,

explicitly or implicitly, the respective role that these have in the resulting learning

process. This may be as diverse as “leaf nodes must contain at least k data instances”

when learning decision trees [Quinlan, 2014] to “initialize k convolutional filters at the

4-th layer of the network” when training CNNs. Whilst it is well beyond the scope of

the current work to present a detailed account of all the possible occurrences, we offer

below an overview of common hyperparameters typically found in learning algorithms

and statistical models that we will employ or discuss in the following chapters. As

we do so, we also take the opportunity to introduce and discuss relevant pieces of

literature that, although linked to HPO, focus specifically on particular aspects of

specific learning algorithms.

We semantically divide hyperparameters into three categories: design hyperpa-

rameters are closely tied to the specification of the hypothesis space itself, regulariza-

tion hyperparameters control the (usually soft) constraints on the effective search space

H and optimization hyperparameters intervene in the minimization of the empirical

risk or, more generally, of a training objective. Clearly, these should not be considered

as rigid distinctions as many hyperparameters could easily fit in multiple categories.

3.2.1 Design Hyperparameters

The definition of the hypothesis space H plays a crucial role in the development of

a learning algorithm, as it determines which hypotheses (i.e. trained models) A can

in principle output, regardless of the (admissible) training data it receives. Selecting

a particular value λ̄ of a design hyperparameter typically accounts for the process

of restricting the search space to a subset Hλ̄ ⊂ H where the search will then take

place. At the highest level, the design of H depends on the type of data that the
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algorithm is supposed to process. For example, if X represents a space of (labelled)

graphs describing, for instance, citation networks (Section 9.4) then H should include

models that are able to effectively process this kind of structured information. While

searching for linear hypothesis might still be a viable option, e.g. by including in A

a preprocessing step that simply discards the relational structure, or extracts in some

way a vector representation of the graph, it is likely that more specialized models

such as graph neural networks will be more effective at capturing the underlying

phenomenon of interest (possibly achieving a lower irreducible error). With few,

partial. exceptions [Thornton et al., 2013], “standard” HPO treats this “macro-choice”

as tied to the learning algorithm itself, rather than as a (categorical) hyperparamter.

This second approach would, in fact, inject considerable conditionally in the rest of

the hyperparameter space, further complicating the resulting HPO problem (3.6).

Table 3.1 lists a selection of design choices and their relative hyperparameters,

divided into three parts. The topmost part groups choices shared among different

classes of supervised learning models, the central part is relative to neural networks,

while the last part present a few design choices relative to other types of models. We

attempt to indicate the type of the relative hyperparamter (categorical, Boolean, integer,

. . . ) in the third column of the table in what we identify as typical implementations,

although we recognize that there may be different possible encoding options (especially

for the entries marked with an asterisk).

The structure of simpler models may be fairly easily identified: affine models

are essentially constrained by the input and output space dimensionalities. Possible

choices in this case boil down to including or not a vector of bias terms (the term

denoted by b in (2.4)) and possibly selecting a subset of input features. This latter

choice, named precisely feature selection [James et al., 2013], is, in fact, a very general

design process that has been studied from multiple point of views in several contexts

[Guyon and Elisseeff, 2003]. The assumption of feature selection is that a subset

of input features may be irrelevant or redundant to explain the dependent variables.

The main goals are lowering computational and statistical complexity of the resulting

model, potentially increasing interpretability. There are several ad hoc techniques for
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Table 3.1: Examples of design hyperparameters. In the “Type” column, “Cat.” stands for
categorical, ∗ indicates that there are other possible parameterizations and † denotes
conditionality. Note that some conditional hyperparameters do not indicate any
“standard” type, as this is heavily dependent on the parent choice. The table is
divided into tree parts: from top to bottom the entries are relative to “general”
design choices, neural networks, and kernel-based methods.

Name Description Type

Feature selection Selection of a subset of the n input features {0,1}n

Loss function
Selection of the (supervised) loss function and,
when appropriate, the model’s output (cf. 2.2)

Cat.∗

Sub-model sharing
In multi-task learning, potion of the computational
graph shared among multiple models

Cat.

N. of layers/nodes Depth of a neural network N

N. of units/channels Width of the layers of neural network N†

Layer type

Functional type of each layer: e.g. fully connected,
convolutional, pooling or averaging, normaliza-
tion [Ioffe and Szegedy, 2015, Ba et al., 2016],
etc.

Cat.†

Layer parameters
Layer-specific configuration parameters (e.g. ker-
nel width and stride for a convolutional layer)

∗,†

Activation Type of nonlinear activation Cat.∗

Connectivity patterns
Edges between layers of the directed computa-
tional graph that represents the network

{0,1}†

Kernel type The functional expression for the kernel mapping Cat.

Kernel parameters
Various hyperparameters that may define the ker-
nel mapping (e.g. the degree of polynomial kernels,
the bandwidth of RBF kernels, . . . )

∗,†

performing feature selection, the earliest dating back at least to the sixties [Efroymson,

1960]. Sparsity inducing regularization techniques such as LASSO [Tibshirani, 1996]

may be considered related alternatives. However, in all generality, selecting input

features may be formulated as an HPO problem with n binary hyperparameters, one

per each entry of the input vector.

The choice of the loss function, although mainly related to the downstream

application, may be also considered as a categorical hyperparameter, alongside the

type of the model’s output; Section 2.2 indicates typical options. Very recently some

authors have proposed to learn parameterized loss functions from data [Wu et al.,

2018a, Bechtle et al., 2019]. Furthermore, sometimes it can be beneficial to weight

examples separately, for instance to mitigate known data imbalances or noisiness
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∅Weights:

σ(W1 ·+b1)
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{W1,b1}

σ(W2 ·+b2)
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{W2,b2}

Softmax(·)

Output

∅

Figure 3.1: Representation of the computational graph of a two layers feed-forward neural
network, where the “Softmax” function is defined in Section 2.2. Each node
should be interpreted as a possibly parametric function whose input is denoted
by ·. The parameters are “stored” in the node itself (shown in the row below
the diagram). Other representation are possible: for instance, Theano [Theano
Development Team, 2016] computational graph plotting package uses nodes to
encode either single variables (inputs or weights) or operations.

[Franceschi et al., 2017, Ren et al., 2018]. In this case, one may associate a real-valued

hyperparameter to each example, as we do experiments reported in [Franceschi et al.,

2017].

Neural networks. The hypothesis space of neural networks is sensibly more complex

than that of linear functions and it is controlled by a far greater number of design

hyperparameter. Neural models can be though of as directed graphs G = {V ,E}, named

architectures, where the nodes represent the computation carried out at each layer.

The edges encode the relationship of composition; i.e. (i, j) ∈ E if the (output) of the

i-th node is an input of the j-th node. The graphs of RNNs and some types of GNNs

are cyclic. As a simple example, Figure 3.1 depicts the computational graph of a two

layers feed-forward neural network (see (2.10)). We refer the reader to Section A.2.2

for a discussion of computational graph in the more general context of algorithmic

differentiation5.

A neural network computational graph G may be in principle treated as a “mono-

lithic” hyperparameter. This requires specifying the function that each nodes imple-

ments (including designating the relative “trainable weights”) and the connectivity

patterns between the nodes, that is the set of edges E . In practice, however, virtually

all neural network-based learning algorithms deal with particular types of manually

designed architectures (e.g feed-forward NN, CNN, CNN with skip connections [He

5The type of representation sketched here and shown in Figure 3.1 is more compact than that of
Section A.2.2. It allows for vector or matrix operations and it groups input variables (which are both x
and the various weights) with intermediate computations. However, the graph in Figure 3.1 may be
easily expanded to follow the formalism of A.2.2.
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et al., 2016], . . . ). Therefore, very often only a much smaller number of adjustable

components of G is exposed as a series of simpler integer or categorical hyperparam-

eters. For instance, a learning algorithms for training feed-forward neural networks

may restrict the possible architectures to sequential graphs such as the one depicted in

Figure 3.1. The user may be required, however, to specify the number of nodes (i.e. the

depth of the neural network), the output dimensionalities of each node (i.e. the number

of units per layer) and the activation function σ to use at each layer. The central part

of Table 3.1 shows an indicative selection of typical architectural hyperparameters in

this context.

A series of advancements in the neural network community have derived form

the development of novel architectures. Until recently, however, this research process

has been driven almost exclusively by expert insight and analysis as well (as manual

trial-and-error) and thus quite outside the scope of HPO. The recent emergence of a

research area that specifically focuses on the optimization of neural architectures [e.g.

Zoph and Le, 2017, Cai et al., 2018, Liu et al., 2019, Luo et al., 2018, Real et al., 2019],

called neural architecture search, has altered the perspective in this sector and has lead

to the development of specialised HPO algorithms to tackle this problem. Although

the way in which the architecture space and the search method are implemented by the

various authors is quite varied, the general idea is to parameterize a relatively small

subspace of all the possible computational graphs by the means of a domain dependent

language [Zoph and Le, 2017, Real et al., 2017] or with real-valued [Liu et al., 2019]

or boolean hyperparameters. Warm starting and network transformation (morphism)

strategies may be used to speed up the search process [Cai et al., 2018]. See [Elsken

et al., 2019] for a review on the topic. Interestingly, various authors [Zoph and Le,

2017, Cai et al., 2018] have framed the neural architecture search problem under a

reinforcement learning point of view, perspective that is rarely explored in the wider

HPO field6.

Kernel Methods. The main design choice in kernel-based methods such as SVM

and Gaussian Processes (see also Section 3.4.5) is instead represented by the kernel

6 Few exceptions include [Hansen, 2016], that focuses on the adaptation of learning rates.
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mapping (e.g. linear, polynomial, Gaussian, . . . ). Conditional to this (categorical)

choice, each type of kernel offers a series of configuration parameters that must be

set; for instance the degree of polynomial kernels. Some learning algorithms combine

different kernels during the execution [Aiolli and Donini, 2015, Jain et al., 2012], in

which case a list of available kernels with their parameters – or, alternatively, a method

to generate them – should be provided.

Multi-task Learning. In a multi-task learning setting, one way to transfer knowledge

between tasks and statistical models is to share sub-components of the underlying

computation. This is, for instance, quite straightforward for neural networks, where

models trained on different tasks can share entire layers, thereby learning a common

representation by exploiting information from multiple sources. The exact choice

of which portions of the computational graph should be shared may, generally, be

represented as a design hyperparameter.

3.2.2 Regularization Hyperparameters

Regularization hyperparameters control the strength and form of the various regulariz-

ers that may be used by a learning algorithm to reduce overfitting and inject previous

knowledge of the task at hand. If design hyperparameters shape the hypothesis space

in which a learning algorithm seeks for solutions, most regularization hyperparameters

affect the prior distribution over possible solutions. That is, the probability that the

resulting solution will be in a certain region of H irrespective of (or, before seeing

any) particular dataset7. Regularization is often associated to the concepts of (model’s)

capacity and complexity, which in turn, are tied to the interpolation capabilities of the

model in question. Table 3.2 shows a selection of regularization methods, with a short

description and specification of the type of the associated hyperparameters.

Many regularization methods consist in adding a penalty term to the training

error (empirical risk) in the form of a non-negative map Ω : W ×ΛΩ → R+ that is

independent from the data, where ΛΩ is the space of hyperparameters for Ω. The

7 As a matter of fact, to give more meaning to this informal definition, one should introduce and
consider a distribution pD over the space of datasets D, so that one may reason about the distribution
A(D) induced by applying the learning algorithm to the random variable D ∼ pD. This view relates to a
meta-learning approach. We shall formalize it more precisely in the next chapter.
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Table 3.2: Examples of regularization methods and relative hyperparameters. The “descrip-
tion” column briefly explains the effect of each regularization technique. Hyper-
parameters – whose admissible range is displayed in the third column – typically
determine the strength of the relative regularizer. Further, in the “Type” column,
“LT” indicates that the relative regularizer is a term added to the (training) objective
and the symbol † denotes non-smooth (possibly discontinuous) regularizers. Note
that LT regularizers may appear in some formulations also as constraints.

Name Description Type

L0 penalty
Penalizes number of non-zero weights components,
induces sparsity, linked to network pruning [Louizos
et al., 2018]

R+,†, LT

L1 penalty
Penalizes absolute value of weights, induces sparsity,
linked to feature selection

R+,†, LT

L2 penalty Penalizes squared weights; outlier mitigation R+, LT

Spectral reg.
Penalizes singular values of weight matrices [Sedghi
et al., 2019, Miller and Hardt, 2019], stabilizes train-
ing

R+, LT

Jacobian reg.
Penalty term as a function of the Jacobian of the
hypothesis w.r.t. the input [Hoffman et al., 2019],
increase smoothness

R+, LT

Weight decay
Reduces magnitude of weights, linked to L2 regular-
ization [Loshchilov and Hutter, 2019]

(0,1]

Dropout
Stochastically drops neural units from the computa-
tion, prevents feature co-adaptation [Srivastava et al.,
2014]

(0,1]†

Secondary tasks
Favours representations beneficial also for other
tasks [Caruana, 1998]; hyperparameters may bal-
ance the importance of each task

R+, LT

multi-task reg.

Set of techniques and relative regularizers for learn-
ing and sharing information among multiple, equally
important, tasks; hyperparameters may set the
strength of the interactions between pair of tasks

R+, LT

hyperparameter λ ∈ ΛΩ plays a somewhat similar role to that of the parameter vector

of a statistical model, although it is usually of a much lower dimensionality (or even,

simply, a scalar). A learning algorithm that encapsulates this type of regularization

typically searches for hypothesis that minimize

L(w,λ,D) =
1
N

N∑
i=1

`(hw(xi),yi) +Ω(w,λ) (3.9)

where w is the model’s weight vector and D = {xi,yi}
N
i=1 is a dataset.
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Lp Regularizers. The simplest implementations of Ω are of the type

Ω(w,λ) = λΩ̃(w) where Ω̃(w) =
||w||22

2
or Ω̃(w) = ||w||1 (3.10)

where λ is a non-negative scalar hyperparameter (ΛΩ = R+) that controls the global

strength of the penalty8. While the presence of only one scalar hyperparameter

certainly reduces tuning efforts and simplifies the resulting HPO problem, some

applications benefit from a finer control over the prior induced by the regularizer [Chen

et al., 2019]. This may be achieved, for instance, by letting λ be and hyperparameter

matrix and setting Ω(w,λ) = Ω̃(λw). In this case, λ is typically restricted to be a

diagonal matrix (one regularization coefficient per weight) or presents some other

additional structure (e.g. one coefficient per neural network layer).

L2 (or quadratic) regularization promotes solutions where the magnitude of the

entries is relatively homogeneous (smaller as λ increases for the case of (3.10)). This

may potentially reduce the effect of outliers in the dataset or any subsequent feature

map. The classic “ridge regression” learning algorithm fits L2 regularized linear

models with mean squared error. Quadratic regularization of the type (3.10), being

smooth, strongly convex and very cheap to compute, is also commonly employed to

impose uniqueness on the solutions of linear over-parameterized problems (where

d > n) and to prevent the norm of neural network weights to arbitrarily increase during

training. It is possibly one of the most ubiquitous form of regularization that finds its

place in several learning algorithms, from neural networks to SVMs.

L1 regularization is used to encourage sparsity in the solution vector, whereby in

the simple implementation of (3.10) higher values of λ “increase the probability” that

more components of w will be set to 0. The related mapping is convex and Lipschitz-

continuous but not smooth. Notably, the learning algorithm that performs linear

regression minimizing an empirical squared error with an added L1 regularization term

is known as LASSO (least absolute shrinkage and selection operator), and it is linked to

feature selection. L1 regularization is often introduced as a convex relaxation of the L0

8 In this case (3.9) reduces to (2.3) with λ = ρ. In (3.9) we have further highlighted the dependence
of L from λ.
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“norm”. The L0 norm counts the non-zero entries of a vector but, unlike the L1 norm,

it is not affected by the magnitude of the vector itself9. As such, it would be an ideal

candidate for promoting sparsity, without causing the possibly undesirable “shrinkage”

side-effect associated to the L1 norm. The discontinuous nature of the L0 norm has,

however, discouraged its widespread application as it considerably complicates the

resulting learning problem. Recently, Louizos et al. [2018] proposed a stochastic

reformulation closely tied to L0 regularization by introducing auxiliary semi-discrete

random variables whose distribution is optimized alongside the model’s parameters

during training.

Spectral and Jacobian Regularizers. Other form of regularization act on the model

itself, rather than directly on its weights. These include spectral regularizers, where

a penalty term is applied to the singular values (the spectrum) of linear operators

that define hw, and Jacobian regularization, whereby Ω is a function of Dhw [see e.g.

Hoffman et al., 2019, and references therein]. In the simple case of affine models

hw(x) = Wx + b, an example of the first class of regularizer is given by

Ω(hw,λ) = λ||σSV(W)||22

where λ > 0 is a scalar coefficient and σSV computes and returns the singular values of

a matrix. Spectral regularization may be applied also to more complex models such

as CNN [Sedghi et al., 2019] and it is particularly useful for dynamical models (such

as RNNs) to promote – or enforce, when used as a constraint – contractiveness of

the learnt dynamics [Miller and Hardt, 2019]. See also Section 6.3.4 for a series of

experiments in this setting.

In contrast to the other regularization methods reviewed so far, Jacobian regu-

larization mappings typically depend also on the input data and may take the form

of

Ω(hw,λ,D) =
λ

N

N∑
i=1

||Dhw(xi)||2F . (3.11)

9 To be precise, the L0 norm defined as ||v||0 =
∑

i ιvi,0 is not a proper norm since it is not homoge-
neous: in general ||cv||0 , |c|||v||0 for scalar c and vector v.
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where λ > 0 controls the strength of the regularizer. Jacobian regularization promotes

local smoothness of the solution hypothesis by penalizing the local Lipschitz-constants

of hw around the sample points. For classification tasks this may lead to overall

smoother decision boundaries, which, in turn, may improve the model’s generalization

performances, particularly against corrupted or adversarial [Szegedy et al., 2013] exam-

ples. Since computing (3.11) may be expensive, especially as the output dimensionality

grows, some stochastic approximation schemes have been proposed [Hoffman et al.,

2019]. Spectral and Jacobian regularizers remain, at the moment, far less common

than simpler L1 and L2 regularizers, possibly because of their computational overhead.

Additional methodological, theoretical and empirical results may be needed before

these type of techniques would see a broader utilization.

Other Neural Network Regularizers. Among the regularization methods that can-

not can be expressed as additive loss terms (as in (3.9)) we mention weight decay

[Loshchilov and Hutter, 2019] and dropout [Srivastava et al., 2014]. Both techniques

are applicable to iterative learning algorithms; the first consists in iteratively decaying

the model parameters as wt+1 = λwt for λ ∈ (0,1] and is closely related to L2 regular-

ization10; the second, specifically developed in the context of neural models, involves

adding Bernoulli noise to the neurons of each layer. More precisely, for a feed-forward

neural network (2.10), the output of a layer subject to dropout regularization is a

random variable distributed as

zl(x) ∼ σ(Wlzl−1(x) + b2)◦ rl where rl ∼ Ber(λ1),

where ◦ denotes the element-wise product and 1 is a vector of ones of the appropriate

dimension. The hyperparamter λ ∈ (0,1] controls the amount of noise injected (less

noise for λ→ 1). Dropout helps to prevent the co-adaptation of (hidden) features by

sampling at each iteration a sub-networks, thus “dropping” from the computation a

10If, e.g., the iterative optimization dynamics is GD, weight decay is equivalent to L2 regularization
(3.10) for λWD = 1−ηλL2 where η is the learning rate of GD and λWD and λL2 < η−1 are the hyperpa-
rameters of weight decay and L2 penalty, respectively. For adaptive optimization algorithms such as
ADAM, L2 regularization is, however, no longer equivalent to weight decay [Loshchilov and Hutter,
2019].
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subset of units at each layer. Typically, dropout is applied only at training time, while

the final model does not include it; for this reason we consider it as a regularization

method rather than a design choice. Dropout has been shown to improve generaliza-

tion on a multitude of tasks, and various researchers have proposed adaptations and

extensions in several directions [e.g. Wan et al., 2013, Krueger et al., 2017].

Multi-task Learning Regularizers. When learning from multiple task simultane-

ously, a common path to integrate and share knowledge between different tasks is

through regularization. Concerning regularization, multi-task learning may refer to

two different setting depending on the presence of a hierarchy among the various tasks.

In a first case a subset of the input tasks is marked as primary, while the others are

deemed as secondary (or ancillary) tasks [Caruana, 1998]. These latter are utilized by

the learning algorithm to provide additional supervisory signal, but are not necessar-

ily part of the target concept. A typical procedure involves sharing a portion of the

computational graph (see Section 3.2.1) between models that attend to primary and

secondary tasks. The training error is then defined as a weighted sum of all the single

tasks’ training errors (both primary and secondary tasks). The weights of the resulting

errors are then treated as hyperparameters. Secondary tasks may act as regularizers by

promoting learning of more general and richer representations. We discuss a practical

instance of this setup in the context of automatic speech recognition in Section 7.1.2.

In a second case, the user is interested in obtaining one model per task, attributing

(equal) importance to each task. In this scenario, knowledge may be transferred

between related tasks by the means of a regularization mapping that takes as input

multiple models. For instance, the weight of T different linear models might be pushed

closer together by employing the following regularizer:

Ω(w1, . . . ,wT ,λ) =

T∑
i=1

T∑
j=1

λi j||wi−w j||
2
2

whereby the (symmetric) matrix of coefficients λ = {λi j}
T
i, j=1 may be given or treated

as an hyperparameter. In Section 7.1.1 we conduct some numerical experiments

concerning this setting. Another possible option in this setting is to penalize the
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distance of the weights of the various models from a vector w̄, called bias [Evgeniou

et al., 2005]. The resulting regularizer may then be written as

Ω(w1, . . . ,wT , w̄,λ) =

T∑
i=1

λi||wi− w̄||22,

where λ is an hyperparamter vector. The bias w̄ may be prescribed, computed (e.g. it

could be the mean of {wi}
T
i=1) or treated as an hyperparameter. Multi-task regularizers

may also work by encouraging outputs of closely related tasks to be similar to each

other around sample points (in contrast of using a single model for all the tasks); this

may be a more appropriate form of regularization for non-linear models which may

exhibit symmetries in the parameter space W . We explored this setting in [Badino

et al., 2017] for learning speaker-dependent acoustic inversion models.

Clearly, a learning algorithm may employ more than one form of regularization,

whereby the resulting hyperparamter space may be defined as the product of each

regulaizer’s space. For instance, the algorithm that uses both L1 and L2 regularization

is known as elastic net [Zou and Hastie, 2005] in the context of learning linear models.

3.2.3 Optimization Hyperparameters

The majority of learning algorithms require solving one or more mathematical pro-

gramming problems to compute intermediate or final results. When the problems

are smooth and continuous, optimization methods described in Section 2.4 provide

principled and efficient techniques to search for solutions11. These methods present,

however, a series of configuration parameters that need to be set before execution,

which we collectively denoted by α in the general Algorithm 1. Even though conver-

gence results may offer some guidance and conditions, it is most often the case that

the optimization objectives of interest do not verify some required preconditions (e.g.

they may not be globally strongly convex, as it is the case for the training error of deep

neural networks). Even if they do, it may be unfeasible to compute precisely or even

estimate some important quantities, such as the Lipschitz smoothness constant (cf.

11 Alternatives are given by evolutionary or population-based methods, that have largely different
types of hyperparameters. We do not discuss these methods here, but see Section 3.4 for applications of
these techniques to hyperparameter optimization.
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Table 3.3: List of typical optimization hyperparameters. In the “Type” column, “Cat.” stands
for categorical, “Dist.” denotes a probability distribution and ∗ indicates that there
are other possible encoding options.

Name Description Type

Update rule General form of the iterative update rule (2.28) Cat.
Starting point Distribution from which to sample w0 Dist.

Learning rate
Global step-size that determines the magnitude of the
updates

R+

Termination
Total number of iterations or rule to determine termi-
nation (e.g. early stopping; see Section 2.4.4)

N∗

LR schedule
Rule for changing (reducing) the learning rate as a
function of the iteration

Cat.∗

Mini-batch size
Number of samples to process at each iteration for
stochastic methods; see (2.20)

N

Momentum factors Coefficients of accelerated methods (e.g. β in (2.25)) [0,1)

Stability constants
Small constants that ensure numerical stability (e.g. ε
for ADAM (2.27) for preventing division by 0)

R

Patience window Number of iterations to wait before early stopping N

Theorem 2.4.4). For these reasons configuration parameters of optimization methods

are usually treated as hyperparameters, although they may be optimized against the

training error rather than the validation error. We report in Table 3.3 a list of typical

optimization hyperparameters with a brief description and the relative hyperparam-

eter type. The first half of the table contains configuration choices that are virtually

“essential” for setting up an iterative (gradient-based) optimization routine, while the

second half lists hyperparameters that are either “optional” or tied to a smaller subset

of optimization methods, such as the momentum factors.

The first choice regarding iterative optimization methods is the (symbolic) form

of the update dynamics, denoted by Φt in the general scheme of Algorithm 1. Possible

alternatives include GD and SGD, accelerated or second order methods and their

stochastic variants, described briefly in Section 2.4.3. Similarly to some design hyper-

parameters, this categorical choice is often “hardwired” to the learning algorithm itself;

as otherwise it would inject substantial conditionality on the rest of the hyperparameter

space. Learning to optimize, which we discuss in the next chapter in Section 4.4.2.3,

is a sub-branch of meta-learning that focuses on this choice, exploring the possibility

of learning update rules from data.
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Initialization. Secondly, iterative procedures need a starting point w0: this is typically

either set to an arbitrary, fixed, value or sampled from a probability distribution.

The first option may be sufficient for problems with strongly convex objective (e.g.

L2-regularized logistic regression), but it is inappropriate for non-convex problem,

especially in the presence of symmetries in the parameter space. There is a series

of classic and more recent works about initialization strategies for neural network

[Glorot and Bengio, 2010, He et al., 2015], the shape and parameters of the initial

distribution may be, in general, treated as an hyperparameter. The starting point, paired

with aggressive termination conditions (e.g. very few steps of GD), or fast decreasing

learning rate schedules, may be also utilized as a regularizer to induce a prior over

the possible outputs of the learning algorithm, especially in the context of transfer or

multi-task learning (see also Section 4.3.3).

Learning Rate. The (initial) step size, or learning rate, controls the magnitude of

the parameter updates. Except for a handful of particular situation (strongly convex

objective where the Lipschitz constant and the modulus of strongly convexity are

computable) in which it is possible to compute its optimal value, in most practical

scenarios the learning rate must be treated as an hyperparameter. Numerous empirical

works have shown that it is one of the most sensitive hyperparameters when training

neural networks [Bergstra and Bengio, 2012, Bergstra et al., 2011]. The step-size is

considered to be among the most important hyperparameters that should be tuned [Ben-

gio, 2012]. Some authors advocate for the benefits of maintaining different learning

rates for different parameters (e.g. different neural network layers) [Maclaurin et al.,

2015a, Antoniou et al., 2019]: for several optimization techniques, this corresponds

to applying a (structured) diagonal scaling. Usually the value of the learning rate is

changed as a function of the current iteration – the exact rule, alongside its parameters

may be treated as an hyperparameter. Typical choices include steps-wise, exponential

or linear decay. Decreasing the learning rate is particularly important when using

stochastic optimization methods to ensure convergence to a fixed point (see Section

2.4.2) and aggressive decreasing schedules may work similarly to early stopping or

L2 regularization in some instances. Given the importance of the learning rate and its
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scheduling, research on adaptive methods is abundant and predates that on general

HPO [e.g. Jones et al., 1998]. The aim of these works is typically to reduce the number

of iteration needed to reach good candidate solutions (i.e. to speed-up the training) as

well as simplifying and automating12 the hyperparameter search for the initial learning

rate and its schedule. Chapter 8 presents additional related work in this area and is

dedicated to the development of an algorithm based on online hypergradient descent

to adaptively tune the learning rate, hence automatically producing a schedule.

Other hyperparameters related to the optimization aspect of machine learning

algorithms include the mini-batch size for stochastic methods, momentum factors for

adaptive and accelerated methods and some numerical stability constants that may

appear, for instance, to prevent division by 0 (e.g. in RMSprop or ADAM).

3.3 Hyperparameter Schedules and Online HPO
When the underlying learning algorithm is inherently sequential, as it is for the case

of Example 3.1.1 where the iterative dynamics is given by the SGD update step

(Equation (2.20)), it may make sense to consider hyperparamter schedules rather than

“fixed values”. This can be achieved either by explicitly maintaining one distinct

hyperparameter vector per steps, i.e. λ = {λt}
T
t=1, where T ∈ N is a prescribed horizon,

or by letting the hyperparameters at step t be an appropriate function of the iteration (or

even of a “state of the algorithm” [Wu et al., 2018a]), that is, letting λt = st(λ). Either

way, there is no contradiction with the formulation of Problem (3.6): the optimization

variable remains λ in both cases, and we shall consider that all operations instrumental

in managing the resulting schedules are wrapped into the learning algorithm itself. It is

worthwhile noting, however, that the hyperparameter space may become sensibly larger

than that of the “static” counterpart, especially when embracing the first formulation.

This, in turn, may further complicate the HPO problem and render classic approaches

to HPO quickly impractical. In spite of this, scheduling is particularly appealing. On

the one side, it allows us to introduce and control a dynamic behaviour in A that may

be advantageous in certain circumstances (think of the case of decreasing learning

12Although it should be noted that often these methods introduce other set of hyperparameters.
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rates for SGD dynamics); on the other side, if a static value was, ex post, the best

performing choice, then a solution to Problem (3.6) would be simply given by the

constant schedule λ∗ =
{
λ̄
}T

t=1
. In principle, an HPO technique should be able to recover

it – although unnecessarily expanding the hyperparameter space may raise concerns

on the generalization of the HPO solutions.

Hyperparameter schedules also emerge form online formulations of the hyperpa-

rameter optimization problem. Online HPO techniques [Baydin et al., 2018a, Luketina

et al., 2016, Jaderberg et al., 2017, Lorenzo et al., 2017, MacKay et al., 2019, Donini

et al., 2020] typically attempt to find a performing hyperparamter schedule within only

one execution of the learning algorithm, potentially speeding-up the HPO procedure.

To do so, these methods must clearly forgo computing the performance measure at

the end of the evaluation of A, but rather should adopt other strategies or case-specific

heuristics. In this sense, they do not (or rather, cannot) strictly attempt to solve Problem

(3.6). We come back to this topic in more details in Chapter 8, where we discuss and

present an online gradient-based optimization method and study the case of tuning

learning rate schedules.

For some hyperparameters – for instance, optimization hyperparameters such

as the learning rate – scheduling is entirely natural. Scheduling has been proposed

also for several regularization hyperparameters [Maclaurin et al., 2015a, Luketina

et al., 2016, Franceschi et al., 2017, Morerio et al., 2017, MacKay et al., 2019], while

some methods typically associated to neural architecture search or pruning [Louizos

et al., 2018, Liu et al., 2019] may also be loosely interpreted as forms of scheduling

of design hyperparameters (specifically, of connectivity patterns). Another notable

examples include [Wu et al., 2018a] where the authors focus on optimizing a dynamic

loss function that depends on a concise representation of the model being fit. Among

the works cited in this section, only [Maclaurin et al., 2015a, Wu et al., 2018a] adheres

to the formulation of Problem (3.6), while [Maclaurin et al., 2015a] uses explicit

schedules and [Wu et al., 2018a] follows a functional approach. The remaining studies

follow online formulations.
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3.4 Techniques for Hyperparameter Optimization
In this section we review the most common approaches to hyperparameter optimization,

from simple manual, grid and random search, to more complex model-based and

population-based techniques. We defer the discussion of gradient-based HPO to the

next section, where we examine in greater details the state of the art and several current

research directions in the subfield.

The peculiarities of the HPO problem setting and goals translate into the fact that

HPO techniques have typically different evaluation criteria than standard continuous

optimization algorithms; beside computational cost and (speed of convergence toward

the) final objective value, one may consider also other factors.

• Applicability: given the large heterogeneity of learning algorithms and corre-

sponding hyperparameter spaces, certain HPO techniques can only be applied

(at least off-the-shelf) on a restricted subset of problems. Furthermore, some

methods may require (different levels of) access to the underlying learning algo-

rithm and its structure, while others need much less information. Techniques

in the first class may, for instance, be inapplicable in contexts where HPO is

offered as a service [e.g. Golovin et al., 2017] and the user does not want to

disclose reserved information. Methods that require only function evaluations

are often called black-box.

• Accessibility, automation and implementation overhead: closely related factors

that mainly reflect the complexity of the method and the presence of configura-

tion parameters whose correct setting might require expert knowledge. Since

democratization of machine learning may be considered as a goal of hyper-

paramter optimization, an argument can be made in favour of techniques that

require little to no expert knowledge.

• Scale and scalability: some techniques may be more amenable to parallelization

than others, while, on the other hand, certain methods may require a minimum

level of parallelization to yield meaningful results – potentially limiting their

applicability to highly distributed computing environments.
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Correlated to the last point, we may, in fact, roughly dived HPO techniques into

sequential and parallel methods. Sequential methods use information collected from

previous executions of A to determine the next trial point, i.e.

λk+1 = π
(
{λ j, f (λ j)}kj=1,υ

)
(3.12)

while parallel methods simultaneously establish a number of trial points

{λi}
k
i=1 = π(υ) (3.13)

on which to probe the learning algorithm. We denote by υ the set of configuration

parameters for the HPO method, while π represents the map associated to the HPO

technique itself. Given the ample variety and different nature of the various HPO

methods that we touch upon in this section, we do not attempt to formalize further

π at this stage, but rather think of π as a “notational hook”, useful to amalgamate

the discussion. Some sequential methods may determine more than a trial point at a

time, while parallel methods may exchange information between different runs during

execution, for instance to allocate increased computing power to more promising

executions. Furthermore, some hybrid methods (e.g. evolutionary search) comprises

both parallel and sequential steps.

Regardless of the nature of the method, we will assume that the best configuration

found so far is always retrievable. Also called incumbent solution, such point typically

corresponds to the lowest value of f measured so far. We will denote it by λ̂k ∈ Λ,

where the subscript k may either indicate an iteration or an amount of elapsed time, as

appropriate. Finally, we denote by λ̂ ∈ Λ (without subscript) the final configuration

returned by the method upon termination.

3.4.1 Manual Search

Traditionally, the problem of hyperparamter optimization has been tackled with a

mix of manual and grid search. Pure manual search (MS) may be described as a

sequential approach whereby the map π of (3.12) is provided by the user’s judgement

and insight. Manual search heavily relies on the experience and skill of the user,
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making it the least accessible method for HPO. MS constitutes a potentially very

time consuming approach, especially when facing novel datasets and tasks, in the

absence of a well established literature. As it is not possible to reliably recreate and

retrace the (mental) steps that led to a certain hyperparamter configuration, MS suffers

heavily form reproducibility issues. Typically the access to the learning algorithm

is complete and, as the user manually explores the response surface, he or she may

collect additional information from each single run (e.g. looking at the activation

patterns of a neural network’s layer during training), which may then be used to guide

the search. If, from one side, this procedure may grant the user a superior degree

of insight on f (Λ) and A itself, thereby speeding up the search, on the other side,

it may lead to the (accidental) leakage of reserved information (e.g. the test error),

potentially prejudicing the outcome of the experiment. In some communities, this

issue is particularly severe, especially when it is paired with the heavy (re)utilization

of relatively few benchmark datasets when presenting empirical research results. In

this regard, Recht et al. [2018] have recently measured the performance drop of several

learning algorithms (executed with the hyperparameters indicated in each respective

original work) on CIFAR10 [Krizhevsky and Hinton, 2009] when the resulting models

are evaluated on a new curated set of test images rather than the “standard” test split.

They report an absolute drop in accuracy between 4% and 12%.

Notwithstanding all these issues, manual search (especially when paired with

grid search) remains to date one of the most popular method to perform HPO, as it

causes virtually no implementation overhead and, in principle, it does not have any

applicability restriction. Another potential advantage of manual search is that it has a

low computational footprint, as the total number of trials generated by a typical run of

MS is comparatively much smaller than that of other methods as the richer feedback

loop and previously accumulated knowledge may tremendously boost the efficiency of

the search policy of an experienced user.

3.4.2 Grid Search

The first formal description of grid search (GS) dates back at least to the thirties and is

attributed to Fisher [1936]; in his foundational work on experimental design, Fisher
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refers to the method as factorial design. The classical approach to hyperparamter

optimization in machine learning, grid search is a parallel method that consists in

executing A over a predefined grid of values. Specifically, for each entry of λ, the user

defines a list of values (trial sets) as

λ̄i = {λ̄i
j}

ni
j=1, λ̄i

j ∈ Λi, for i = 1, . . . ,m.

The grid of values υ = {λ̄i}mi=1 is a configuration parameter for GS. The trial points

are then given by all the K =
∏

i ni possible combinations on the Cartesian product

generated by the m sets in υ. The learning algorithm is executed (in parallel, if possible)

on the resulting set of points and the hyperparameter configuration that minimizes the

objective function f is finally returned as λ̂.

Grid search is a simple black-box method that may be reliably used for exploring

low dimensional hyperparamter spaces, it requires very little implementation effort

and it is easily scalable. The number of total experiments generated by GS, however,

grows linearly in the size of the trial sets λ̄i and is exponential in m; making the method

largely impractical already form m> 3 and virtually inapplicable when m is in the order

of 10. In the very favorable case that λ comprises only Boolean values, for m = 10

grid search generates already 210 = 1024 trial points. In addition, while Boolean and

categorical hyperparameters naturally lend themselves to an evaluation on a predefined

grid, unbounded integer and real-valued hyperparameters require manually setting

up bounds and discretization. Extensive experimental practice [Bengio, 2012] has

shown that some continuous hyperparameters, such as the learning rate, benefit from

discretization on a logarithmic scale. One may, for instance, expect that, for some

a < b in Z, with p = b− a + 1 the total number of trial points, a trial set of the type

{10 j : j ∈ {a, . . . ,b} } would yield more significant results than an equally spaced grid

between 10a and 10b defined as {10a + j (p−1)−1(10b−10a) : j ∈ {0, . . . p−1} }. Thus,

while requiring less expert knowledge than manual search, grid search may still be

quite sensitive to a correct setting of the trial grid υ, especially for “non-standard”

hyperparameters or problem settings for which there is lack of abundant previous

experimental evidence.
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To counter these limitations and contain the computational overhead, grid search

is usually paired with manual search: the user alternates GS steps with adjustments

and refinement to the trial sets (i.e. using a finer grid “centered” around the best found

configuration, or moving the search bounds of continuous hyperparameters), until a

satisfactory result is found.

3.4.3 Random Search

Perhaps the simplest procedure for global optimization, random search (RS) was

probably first expounded in the fifties in a work by Brooks [1958]. Random search

is a parallel black-box approach that consists in repeatedly drawing hyperparameter

configuration from a predefined distribution over Λ. We will indicate such (joint)

distribution with υ; π represents then the sampling process. While in principle υ could

be any distribution, in practice, to keep the method accessible and uncomplicated, most

of the times the joint distribution is given by a product of independent component-wise

simple distributions relative to each of the specific entries of the hyperparameter vector,

i.e. υ =
∏m

j=1υi. For instance, if λ contains, in order, a categorical choice between K

different neural architectures, the learning rate for SGD and a global dropout factor for

regularization (see Section 3.2) then υ could be set as

υ = U {1,K}×LogU(10−5,10−1)×U(0.5,1).

where U {·} and U (·) are the discrete and continuous uniform distributions and LogU (·)

is the log-uniform (or reciprocal) distribution on the indicated intervals.

In an influential article, Bergstra and Bengio [2012] advocated using random

search (instead of manual or grid search) as the “default” baseline method for HPO.

They argue that RS retains the advantages of GS such as reproducibility, conceptual

simplicity, very low implementation overhead and trivial parallelization, while also

being more efficient in higher dimensional spaces, especially when the response

function has a low effective dimensionality13; situation that they claim to be rather

13 The authors informally define this condition as when a subset of factors (hyperparameters) accounts
for most of the variation of the response function: e.g. for a bi-dimensional hyperparameter it could be
that f (λ1,λ2) ≈ g(λ1).
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common in practice. In fact, as Brooks explains, the success of random search is linked

to the relative size of the sub-region Λ∗ ⊂ Λ that leads to positive outcomes of the

experiments (i.e. where f is sufficiently small). Assuming υ is the uniform distribution

over Λ and that the user is satisfied whenever the search returns a configuration in Λ∗,

one can simply compute the probability of success of random search after k trials as

[Brooks, 1958]

P
(
λ̂k ∈ Λ∗

)
= 1−

(
1−

µ(Λ∗)
µ(Λ)

)k

, (3.14)

where µ is a suitable measure (e.g. the Lebesgue measure if Λ is continuous, or the

counting measure if Λ is discrete). Equation (3.14) says that the minimum number

of trials needed to assure a positive outcome with a given probability (say 95%) is

independent from the dimensionality of the search space, and only depends on the

relative size of the favourable region. This argument subsumes that of Bergstra and

Bengio. Functions with low effective dimensionality are but a particular case, since

one may “safely” disregard the insensitive factors of variation when estimating (3.14).

This argument may also offer a simple and intuitive explanation to the stunning success

of random search in seemingly complex settings such as neural architecture search

[Li and Talwalkar, 2020]: repeated experimentation on few well-known benchmark

datasets has lead to the development of rather amenable search spaces for neural

architectures where the favourable subspace ratio is comparatively high.

However, for more general search spaces and problem settings the situation may

be quite different: one may indeed expect that the ratio µ(Λ∗)/µ(Λ) itself depends

from the dimensionality of Λ. Consider, for instance, the m-dimensional hypercube

Λ = [0,1]m (so that µ(Λ) = 1) and assume that, for each component, the favourable

region is a tenth of the total. Then µ(Λ∗) = 0.1m, which goes quickly to 0 as m

grows. Thus, while random search may indeed be more efficient than grid search

on specific problems, especially when the search space is well understood, it still

suffers, in general, from the same drawbacks of grid search regarding scalability to

high dimensional settings. Furthermore, promising values of certain hyperparameters

(e.g. the learning rate) may concentrate around a small region of the domain under

the Euclidean measure, when sampling uniformly. One may then pick a distribution
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with more mass on that small region (e.g. using a log-uniform distribution for the

learning rate), leading to a different measure in (3.14). This exercise, however, clearly

requires a degree of prior knowledge which may not always be available. In other

words, in order for random search to be noticeably more effective than grid search,

one either needs to design a “benign” search space with a relative large region of good

configurations, or must be able to provide a prior distribution that induces a favourable

measure over Λ, either options demanding experience. Anyway, one clear advantage

of random search is that it allows for a more natural treatment of a larger class of

hyperparameters, not requiring discretization of continuous search spaces and allowing

(in principle) for distributions with non-compact supports.

Finally, we note that the randomized nature of this HPO technique may have two

other potential disadvantages. First, “unlucky” runs may end up with entire regions

of Λ being under-explored or completely neglected. Secondly, also in view of the

previous reason, an execution of a “round” of RS may not necessarily provide enough

information to meaningfully modify the settings for an eventual subsequent round of

RS. Thus, interleaving random search with manual search steps may be comparatively

harder than doing so with grid search. To obviate these potential issues, one may resort

to hybrid (grid/random) strategies [see Bousquet et al., 2017, and references therein].

One of these is Latin hypercube sampling, which involves dividing the search space

into K hypercubes of roughly the same size and then drawing exactly one configuration

per cube, either uniformly or according to a predefined prior distribution over each

cube. More generally, one may resort to open-loop sampling strategies, whereby

ν models a joint probability distribution over sequences of hyperparameters {λi}
K
i=1

(see (3.13)). In this latter context, Dodge et al. [2017] propose determinantal point

processes to promote diversity among the configurations of the sampled sequences.

3.4.4 Model-based Methods

The techniques described so far do not make any attempt to model the response

function f (λ) but only rely on the evaluation of the objective on a set of selected or

drawn points. Except for manual search, the information retrieved on previous runs of

the learning algorithm does not influence the progression of the search. In contrast,
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model-based (MB) techniques construct an explicit surrogate model for f (λ) – or

for closely related quantities – on the basis of information collected from previous

evaluations. We will denote such a model by

f̂ : Λ×X → Y , (3.15)

where X may represent additional inputs (e.g. the performance of partial executions

of A, a baseline or the value of the incumbent solution) and Y is an appropriate output

space. For instance, Y could be R+ if f̂ models directly f (and f is a validation error

of the type (3.5)), or Y could be the interval [0,1] if f̂ predicts the probability that a

given configuration improves over a given baseline.

The panorama of model-based methods is strongly dominated by techniques that

fall under the umbrella of Bayesian optimization (BO), which we describe in more

details in the next section. In BO the surrogate model is a probabilistic mapping that

also captures the uncertainty of the estimation. Nonetheless, some recent works go

in different directions; Ilievski et al. [2017] use a deterministic radial basis function

model for f̂ which they interpolate on observations of f , while Hazan et al. [2018]

focus on Boolean hyperparameters and use a sparse Fourier basis model for f̂ , in

conjunction with heuristics for estimating the most sensitive hyperparameter entries.

They then use a base global optimizer for performing HPO on a restriction of the

original hyperparameter space. The works by Lorraine and Duvenaud [2018] and

MacKay et al. [2019], linked to gradient-based hyperparameter optimization may

also be interpreted as an attempt to learn a surrogate model of the entire learning

algorithm (applied to a specific dataset), whereby the output space of f̂ coincides with

the hypothesis space of A itself, that is Ŷ = H in (3.15). We will resume the discussion

about these latter methods in Section 3.5.

Regardless of the particular implementation, one critical feature of surrogate

models is that they should be much cheaper to evaluate than f itself (we recall that

evaluating f requires executing the learning algorithm A, which may be very expen-

sive). This typically allows model-based techniques to compute f̂ on several values at

each step, e.g to seek for extrema. To conform with the notation introduced in (3.12)
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and (3.13), we let the surrogate model be passed to π as (part of) the configuration

parameter υ; that is, we let υ = (υ1,υ2) = ( f̂ ,υ2), where υ2 is a (possibly empty) set of

other configuration parameters. f̂ may be a parametric function itself, thus one may

think of υ1 as the set of variables that define the surrogate model.

The vast majority of model-based methods is sequential: the surrogate model

suggests the next point to evaluate while being simultaneously adapted online as

new data from the execution of A is collected and processed. In this case, π may

be conveniently divided into two components π1 and π2, one corresponding to the

iteration in the hyperparameter space, the other to the update of the surrogate model:

 λk+1

f̂k+1

 =

 π1( f̂k,υ2)

π2
(
{λ j, f (λ j)}kj=1, f̂k,υ2

)
 (3.16)

Another possibility is to first learn f̂ and then use it to suggest one or several hyperpa-

rameter configurations in a second stage, following a parallel scheme. Examples of

this strategy include [Feurer et al., 2015, Fusi et al., 2018] which, however, assume

the presence of multiple tasks and are closer in nature to meta or transfer learning

settings. Still, even in the sequential approach, typically f̂0 is initialized by using

several evaluations obtained in a “warm-up stage”, e.g. by random search or Latin

hypercube sampling. While the foremost representatives of these type of methods –

tied to Bayesian optimization – are classically black-box procedures, model-based

techniques may greatly benefit from direct access to the underlying learning algorithm.

For instance, [Swersky et al., 2014, Klein et al., 2017, Falkner et al., 2018] use infor-

mation gathered from partial execution of A to stop unpromising evaluations, which

may be additionally resumed at a later stage [Swersky et al., 2014].

Model-based methods tend to be fairly more complex than other HPO techniques,

both conceptually and from an implementation point of view. This is because of the

additional challenges induced by the need of fitting a mapping – the surrogate model –

based on relatively few function evaluations, as well as being able to extract meaningful

information from said mapping (e.g. by using handcrafted acquisition functions, as

we shall see in the next section). Thus, while there is a thriving ecosystem of free
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academic software, it is not rare that model-based HPO techniques are implemented

and proposed as commercial products [Clark and Hayes, 2019, Golovin et al., 2017].

The development of MB techniques is often carved with several design choices – one

above all, the hypothesis space for f̂ . Some configurations may be left to be set by the

final user. Although, often, the authors provide “default values”, the presence of many

such parameters may potentially hider accessibility of some model-based techniques

[see, e.g., the list of required inputs for the algorithms proposed in Hazan et al., 2018,

Falkner et al., 2018].

3.4.5 Bayesian Optimization

Bayesian optimization has long been used as a method for global optimization of

black-box functions (i.e., functions for which we can only observe the value f (λ)

at any point λ ∈ Λ), and dates back at least to the seventies with a series of works

by J. Močkus and colleagues [Močkus, 1975, Močkus et al., 1978]. Since Bayesian

optimization constitutes a sensible approach for optimizing (highly) multi-modal,

non-convex and possibly expensive-to-compute functions – albeit limited to small-to-

medium dimensional settings – it has attracted considerable attention for its potentiality

to tackle HPO problems, especially following the publication of three influential papers

in the early 2010s [Bergstra et al., 2011, Hutter et al., 2011, Snoek et al., 2012]. In this

section, we offer a brief overview of the general methodology in the HPO context. We

refer the reader to the work by Jones et al. [1998] for an intuitive introduction of the

mathematical aspects of the methodology and to the review by Shahriari et al. [2015]

for further insights into practical aspects and applications to machine learning.

BO is a model-based technique where the objective f is modelled with a stochastic

process, fitted to the observations of the function’s value at a series of points. In

turn, the stochastic process is used to suggest the next value to probe. Typically the

suggestion rule, express as the maximization of an acquisition function, balances

exploration – that is, the need of collecting information to improve the model itself,

for instance by proposing points far from previous observations – and exploitation –

namely the exigency of “trusting” the surrogate model for rapidly finding good regions,

for instance by choosing as next iterate a minimizer of the model inferred so far.
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Referring to the notation of the previous section and to Equation (3.16), the stochastic

process maps to the surrogate model f̂ , the selection rule to the first component of

π while the fitting steps constitutes the second component, π2. In the following, we

describe a particular, “classical”, instantiation of Bayesian optimization whereby the

surrogate model is given by a Gaussian process [Williams and Rasmussen, 2006]

and the acquisition function is the expected improvement [Močkus et al., 1978].

This approach is well suited for the global optimization of smooth multivariate real

functions, and constitutes the core of the Spearmint [Snoek et al., 2012] HPO package.

We start by introducing a simple linear model hw (Section 2.2) in a given feature

space V , to which we add independent Gaussian noise with variance σ2:

hw(λ) = χ(λ)ᵀw +ε; ε ∼N (0,σ2
ε), (3.17)

where χ : Λ→ V is a feature map. While using linear maps directly in the input space

would surely result in an overly simplistic model – we are trying to model an objective,

the validation error, we believe to be (highly) non-convex and multimodal – working

in a different feature space allows us to capture much richer behaviours, but still retain

most of the benefits of the linear formulation [Murphy, 2012, Ch. 14]: evaluating f

is expensive: we are expecting to work with only a few observations. The noise in

(3.17) models potential errors in the observations. In hyperparameter optimization, the

noise originates from the fact that the validation error is only an estimate of the true

generalization error, but may also (partially) account for the underlying stochasticity

of the learning algorithm.

Suppose now we are at the k-th iteration of the algorithm, after having already

collected k observations. Let Yk = ( f (λi))k
i=1 ∈ R

k be the vector of observed values, and

denote by Xk = (χ(λ1), . . . ,χ(λk)) the corresponding design matrix in the feature space

(organized by columns). We are interested in obtaining a probability distribution over

the output of f at a query point λ∗ ∈ Λ; that is, in computing

y∗ ∼ f̂k+1(λ∗) = py∗(·|x∗,Xk,Yk),
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where x∗ = χ(λ∗) is the query point in the feature space. We could follow an empirical

risk minimization approach, obtaining the weights wk ∈ R
dim(V) of the model (3.17) by

minimizing, for example, a (regularized) mean squared error over the dataset (Xk,Yk).

We could then directly set f̂k+1 = hwk . Such an estimate would, however, leave us with

a rather meager predictive distribution py∗(·|x∗,Xk,Yk,wk), capable of capturing only

our belief of the amount of noise present in the observations. Rather, we would like

the stochasticity of f̂ to (primarily) represent our uncertainty about the behaviour of

f in unexplored regions14. To this aim, we take a Bayesian perspective on the fitting

problem, and reason about all the linear models (in the feature space) that agree with

the observations, weighted by their “realization probability”.

More formally, we marginalize over the weights w and set

f̂k+1(λ∗) =

∫
py∗(·|x∗,Xk,Yk,w)pw(·|Xk,Yk)dw (3.18)

Given our modelling assumption (3.17) and the hypothesis that the noise is independent,

the first distribution simply reads as

py∗(·|x∗,Xk,Yk,w) = py∗(·|x∗,w) = N (hw(λ∗),σ2
ε) = N (xᵀ∗w,σ2

ε). (3.19)

By the Bayes’ rule, pw(·|Xk,Yk) is, instead, given by

pw(·|Xk,Yk) =
py(·|Xk,w)pw(·|Xk)

py(·|Xk)
, (3.20)

14 The following argument, mutated from [Jones et al., 1998], may help in better grasp the difference
between these two aspects. Consider the case where f is a non-linear smooth deterministic function.
We may then either omit the noise term ε in (3.17), or leave it for capturing modelling errors. In the
first scenario, the ERM approach would yield a single point estimate for any λ ∈ Λ, which is very
unlikely to be accurate, especially for points far from those previously sampled. Conversely, if we still
wish to maintain a noise component, f̂k+1 would banally be inaccurate at λi for i ≤ k. Thus, informally
speaking, both ERM modelling options would leave us with a surrogate model that is inaccurate with
probability 1 for “all except a few” f ’s. A way to escape this apparent modelling stalemate is to
replace the independent Gaussian noise with one that depends on the evaluation point, i.e. ε = ε(λ).
Then, when fitting the model to the k observations, one may have εk(λi) = 0 for i ≤ k while letting
εk(λ) , 0 for λ , λi. Furthermore, by continuity (εk is smooth and continuous as difference of C1

functions), εk(λ)→ εk(λi) = 0 as λ→ λi. The Bayesian perspective offers a principled way to achieve
this behaviour – but note that the noise term ε in (3.17) remains independent and indeed represents,
there, the measurement noise.
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Regarding the numerator of (3.20), we have that, for the same argument of (3.17),

py(·|Xk,w) = N (Xᵀk w,σ2
εI).

This is the likelihood of the observations given the model. We must instead take a

decision regarding the second term of the numerator, that is the distribution of the

model parameters. We make the very natural assumption of independence from the

design matrix and set

pw(·|Xk) = pw = N (0,Σ) (3.21)

where Σ is a positive definite covariance matrix. This is a so-called prior. Equipped

with (3.21), we can now also compute the denominator of (3.20) by marginalizing

over w [Shahriari et al., 2015], obtaining

py(·|Xk) =

∫
py(·|Xk,w)pw dw = N (0,Xᵀk ΣXk +σ2

εI) (3.22)

We recognize, now, that the feature map only appears in a quadratic form where the

(i, j)-th entry is given by χ(λi)ᵀΣχ(λ j): a dot product in the feature space. We then

introduce the corresponding kernel

κΣ(λ,λ′) = χ(λ)ᵀΣχ(λ′) = 〈χ(λ),χ(λ′)〉Σ (3.23)

and rewrite (3.22) in terms of the Gram matrix K = {κΣ(λi,λ j)}ki, j=1 ∈ R
k×k as

py(·|Xk) = N (0,K +σ2
εI).

We finally have all the terms to compute (3.18); which is, again, Gaussian [Williams

and Rasmussen, 2006]:

f̂k+1(λ∗) = py∗(·|x∗,Xk,Yk) = N (kᵀ∗ (K +σ2
εI)−1Yk, κ(λ∗,λ∗)− kᵀ∗ (K +σ2

εI)k∗) (3.24)

where k∗ = {κΣ(λ∗,λi)}ki=1 ∈ R
k is the vector of kernel evaluations between the query

and the observations points. Equation (3.24), despite its apparent complexity, describes
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a rich posterior distribution over the values of f that is analytically computable and

whose design depends essentially only on the definition of the kernel map (3.23).

Examples of kernel functions include the C∞ squared exponential

κΣ(λ,λ′) = σ0e−r2
Σ

(λ,λ′)/2; r2
Σ(λ,λ′) = λᵀΣλ′,

where σ0 > 0 is a scale parameter and Σ a diagonal matrix with positive length scales

{σi}
m
i=1 and the Matérn family, which contains kernels (defined as functions of rΣ,

above) with various degree of smoothness [Williams and Rasmussen, 2006]. Kernels

intuitively encode the concept of distance or similarity between data points, and

allow us to sidestep the definition of (possibly “less interpretable”) feature maps and

covariance matrices. The series of “free parameters15 ” that appears in (3.24) – usually

called hyperparameters in the Bayesian literature (not to be confused with λ!) – do not

have to be fixed constants, but may be estimated from the observations [Williams and

Rasmussen, 2006, Shahriari et al., 2015] (automatic relevance determination). Thus,

at this stage, the design choice left to the experimenter mainly boils down the choice

of the kernel function.

As anticipated, what we have described so far may be conveniently summarized

with the notion of Gaussian process (GP) [Williams and Rasmussen, 2006, Murphy,

2012], a particular type of stochastic process that is fully specified by its mean and

covariance function. In particular, our derivation corresponds to a zero-mean Gaussian

process (this is because of the zero mean prior over the weights (3.21)) with covariance

function given by κΣ +σ2
εδ where δ(λ,λ′) = 1 if λ = λ′ and 0 otherwise. In short, we

can write

f̂ = GP(0, κΣ +σ2
εδ).

The surrogate model update equation π2 (see (3.16)) may then be written as

f̂k+1 = π2
(
{λ j, f (λ j)}kj=1, ξ2

)
= GP(0, κΣ +σ2

εδ |Xk,Yk), (3.25)

15 That is, σε, σ0 and the diagonal entries of Σ when using the squared exponential or a Matérn
kernel.
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which expresses the update as the conditioning of the Gaussian process on the observa-

tions Xk, Yk.

Having defined a surrogate model, we now turn our attention to the suggestion

step π1. One could think of minimizing directly the surrogate model and choose

λk+1 ∈ argminλE[ f̂k(λ)]. This procedure would, however, be very sensitive to local

minima and could lead to entire regions of the search space unexplored. Instead, the

selection problem is usually viewed through the lens of an acquisition function that

determines the utility of adding the point λk+1 to the observations set. The particular

expression of this mapping constitutes another design choice when employing BO

methods. Research in the development of acquisition functions has been very active in

the last two decades [see Shahriari et al., 2015, for a survey]; with information based

criteria such as max-value entropy search [Wang and Jegelka, 2017] at the forefront.

A classic choice, already introduced in the seminal work by Močkus et al. [1978] and

used also in the context of HPO [Snoek et al., 2012], is the expected improvement. The

expected improvement over a given baseline β ∈ R is defined, at iteration k, as

aβ, f̂k(λ) = E f̂k

[
max

{
β− f̂k(λ),0

}]
.

and it can be computed in closed form when f̂k is the conditional Gaussian process

introduced above [Feurer and Hutter, 2018]. A sensible choice for the baseline β is

the minimum value of f measured so far, i.e. β = f (λ̂k). Then, assuming aβ, f̂k has a

unique maximizer, one may set

λk+1 = π1( f̂k, ν2) = argmax
λ

a f (λ̂k), f̂k(λ). (3.26)

Note that the acquisition function is much cheaper to compute than f itself, meaning

that the problem (3.26) may be, in general, optimized thoroughly.

Equations (3.26) and (3.25) specify, thus, a particular simple instantiation of a

GP-based Bayesian optimization algorithm that may be used for HPO optimization. To

summarize, the algorithm’s configuration parameters ν2 may contain choices regarding

the mean and covariance functions of the Gaussian process, the method with which
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the process’s hyperparamters are estimated and the acquisition function to use.

While undoubtedly elegant, the above presented approach has a number of draw-

backs that may limit its applicability to real-world scenarios. It does not natively

support parallel execution, it scales cubically in the number of points k (due to the

matrix inversion in (3.24)) and does not scale well in the dimensionality of Λ. Finally,

it may not be suitable for integer, categorical and conditional hyperparameters as

showed in a comparative study by Eggensperger et al. [2013]. Snoek et al. [2012] the

first problem, proposing an extension of the expected improvement that accounts for

pending executions, and take on the scalability issues in [Snoek et al., 2015] by replac-

ing the GP with a Bayesian neural network. Hutter et al. [2011] and Bergstra et al.

[2011, 2013], focus both on scalability and applicability to discrete and conditional

search spaces by using random forsets and tree Parzen estimators, respectively.

More recent advances in the field [Springenberg et al., 2016, Wu et al., 2017,

Klein et al., 2017] focus on replacing GPs with more practical and scalable approaches,

exploiting additional information beside function evaluations (thus “dropping” the

black-box assumption for f ). The additional information could be e.g. the performance

of A on a small subsets of D [Klein et al., 2017] or (possibly noisy) gradients [Wu

et al., 2017]. Finally, Falkner et al. [2018] propose to hybridize Bayesian optimization

with bandit-based methods (see next section) to improve performances in the first stage

of the HPO process, when the surrogate model may be still rather unreliable.

3.4.6 Population-based Methods

Population-based methods (PB) for HPO are a fairly large class of hybrid parallel-

sequential algorithms that maintain a set of candidate configurations – a population –

that changes or evolves after each iteration, or round. The defining characteristic of PB

methods is the presence of a global update policy π that takes into account information

(or observations) derived from each “individual” (single runs) in the population. Evo-

lutionary search [Friedrichs and Igel, 2005, Loshchilov and Hutter, 2016, Real et al.,

2020], swarm optimization [Jaderberg et al., 2017, Lorenzo et al., 2017] and bandit-

based algorithms [Jamieson and Talwalkar, 2016, Li et al., 2017a] belong to this class.

By contrast, simpler parallel methods such as grid or random search do not implement
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this type of behavior. In other words, given the initialization configuration (i.e. the

grid or prior distribution) runs generated by GS or RS are mutually independent, while

PB methods generate configurations based on observations from previous rounds.

Let k = 1,2, . . . indicate the iteration; we denote by ok(λ) the set of observations

collected at the k-th iteration, relative to the hyperparameter λ. Then, most BP methods

can be expressed as {
λk+1

i

}nk+1

i=1
= π

({
λk

j,ok(λk
j)
}nk

j=1
,υ

)
,

where nk ∈ N denotes the number of configurations maintained at the k-th rounds. In

the evolutionary literature, a batch of configurations
{
λk

i

}nk

i=1
is often referred to as

a generation and o is often called fitness function. The observations collected may

match with the original HPO objective (hence ok = f for k ≥ 1); yet, several methods

in this class [Jaderberg et al., 2017, Lorenzo et al., 2017, Jamieson and Talwalkar,

2016, Li et al., 2017a] exploit the iterative nature of many learning algorithms and

use as observations (a validation error after) partial executions of A. Additionally

swarm optimization methods generate schedules rather than “static” hyperparameters

(see Section 3.3). At k = 0, o0 = ∅ and the population may be initiated by selecting n0

points on a grid or by sampling from a prior distribution (as in random search).

The nature of the mapping π may greatly differ from method to method. Evo-

lutionary search (ES) techniques typically maintain a fixed population of nk = n

configurations. At each round, “individuals” are selected, eliminated, recombined

and mutated according to their fitness score, loosely mimicking principles of evo-

lutionary theory [Friedrichs and Igel, 2005]. For instance, configurations may be

sorted according to ok(λk
j); the first, best performing, third may be kept unvaried,

the second third may be mutated (e.g. some components may be varied according

to some rule or distribution) and the last third of worst performing hyperparameters

may be replaced either by configurations drawn from the initial distribution, or by

the “offspring” (i.e. random combinations) of the best performing individuals. A

particularly popular and effective instantiation of this framework is the CMA-ES

strategy (covariance matrix adaptation evolutionary strategy) [Hansen and Ostermeier,

1996, 2001], where the mutation operation is modelled after an additive multivariate
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Gaussian random variable whose covariance matrix is adapted online based on pre-

vious observations. Evolutionary search has been recently proposed as a competing,

albeit rather computational-intensive, method for neural architecture search [Real et al.,

2017, 2019].

Swarm optimization (SO) methods take, instead, inspiration from the collective

behaviour of species that organize themselves in decentralized flocks or colonies (e.g.

birds or ants). These methods typically fall in the online HPO category. SO methods

maintain a constant population size that is updated with local perturbations toward the

best performing individuals. Notably, some of these methods [Jaderberg et al., 2017]

involve also changing the parameters of the underlying statistical models, alongside

the hyperparameters, effectively giving raise to different learning algorithms.

Both ES and SO methods require a considerable amount of customization, task-

specific heuristics and design choices (e.g. to define meaningful mutation or perturba-

tion strategies), undermining their accessibility and applicability to novel algorithms

and problems. Besides, they typically require a considerable computational power,

benefiting usually from large population sizes.

Bandit-based HPO algorithms, instead, cast hyperparameter optimization as an

instance of the best-arm identification problem, typical of the multi-armed bandit

reinforcement learning setting [Lattimore and Szepesvári, 2020]. The algorithm

proposed by Jamieson and Talwalkar [2016], called successive halving, conceptually

maps hyperparameter configurations to “arms” and assumes that at each iteration k

one can observe an “intermediate cost” given by ok(λ) and that the true cost associated

to λ is given by16 limk→∞ ok(λ) = f (λ). If the learning algorithm is iterative (e.g.

fitting a neural network with SGD) and the objective is a validation error of the type

(3.5), then ok may be naturally given by the validation error of the model after rk ∈ N

iterations (with rk > rk′ for k > k′). Then, given a budget B and an initial number

of configurations n0, successive halving runs n0 instances of A for r0 = B iterations,

observes o1, discards the worst performing half and continues running the remaining

16 But, generally, E[ok(λ)] , f (λ). Indeed, in the standard case where ok and f are validation errors,
typically E[ok(λ)] > f (λ), especially during the first iterations.
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instances doubling the iteration budget17 r1 = 2r0 = 2B, and so on, until there is only

one configuration left. Thus the mapping π is given by

{
λk+1

i

}n0/2k+1

i=1
= π

({
λk

j,ok(λk
j)
}n0/2k

j=1
,υ

)
=

{
λ ∈

{
λk

j

}n0/2k

j=1
: ok(λ) < ok(λζk)

}
,

where ζk denotes the index of the n0/2k+1 + 1 worst-performing configuration after

rk = 2kB steps (assuming, for simplicity, that n0 is a power of 2). Hence, for successive

halving nk = n0/2k.

When the first n0 configurations are randomly sampled, successive halving es-

sentially boils down to random search with a simple and effective, globally shared,

early stopping procedure, that allows for an increased number of trial points for the

same budget. When fixing a total budget, successive halving, however, may be rather

sensible to the ratio between n0 and B, as it can possibly eliminate too early well-

performing configurations that require longer computation, or, conversely, allocate

too many resources to comparatively few hyperparamter settings, underexploring the

search space. Li et al. [2017a] propose an hedging strategy to alleviate this issue.

3.5 Gradient-Based Hyperparameter Optimization
Gradient-based (GB) methods are sequential techniques that seek to tackle the hyper-

parameter optimization problem with classic procedure for continuous optimization,

described in Section 2.4. The update (3.12) generally takes the simple form of

λk+1 = π(λk, ν) = λk −βgk(λk) (3.27)

where gk ∈ R
m is a vector that ideally is “close to the gradient” of f and β ∈ ν is

a step size. The main challenge for gradient-based methods is associated with the

computation of gk itself, often called hypergradient. While only a handful of learning

algorithms (e.g. ridge regression whit a global L2 regularization parameter) are

differentiable in the most classical sense – that is, A(Dtr, ·) ∈ C1(Λ) with a computable

17 Actually, the original algorithm in [Jamieson and Talwalkar, 2016] is formulated in term of a
total budget, and intermediate quantities such as rk are computed so that the total computation of the
algorithm does not exceed the total budget.
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closed form expression for DλA(Dtr,λ) – it is possible, in several cases, to calculate a

numerical approximation of the exact gradient for many real-valued hyperparameters.

The two main strategies for computing the hypergradient are iterative differentia-

tion [Domke, 2012, Maclaurin et al., 2015a, Franceschi et al., 2017, 2018a, Sections

5.4.1 and 5.4.2] and implicit differentiation [Larsen et al., 1996, Chapelle et al., 2002,

Seeger, 2007, Keerthi et al., 2007, Foo et al., 2008, Pedregosa, 2016, Lorraine et al.,

2020, Section 5.4.3]. The first involves computing the exact gradient – up to numerical

errors – of an approximate objective, defined thorough the recursive application of an

optimization dynamics that “replaces and approximates” the learning algorithm A; the

second is based on the (numerical) application of the implicit function theorem [Lang,

2012] to the solution mapping A(Dtr, ·) when this is expressible via an appropriate

equation. We refer the reader to Chapter 5 for a detailed exposition of the methods and

resulting algorithms and to Chapter 6 for discussion of approximation properties and

convergence analysis. Recent implementations of both these approaches rely heavily

on an efficient use of algorithmic differentiation tools, which we describe in Chapter

A. Instead, we discuss below some advantages and drawbacks of GB-HPO, comparing

it with the main methods described in Section 3.4, and conclude with a thorough

literature review on the topic.

Gradient-based methods require full access to the underlying learning algorithm,

have a non-trivial implementation overhead and have more stringent applicability

constraints than most of the methods discussed above: among the fundamental as-

sumptions, f should be smooth and the hyperparameters being optimized should be

real-valued. The first requirement is usually met by replacing discrete-valued objective

functions such as the accuracy for classification problems with differentiable surrogates

such as the cross-entropy error (2.9), in line with general practices for formulating

smooth learning problems. The second requirement may instead represent a more

limiting factor. Even though there exist several continuous [Sperduti and Starita, 1993,

Tibshirani, 1996, Franceschi et al., 2017, Liu et al., 2019] or probabilistic [Franceschi

et al., 2019] relaxation of discrete hyperparameters, these involve remodelling the

underlying learning algorithms and have seen to date a limited usage. Thus, gradient-
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based HPO methods are mostly applied to the optimization of continuous regularization

and optimization hyperparameters, although there is a growing effort of adapting the

technique to neural architecture search [Liu et al., 2019, Luo et al., 2018]. Another

potential drawback of GB-HPO methods is that they are inherently sequential proce-

dures, though parallel computation may be exploited for speeding up the evaluation of

the hypergradient or for computing the hypergradient of cross-validation errors of the

type (3.7).

On the flip side, gradient-based hyperparameter optimization techniques, relying

on the local properties of the response surface, are sample efficient and allow us to

optimize several order of magnitudes more hyperparameters than most of the methods

described above. This is made possible by the usage of algorithmic differentiation tools

that allow us to keep the computational footprint relatively low (see Section A.4 for an

overview of the computational complexity of algorithm differentiation procedures).

The well known properties of gradient descent that assure monotonic decrease in f

and rates of convergence18 independent from the dimensionality of λ, even if they do

not hold (or are hard to verify) in practice, further motivate the appropriateness of

GB-HPO for tackling high dimensional HPO problem. Experimental evidence with

learning settings containing thousand or even millions hyperparameters [Maclaurin

et al., 2015a, Pedregosa, 2016, Franceschi et al., 2017, 2019, Lorraine et al., 2020]

has shown that GB-HPO techniques make fast progresses within few function (and

hypergradient) evaluations in various problems of practical interest, despite the local

nature of these search techniques. As we shall see in the next chapters of the thesis,

this feature allows us to formulate and successfully tackle many learning problems

under the shared perspective of hyperparamter optimization, promoting the usage

of increasingly general-purpose learning algorithms (with more hyperparameters) in

contrast to more case-and-context-specific techniques (with less hyperparameters).

As discussed in a recent work by Grazzi et al. [2020], the choice of the hyper-

gradient computation procedure should be mainly guided by the problem’s properties

(and by any eventual computational constraint). Once this choice has been made, the

18For strongly convex objectives, see Section 2.4.1.
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configuration parameters of gradient-based techniques are essentially limited to those

of the associated descent procedure (3.27) (or accelerated and stochastic variants –

see Section 2.4). This means that, if we do not consider the initial point λ0 to be part

of ν, the gradient-based approach to HPO, when applicable, makes comparatively

less assumptions and may require less “tuning effort” than other techniques described

above.

Finally, as noted in Section 3.3, gradient-based techniques are well-suited for

finding hyperparamter schedules and perform online HPO. In this setting, a popular

route to obtain schedules is by updating the hyperparameters as

λt+1 = λt −β g̃t

where g̃t ∈ R
m is a vector that approximates in some way a gradient of the objective

function f (e.g. a validation error) evaluated after a partial execution of A. This

scheme may be traced back to the eighties, precisely to the “delta-delta” rule for

adapting learning rates, introduced by [Jacobs, 1988]. The rule, based on previous

work by Barto and Sutton [1981] and recently revived by Baydin et al. [2018a],

involves setting

g̃t = −∇L(wt)ᵀ∇L(wt−1) (3.28)

where L is the training error of a parametric model (see (2.3)). In the specific case

where the HPO and training objectives coincide, (3.28) may be interpreted as approx-

imating the hypergradient of the learning rate by only considering one step of the

(weight) optimization dynamics. A very similar approach is pursued by Luketina

et al. [2016] for scheduling regularization hyperparameters. We refer to the reader to

Chapter 8 for further discussion on this topic, particularly regarding the case study of

tuning learning rates schedules.

Beside [Jacobs, 1988], among the few early works on gradient-based hyperpa-

rameter optimization, we mention an article by Larsen et al. [1996] which followed

an implicit differentiation scheme to optimize regularization parameters for training

neural networks, shortly followed by Andersen et al. [1997] that adapted the preceding
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scheme to an online warm-restart setting. Bengio [2000] proposed gradient-based

optimization of regularization hyperparameters, mostly concerning the simple case of

learning algorithms that minimize quadratic objectives, where one may use the ana-

lytical expression for A(Dtr, ·). Later on, Chapelle et al. [2002], Keerthi et al. [2007]

and Seeger [2007] explored the optimization of SVM hyperparameters by implicit

differentiation. In the first two articles, the authors also experiment with different

objective functions other than the (cross-)validation error. Foo et al. [2008] extended

the studies to conditional log-linear models. It is worth noting that these works deal

with learning algorithms that internally solve strongly convex problems.

During the last decade, due to the increasing popularity of neural network models,

whose learning algorithms comprise the minimization of non-quadratic and non-convex

objectives, attention shifted to iterative differentiation methods. The work on the “back-

optimization” method proposed by Domke [2012] in 2012 may be considered to be

among the first of this kind, although in [Domke, 2012] the method was applied

in a different context19. Maclaurin et al. [2015a] discussed reverse-mode iterative

differentiation for the case that the learning algorithm is based on stochastic gradient

descent with momentum. In this setting, they introduced a fixed-point numeric data-

type to lower the memory footprint of the method. Franceschi et al. [2017] generalized

the previous work beside reversible learning dynamics and proposed forward-mode

iterative differentiation for the optimization of a few key hyperparameters, alongside an

online variant (later refined in [Donini et al., 2020]). More recently, Shaban et al. [2019]

investigated the effect of truncating the reverse-mode procedure to save computation,

and Beatson and Adams [2019] proposed a stochastic hypergradient estimator based on

randomized telescopic sums to address the issue of the bias introduced by using fixed

approximations of A (namely, a fixed number of steps of the underlying optimization

dynamics).

On the other hand, interest in implicit differentiation methods has been recently

revived, especially in the form of the “fixed-point” method. There is some empirical

evidence [Liao et al., 2018, Lorraine et al., 2020] that (small variants) of these types

19Specifically, on continuous energy-based models for image labelling and denoising. J. Domke
suggested that a similar strategy could be suitable to tackle HPO problems in a more general context.
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of hypergradient computation schemes may achieve satisfactory results despite the

non-convexity of the learning algorithms’ optimization problems. However, as we

shall see in Section 6.3.4, they may also show quite unstable behaviours in some other

cases.

A few recent GB methods depart from the categories of iterative or implicit

differentiation. Mehra and Hamm [2019] present an optimization approach based

on penalty functions that blend the learning algorithm with the HPO problem. The

works on “self-tuning networks” [Lorraine and Duvenaud, 2018, MacKay et al., 2019]

(already introduced in Section 3.4.4), may also be regarded as GB-HPO techniques.

There, online hyperparameter updates are computed utilizing a surrogate model (also

fitted online) that should locally approximate the response surface. The proposed

schemes, however, require remodelling heavily the underlying learning algorithm and

thus may be challenging to incorporate in scenarios different from those presented in

the original works. For instance in [MacKay et al., 2019] the local surrogate model is

implemented as an hypernetwork [Ha et al., 2017], which needs to be tailored to the

task at hand. A similar approach is also explored by Brock et al. [2018] in the context

of neural architecture search, where an hypernetwork is used to map architectures to

weights, in such a way that the architecture may be quickly evaluated on the target

task. There, the hypernetwork substitutes entirely the learning algorithm. While it is

unlikely that such a model would be capable of learning close approximations of the

original mapping A, the authors empirically show that the validation error computed

on the outputted parameters correlates well with the “correct one”.

3.6 Generalization in Hyperparameter Optimization

As a hypothesis may overfit a given training set, there might be the possibility that

a hyperparameter configuration overfits a validation set. This happens when the

validation error (3.8) (or another quantity of interest, such as the leave-one-out cross-

validation error) departs from (or does not correlate well with) the generalization error

(2.1). Traditionally, grid search approaches only evaluate a fixed and comparatively

small set of configurations, thereby limiting exploration. Yet, the issue of overfitting in
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hyperparameter optimization becomes more pressing when more advanced techniques

which “actively” seek to minimize (3.8) are employed. There may be various sources

of overfitting in the HPO context: a too small or not representative validation set, a

too “thorough” optimization or a too large “complexity” of the hyperparameter space.

In this last regard, recent advances in gradient-based hyperparameter optimization

methods [Maclaurin et al., 2015b, Franceschi et al., 2017, Lorraine et al., 2020] now

allow us to effectively optimize orders of magnitude more hyperparameters that what

was previously possible. Unfortunately, whereas generalization and overfitting have

been widely studied in the context of learning algorithms, hypothesis spaces and

function complexity [Vapnik, 2013, Friedman et al., 2001], the same cannot be said in

the context of hyperparameter optimization. Among the few work about the issue, Ng

[1997] discusses the case where the validation set may be noisy proposing an ulterior

validation step, while Ndiaye et al. [2019] more recently focus on grid search.

There are several difficulties in tackling this topic under a theoretical point of

view. The nested nature of the HPO problem and the variety and diversity of the

underlying learning algorithms are among these. Furthermore, overfitting in HPO

is not necessarily tied to the complexity of the resulting hypothesis. The question

largely depends on which hyperparameters one wishes to optimize. For instance, many

optimization hyperparameters do no immediately relate to the complexity of h. One

may then take an empirical approach to the issue, for instance, by further divining

the validation set, and holding out one of the two splits to perform early stopping on

the HPO procedure. We implement this strategy in Chapter 9 when learning edges of

relational graphs. Generalization and overfitting in hyperparameter optimization is,

however, considered to be a (difficult) open question for future research [Feurer and

Hutter, 2018].

3.7 Interim Summary

This chapter reviews hyperparameter optimization in machine learning, offering a for-

mal statement of the general problem and an overview of the principal HPO techniques.

Machine learning algorithms use data to induce hypotheses that explain phenomena
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or concepts of interest, yet their behaviour is controlled by the setting of various

configuration parameters. We saw that hyperparameters define the hypothesis space,

both explicitly and implicitly and determine how the search will take place: a careful

choice of their value is paramount for most learning procedures. We provided a series

of examples in Section 3.2, dividing hyperparameters into three categories, explaining

their role and impact on typical learning algorithms, as well as their possible encod-

ings. The considerable diversity of both the learning algorithms and their respective

configuration parameters, in conjunction with (potential) computational complexity

issues, present a critical challenge for the resolution of HPO problems, which are

nevertheless of crucial importance. Indeed, as we suggested in Section 3.1, the HPO

problem (3.6) goes beyond the minimization of the empirical risk performed by many

learning algorithms, and requires searching for configurations that lead to hypotheses

that generalize well. This is still mostly carried out through an empirical, data-driven,

approach (i.e. using a validation set) which requires very few assumptions. We follow

this path in the thesis.

In Section 3.4 we studied and analyzed the major approaches to HPO, commenting

on advantages and drawbacks of each family of methods, also in view of the particular

aims and features of the field. One of the factor that emerged from the review of Section

3.4 is a general difficulty for most of the techniques to scale to high dimensional

problems (many hyperparameters). This issue, that becomes even more relevant in a

meta-learning context where the aim is to infer, rather than simply tune, a learning

algorithm, is largely addressed by gradient-based approachs, albeit introducing some

other restrictions. We offered a literature review of gradient-based HPO in Section 3.5,

which can serve as context for the study we will present in the later chapters. Finally,

we mentioned an important open question in HPO, that regards the generalization

priorities of configurations found by hyperparameter optimization techniques.



Chapter 4

Review of Meta-Learning

While hyperparameter optimization might be viewed – if one accepts to leave gen-

eralization issues aside – as an exquisitely mathematical problem of minimizing a

complex and expensive-to-evaluate function in a possibly intricate search space, the

nature of meta-learning, or learning to learn, is certainly more tied to the fundamental

questions of artificial intelligence and machine learning. Meta-learning algorithms

add an additional layer of abstraction over the formulations of standard learning. They

incorporate components that allow modifying the way learning itself takes place, based

on the experience from a multitude of tasks. Learning to learn promotes a holistic

approach to the problem of learning, reasoning about methods to extract, retain and

improve a shared knowledge, shifting and adapting the inductive bias in a data-driven

fashion to improve learning efficiency and efficacy. Following the three paradigms

of machine learning, meta-learning also branches out into supervised, unsupervised

and reinforced depending on the nature of the underlying tasks. We will focus almost

exclusively on the the first type. See [Hospedales et al., 2020] and references therein

for a very recent overview of meta-learning that discusses also meta-reinforcement

and meta-unsupervised learning settings.

We start with a potential application example that helps illustrate some of the key

concepts behind meta-learning1. We then proceed by defining and formalizing the

1 The example tries to be “close enough” to some contemporary benchmark applications especially
widespread in the popular sub-field of few-shot learning [Vinyals et al., 2016, Ravi and Larochelle,
2017, Finn et al., 2017], but also seeks to highlight some other (less frequently mentioned) peculiar
aspects of the meta-learning paradigm, in an attempt to present a broader account of the subject.
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meta-learning problem, touching upon its historical background and interpretations in

Section 4.2. Contextually, we discuss similarities and differences with other related

fields in Section 4.3 and finally conclude the review with a section dedicated to the

description and analysis of a number of current techniques and strategies for meta-

learning.

4.1 A Domestic Robot Example
Imagine that, in the near future, a company wants to produce domestic humanoid robots

capable of helping their owners with daily activities [Parmiggiani et al., 2017]. An

essential component of such a device would be a module for recognizing people from

camera inputs2. A wealth of experimental evidence has shown that deep convolutional

neural networks are very effective at tackling these types of discriminatory tasks,

systematically achieving state-of-the-art results on benchmark problems since the

early 2010s. Hence, the company may wish to implement such a recognition module

capitalizing in some way on this kind of models. However, standard (single-task)

supervised learning algorithms for training CNNs have the notorious drawback of

being data and computation hungry. Yet, computational resources and the collection of

labelled examples (as well as mistakes!) come at a premium when the robot is already

in use, e.g. in a domestic environment. For this reason, it would be desirable to carry

out as much work as possible at production time before the robot is shipped to the

customers.

The members of the buyer’s household would certainly be among the first in-

dividuals that the robot should be able to recognize, hopefully with great accuracy.

However, at production time, it is unthinkable that the company has access to images

of all its potential customers and their families. Besides, even if it did, it would be quite

wasteful to implement a large model able to recognize thousands of individuals when

most likely a few dozen would suffice. After all, a domestic robot is not supposed

to wander the earth hailing at people, but should rather mostly remain within the

2 In this example, for simplicity, we consider that a task corresponds to the binary classification
problem of deciding whether a particular person is present in an image or not (hence there is a task
per each person). Other tasks and problems in this context would comprise also (at least) localization,
segmentation and pose estimation.
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house confines. It is also hard to imagine that the company would ask to its potential

customers to send over their family photo albums, at the very least for possible privacy

concerns. Furthermore, it would be hardly practicable (or quite limiting) to foresee all

the possible encounters the robot may have during its activity.

In short, we can safely assume that the robot cannot be trained on the tasks of

interest – learning to recognize household members and potential guests – at production

time. Hence, the recognition module must include a learning component that allows

the robot to process the data (camera images) collected during the exercise of its

activity, producing or adapting on demand models for recognizing newly encountered

people. In principle, this could be achieved by including a standard supervised learning

algorithm for training CNNs; perhaps improved with multi-task elements that leverage

on the evident similarities between the various tasks and hyperparamter optimization

routines that automate and improve the process. Such an implementation choice would,

however, defer all the learning workload to the robot’s activity time, which is not ideal

for the reasons mentioned above.

Thus, if on the one side executing all the learning at production seems unfeasible,

on the other side letting the robot learn only during its activity could prove quite

problematic. Meta-learning provides a compelling middle ground between these two

solutions. The basic observation is that at production time, while the company may

not detain examples of the people (tasks) of interest, it can easily access to examples

of different individuals (other tasks). This related data may be used to extract some

knowledge about the concept of “recognizing people” in general, regardless of their

specific attributes, inferring a specialized learning algorithm that is adapted to the

relevant class of tasks. In this way most of the heavy lifting may be carried out in a first

stage of learning (the meta-level), after which one may obtain a “lightweight learning

routine” (the base-level) that can run locally as the need arises. The meta-level could

comprise the learning of the first layers of a CNN “shared” among all the tasks, while

the base-level lightweight and task-specific learning algorithm may be implemented as

the adaptation of a few top layers, or even simply by fitting a logistic regression model

on top of the features extracted by the CNN.
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The resulting learning component is only supposed to work on a restricted set of

tasks: it will not be called to learn to distinguish dog breeds or solve partial differential

equations. This corresponds to the assumption that the relevant tasks are organized

according to an unknown distribution, called meta-distribution, that describes relevant

“operational boundaries” in which the learned algorithm is supposed to perform well.

The specification of a meta-learning problem needs not be limited to the (abstract)

concepts that lie behind the family of tasks of interest – that is recognizing people,

in our case. In fact, machine learning problems are also characterized by the type of

experience that may be collected and elaborated as well as the performance measure

that guides the learning process. As meta-learning reasons exactly on the top of

this level of abstraction, these are also two other potential factors of variation for

meta-learning problems.

Consider, for instance, the difference between learning to recognize a member

of the household and learning to recognize a guest invited one evening for dinner. In

the first case, we can imagine that the robot will be able to collect a sizable number of

samples (camera images) in a comparatively limited amount of time, with different

light conditions, clothing and poses3. The robot will simply spend more time with an

household member, beside the fact that he or she might willingly “pose” and provide

accurate feedback for the new purchase. The same, however, cannot be expected from

a guest invited for dinner. In this second case, the learning algorithm will likely have

to rely on much fewer data – and, most importantly, much less diversified data (e.g.

only indoor, evening images). To account for this, the base-level algorithm could adapt

a number of layers proportional to the quantity and quality of the available data for

each individual/task.

Furthermore, it may be acceptable that the robot will not be able to positively

recognize the same guest if he or she comes back for a second time (say, for lunch, with

different cloths and maybe even with a different hairstyle). After all, also for us, it may

take a little while before being able to identify someone with the utmost confidence.

On the other hand, we certainly would not appreciate if the robot starts mistaking

3Thus meta-learning is by no means restricted to a few-shot learning regime
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other people (or, worse, objects or animals) for the guest only met a single time. The

owners, instead, could be more patient to (few, initial) mistakes, but may expect to be

positively recognized in every conceivable situation. These dissimilar expectations

may be reflected in different performance measures for these two “subclasses” of tasks.

For instance one may favor precision over recall in the guest case, while accuracy

might be an adequate metric for household members.

4.2 Problem Setting

Summing up, the company of the above example, by running a meta-learning algorithm

on a set of curated datasets (or meta-training set), may obtain a base-level learning

algorithm to include in the recognition module that has the potential to be much more

efficient, stable and accurate on the tasks of interest than general-purpose counterparts,

because it incorporates a tailored, data-driven inductive bias extracted at the meta-

level. Intuitively, the better the meta-training set reflects all the possible peculiarities

and variations of the family of tasks of interest, the more effective the meta-learning

procedure and, hence, the resulting learning algorithm will be. The example introduces

some basic “ingredients” of the meta-learning setting: the presence of several tasks,

the idea of acquiring in some way previous knowledge, the division of the learning

process into two stages (the meta-level and the base-level), the unavailability of data

pertaining some tasks of interests, the goal of generalizing at an algorithmic level,

and so on. These concepts are present to some extent in most of the meta-learning

literature, especially in the more recent works. However, over the years, various

authors have utilized the term in different and not always compatible contexts, possibly

hampering the emergence of a general, shared, definition of the meta-learning problem

setting. To date, there is still an ongoing debate, as various currents of thoughts would

either see meta-learning recognized as the “doorway” to artificial general intelligence

[Schmidhuber, 2007], or have it demoted to a particular variation of supervised learning

[Chao et al., 2020], with a whole spectrum of intermediate positions in between.

A Brief Historical Note. J. Schmidhuber is generally accredited as the first author to

introduce, in the context of machine learning, the term “meta-learning” in the late
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eighties. In his Diploma thesis, Schmidhuber informally describes a meta-learning

algorithm as a “system [that has] the ability to learn the methods how to learn”

[Schmidhuber, 1987] (not necessarily stopping at the first meta-level). He takes an

evolutionary approach at the problem, proposing meta-evolution and “self-referential

associating learning mechanism” as possible implementations. In [Schmidhuber,

1987], the bulk of the effort is devoted to developing (symbolic) languages, initial

states and environments that could exert an evolutionary pressure for supporting this

kind of behaviour. Later, among other efforts, Schmidhuber continues the work on self-

referential learning, proposing the so-called “Gödel machines” [Schmidhuber, 2007],

ideal theoretical problem solvers which are capable of making “provably optimal

self-improvements”. The generality of Schmidhuber’s view seems to suggest a strong

tie between meta-learning and artificial general intelligence.

At least other three works [Hinton and Plaut, 1987, Bengio et al., 1991, Wolpert,

1992] published during the late eighties and the early nineties are deemed, retro-

spectively, as significant early contributions to the field of meta-learning [Vilalta and

Drissi, 2002, Hospedales et al., 2020], although the term “meta-learning” does not

appear in any of them. Hinton and Plaut [1987] describe a neural network where each

connection parameter is given by the sum of two weights: a “slow” weight – same as

the traditional connection parameter – is responsible for storing long-term knowledge

and a “fast” weight, continuously decayed toward 0, capable of quicker adaptation

to recent signals thanks to a larger learning rate. Hinton and Plaut’s article inspired

later research, e.g. on “meta-networks” [Munkhdalai and Yu, 2017] and, similarly to

Schmidhuber’s works, concerned a learning scenario that is temporal (or sequential) in

nature. The agent would live throughout a single, lifelong, cycle.

Remaining in the field of neural networks, Bengio et al. [1991] investigated the

possibility of inferring parametric “synaptic learning rules” (i.e. weight updates) using

either gradient descent or evolution. While the main aim of the original work was

that of introducing biologically plausible learning mechanisms for neural networks

(in contrast to backpropagation), probably other aspects influenced the later literature,

especially in the context of learning to optimize. Specifically, to promote general-
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ization, the authors proposed weight sharing of the update rule’s parameters, which

should have been (meta-)learned from the simultaneous execution of several different

representative tasks.

Under a more general perspective, “stacked generalization” [Wolpert, 1992] is also

considered to be an early approach to meta-learning [Vilalta and Drissi, 2002]. Stacked

generalization involves using a set of learning algorithms to train two levels4 of models

(generalizers), whereby the inputs to the “level-1” models are given by the outputs of

the generalizers at the “level-0”. These “levels” should not be considered akin to the

meta and the base levels mentioned in the opening example. Indeed, Wolpert’s original

work is focused on single task learning and was presented as an extension to the

standard cross-validation procedure (oriented to algorithm selection; see Section 3.1).

However, interestingly, the proposed scheme bears a certain resemblance to the modern

approaches to meta-learning (cf. (4.2)) in that it uses the validation (test/left-out) splits

as an integral part of the training process.

Throughout the nineties, research in meta-learning and related fields such as

multi-task and transfer learning intensifies. S. Thrun and L. Pratt take stock of a

large portion of these works in an influential curated collection of articles [Thrun

and Pratt, 1998b] that discuss meta-learning – or learning to learn, as they name the

field5 – under a methodological, theoretical and practical standpoint, touching upon all

the paradigms of machine learning. Overall, the book emphasises the importance of

learning representations (or metrics) through multiple tasks (including learning tasks

relatedness measures) and promotes a clearer distinction between the meta-level and a

the base-level of learning. Meta-learning is presented as strongly tied to the search for

base-level inductive biases that should happen at the meta-level. Their delineation of

the meta-learning scenario appears as a modification of Mitchel’s definition of learning

algorithm (quoted in our thesis at the beginning of Section 2.1), which, summarized,

reads as follows:

4 The procedure may be extended to multiple levels.
5 We use the terms meta-learning and learning to learn interchangeably. It is likely that Thrun and

Pratt introduced the idiom “learning to learn” also to distance the content of their collection from other
interpretations of the field.
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Given a family of tasks, with their respective experiences and performance

measures, an algorithms is said to learn-to-learn if its performance at

each task improves with experience and with the number of tasks. [Thrun

and Pratt, 1998b]

While certainly posing the ground for a more systematic approach to the subject, we

note that this definition could look quite related to a multi-task learning perspective,

suggesting that the yardstick for a meta-learning algorithm is its ability to improve

upon the tasks which it has already seen, rather that those (potentially) yet to see. We

refer to Section 4.3.2 for further discussion on the relationship between these two

fields.

A different perspective on the subject is embraced by some other authors [e.g

Vilalta and Drissi, 2002, Smith-Miles, 2009, Vanschoren, 2019, and references therein]

who view meta-learning as strongly tied to algorithm selection and linked to meta-

heuristics [Smith-Miles, 2009]. A typical instance is given by a learning scenario

where the experience is collected through several executions of standard learning

algorithms on (single-task) learning problems, possibly recording so-called “meta-

data”. The meta-learning component is responsible for predicting (or ranking) the

effectiveness of each learning algorithms on query tasks. Of central importance are the

so-called “meta-features”, which are hand-engineered [see e.g. Table 1 in Vanschoren,

2019] or learned statistics/features that should concisely describe each learning task

or empirical dataset. Research branches that follow this spirit, strongly related to

hyperparameter optimization and algorithm selection, include landmarking [Pfahringer

et al., 2000], dynamic bias selection [Gordon and Desjardins, 1995] and loss curves

prediction [Leite and Brazdil, 2005]. Section 4.4.2.1 further describes the general

approach to meta-learning stemming from this perspective.

In the recent years few-shot learning has gained considerable attention, so much

that, lately, the term “meta-learning” has been often associated to it, if not confused

with it [see e.g. Sec. 2.5 of Chen and Liu, 2018]. The aim of few-shot learning is to

generalize from very few examples by leveraging the presence of a vast multitude of

related tasks. Possibly, the best known few-shot learning problem instances pertain
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supervised multiclass classification with datasets that contain from one (one-shot

learning) to five or ten examples per class [Vinyals et al., 2016, Ravi and Larochelle,

2017]. Among the works that probably sparked a rising interest in this particular

learning setting we recognize an article by Santoro et al. [2016] on memory augmented

neural networks. Santoro et al. were among the first to clearly link few-shot learning

to meta-learning, developing neural network based methods to tackle the problem in

a substantially “general purpose” fashion. Prior work typically approached few-shot

learning with non-parametric techniques adapted to the specific problem setting of

interest [Fei-Fei et al., 2006]. The core idea was still that of sharing knowledge from

available classes (or categories), but these were not necessarily interpreted as tasks.

The 2016 article [Santoro et al., 2016] has been closely followed by a rather long

list of related studies that quickly achieved increasing performance gains on selected

benchmark problems. We will introduce and discuss the concepts behind some of

these studies in Section 4.4.

The Meta-learning Problem. In this thesis, we mostly adopt Thrun and Pratt’s view,

with a few key differences and remarks aimed at highlighting the importance of the

generalization at the meta-level. To do so, we need to formalize a few concepts, such

as the meta-distribution and the generalization error of learning algorithms. Indeed,

whereas in standard supervised learning one reasons about the quality of learned

hypotheses, in meta-learning one reasons about the quality of learned algorithms, as

the focus shifts to a higher level of abstraction. Hence, if a good learning algorithm

produces hypotheses that generalize well6, an effective meta-learning algorithm gen-

erates learning algorithms that, in turn, output hypotheses that generalize well. That

is, for short, learning algorithms that generalize well. Yet, it would be unrealistic to

expect that a learning algorithm, even if learned, would be capable of performing well

on completely arbitrary tasks. Instead, we shall rather assume that the tasks of interest

are organized according to a given (but unknown) meta-distribution. For instance, the

meta-distribution of the introductory example informally describes a class of binary

classification problems pertaining the recognition of specific individuals from images

6 That is hypotheses that achieve low generalization errors, according to (2.1).
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captured by a camera installed on a domestic robot.

Let D and τ denote data7 and task, viewed as random variables that take values

over a space of data (or experiences/observations) D and a space of tasks T , respec-

tively. In supervised meta-learning, T comprises supervised learning tasks, viewed

(according to Section 2.1) as join probability distributions px,y(·|τ) over input and out-

put spaces Xτ×Yτ, endowed with appropriate loss functions `τ. In the most standard

case, which we follow here, D is a space of finite dimensional datasets (cf. (3.3)), that

is

D =
⋃
τ̄∈T

⋃
N∈N

(Xτ̄×Yτ̄)N .

Then, we define a meta-distribution pD,τ as a joint probability distribution over D×T .

Drawing from D̄, τ̄ ∼ pD,τ means sampling a dataset D̄ ∈D and a task τ̄ with associated

input and output spaces Xτ̄ and Yτ̄, distribution px,y(·|τ̄) over Xτ̄×Yτ̄ and loss function

`τ̄ : Yτ̄ ×Yτ̄→ R+. To simplify the discussion and the notation, we shall assume in

the following that the loss functions are the same for all the tasks and identify a task

with its associated probability distribution (leaving input and output spaces implicitly

defined through px,y(·|τ̄)). Meta-distributions of typical supervised meta-learning

problems are non-zero only on outcomes where the points of D̄ are themselves drawn

from τ̄ (not necessarily independently). We indicate this property by saying that the

conditional distribution pD(·|τ̄) = 0 unless D ∼ τ̄.

In our example of Section 4.1, D represents the random variable associated to the

supervised data the robot may collect about an individual: a sample of D is a series of

camera images with the respective targets that say whether a specific person is present

or not. Instead, τ represents the random variable associated to the tasks of recognizing

a specific individual: a sample of τ is a joint probability distribution over camera

images and binary labels indicating the person’s presence. Then pD,τ concerns the

distribution of pairs of datasets-tasks that the robot may encounter during its activity.

For instance, the meta-distribution may concentrate around cases where the data is

either abundant (when the person to recognize is a member of the household) or scarce

7 In this section, differently from 2.1, we think of D as a random variable: a list of examples – input
and output pairs, themselves thought of random variables – of any size.
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(when the person is a guest). It will assign zero probability to outcomes where the

dataset regards an individual, but the task is about recognizing someone else (unless

the company wants to consider also cases where somebody tries to fool the robot!). It

may also describe the fact that when there are few samples, it is also likely that they

are quite homogeneous, as positive instances are likely to pertain to a single particular

event or circumstance (e.g. a dinner).

If one wants to look for analogies with standard supervised learning and the

concept of task distribution px,y introduced in Section 2.1, our construction of pD,τ

may perhaps seem counterintuitive at first glance. The order of the arguments of

pD,τ might seem to point toward “the wrong direction”, as in standard supervised

learning one generally thinks of the situation where y depends on/is a function of x.

Here, instead, D “depends” on τ. While one may certainly think of pD,τ as either

pτ,D or pD(·|τ)pτ – the latter also suggesting a hierarchical relationship – we care

to note that we have made this choice to suggest a different analogy, whereby the

training set D takes place of the input x as the observation and τ replaces y as the

target. Only, this time, the target τ is typically unknown (but often pretend we can

observe a representative sample of it during meta-training).

With our (perhaps non-standard) definition of meta-distribution8 the concept of

generalization in meta-learning writes down quite naturally. Recall that a learning

algorithm is defined as a mapping A : D×Λ→H (Equation (3.1)). When speaking

of base-level learning algorithms in meta-learning, we gloss over the hyperparameter

space and assume that Λ = ∅. This omission, carried out partially to simplify the

discussion and partially to reflect common practices in meta-learning where very

seldom hyperparameters of base-level learning algorithms “play any active role”, leave

us with A : D→H. We may then define the generalization error of an algorithm with

respect to a meta-distribution as

E(A, pD,τ) = E(D,τ)∼pD,τ[E(A(D), τ)] (4.1)

where E , defined in (2.1), is the generalization error of an hypothesis with respect to a

8 We defer a further discussion and motivation of our definition to the end of the section.
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(standard) data distribution. We will use bold characters to indicate objects related to

the meta-level. The formulation of the generalization error at the meta-level shows

a compelling similitude to the (standard) generalization error at the base-level (2.1).

In fact, as we proceed with the definition of “meta-level counterparts” of the familiar

objects of standard learning, much of what said in Sections 2.1 and 3.1 may be repeated

here with only minor adaptation to accommodate the meta-learning scenario.

The meta-distribution pD,τ is generally unknown. One may then derive an em-

pirical version of (4.1) based only on finite (computable) quantities. To do so we

introduce the concept of meta-dataset, that is a finite collection of N ∈ N datasets9,

often called episodes in few-shot learning,

D =
{(

D j
tr,D

j
ts

)}N
j=1
∈D (4.2)

split into training and testing partitions, where D j
tr =

{(
x j

i ,y
j
i

)}N j
tr

i=1
and, likewise, D j

ts ={(
x̂ j

i , ŷ
j
i

)}N j
ts

i=1
. The space of finite dimensional meta-datasets D is defined as

D =
⋃
N∈N

(D×D)N. (4.3)

The training splits D j
tr are sampled directly (but jointly with D j

ts) from the first compo-

nent of pD,τ. The test splits D j
ts (sometimes referred to as validation split [Franceschi

et al., 2018a, Rusu et al., 2019]) contain a number of i.i.d. samples drawn from τ j,

with which one may estimate the generalization error E
(
A

(
D j

tr

)
, τ j

)
of A on the j−th

task. In other words, if a sample from a meta-distribution is given by
(
D j

tr, τ
j
)
, then an

episode, element of D, is a pair
(
D j

tr,D
j
ts

)
with D j

ts ∼ τ
j (i.i.d.). Additionally, for the

reasons explained in Section 3.1, one typically asks that D j
tr∩D j

ts = ∅. The domestic

robots company may construct a meta-dataset starting from images of various people

that may be collected e.g. during trial sessions at production time, organizing them in

episodes that try to mimic real activity scenarios.

9 Recently, various authors [e.g. Rusu et al., 2019, Tian et al., 2020, Chen et al., 2020b] have
stressed on the importance of pretraining in meta-learning, whereby meta-datasets are “flattened” and
used as standard meta-learning datasets. We note that this procedure is rather natural only for some
meta-learning problems where input and output spaces share a very similar structure.
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Some authors [e.g. Vinyals et al., 2016, Snell et al., 2017, Munkhdalai and Yu,

2017, Sung et al., 2018], especially in the context of few-shot learning, call Dtr and

Dts support and query sets, respectively. Often [Vinyals et al., 2016, Sung et al.,

2018] the use of this terminology is associated with metric learning strategies and

instance-based (base-level) algorithms. We note that the practice of constructing

datasets for meta-training by splitting the available datapoints into training (support)

and testing (query) sets is comparatively recent and does not appear in early works.

We trace this “change” back to the 2016 article of Vinyals et al. [2016] on one-shot

learning. The authors advocate developing meta-learning procedures where “test and

train conditions [...] match”. Although “dataset splitting” could have been initially tied

to the instance-based non-parametric nature of the original method (where it would

hardly make sense to compute a loss on the support/training points for the purpose

of meta-training), it has since then been widely accepted as one of the drivers of

performance gains in many other approaches to meta-learning10.

Using the empirical error of an hypothesis Ê , introduced in (2.2), we define by

Ê (A,D) =
1
N

N∑
j=1

Ê
(
A

(
D j

tr

)
,D j

ts

)
. (4.4)

the empirical error of a learning algorithm on a meta-dataset D. A meta-learning

equivalent of the ERM problem of Section (2.1) then simply involves minimizing (4.4)

in a given space of learning algorithms, or meta-hypothesis space. We shall denote

such space, predictably, as H.

As it was the case in standard learning, very often it is convenient to parameterize

H to simplify the search. One option is to utilize (a part of11) the hyperparameter

space Λ of an otherwise standard learning algorithm to achieve this. In fact, one of the

10 See also the discussion at the end of this section. Related experimental results are reported in
Section 7.2.3. However, from a statistical and learning theory viewpoint, up to our knowledge, it is not
clear what are the advantage of this recent practice over the standard learning-to-learn setting [Thrun
and Pratt, 1998b] in which all the sampled points in a task are used for training. Some preliminary
results seem to suggest that the benefits may depend on the specific structure of the problem at hand
[Bai et al., 2020], although more research in this direction is clearly needed.

11 Remaining hyperparameters are then considered as part of configuration spaceΛ of a meta-learning
algorithm. See Section 4.4.2 for examples.
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leitmotif of the present work is to show that many meta-learning algorithms precisely

act on (or search in) the hyperparamter space of a base A, establishing a link between

meta-learning and hyperparameter optimization. We will lay the foundation of this

point in Section 4.3 and later elaborate in the second part of the thesis.

By mirroring the definition of learning algorithm given in Section 3.1, we then

represent a meta-learning algorithm by an higher-order mapping

A : D×Λ→H; A(D,λλλ) = A (4.5)

where Λ is a configuration space (meta-learning algorithms are not immune to hyper-

parameters!). The specific implementation of H is tied to the particular meta-learning

algorithm; we shall see some significant instantiations in Section 4.4. One that has

already been suggested in the introductory example of Section 4.1, which we will fur-

ther elaborate in Section 7.2.1, pertains learning algorithms that fit logistic regression

models on the top of meta-learned features. Many meta-learning algorithms attempt to

minimize in some way the error (4.4), additionally introducing various regularization

terms and strategies to process the meta-training set.

A Definition of Meta-learning. We may finally integrate the definition of meta-

learning algorithm given by Thrun and Pratt [1998b] by saying that

Given a family of data and tasks with their respective performance mea-

sures, an algorithm is said to meta-learn if, whilst using the same data, its

performance12 improves at each task (both seen and yet unseen) through

experience.

By acquiring more information about the meta-distribution of interest, a meta-learning

algorithm improves its “knowledge” and makes its learning algorithm more efficient

and precise (on tasks belonging to it). The base-level learning algorithm improves

because more episodes – which effectively constitute “the experience” in this context

– are processed at the meta-level; much as a standard learning algorithm may refine

its hypothesis as it sees more datapoints (“the experience”, in the context of standard

12 That is the performance of its associated base-level learning algorithm.
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learning). Of course, this does not preclude the base-level algorithm from exhibiting

better performance at a task if more data become suddenly available. After all, one

should expect that a meta-learned learning algorithm still behaves like a standard

learning algorithm. Yet, our definition is aimed at empathising that, in meta-learning,

the primary dimension of learning is the meta-level. By contrast, if one executes a

standard learning algorithm on ninety-nine tasks, and then processes the hundredth,

she or he will record the same performance of running the algorithm only on this

last task (random factors aside). There is no meta-level capable of extracting and

retaining information across tasks: the standard learning algorithm alone has no way

of improving by seeing more of them.

Before proceeding with the localization of meta-learning within the broader

panorama of related areas of machine learning, we return upon the concept of meta-

distribution and discuss and motivate our choices.

On the Concept and Definition of Meta-distributions. Our definition of meta-

distribution pD,τ as a joint distribution over datasets and tasks somewhat differs from

standard references13 (see e.g. [Baxter, 1998] or [Finn et al., 2017] for a more recent

account) where the meta-distribution is only presented as an object that operates over

tasks. With our notation, this would be a distribution pτ solely defined over T . We

reckon that a direct consequence of this latter choice is that the event of sampling

a training set D, input to A must be left somewhat implicit. One has either to push

the definition of the necessary information into τ itself [Finn et al., 2017] or to offer

elsewhere a separate description of the sampling procedure [Baxter, 1998, Maurer,

2005, Vinyals et al., 2016]. We believe that the first exposition practice might reveal

troublesome as the concept of “task” becomes hardly separable from that of “dataset”

– how to define generalization, then? The latter approach, instead, might suggest

demoting the process of sampling training data to a mere technical detail.

In contrast, we argue that decoupling dataset and task distributions returns a

more accurate and natural view of the meta-learning setting: if on the one side

13 Our view has some similarities with a recent work of Chao et al. [2020]. However, we do not
postulate the existence of an optimal model for each task, nor require the definition of a meta-loss, as
these may induce some artificiality in the definition of the meta-learning problem.
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algorithms must work with tangible finite-dimensional datasets, on the other side we

are still looking for generalization – this time at the meta-level. The first and the

second components of pD,τ aim at capturing exactly this dichotomy, making it explicit.

Besides, the way one expects to receive training data (also, possibly, depending on

the specific sampled task) is an integral part of the meta-learning problem; one that

should mirror the realistic scenario in which the (meta-learned) learning algorithm is

supposed to operate. For instance, our notation allows us to seamlessly specify the

targeted data regime: as a concrete example, in one-shot learning for classification,

where we expect to receive only one example per class, we can simply write that

|D̄| = |Yτ̄| for D̄, τ̄ ∼ pD,τ. Furthermore, decoupling observations and tasks allows us to

naturally consider far more general meta-learning settings in which D̄ is not limited to

be a (supervised) dataset; it could be, for instance, a string that describes τ̄ in natural

language.

We further believe that our definition may give an additional methodological

justification to the late practice of partitioning datasets into training (support) and

testing (query) splits and utilizing the test splits to provide feedback at the meta-level,

during meta-training. Indeed, the first split Dtr relates to the first random variable

and simply reflects the kind of data the base-level learning algorithm A is supposed

to receive: it is the input to A. The second split Dts relates to the second random

variable and should comprise a number of i.i.d. samples drawn from τ̄ = px,y. It allows

us to empirically test the generalization capabilities of A by computing an unbiased

estimate of the generalization error of h = A(Dtr). Conversely, we do not explicitly

require training samples to be i.i.d., although this is an ubiquitous assumption in the

literature.

In the introductory example, the domestic robot may acquire images of a guest

under specific conditions (e.g. in evening, indoor scenes), whilst the general task of

recognizing that person is clearly not limited to that particular circumstance. Thus,

a meta-learning algorithm may be able to infer base-level learning algorithms able

to compensate to expected or foreseeable biases – which pD,τ shall describe – by

processing (meta-training on) relevant experience D. The i.i.d. requirement of the



4.3. Friends and Family 125

test splits stems from a rather different rationale, i.e. that of estimating generalization.

As we noted in Section 3.1, most learning algorithms internally use the empirical

risk on Dtr (or some other correlated measure), and so do also many base-level

algorithms in meta-learning. Thus, typically, one cannot obtain an unbiased estimate

by only maintaining one single split. Under this view, the practice of “splitting the

datasets” aligns with the effective goal of meta-learning: finding learning algorithms

that generalize on a given meta-distribution.

4.3 Friends and Family
We now discuss several research areas considered to be closely related to meta-learning.

For some of them, we try to reformulate the respective central questions as meta-

learning problems, using the notation and concepts introduced in the previous section.

These related fields are typically characterized by the study of learning scenarios that

involve the presence of multiple tasks. Hyperparameter optimization is an exception

as it finds a common denominator with meta-learning in the search for a learning

algorithm.

4.3.1 Lifelong and Continual Learning

The ability of humans and animals to continually process external stimuli, react

and adapt to changing environments and situations has for long motivated the study

of artificial systems able to handle a stream of data and learn from it. Lifelong

(LL) and continual learning (CL) study the online learning scenario where the data

originate from a possibly infinite set of tasks. Early works of the eighties on meta-

learning [Schmidhuber, 1987, Hinton and Plaut, 1987] considerated exactly this kind

of setting. In fact, lifelong and continual learning could be considered as the online,

non-stationary, counterparts (or instantiations) of meta-learning. However, typical

algorithms that follow under the LL or CL umbrella do not explicitly distinguish

between a meta and a base-level of learning and thus do not explicitly seek to infer

base-level learning algorithms from data, with some recent exception [e.g. Denevi

et al., 2018a]. We refer the reader to [Thrun, 1996] for early work on the subject and

[Parisi et al., 2019] for a recent review that also emphasises on the biologically-inspired
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aspects and connotations of these fields.

A central topic in lifelong and continual learning is the issue of catastrophic

forgetting or interference, whereby the learning system overrides abruptly past knowl-

edge and the underlying model performance at past tasks quickly decays. Several

strategies have been proposed to alleviate these phenomena, where the main difficulty

is to devise methods that incur only in an acceptable (additional) computational cost.

4.3.2 Multi-task Learning

There are several links between multi-task and meta-learning. Both learning paradigms

seek to leverage on the presence of a family of related tasks and make their own the idea

of manipulating the inductive bias, aggregating and elaborating training signals that

originate from multiple sources [Caruana, 1998, Maurer et al., 2016, Evgeniou et al.,

2005]. In fact, some early work in meta-learning use almost unmodified versions of

multi-task learning algorithms to perform meta-learning [Baxter, 1995]. Also several

more recent methods undoubtedly inherit much in terms of algorithmic concepts

and ideas from the multi-task learning literature, from weight sharing (Section 3.2.1)

[Bertinetto et al., 2019, Franceschi et al., 2018a] to regularization (Section 3.2.2)

[Denevi et al., 2019]. Whereas one can say that meta-learning experienced a quite

“unruly” growth (and, arguably, has yet to come of age), the development of multi-task

learning has been comparatively more balanced, accompanied by a steady stream of

studies that initiated in the nineties. Several aspects and declination of multi-task

learning have been incorporated, by now, in “standard machine learning pipelines” – it

suffices to think about weight sharing up to the second last layer of neural networks

for multiclass classification or multivariate regression problems. Yet, the multi-task

learning problem is, inherently, a single level one. Indeed, the learning setting and

data regime of multi-task learning involves the presence of a finite number of tasks

and the availability (at training time) of a number of examples for each task. Hence,

the dimension of learning is across examples, even though they may originate from

multiple tasks. Multi-task learning algorithms ought to deduce rather than induce at

the task level, as the generalization should happen on data coming from already seen

tasks.
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With our notation introduced in Section 4.2, the meta-distribution of a multi-task

learning problem with N tasks {τ j}Nj=1 assumes the form of

ED[pD,τ] = pτ =
1
N

N∑
j=1

δτ j and pD(·|τ j) = 0 unless D ∼ τ j

where δz is the Dirac delta function with peak at z. Hence, the marginal task distribution

is a discrete distribution with finite support and the conditional distribution of the

data given a task is non-zero only on datasets sampled from that task. A multi-task

dataset is then given by D = {Di}
N
i=1 with D j ∼ τ j. This may be seen as sampling

from the meta-distribution exactly N times without replacement (on the task side) and

“discarding” the second elements of the splits. As in multi-task learning we do not seek

for generalization at the algorithm level and only care about the given tasks, we do

not need the second split. This restatement, although unnecessary convoluted, might

suggest that multi-task learning is, in fact, a subset of meta-learning, one that allows

for (and benefits from) a different, specialized, algorithmic approach.

4.3.3 Transfer Learning

In its broader sense, the term “transfer learning” refers to the general concept of sharing

knowledge between various learning problems [Thrun and Pratt, 1998b], possibly

(but not necessarily) distinguishing from source and target tasks. Under this meaning,

meta-learning, lifelong and continual learning, as well as multi-task learning, constitute

particular learning scenarios and problem settings within the larger area of transfer

learning.

In a narrower sense, transfer learning designates the particular setting where there

is a clear distinction between source and target tasks [Pan and Yang, 2009]. Ultimately,

only these latter are the tasks of interest, while the first one are only considered as

ancillary to improve performances on the target tasks. Let us consider, for simplicity,

the case where there is exactly one source and one target task. We denote them by τs

and τt respectively. At training time, one has access to a dataset of examples Ds ∼ τs.

Available data for the target task, Dt, may be labelled (inductive transfer) or unlabelled

(transductive/unsupervised transfer) and it is usually much scarcer than that of the
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source task (especially in the inductive case). Then, a transfer learning algorithm seeks

to utilize Ds together with what is available from τt to obtain a model that generalizes

well at τt – hopefully, better than what it could be otherwise possible by using Dt

alone. In this restricted view, one may interpret transfer learning as a special case of

meta-learning in which the marginal task distribution

ED[pD,τ] = pτ =
1
2

(δτs +δτt)

is finite and the (final) performance measure is sensitive only to errors on τt (i.e. `s = 0).

Note that this latter statement does not imply that one cannot use supervisory signal

coming from the source task, but only that the quality of the resulting hypothesis is

measured solely against `t.

With neural network models, a particularly simple yet effective technique for

inductive transfer learning is a two-stage approach whereby in a first stage the network

is trained only on the large set Ds. Labelled examples of Dt are then used to “fine-

tune” the network weights14 in the second stage, typically utilizing explicit or implicit

regularization techniques (biased regularization, aggressive early stopping, small

learning rate, etc.) to prevent overfitting. Finn et al. [2017] recently proposed an

adaptation of this technique to the meta-learning (few-shot) setting which has been

proven particularly effective and fruitful. We shall discuss it in detail in Section 4.4.2.3.

4.3.4 Domain Adaptation

The learning scenario of domain adaptation problems is very close to the narrower

interpretation of transfer learning discussed above. Yet, domain adaptation focuses on

a more restricted, but practically very relevant, setting where the factors of variations

are bound to lie in changes of the distribution between source and target tasks (called

distribution shifts), but the domains remain the same (i.e. the input and output space, as

well as the performance measure, remain unvaried) [Pan and Yang, 2009]. Accordingly,

in domain adaptation one usually speaks about source and target distributions rather

than tasks. Often, also a temporal component is taken into consideration, whereby a

14 In this context, “fine-tuning” refers to the practice of warm-starting the optimization related to the
target tasks with the weights obtained in the previous learning stage.
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system that receives and process data streams should face and adapt to several changes

over time. Distribution shifts may, for instance, reflect an underlying non-stationarity

of the phenomenon of interest (e.g. natural evolution of fashion trends), sudden and

abrupt changes (e.g. a pandemic outbreak) or differences between the available data

and the target scenario (e.g. simulation versus real-world [Christiano et al., 2016]).

Decomposing px,y = py(·|x)px = px(·|y)py, one can consider the different situations

where the shift affects only one term [Kouw and Loog, 2018]. Prior shift concern

changes in py, covariate shift variations in px and concept shift in py(·|x). For instance,

if the task is to diagnose a particular disease from a series of biometric readings and

medical analysis, these special cases could occur, in order: in the event of an outbreak

(the prior probability of having contracted the sickness rises as an increased number

of people becomes infected); if there is a change in the tested population from the

source data (different populations might have different characteristics, e.g. different

weight and height distributions) or, finally, if new symptoms become associated with

a disease, e.g. in case of a mutation. As it is the case for the restricted view of

transfer learning, domain adaptation is traditionally tackled with ad-hoc singe-level

or multi-stage learning algorithms [Pan and Yang, 2009]. However, meta-learning

methodologies have been recently proposed [Li et al., 2018a] for domain generalization,

which addresses the topic of developing learning algorithms that are robust by design

to entire classes of domain shifts.

4.3.5 Hyperparameter Optimization

While meta-learning refers to a paradigm, hyperparameter optimization is rather related

to a specific problem in machine learning and regards a set of techniques to tackle

it. Hence, it is perfectly reasonable to perform hyperparameter optimization to tune

the configuration parameters of a meta-learning algorithm or to apply a meta-learning

technique to boost certain aspects of an hyperparameter optimization method. There is

a branch of HPO that deals with the problem of developing methods for hyperparameter

optimization capable of exploiting information stemming from multiple tasks and

sources [Perrone et al., 2018], possibly with the explicit aim of generalizing to unseen

(HPO) tasks [Schilling et al., 2015]. As we shall shortly see (Section 4.4.2.1), some
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instantiations of pool-based meta-learning algorithms are also quite related to this last

aspects.

However, the ties between the two subjects go beyond these points, also when

considering the standard applications of hyperparameter optimization. Whereas the

relationships between meta-learning and the other machine learning sub-field discussed

so far are mostly related to the circumstances of learning, hyperparameter optimization

shares with meta-learning a common, general, aim. We will give substance to this

argument in the second part of the thesis, but start here with the analysis of this

relationship by restating the hyperparameter optimization problem discussed in Chapter

3 using the meta-learning terminology introduced so far.

A standard HPO problems (3.6) involves typically a single task τ̄ = px,y. This

corresponds to a (degenerate) meta-distribution of the type

ED[pD,τ] = pτ = δτ̄ and pD(·|τ̄) = 0 unless D ∼ τ̄.

Taking a sample from pD,τ effectively means drawing two datasets Dtr and Dts from

px,y (where the latter comprises i.i.d. examples). By simply “renaming” Dts into Dval

we see that the expression of the empirical error of a learning algorithm defined in

(4.4) is equivalent to the that of the validation error in (3.5), net of the formal absence

of the hyperparameter vector λ in (4.4). The issue is quickly addressed by identifying

configurations with algorithms. More precisely, given a (standard) learning algorithm

A, with its hyperparameter space Λ, we can denote by Aλ : D→Hλ the corresponding

“hyperparameterless” algorithm, for each λ ∈ Λ. Hence (4.4) reads

Ê(Aλ,D) = Ê(Aλ(Dtr),Dval) =
1
|Dval|

∑
(x,y)∈Dval

`(Aλ(Dtr)(x),y) = Ê(A(Dtr,λ),Dval),

which is indeed the same as (3.5). This means that for the degenerate case of a

meta-distribution that comprises only a single task, the (standard) objectives of hyper-

parameter optimization and meta-learning coincide. Note that this is not the case for

the other sub-areas of machine learning described so far, where typically the splitting

between training and validation (test) sets is not taken into account.
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Going further with this view, we may consider that hyperparamter optimization

techniques are particular implementations of meta-learning algorithms (4.5) which act

in spaces of learning algorithms defined around the hyperparameters, i.e.

H = {Aλ : D→Hλ : λ ∈ Λ}.

On the other hand, as anticipated in the previous section, a number of meta-learning

algorithms effectively search in algorithmic spaces parameterized by “standard hyper-

parameters” (feature extraction, regularization, initialization, etc.). This provides the

other side of the relationship between hyperparameter optimization and meta-learning.

In the next section we shall look at some of these methods more closely. Specifically

we dedicate Section 4.4.2 to the description of algorithmic strategies for MTL, which

fall more naturally in this view.

4.4 Techniques for Meta-Learning
Here we describe various proposed implementations of the meta-learning algorithm

mappings (4.5), discussing their relative search spaces H and the expected data

regimes. We focus on recent methods that often target (supervised) few-shot learning

scenarios, being more closely related to the applications proposed in this work (Section

7.2), but also offer an overview of other classical approaches.

As meta-learning is a fast-paced field of research, categorizations tend to evolve

quite quickly as well and vary depending on the particular perspective from which one

looks at the field. Vanschoren [2019] sorts meta-learning algorithms depending on the

type of experience (meta-data) they process – or on the nature of the meta-distribution

pD,τ, following our terminology. He considers that meta-data may pertain model

evaluations15, task properties or prior models. On rather different terms, Hospedales

et al. [2020] propose a fine-grained cross-section taxonomy that develops around three

independent axes. The meta-representation axis, the first and most diverse, concerns the

way a meta-learning algorithm retains and uses past knowledge; the meta-optimization

axsis regards the policy that A implements to search in the space of algorithms H; the

15 We regard this branch as an application of meta-learning to hyperparameter optimization.
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meta-objective axis relates to the aim for which the meta-learning algorithm is designed.

Since our analytical review covers comparatively less material than [Hospedales et al.,

2020], we propose a simpler categorization related to the characteristics of H. We

differentiate between model-based strategies where H is comparable to a standard

hypothesis space (RNNs, temporal convolutional NN, memory-augmented NNs . . . ),

and algorithmic strategies that feature meta-hypothesis spaces H containing proper

(even if elementary) learning algorithms (nearest neighbour, logistic regression, ERM

with gradient descent, . . . ).

4.4.1 Model-based Meta-learning

The experience associated to the meta-level is composed of sets of examples. Hence,

when developing a meta-learning algorithm, one may look at the various classes of

statistical models which are designed to process sequences or sets of data. Some of

these classes lend themselves well to play the role of learning algorithms in a meta-

learning scenario, after some necessary adjustments and modifications. For instance,

connectionist models (Section 2.3) such as recurrent [Hochreiter et al., 2001, Santoro

et al., 2016] or temporal convolutional neural networks [Mishra et al., 2018], as well

as adaptation of other feed-forward models to work on sets [Qiao et al., 2018] have

been used for this purpose. The core idea is to embed entire training datasets Dtr into

internal representations which may then be used to regress or classify query points.

Model-based meta-learning (MB-MTL) algorithms implement their base-level with

function evaluations (“forward passes”). Many of these algorithms find rather close

counterparts in techniques of standard learning, beside the clear differences in the type

of data that is used at the (meta-)training stage. The following illustrative example

should help clarify these statements.

Let us consider an elementary meta-learning algorithm A that uses at the meta-

level a simple (single layer) recurrent neural network. Let D̄, τ̄ ∼ pD,τ be a data-task

distribution pair drawn from a meta-distribution, with D̄ = {(xi,yi)}N̄i=1. Let us also

assume, again, for simplicity, that the pD,τ describes scalar regression tasks with input

of fixed dimensionality. Starting with a given hidden state s0, which could be randomly
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sampled or optimized, one option is to process D̄ as

st = σ(W1xt + W2yt + W3st−1 + b1) for t = 1, . . . , N̄ (4.6)

obtaining the state sN̄ . In principle, having seen all the N̄ samples, sN̄ is a vector that

depends on (and represents) the entire dataset D̄. One may then regress test points x

by computing

hw,D̄(x) = W4σ(W1x + W3sN̄ + b1) + b2. (4.7)

The equations (4.6)-(4.7) describe a simple RNN with a final linear output layer

which returns a scalar value upon seen a sequence of (training) input/output pairs

and a test input. In effect, this model may be interpreted as a learning algorithm

Aw, parameterized by w = (W1,W2,W3,W4,b1,b2) ∈ Rd, that associate the hypothesis

of Equation (4.7) to a dataset D̄; or Aw(D̄) = hw,D̄. Assuming that the performance

measure for each task is the mean squared error, the RNN weights w may be simply

optimized by minimizing

Ê (Aw,D) =
1
N

N∑
j=1

Ê
(
Aw

(
D j

tr

)
,D j

ts

)
=

1
N

N∑
j=1

1

|D j
ts|

∑
(x,y)∈D j

ts

(
hw,D j

tr
(x)− y

)2

by gradient descent (backpropagation through time [Werbos, 1990]), where D is a

meta-training set as described in (4.2). The optimization is performed at the meta-

level, across tasks, in a space of learning algorithms given by H = {Aw : w ∈ Rd}.

The hypotheses returned by Aw, for any given w, do not have any variable that can

be tuned on the specific task16. Hence, the base-level learning algorithm works by

merely evaluating the RNN equations (4.6)-(4.7). The configuration space of A may

include optimization hyperparameters such as learning rates and update rule, as well

as dimensionality of the RNN hidden state, type of activation functions and so on.

This concludes the specification of this very simple meta-learning algorithm, which is

indeed quite similar to a standard RNN learning algorithm for sequences, except for

16 In fact, the base-level learning algorithm of A can be interpreted as a fixed-weight neural network
[Cotter and Conwell, 1990], as explained in [Hochreiter et al., 2001].
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the different type of data that it processes.

One of the main difficulties encountered in developing MB-MTL algorithms is to

devise a model with enough capacity and expressivity to serve as a full-fledged learning

algorithm, while maintaining a manageable complexity. There are some critical issues

with the model from the example. For instance, points processed earlier by the RNN

may have a smaller impact on the final state sN̄ than those processed later. However,

the presentation order should not matter (i.e. Aw should be permutation invariant)

as the datasets do not (typically) possess any temporal structure. S. Hochreiter et al.

already raised this issue in an early publication [Hochreiter et al., 2001] in which they

propose to use LSTM networks [Hochreiter and Schmidhuber, 1997] instead. The

setting described in [Hochreiter et al., 2001] is close to that of the example, except that

they consider an online version of the problem (somewhat closer to lifelong learning)

where the meta-learning system is supposed to process a stream of data stemming

from multiple tasks (one task after the other). In [Hochreiter et al., 2001], the LSTM

outputs a prediction for each time step, receiving as input the shifted pairs (xt,yt−1).

During meta-training, it is adapted online using the error at each step as supervisory

signal.

Santoro et al. [2016] explored the possibility of employing memory augmented

neural networks [Graves et al., 2014, Sukhbaatar et al., 2015] as meta-hypotheses,

in one of the paper that contributed sparking interest in meta-learning approaches to

few-shot learning. The authors found memory network models superior to LSTMs

on regression and multi-class classification meta-learning problems. Mishra et al.

[2018] proposed a model-based meta-learning algorithm for few-shot learning based

on temporal convolutional neural networks, with a data regime quite similar to that of

our example (not online learning). The class of models developed in the paper features

causal temporal convolution layers interleaved with attention layers [Vaswani et al.,

2017] that allows for a parallel (rather than sequential) processing of the entire training

set. The authors attribute the substantial performance gains (on some benchmark

datasets) over previously proposed MB-MTL methods to the more direct information

processing possible with feed-forward attention models. The cost to pay is, however,
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the limited and fixed data window that this type of models imposes, which can only

be widened by deepening the network, raising its complexity. A slightly different

modelling approach is pursued by Qiao et al. [2018], who focus on multi-class classifi-

cation tasks. Given a standard feed-forward neural network such as a CNN, a class

representation is obtained by summing up the embeddings at the second last layer of

all examples belonging to a given class. Then, such representation is used as an input

to a mapping that outputs a classifier vector for that class. The resulting family of

models, which resemble deep sets networks [Zaheer et al., 2017], although limited in

scope and applicability, seems particularly well suited to address few-shot learning

problems in vision.

One reason of the success of model-based meta-learning framework may be

sought in the possibility for the researchers to intervene more directly in the design

of the hypothesis space of the underlying base-level learning algorithms, conceivably

allowing for more specialization. Yet, the base-level is essentially limited to algorithms

that only perform function evaluations. This lack of flexibility may render MB-MTL

methods ill-suited to address meta-learning problems where the meta-distribution is

highly multi-modal. For instance, this may occur when pD,τ represent cases where the

training datasets (observations) have highly varying sizes or situation where tasks are

structurally different one to another.

4.4.2 Algorithmic Meta-Learning

Whereas model-based meta-learning techniques adapt models of standard learning to

work at a higher level of abstraction, algorithmic meta-learning (A-MTL) methods

search in spaces composed of learning algorithms. Hence, at the base-level, they

are not limited to produce hypothesis by solely evaluating functions, but can also

perform more sophisticated computations such as finding approximate solutions to

optimization problems. This entails the additional challenge of developing efficient

computational methods or pipelines that allow effective learning at the meta-level,

passing information through the execution of entire algorithms. On the other hand, the

far greater flexibility of a more complex meta-hypothesis space may help devise more

broadly applicable, general-purpose, meta-learning algorithms that are less sensitive
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to the particular application domain.

4.4.2.1 Pool-based Methods

Perhaps the most direct design pattern for A-MTL methods consists in modelling

the base-level using a “pool” of (fixed) standard learning algorithms. For each task

drawn from the meta-distribution, one would like to pick the algorithm from the pool

that performs the best (executing as few runs as possible, or even none) and return as

hypothesis the output of that algorithm. The core idea of pool-based A-MTL methods

is to infer at the meta-level a mapping that, given a dataset, chooses (or recommends) a

learning algorithm from the pool (ideally, the best performing one) or combines some

of them (stacking). As we already mentioned in Section 4.2, this class of approaches

is strongly linked to algorithm selection and has received a fairly good amount of

attention from approximately the end of the nineties to the early 2000s. We give here

an overview of the basic ideas and refer the reader to the reviews [Vilalta and Drissi,

2002, Smith-Miles, 2009, Vanschoren, 2019] and references therein for further details

and links to particular implementations.

We describe the simple case of a pool-based meta-learning algorithm A that

prescribes a single recommendation. Consider a set of K ∈ N standard learning

algorithms of interest {Ak}
K
k=1 with relative hypothesis spaces {Hk}

K
k=1 (and fixed

configuration parameters) and define the “selection map”

Â : [K]×D→
K⋃

k=1

Hk; Â(k,D) = Ak(D),

where [K] = {1, . . . ,K}. The main component of a pool-based A-MTL algorithms is

given by a “recommender function” r : D→ |K| ×D that returns an integer (alongside

the received dataset), to pass over to Â. Then, one can define the meta-hypothesis

space of A as

H = {Â◦ r : D→∪kHk : r ∈R}

for some space of functions R. Since Â is fixed, the meta-learning algorithm is only
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responsible for finding a good mapping r ∈R that approximately solves

min
r∈R

Ê(Â◦ r,D)

where D ∼ pD,τ is a meta-training set. This is, however, not a straightforward ex-

ercise. Indeed, the fact that r operates a discrete choice, paired with the potential

non-differentiability of algorithms in the pool, makes the resulting meta-learning

problem unsuitable for (end-to-end) gradient-based optimization. Furthermore, one

remains with the issue of finding a space of functions R apt to meaningfully process

entire datasets (akin to what we discussed in the previous section). In this last regard,

much research in this area has focused on the development and usage of so-called

meta-features to describe a task or an empirical dataset. Meta-features may include

statistical and numerical quantities that describe a dataset, such as its mean, variance,

the total number of points, the input and output dimensionalities, and so on. Re-

searchers have also proposed to use as meta-features the performances of hypotheses

outputted by simple and computationally light algorithms (landmarking). Hence, a

prepossessing step (constituting a first, fixed, component of r) maps datasets into

vector representations, on the top of which standard statistical models such as linear

or logistic regression or decision trees may be used (constituting a second, learnable,

component of r). More recently, Edwards and Storkey [2017] have proposed a varia-

tional auto-encoder [Kingma and Welling, 2019] approach for end-to-end learning of

meta-features (or “statistics”) which could potentially replace hand-engineered one.

To overcome the difficulties in optimization, several researchers have utilized two-

stage approaches. The first stage may consist in collecting (meta-)data by executing the

algorithms from the pool on the datasets in D, recording e.g. a cross-validation error.

One may then compile a table of results that can be processed into a dataset where the

inputs are given by the meta-features representing the datasets and the outputs could

be either the recorded cross-validation errors or the indices of the best performing

algorithm for each task. Meta-training is then cast to a supervised classification or

regression problem regarding the learnable component of r.

One of the advantages of pool-based A-MTL approaches lies in the possibility
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of including a large class of diverse learning algorithms (although meta-training may

become increasingly difficult as K grows). The resulting base-level hypothesis space

H =
⋃

kHk may then be large enough to provide fair coverage for complex and highly

multi-modal meta-distributions which could contain tasks that are sensibly different

one to another. Alongside this, the computational cost of the learned base-level

algorithm can be maintaining relatively low. Indeed, due to the recommender function

r, only one learning algorithm from the pool (or a few cheap ones if using landmarking)

must be run in order to return a hypothesis for any given (test) dataset. However, the

two-stage meta-training process involves a series of hand-engineered steps that would

hardly benefit from the advances in representation learning and end-to-end training of

the last decade. Moreover, the choice of a fixed pool of learning algorithms may incur

in underfitting issues in the presence of tight meta-distributions, as the Ak cannot be

adapted, if needed. Clearly, a pool-based A-MTL base-learning algorithm such as the

one described above may performs at most as well on a task as the best performing

algorithm in its pool. Stacking or ensemble techniques may alleviate this issue to a

certain extent, but do not solve it.

Following a quite opposite conceptual approach, more recently, researchers have

pursued the development of A-MTL methods that use a single standard learning

algorithm A as the “backbone” to design H, but allow for a thorough search and

optimization of some of its components, carried out at the meta-level. Instance-based

and parametric techniques, which we shall describe next, follow this latter pattern.

Intuitively, this allows meta-learning systems to operate over a continuum of learning

algorithms, rather than having to choose among a finite, hand-picked, set.

4.4.2.2 Instance-based Methods

Methods such as k-nearest neighbour (kNN) or kernel density estimation (KDE) are a

class of simple and flexible non-parametric algorithms that do not require a “training

stage”, and lazily evaluate test point based on the distance to the training (or support)

instances [see e.g. Murphy, 2012, Ch. 1 and 14]. Performances of kNN or KDE

regression or classifications models are, however, rather sensitive to the choice of the

feature space and distance metric, which could be considered as hyperparameters for



4.4. Techniques for Meta-Learning 139

these (standard) learning algorithms. Instance-based A-MTL methods [Vinyals et al.,

2016, Snell et al., 2017, Sung et al., 2018] use these types of learning algorithms at the

base-level, adapting some of their configurations parameters at the meta-level, across

tasks. Many authors [Franceschi et al., 2018a, Rusu et al., 2019, Sung et al., 2018]

refer to this class of techniques as metric-based strategies since the core idea is to

meta-learn a distance metric adapted to the meta-distribution of interest.

Let D̄, τ̄ ∼ pD,τ be a data-task distribution pair drawn from a meta-distribution,

with D̄ = {(xi,yi)}N̄i=1 and xi ∈X . Let (x,y)∼ τ̄ be a test datapoint. Hypotheses outputted

by instance-based kNN or KDE algorithms can be written as [Vinyals et al., 2016]

hκ,D̄(x) =

N̄∑
i=1

κ(x, xi)yi

where κ : X ×X → R is akin to a kernel function. The map κ, which can be interpreted

also as an attention mechanism or a relation mapping, is an hyperparameter of the

corresponding (standard) learning algorithm (cf. Section 3.2.1). Following the notation

introduced in Sections 4.2 and 4.3.5, we index the corresponding algorithms by κ:

Aκ(D̄) = hκ,D̄. Then, a typical instance-based meta-learning algorithm searches for a

base-level learning algorithm in a meta-hypothesis space given by H = {Aκ : κ ∈ G}

for some (possibly parameterized) set G.

Vinyals et al. [2016] were the first to introduce this approach in a few-shot learning

context for supervised classification. They decompose κ into feature map χ : X → V

and distance metric δ : V ×V → R with κ(x, x′) = δ(χ(x),χ(x′)) and fix

δ(z,z j) = ec(z,z j)

 N̄∑
i=1

ec(z,zi)


−1

where c(z,z′) =
zᵀz′

||z||||z′||
(4.8)

is the cosine distance. The mapping χ is instead implemented by a deep neural

network with parameters w (more precisely, a bidirectional LSTM on the top of a CNN

feature extractor for applications to visual domains). Additionally, the feature map

takes as input also the entire training set D̄ to provide a “full contextual embedding

[Vinyals et al., 2016]” (this is accomplished by the bidirectional LSTM). The author
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also propose to decouple support and query feature maps, which can be particularly

useful when training observations are not points in the task domain. The search for a

good metric at the meta-level is performed by maximizing the log-likelihood17 on a

meta-training set D

Ê (Aκ,D) =
1
N

N∑
j=1

1

|D j
ts|

∑
(x,y)∈D j

ts

log
[
h
κ,D j

tr
(x)

]
y

(4.9)

with respect to w (the learnable parameter of κ), assuming y ∈ {1, . . . ,c} indicates the

class label. Because of (4.8), the hypotheses for each episode are in fact viewed in

(4.9) as probability distributions over the episode classes. Since every component of

the proposed base-level (non-parametric) algorithm is differentiable, the meta-training

loss (4.9) may then be optimized simply by gradient ascent.

Snell et al. [2017] refine the algorithm of Vinyals et al. by introducing class

prototypes, that consist in aggregating the embeddings of all example of a given

class in the feature space, before computing the distance. In other words, the feature

map χ is implemented as a set function, sothat in the feature space there is exactly

one (prototype) vector per class. They further simplify the method dropping the full

contextual embedding and extend the application range to zero-shot learning. Sung

et al. [2018] propose to parameterize and meta-learn also the distance function δ and

use a squared error on the resulting “relation scores” in place of the log-likelihood.

Garcia and Bruna [2018] instead implement δ with a graph neural network.

Instance-based A-MTL algorithm retain meta-level knowledge in the parameters

of the kernel function κ. Akin to MB-MTL and unlike pool-based A-MTL algorithms,

the resulting meta-level optimization problems are typically smooth and unconstrained,

rendering the search for meta-hypothesis potentially easier. One limitation, inherited

by the instance-based methods which these meta-learning algorithms utilize, is that the

computational cost of the base-level hypotheses increases with the size of the training

sets. In fact, instance-based methods have been proposed until now only in few-shot

learning contexts. The prototype approach [Snell et al., 2017] may, in part, alleviate

17 Equivalent to minimizing the multi-class cross-entropy loss (Section 2.2).
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this issue at the expense of expressiveness and limitation in application scope: for

instance, it is not clear how it could be extended to regression tasks.

4.4.2.3 Parametric Methods

This family of A-MTL methods uses at the base-level learning algorithms associated to

parametric models, adapting at the meta-level some of their configuration parameters.

There is a variety of possible strategies to implement parametric A-MTL algorithms

depending on which aspect of the underline algorithm one wishes to lift to the meta-

level, with an abundant number of publications in the recent years [e.g. Andrychowicz

et al., 2016, Ravi and Larochelle, 2017, Finn et al., 2017, Bello et al., 2017, Wichrowska

et al., 2017, Franceschi et al., 2018a, Nichol et al., 2018, Bertinetto et al., 2019, Rusu

et al., 2019, Zintgraf et al., 2019, Metz et al., 2019]. Typically, the base-level is

more “complex” than that of model or instance-based meta-learning methods, as often

parametric (standard) learning algorithms involve minimizing a loss function (e.g.

regularized ERM) defined on each training set. For this reason, often this class of

A-MTL algorithms is also called optimization-based [Hospedales et al., 2020]. The

meta-level search is frequently implemented by gradient-based optimization, although

also reinforcement learning [Bello et al., 2017] and simpler first order search schemes

[Nichol et al., 2018] have been proposed. We will thoroughly discuss various aspects

and implementation details of the gradient-based subset of methods belonging to this

family in the following chapters of the thesis, linking the resulting meta-learning

problems to (gradient-based) hyperparameter optimization. In Section 7.2 we will

present our proposed implementation [Franceschi et al., 2018a] that uses logistic

regression as the backbone algorithm for the base-level and learn representation

mappings at the meta-level (or “hyper-representations”, to highlight the ties with

HPO). We describe here, instead, what it is possibly the best known and most popular

instantiation of the parametric A-MTL class, proposed by Finn et al. [2017] in a

few-shot learning context and extended by various authors thereafter. Later we discuss

some central concepts behind the series of works which specifically focus on learning

optimization rules [Andrychowicz et al., 2016, Bello et al., 2017, Wichrowska et al.,

2017, Metz et al., 2019], a sub-field of research dubbed learning to optimize.



4.4. Techniques for Meta-Learning 142

Consider a meta-distribution pD,τ where input and output spaces X and Y are

structurally fixed18. Given some (standard) hypothesis space H (for instance neural

network with a fixed architecture) the “model-agnostic meta-learning” (MAML) [Finn

et al., 2017] algorithm A performs at the base-level K ≥ 1 steps of gradient descent on

the task-specific empirical risk, meta-learning the starting point of the optimization

routine (see Section 3.2.3). This may be interpreted as learning at the meta-level

a model that, although not necessarily good for any specific task in pD,τ, is easily

adapted with few steps of gradient descent. Crucially, MAML differentiates from

simpler fine-tuning approaches discussed in Section 4.3 in that the parameters of the

“source” model are optimized end-to-end, taking into account the fine-tuning steps (on

data and tasks drawn from a given meta-distributions). As before, let D̄, τ̄ ∼ pD,τ be a

data-task distribution pair. Let hw : X → Y be an hypothesis parameterized by a vector

w ∈W ⊆ Rd and call L(w, D̄) the empirical error of hw on the task observation points

D̄ (see Section 2.1 and Equation 2.3). Starting from w0 = λ ∈W , the parameters are

updated via K steps of gradient descent

wk = wk−1−η∇L(wk−1, D̄) for k = 1, . . . ,K; (4.10)

where η > 0 is a learning rate (in the original method K and η are both regarded as

configuration parameters of A). The final parameters wK depend on the training set

D̄ and on the starting point19 λ. Hence we write wK = wK(λ, D̄) We may then define

the family of base-level learning algorithms, parameterized by λ as Aλ(D̄) = hwK(λ,D̄),

with wK(λ, D̄) obtained from (4.10). The meta-hypothesis space of MAML is given by

H = {Aλ : λ ∈W ⊆ Rd}. One may view hλ as a “meta-model” since the knowledge is

accumulated in the initialization weights λ. The search in H may be carried out by

minimizing the empirical error (4.4) of Aλ with respect to λ by gradient descent, as

long as L and h are smooth mappings. Computing the gradient of the test (validation)

loss requires computing higher order derivatives of the task-specific training error; we

will discuss the details of this procedure in Chapter 5.

18 However, the encoding of Y (e.g. the classes) may change depending on the tasks.
19 We note that the parameters wK would not depend on λ only in the case of exact optimization of an

objective with unique global minimum, a situation quite far from that addressed in [Finn et al., 2017].
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Several authors have proposed modifications and extensions of this algorithm, for

instance by learning at the meta-level also the step-size η [Li et al., 2017b, Antoniou

et al., 2019], adapting at the base-level only a portion of the parameters [Zintgraf et al.,

2019], learning λ with a first-order search scheme [Nichol et al., 2018] and many

others [Antoniou et al., 2019]. Rusu et al. [2019], instead, move the gradient-based

optimization of the base-level (4.10) to a low-dimensional learned latent space, using

a stochastic encoder-decoder architecture [Goodfellow et al., 2016, Ch. 14] that maps

data to the parameters of h. The resulting base-level algorithm is then parameterized

by the weights of the encoder and decoder mappings (besides other components)

rather than directly by vectors in W . The motive of [Rusu et al., 2019] (and also

e.g. of [Zintgraf et al., 2019]) was to address possible overfitting issues caused by

a too large hypothesis space at the base-level (adaptation of too many parameters)

reported e.g. in [Mishra et al., 2018] on experiments in few-shot learning contexts.

Interestingly, one possible interpretation of the work by Rusu et al. is that of replacing

the single initialization vector of MAML, λ, by a conditional initialization λ(D̄) that

depends (via the encoder-decoder mapping) from the observed task-specific data. This

extends the idea of conditional meta-learning, already present in some form in MB and

instance-based methods [Vinyals et al., 2016, Sung et al., 2018, Oreshkin et al., 2018],

to the parametric A-MTL family leading to very strong performances on a number

of benchmark few-shot learning datasets. In this direction, very recently Wang et al.

[2020] proposed a general method for conditional meta-learning based on a structured

prediction approach that may be applied at the meta-level on the top of a vast range of

base-level parameterizations.

Learning to Optimize. The update rule of gradient descent procedures for minimizing

training errors constitutes a central component of many parametric learning algorithms,

affecting runtime and generalization. This is particularly relevant especially when

the underlying objective is non-convex, as it is the case when dealing with neural

networks. It is ubiquitous practice to employ (structurally fixed) update mappings such

as stochastic gradient descent (see Section 2.4) and only tune a few hyperparameters

that specify the rule’s behaviour. Analytic and empirical research in the optimization



4.4. Techniques for Meta-Learning 144

area has led to the development of more complex optimization methods (Section

2.4.3). Some of these routines may well be tailored to tackle optimization problems

that arise e.g. in deep learning [see e.g. Goodfellow et al., 2016, ch. 8], but they are

still general-purpose in nature, not depending on the data that instantiate the relative

optimization objectives. One possible avenue for further improvements is to search

for update rules that are specialized to small classes of problems, specifically taking

into account the data regime and distribution, in an attempt to circumvent the “no free

lunch theorem for optimization” [Wolpert and Macready, 1997]. This effort clearly

fits into an (algorithmic) meta-learning context. In fact, early works that date back

to the nineties and contributed shaping the meta-learning field [Bengio et al., 1991]

follow this conceptual strand. Recently a number of publications [Andrychowicz et al.,

2016, Bello et al., 2017, Ravi and Larochelle, 2017, Wichrowska et al., 2017, Metz

et al., 2019] has marked a resurgent interest in this specific topic, although, to date, the

interest seems still quite limited to the research community.

Mathematically, the meta-learning problem that derives from the search for update

rules does not differ much from the one previously presented. Intuitively, at the base-

level, instead of updating the parameters with a fixed gradient descent procedure as in

(4.10) one may instead use a general update mapping Φ (see (2.28)) and perform

sk = Φk(sk−1,α, D̄) for k = 1, . . . ,K;

where α are configuration parameters and sk = (wk,vk) is the optimizer state. There are

mainly two different approaches to learning to optimize. On the one hand, [Andrychow-

icz et al., 2016, Wichrowska et al., 2017, Metz et al., 2019] implement Φ as a parame-

terized mapping such as an LSTM or a feed-forward neural network. The maps may

take as input (also) the gradients of L at each step. In these cases, the parameters α is

interpreted as the weight vector of the underlying model, which may then be optimized

directly, at the meta-level, with gradient-based procedures. On the other hand, [Bello

et al., 2017] takes a symbolic approach and represent Φ via its computational graph

(see Sections 3.1 and A.2.2), in a work that is rather similar in spirit and methodology

to [Zoph and Le, 2017] about neural architecture search. In [Bello et al., 2017], α
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is a string of a custom defined “domain specific language”, that is then mapped to a

computational graph, in a predefined manner. The string is the output of a “controller”

model, implemented by a recurrent neural network. Then, the meta-level search is over

the parameters of the controller RNN and is carried out with a reinforcement learning

algorithm.

4.5 Interim Summary

In this chapter, we presented the meta-learning problem and reviewed various tech-

niques and approaches that characterize the field. We started with an informal intro-

duction of fundamental concepts with an example application in a simplified robotic

scenario. We saw that the utility (or necessity) of meta-learning arises when one is

interested in devising a learning system that performs well at (future) target tasks that

are not observable at training time but share some commonalities, mathematically

captured by the concept of meta-distribution. One may then use other available data,

similar to the tasks of interest, to “bootstrap” the learning system, adapting it to the

types of problems that it is expected to encounter “at test time”.

We formalized these concepts in Section 4.2. We defined the meta-distribution

object as a joint distribution of observable data and tasks and argued that this per-

spective allows for a more natural treatment of the meta-learning problem. It also

offers a conceptual justification to the practice of “splitting” datasets, a first factor

that links meta-learning to hyperparameter optimization. We finally gave a definition

of meta-learning algorithm that takes inspiration from established literature, but also

clearly indicates that the (main) dimension of learning is the meta-level.

We then proceeded by studying similarities and differences between meta-learning

and various other fields. We saw that, while most of the areas typically associated

with meta-learning are marked by the presence of multiple tasks, hyperparameter

optimization shares with meta-learning a common aim – argument that we will further

develop in the following chapters.

The last section of this chapter reviews the main approaches to meta-learning,

which we divided into model-based and algorithmic methods. For each family of
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techniques, we presented a “minimal instantiation”. These examples revealed that the

design of many recent meta-learning algorithms (especially those introduced in Sec-

tions 4.4.2.2 and 4.4.2.3) relies on lifting to the meta-level some aspects of a standard

learning algorithm – aspects that one may typically identify as hyperparameters.
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4.6 Summary and Discussion of Concepts Introduced

in Part I
In the background part of the thesis, we have introduced, discussed and touched upon

a number of concepts, fields and subfields of machine learning that span from smooth

optimization to multitask and meta-learning (refer also to Table 1.1). Here we offer a

brief summary aimed at highlighting the relations and links among (some of) these

areas of research.

Supervised learning [Mitchell, 1997, Friedman et al., 2001, Murphy, 2012], which,

in a nutshell, consists in inferring functions from data, is deeply related to most of

the concepts treated in the thesis. In hyperparameter optimization, the execution of

a supervised learning algorithm becomes part of the objective function of the HPO

problem (see Section 3.1); in meta-learning, supervised learning algorithms may

constitute the base-level of learning (see Section 4.2), specifically, in the class of MTL

techniques which we called “algorithmic” (Section 4.4.2).

Optimization [Polyak, 1987a, Nesterov, 2013, Nocedal and Wright, 2006, Bottou

et al., 2018] is one of the pillars of machine learning and, as such, it is ubiquitous.

As many optimization methods are general-purpose procedures, they typically have

several configurations parameters which must be set when used within a (supervised)

learning algorithm. In this regard, HPO is related to optimization in that one may

formulate an HPO problem to find good hyperparameters of an optimization method

(that is, to treat the configuration hyperparameters of an optimization procedure as

hyperparameters of an HPO problem). In particular, tuning learning rates or step-sizes

of gradient descent methods is a topic that has received much attention in (and to a

certain extent, predates) HPO [Jacobs, 1988, Almeida et al., 1999, Schraudolph, 1999,

Schaul et al., 2013, Baydin et al., 2018a, Wu et al., 2018b]. A particular subfield of

meta-learning, dubbed learning to optimize [Andrychowicz et al., 2016, Bello et al.,

2017, Wichrowska et al., 2017, Metz et al., 2019], explicitly seeks to learn from data

optimization procedures, where often the update map is a richly parameterized neural

net that takes as input gradients and possibly other local information (this may be seen

as an highly parameterized version of the HPO regarding optimizers’ parameters).
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Hyperparameter optimization [Moore et al., 2011, Bergstra et al., 2011, Bergstra

and Bengio, 2012, Maclaurin et al., 2015a, Bergstra et al., 2013, Hutter et al., 2015,

Franceschi et al., 2017, Feurer and Hutter, 2018], the central topic of the previous

chapter, is an essential tool in machine learning, where the aim is to seeking good

values for configuration parameters which (inevitably) arise when developing learning

and meta-learning algorithms. We presented it as a general problem, which may then be

instantiated depending on which hyperparameters one seeks to optimize. For instance,

in neural architecture search [Zoph and Le, 2017, Cai et al., 2018, Liu et al., 2019,

Luo et al., 2018, Real et al., 2019], the focus is on finding computational structures,

often interpreted as directed graph, for neural nets. Another fruitful source of HPO

problems is multi-task learning [Caruana, 1998, Maurer et al., 2016, Evgeniou et al.,

2005], where one often seeks to tune components of the mechanisms that regulate

how information is shared among multiple tasks. We started analyzing in Section

4.3.5 how HPO intersect with MTL, and we will dive into this this topic in the second

part of the thesis. One may see links between the online version of the HPO problem

(see Section 3.3), lifelong learning [Thrun and Pratt, 1998b, Chen and Liu, 2018]

and (online) domain adaptation [Jain and Learned-Miller, 2011], as these all share a

temporal component (data streams).

Meta-learning20, the topic of this chapter, is a quite vast field in rapid evolu-

tion [Thrun and Pratt, 1998a, Schmidhuber, 1987, Baxter, 1998, Finn et al., 2017,

Franceschi et al., 2018a, Denevi et al., 2018a, Ravi and Larochelle, 2017, Vinyals et al.,

2016, Hospedales et al., 2020]. As such, it escapes a general and widely accepted

formalization, which we nevertheless tried to provide in Section 4.2. Our definition of

MTL takes advantage of a parallelism with the classic definition of machine learning

algorithm given by Mitchell [1997] that leverages the concept of meta-distribution and

stresses that the experience in MTL (primarily) unfolds along the axis of the tasks or

episodes. MTL, seen as a learning paradigm, intersects and is related to many other

fields and subfields of machine learning, in that one may often conceptualize an MTL

adaptation of practices and techniques of standard learning, as we saw e.g. in Section

20We remind the reader that in this work we use the term meta-learning as synonym of learning to
learn.
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4.4. In this way, for instance, one may think of meta-learning initialization [Finn

et al., 2017, Antoniou et al., 2019, Rusu et al., 2019], representations [Baxter, 1995,

Franceschi et al., 2018a, Bertinetto et al., 2019], update rules (learning to optimize),

metrics [Vinyals et al., 2016, Snell et al., 2017], computational structures (neural archi-

tecture search) and so on. Yet, all these particular viewpoints should be interpreted, in

our opinion, as specific instantiations of a more general paradigm, as much as k-nearest

neighbour, support vector machine, decision trees, etc. are particular instantiations of

(the concept of) supervised learning algorithm.
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Chapter 5

Bilevel Programming for

Gradient-based Hyperparameter

Optimization and Meta-learning

This chapter begins the second part of the thesis, where we present, discuss and

analyze a unifying framework for gradient-based hyperparameter optimization and

meta-learning, rooted in bilevel programming and algorithmic differentiation.

After a brief introduction of Section 5.1 where we elaborate on few concepts

introduced in Chapter 1, we present the framework in Section 5.2 and instantiate it

for hyperparameter optimization and meta-learning. Contextually to our reviews of

Part I, we discuss the class of learning and meta-learning algorithms that the bilevel

framework naturally covers. Then, in Section 5.3 we introduce the gradient-based

approach to solve an approximate version of the bilevel program, that branches in two

main directions: iterative and implicit. We discuss how a broader interpretation of the

iterative approach, on which we focus more closely, covers a larger class of algorithms

and hyperparameters. Section 5.4 concludes with the derivation of the principal

procedures to compute efficiently an approximate gradient of the outer objective (the

hypergradient), including reverse-mode, forward-mode and implicit differentiation

methods.

This chapter, as well as Chapters 6 and 7, is based on the articles “Forward

and Reverse Gradinet-based Hyperparameter Optimization” [Franceschi et al., 2017],
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“Bilevel Programming for Hyperparamter Optimization and Meta-learning” [Franceschi

et al., 2018a] and “On the Iteration Complexity of Hypergradient Computation”

[Grazzi et al., 2020], published at ICML 2017, 2018 and 2020, respectively. We

reorganized the material to provide a more fluent account of the work, taking the

opportunity to add some extensions. This chapter pertains conceptual and algorithmic

aspects of the framework, Chapter 6 is dedicated to an analytical investigation, provid-

ing convergence and complexity results for the algorithms of Section 5.4, and Chapter

7 collects a series of numerical simulations inspired by real-world applications.

5.1 Introduction
While in standard supervised learning problems we seek the best hypothesis in a given

space and with a given learning algorithm, in hyperparameter optimization (Chapter

3) and meta-learning1 (Chapter 4) we seek a configuration so that the optimized

learning algorithm will produce a model that generalizes well to new data. The search

space in MTL often incorporates choices associated with the hypothesis space and

features of the learning algorithm itself (e.g., how optimization of the training loss

is performed). Under this common perspective, both HPO and MTL essentially boil

down to nesting two search problems: at the inner level we seek a good hypothesis (as

in standard supervised learning) while at the outer level we seek a good configuration

(including a good hypothesis space) where the inner search takes place. Depending

on the specific setting, the outer variables take either the meaning of hyperparameters

in a supervised learning problem or parameters of a meta-learner (also meta-level

parameters or meta-parameters).

Surprisingly, before [Franceschi et al., 2018a] the literature on MTL had little

overlap with the literature on HPO. One reason for this “historical” lack of intersection

might be that these two fields typically differ substantially in terms of the experimental

settings in which they are evaluated. While in HPO the available data is associated with

a single task and split into a training set (used to tune the parameters) and a validation

set (used to tune the hyperparameters), in MTL we deal with an entire distributions

1 This statement reflects a large portion of MTL algorithms. In effect, we reckon that several
pool-based methods, reviewed in Section 4.4.2.1, follow a quite different conceptual approach.
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of related tasks and seek for generalization at an algorithmic level. A particularly

interesting MTL setting is that of few-shot learning, where data comes in the form of

short episodes (small datasets with few examples per class) sampled from a common

probability distribution over supervised tasks. As we saw in the previous chapter, the

relatively recent practice of constructing meta-datasets as in (4.2) (which contributes

linking MTL to HPO) emerged precisely in this context.

A second reason may be detected in the different scopes of the prevailing methods

to tackle HPO and MTL problems. Indeed, classic approaches to HPO have been

only able to manage a relatively small number of hyperparameters, from a few dozens

using random search (Section 3.4.3) to a few hundreds using Bayesian or model-based

optimization (Sections 3.4.4 and 3.4.5). Yet, early works on MTL [Hinton and Plaut,

1987, Bengio et al., 1991, Hochreiter et al., 2001] already recognized the need for

adapting a large number of parameters at the meta-level to extract and incorporate

knowledge from the meta-distribution. Thus classic HPO methods seem not suitable

to tackle meta-learning problems. Recent gradient-based techniques for HPO (Section

3.5), however, have significantly increased the number of hyperparameters that can

be optimized and it is now possible to tune as hyperparameters entire weight vectors

associated with a neural network layer. In this way, it becomes feasible to design

models that possibly have more hyperparameters than parameters, blurring the border

between the two fields. Such an approach is well suited for MTL since parameters

are learned from a possibly small dataset, whereas hyperparameters leverage multiple

available datasets and hence, by extension, many more examples.

5.2 A bilevel optimization framework

We view HPO and MTL within the natural mathematical framework of bilevel pro-

gramming, where an outer optimization problem is solved subject to the optimality of

an inner optimization problem. In HPO the outer problem involves hyperparameters

while the inner problem is usually the minimization of an empirical loss. In MTL

the outer problem could involve a shared representation among tasks while the inner

problem could concern classifiers for individual tasks. Bilevel programming [Bard,



5.2. A bilevel optimization framework 154

2013] has been suggested before in machine learning in the context of kernel methods

and support vector machines [Keerthi et al., 2007, Kunapuli et al., 2008], multitask

learning [Flamary et al., 2014], and more recently HPO [Pedregosa, 2016], but, prior

to [Franceschi et al., 2018a], never in the context of MTL. Since [Franceschi et al.,

2018a], a number of works have used the proposed formulation to introduce and

present algorithms and applications setting in MTL and HPO, for instance in the con-

text of neural architecture search [Liu et al., 2019], to learn the structure of group-lasso

problems [Frecon et al., 2018], to describe various MTL approaches [Hospedales et al.,

2020] and software [Grefenstette et al., 2019], to learn data simulators [Behl et al.,

2020] and surrogate losses [Grabocka et al., 2019], among others.

We consider bilevel optimization problems [see e.g. Colson et al., 2007] of the

form

min
λ∈Λ

f (λ) (5.1)

where the function f : Λ→ R is defined at λ ∈ Λ as

f (λ) = inf{E(w(λ),λ) : w(λ) ∈ arg min
u∈W⊆Rd

Lλ(u)}. (5.2)

We call E :W×Λ→R the outer objective and, for every λ ∈Λ, we refer to Lλ :Rd→R

as the inner objective: then {Lλ : λ ∈ Λ} is a class of objective functions parameterized

by λ. Since, in principle, the inner problem may have multiple solutions, the infimum

that appears in (5.2) assures that f is well-defined as a function of λ. Specific instances

of this problem include HPO and MTL, which we discuss next. We outline in Table 5.1

the links among bilevel programming, hyperparameter optimization and meta-learning,

while the cartoon in Figure 5.1 depicts a simple example of the problem (5.1)-(5.2)

where both w and λ are scalars.

The primary interpretation of the inner and outer objectives is that of an empirical

risk computed over an appropriate set of data, depending on the context. Thus, the

program (5.1)-(5.2) relates first and foremost to learning algorithms that operate by

optimizing given objectives. That is, contextually to Section 3.1, (base-level) learning
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Figure 5.1: Each blue line represents the function w→ Lλ(w) for fixed λ. The corresponding
inner minimizer is shown as a blue dot. The outer objective E, evaluated at each
minimizer, yields the black curve representing the function λ→ f (λ), whose
minimizer is shown as a red dot. The blue lines may be interpreted as the loss
surfaces (training errors), while the black line corresponds to the response surface
(validation error).

algorithms (defined on the weight space (3.4)) that may be written as

A(Dtr,λ) = arg min
u∈W

Lλ(u) = Aλ(Dtr), (5.3)

where at the right hand side we use the notation of Section 4.3.5. This includes a large

class of methods that perform empirical risk minimization, as we saw throughout the

first part of the thesis. In (5.3), the definition of the hypothesis space H is left implicit

and may depend on the value of λ, while the method with which the solution should

be found is left unspecified. In fact, we note that (5.3) describes essentially an abstract

algorithm: in practice, the minimization cannot be exact for all but a very few cases

as the solution to the inner problem generally cannot be written analytically. One

needs to resort to iterative optimization approaches as we will discuss in Section 5.3.

Nevertheless, the representation (5.3) returns a compact view of the learning problem

that also reflects a consistent body of literature ranging from support vector machines

and kernel methods to deep learning.
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Table 5.1: Links and naming conventions among different fields.

Bilevel
programming

Hyperparameter
optimization

Meta-learning

Inner variables Parameters Base-level parameters
(task-specific parameters)

Outer variables Hyperparameters Meta-level parameters
(meta-learner parameters)

Inner objective Training error Base-level objectives
(task-specific errors)

Outer objective Validation error Meta-level objective
(meta-training error)

5.2.1 Hyperparameter Optimization

In the context of hyperparameter optimization, we are interested in minimizing the

validation error of a model hw : X → Y parameterized by a vector w, with respect

to a vector of hyperparameters λ (Section 3.1). For example, we may consider

representation or regularization hyperparameters that control the hypothesis space or

penalties, respectively. In this setting, a prototypical choice for the inner objective is

the regularized empirical error

Lλ(w) =
1
|Dtr|

∑
(x,y)∈Dtr

`(hw(x),y) +Ωλ(w) = Ê(hw,Dtr) +Ωλ(w), (5.4)

where Dtr = {(xi,yi)}Ni=1 is a set of input/output points, ` is a prescribed loss function,

and Ωλ a regularizer parameterized by λ. The outer objective represents a proxy for

the generalization error of hw, and it may be given by the average loss on a validation

set Dval

E(w,λ) =
1
|Dval|

∑
(x,y)∈Dval

`(hw(x),y) = Ê(hw,Dval). (5.5)

or, in more generality, by a cross-validation error, as detailed in Appendix B. It is

important to note that, in this setting, the outer objective E does not depend explicitly

on the hyperparameters λ, but only implicitly through the solution w(λ) on which E is

computed (cf. Equation (3.5), considering A’s of the type (5.3)). This is because in

HPO λ is instrumental in finding a good model hw, which is our final goal.

As a more specific example, consider linear models, hw(x) = 〈w, x〉, let ` be the
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square loss and let Ωλ(w) = λ‖w‖2, in which case the inner objective is ridge regression

(Tikhonov regularization) and the bilevel problem optimizes the validation error of the

ridge regressor over the regularization parameter.

5.2.2 Meta-Learning

In meta-learning the inner and outer objectives may be computed by averaging a

training and a test (validation) error over multiple tasks (Section 4.2). The goal is to

produce a learning algorithm that will work well on novel tasks. For this purpose,

considering the typical supervised meta-learning case, we have available a meta-

training set D =
{
D j =

(
D j

tr,D
j
ts

)}N
j=1

, which is a collection of datasets sampled from

a meta-distribution pD,τ. Each dataset D j =
{(

x j
i ,y

j
i

)}N j

i=1
with

(
x j

i ,y
j
i

)
∈ X j ×Y j and

N j = N j
tr + N j

ts is linked to a specific task. Recall that the training sets are sampled

directly from a distribution over data (but jointly with the tasks), while the test sets

are sampled (i.i.d.) form the task distributions; hence, generally N j
tr , N j

ts (where N j
tr

and N j
ts denote the number of training and testing examples, respectively). Note that

the input and output spaces may be task dependent (e.g. a multi-class classification

problem with variable number of classes).

The model for each task is a function hw j,λ : X j→ Y j, identified by a parameter

vectors w j and hyperparameters (or meta-level parameters) λ. We note that also

the functional (structural) component of the base-level hypothesis hw j,λ may vary

depending on the task (e.g. neural networks with different structures), but we leave

this fact implicit, to simplify the notation. A key point here is that λ is shared between

base-level tasks. Denoting by w = (w j)N
j=1 the concatenation of all the task-specific

weight vectors, the inner and outer objectives are

Lλ(w) =
1
N

N∑
j=1

L j(w j,λ,D j
tr) =

1
N

N∑
j=1

Ê(hw j,λ,D
j
tr), (5.6)

E(w,λ) =
1
N

N∑
j=1

L j(w j,λ,D j
ts) =

1
N

N∑
j=1

Ê(hw j,λ,D
j
ts). (5.7)

The loss L j(w j,λ,S ) represents the empirical error of the pair (w j,λ) on a set of
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examples S . Note that the inner and outer losses for task j use different train/test splits

of the corresponding dataset D j. Furthermore, unlike in HPO, in MTL the final goal is

to find a good λ and the w j are now instrumental.

If, again, we consider the base-level algorithm Aλ as the minimization of the the

task-specific loss L j as in (5.3), then we see that2

f (λ) = Ê (Aλ,D) ,

which is the empirical risk of the base-level learning algorithm Aλ (indexed by λ ∈ Λ)

as defined in (4.4).

We can interpret the cartoon in Figure 5.1 as an MTL problem. The parameter λ

indexes a family of hypothesis spaces within which the inner objective is minimized

(the blue lines, with the dots as minimizers). At the meta-level (the black line), one

seeks for the configuration λ (the red dot) that minimizes the average test error over the

available datasets in D. A particular example, detailed in Section 7.2.1, is to choose

the model hw j,λ = 〈w j,rλ(x)〉, in which case λ parameterizes a feature mapping rλ (e.g.

a deep neural network). Yet another choice would be to consider hw j,λ(x) = 〈w j +λ, x〉,

in which case λ represents a common model around which task specific models are

to be found [see e.g. Evgeniou et al., 2005, Finn et al., 2017, Khosla et al., 2012,

Kuzborskij et al., 2013, and reference therein].

The nested structure of the resulting bilevel problem captures many of the algo-

rithmic meta-learning strategies discussed in Section 4.4.2. It is, however, typically not

quite as suitable at describing model-based strategies3 (Section 4.4.1) and two stage-

approaches [see e.g. Wang et al., 2019, Tian et al., 2020]. It is also superfluous for

approaches whose base-level algorithms have an analytical (closed-form) expression,

such as nearest neighbour classification [e.g. Vinyals et al., 2016, Snell et al., 2017],

ridge [Bertinetto et al., 2019] or Gaussian process [Patacchiola et al., 2020] regression.

In all these cases, indeed, the resulting problem can be reduced to a single level one.

2 Assuming a unique minimizer of Lλ.
3Although, as we shall shortly see in Section 5.3.1, the iterative view offers a conceptual link to

many model-based strategies.
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5.3 The Gradient-Based Approach

We now discuss a general approach to solve Problem (5.1)-(5.2) when the hyperparam-

eter (or meta-level parameter) vector λ is real-valued and Λ ⊂ Rm. In principle, the

outer objective could be optimized with a number of techniques that do not require

computing a gradient, some of which we reviewed in the context of HPO in Section 3.4.

However, when applicable, gradient-based optimization, has a number of advantages,

both practical and theoretical that make it appealing (see Section 2.4), especially when

the dimensionality of λ grows.

To simplify our discussion let us assume that W =Rd (unconstrained optimization

at the inner level) and that the inner objective has a unique minimizer wλ. Even in

this simplified scenario, Problem (5.1)-(5.2) remains challenging to solve. Indeed, in

general there is no closed form expression for w(λ), so it is not possible to directly

optimize the outer objective function, nor compute ∇ f . A possible strategy is to replace

the inner problem with the first order optimality condition ∇Lλ = 0 and apply the

implicit function theorem [Pedregosa, 2016, Koh and Liang, 2017, Beirami et al., 2017,

Lorraine et al., 2020]. However, one still remains with the problem of approximating

the solution: the implicit equation ∇Lλ = 0 can be only approximately satisfied. We

return to this point (implicit differentiation) in Section 5.4.3, where we present some

practical algorithms to compute an approximate gradient of f in this way.

Another compelling approach, on which we focus particularly in this thesis, is to

replace the inner problem with a dynamical system. This point, discussed in [Domke,

2012, Maclaurin et al., 2015a, Franceschi et al., 2017, 2018a], allows us to compute an

exact gradient (up to numerical errors) of an approximation of Problem (5.1)-(5.2). It

also reflects the practical implementation of many learning algorithms, thereby making

it possible to optimize variables (hyperparameter or meta-level parameters) that are

associated to the way in which the search in the hypothesis space is carried out, i.e.

that define the learning dynamics itself.



5.3. The Gradient-Based Approach 160

5.3.1 The Iterative View

Specifically, we let [T ] = {1, . . . ,T }where T is a prescribed positive integer and consider

the following Problem

min
λ

fT (λ) = E(wT (λ),λ), (5.8)

where E is a smooth scalar function4, and

s0(λ) = Φ0(λ); st(λ) = Φt(st−1(λ),λ), t ∈ [T ], (5.9)

where st = (wt,vt) ∈ Rd′ is the state of the dynamical system, that potentially includes

accessory variables vi (Section 2.4.5). Φ0 :Rm→Rd′ is a smooth initialization mapping

and, for every t ∈ [T ], Φt :Rd′×Λ⊂Rm→Rd′ is a smooth update mapping. It typically

represents the operation performed by the t-th step of an optimization algorithm, where

the index t may represent stochastic evaluations of L. In this case – when the learning

dynamics is an optimization dynamics – (5.8)-(5.9) may be seen as an approximation

of Problem (5.1)-(5.2). We return on this topic in the next chapter, where discuss the

approximation proprieties of (5.8)-(5.9). A major advantage of this reformulation is

that it makes it possible to compute efficiently the gradient of fT , the hypergradient,

either in time or in memory, by making use of reverse or forward mode algorithmic

differentiation (Sections 5.4.1 and 5.4.2). To simplify the notation, from now on we

will often leave the dependency from λ implicit when denoting the state.

The optimization dynamics could be gradient descent, in which case st = wt (no

auxiliary variables) and Φt(wt,λ) = wt − ηt∇Lλ(wt) where (ηt)t∈[T ] is a sequence of

steps sizes. Another simple example of Φt occurs when training a neural network by

gradient descent with momentum (Section 2.4.3), in which case

vt = µvt−1 +∇Lλ,t(wt−1)

wt = wt−1−η(µvt−1−∇Lλ,t(wt−1)
(5.10)

where Lt is the objective associated with the t-th mini-batch, µ is the momentum factor

4 We are not aware of outer objective functions that depend also on the auxiliary variables. Hence,
we directly consider E as a function of the model variables only.
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and η is (a fixed) learning rate. The initialization mapping could be given by

(w0,v0) = (ε,0), ε ∼N (0,σ2I) (5.11)

where the initial weights w0 are sampled from a normal distribution with covariance

matrix σ2I. In this example, λ could comprise the (optimization) hyperparameters

(µ,η,σ).

In MTL, referring to Section 3.4, [Andrychowicz et al., 2016, Wichrowska et al.,

2017] consider a mapping Φt implemented as a recurrent neural network (learning to

optimize). The meta-level parameters λ are then the weights of the model. MAML

[Finn et al., 2017] (which uses gradient descent as optimization routine) focuses on

the initialization mapping by letting Φ0(λ) = λ. Note that these latter examples could

not be easily expressed with the implicit view, although for MAML there exist closely

related formulations (e.g. Rajeswaran et al. [2019] leverage the similarity of the effects

of initialization in conjunction with early stopping with biased L2 regularization).

The iterative view, where Φt represents an optimization dynamics, covers most

of the parametric algorithmic strategies for MTL outlined in (4.4.2.3). The dynamics,

however, need not be necessarily tied to an underlying optimization procedure. It

can, for instance, relate to the extraction of representations, whereby the variables wt

are no longer interpreted as weights of underlying models, but rather as their internal

representations. This perspective departs from the bilevel problem (5.1)-(5.2), but

offers an interesting link to other learning and meta-learning algorithms. A very

simple (and somewhat degenerate) instance is given by feed-forward neural networks

(2.10), where one may identify the transformation at the t-th layer with Φt. The

hidden units zt instead identify with the weights wt and the total iterations T with the

depth of the network. Another more interesting example is given by the so-called

equilibrium models (EQM) [Grazzi et al., 2020] that comprise, e.g., stable recurrent

neural networks [Miller and Hardt, 2019], graph neural networks [Scarselli et al.,

2009] and the formulations of Deep Equilibrium Networks by Bai et al. [2019] (see

also experiments in Section 6.3.4). In this case, the internal representations are given

by fixed points of learnable dynamics rather than compositions of a finite number of
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layers. The EQM learning problem relates to a more general formulation of the bilevel

program of Section 5.2 that consist in replacing the inner problem with a fixed-point

equation. We embrace this view in Section 6.3, and report in Section 6.3.4 a series of

experiments with an instanciation of an EQM model.

In particular, this latter “broader” view points toward model-based (Section 4.4.1)

and instance-based (Section 4.4.2.2) MTL techniques. For instance, Φt may be given by

the dataset-encoding dynamics 4.7, where T would represent the number of datapoints

in a given training set.

5.4 Hypergradient Computation

In this section, based on [Franceschi et al., 2017] and [Grazzi et al., 2020], we present

various algorithms to compute an approximate gradient of the outer objective, that may

then be plugged into a gradient descent procedure to optimize λ (Equation (3.27)). The

iterative view of Section 5.3.1 gives rise to two possible ways, rooted in algorithmic

differentiation (see Chapter A), to compute the hypergradient which have different

trade-offs in terms of running time and space requirements. The reverse-mode (Section

5.4.1) efficient in time, is based on a Lagrangian formulation associated with the pa-

rameter optimization dynamics. It encompasses the reverse-mode approach presented

in [Maclaurin et al., 2015a], where the dynamics corresponds to stochastic gradient de-

scent with momentum. We do not assume reversible parameter optimization dynamics.

A well-known drawback of reverse-mode differentiation is its space complexity: we

need to store the whole trajectory of training iterates in order to compute the hyper-

gradient. An alternative approach, first introduced in the HPO context in [Franceschi

et al., 2017], is to compute the hypergradient in forward-mode (Section 5.4.2) and it

is efficient in memory. These two approaches have a direct correspondence with two

classic alternative ways of computing gradients for recurrent neural networks (RNN)

[Pearlmutter, 1995]: the Lagrangian (reverse) way corresponds to back-propagation

through time [Werbos, 1990], while the forward way corresponds to real-time recurrent

learning (RTRL) [Williams and Zipser, 1989]. As RTRL allows one to update parame-

ters after each time step, the forward approach is suitable for real-time hyperparameter
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updates, which may significantly speed up the overall hyperparameter optimization

procedure in the presence of large datasets. We sketch an elementary version of the

real-time procedure based on forward-mode in Section 5.4.2.1, and refer to Chapter 8

for a thorough discussion of a refined version of the algorithm.

Finally, in Section 5.4.3 we discuss implicit differentiation schemes [Pedregosa,

2016, Rajeswaran et al., 2019, Lorraine et al., 2020]. First, an (implicit) equation for

∇ f (λ) is obtained through the implicit function theorem. Then, this equation is approx-

imately solved by using a two-stage scheme. We present two specific implementation

in this class: the fixed-point method [Lorraine et al., 2020] and the conjugate gradient

method [Pedregosa, 2016].

5.4.1 Reverse-Mode

The reverse-mode computation leads to an algorithm closely related to the one pre-

sented in [Maclaurin et al., 2015a]. A major difference with respect to their work is

that we do not require the mappings Φt defined in Equation (5.9) to be invertible. With

respect to [Franceschi et al., 2017], we extend here the computation to include also the

initialization mapping and the possible direct dependence of the outer objective from

the hyperparameter vector λ. We note that the reverse-mode calculation is structurally

identical to back-propagation through time [Werbos, 1990].

We consider the constraint optimization problem that arise from the iterative view

min
λ,s

E(wT ,λ) = fT (λ)

subject to s0 = Φ0(λ), st = Φt(st−1,λ), t ∈ [T ].
(5.12)

This formulation closely follows a classical Lagrangian approach used to derive the

back-propagation algorithm [LeCun, 1988]. The vector s = (st)T
t=0 is considered as a

free variable, although it is uniquely determined by the dynamics.

The Lagrangian of problem (5.12) is

L(s,λ,α) = E(wT ,λ) +

T∑
t=1

αt(Φt(st−1,λ)− st) +α0(Φ0(λ)− s0)



5.4. Hypergradient Computation 164

where, for each t ∈ {0, . . . ,T }, αt ∈R
d is a row vector of Lagrange multipliers associated

with the t-th step of the dynamics. We define, for every t ∈ {1, . . . ,T }, the matrices

At =
∂Φt(st−1,λ)

∂st−1
∈ Rd′×d′ , Bt =

∂Φt(st−1,λ)
∂λ

∈ Rd′×m. (5.13)

The partial derivatives of the Lagrangian are given by

∂L
∂α0

=Φ0(λ)− s0,
∂L
∂αt

=Φt(st−1,λ)− st, t ∈ [T ] (5.14)

∂L
∂st

=αt+1At+1−αt, t ∈ {0, . . . ,T −1} (5.15)

∂L
∂sT

=
∂E(wT ,λ)

∂sT
−αT (5.16)

∂L
∂λ

=

T∑
t=1

αtBt +
∂E(wT ,λ)

∂λ
+α0

∂Φ0(λ)
∂λ

, (5.17)

where ∂sE(w,λ) = (∂wE(w,λ),0) ∈ R1×d′ , where 0 is a row vector with d′−d entries.

The optimality conditions are then obtained by setting each derivative to zero. In

particular, setting the right hand side of Equations (5.15) and (5.16) to zero gives

αt =


∂sT E(wT ,λ) if t = T,

∇∂sT E(wT ,λ)AT · · ·At+1 if t ∈ {0, . . . ,T−1}.
(5.18)

Combining these equations with Eq. (5.17) we obtain that

∂L
∂λ

= ∂λE(wT ,λ) +∂sT E(wT ,λ)
T∑

t=0

 T∏
s=t+1

As

Bt,

where we have set B0 = ∂λΦ0(λ). As we shall see this coincides with the expression

for the differential of fT (whose transposed is the gradient) in Eq. (5.22) derived in the

next section. Pseudo-code of Reverse-HG is presented in Algorithm 2.

If an hyperparameters appears as a parameter of a probability distribution, such as

the case of a random normal initialization of the neural network weight (5.11), one can

compute an estimator of the differential using a smooth reparameterization, if it exists

[Mohamed et al., 2020]. This procedure is also known as reparameterization trick
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Algorithm 2 Reverse-HG
Input: λ current values of the hyper-
parameters, dynamics {Φt}

T
t=0

Output: Gradient of fT
S 0← Φ0(λ)
for t = 1 to T do

st← Φt(st−1,λ)
end for
αT ← ∂sT E(wT ,λ)
g← ∂λE(wT ,λ)
for t = T −1 downto 0 do

g← g +αt+1Bt+1
αt← αt+1At+1

end for
return

[
g +α0B0

]ᵀ

[Kingma and Welling, 2014]. For the simple case of (5.11), where w0 = Φ0(λ) = ε with

ε ∼N (0,σ2I), assuming that the only hyperparamter is λ = σ and that the dynamics is

gradient descent, one can rewrite Φ0(λ) = σε for ε ∼N (0, I) so that the estimator of

the differential is computed as

∂λΦ0(λ) = ε ∈ Rd ε ∼N (0, I)

Hence, the hypergradient of f with respect to λ = σ would be given by the random

variable

∇ fT (λ) = α0ε ∈ R ε ∼N (0, I),

that is the scalar product between the vector of the “initial” adjoints α0 and a vector ε

drawn from the standard normal distribution. If no smooth reparameterization exists

(e.g. for discrete random variables), one need to resort to other techniques. We will

discuss this case, presenting an implementation that uses the so-called straight-through

gradient estimator [Bengio et al., 2013], in Chapter 9 for optimizing edges of a graph

(interpreted as hyperparameters).
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5.4.2 Forward-Mode

The second approach to compute the hypergradient appeals to the chain rule for the

(total) derivative of composite functions with implicit dependencies, to obtain that the

gradient of fT at λ, which satisfies5

[∇ fT (λ)]ᵀ = ∂λ fT (λ) = ∂λE(wT ,λ) +∂sT E(wT ,λ)
dsT

dλ
(5.19)

where dsT
dλ is the d′×m matrix formed by the total derivative of the components of sT

with respect to the components of λ. This time st is viewed as a function of λ for each

iteration t.

Recall that st = Φt(st−1,λ). The operators Φt depend on the hyperparameter λ

both directly by its expression and indirectly through the state st−1. Using again the

chain rule we have that, for every t ∈ {1, . . . ,T },

ds0

dλ
=
∂Φ0(λ)
∂λ

;
dst

dλ
=
∂Φt(st−1,λ)

∂st−1

dst−1

dλ
+
∂Φt(st−1,λ)

∂λ
. (5.20)

Defining Zt =
dst
dλ for every t ∈ {0, . . . ,T } and recalling Equation (5.13), we can

rewrite Eq. (5.20) as the recursion

Z0 = ∂λΦ0(λ) = B0, Zt = AtZt−1 + Bt, t ∈ [T ]. (5.21)

Using Eq. (5.21), we obtain that

[∇ fT (λ)]ᵀ = ∂λE(wT ,λ) +∂sT E(wT ,λ)ZT

= ∂λE(wT ,λ) +∂sT E(wT ,λ)(AT ZT−1 + BT )

= ∂λE(wT ,λ) +∂sT E(wT ,λ)(AT AT−1ZT−2 + AT BT−1 + BT )
...

= ∂λE(wT ,λ) +∂sT E(wT ,λ)
T∑

t=0

 T∏
s=t+1

As

Bt. (5.22)

5The gradient of a scalar function is a column vector, while its differential (that coincides with its
Jacobian) is a row vector.
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Note that the recurrence (5.21) on the Jacobian matrix is structurally identical to the

recurrence in the RTRL procedure described in [Williams and Zipser, 1989, eq. (2.10)].

From the above derivation it is apparent that ∇ fT (λ) can be computed by an

iterative algorithm which runs in parallel to the training algorithm. Pseudo-code of

Forward-HG is presented in Algorithm 3. At first sight, the computation of the terms

in the right hand side of Eq. (5.21) seems prohibitive. However, in Section 6.1 we

observe that if m is much smaller than d, the computation can be done efficiently.

Algorithm 3 Forward-HG
Input: λ current values of the hyper-
parameters, dynamics {Φt}

T
t=0

Output: Gradient of fT w.r.t. λ
s0← Φ0(λ)
Z0← B0
for t = 1 to T do

st← Φt(st−1,λ)
Zt← AtZt−1 + Bt

end for
return [∂λE(wT ,λ) +

∂sT E(wT ,λ)ZT ]ᵀ

5.4.2.1 Real-Time Forward-Mode

For every t ∈ {1, . . . ,T } let ft : Rm → R be the response function at time t: ft(λ) =

E(wt(λ),λ). Note that ft for t = T coincides with the definition of the response function

in Eq. (5.8). A major difference between Reverse-HG and Forward-HG is that the

partial hypergradients

[∇ ft(λ)]ᵀ =
dE(wt,λ)

dλ
= ∂λE(wt,λ) +∂st E(wt,λ)Zt (5.23)

are available in the second procedure at each time step t and not only at the end.

The availability of partial hypergradients is significant since we are allowed to

update hyperparameters several times in a single optimization epoch, without having to

wait until time T . This is reminiscent of the real-time updates suggested by Williams

and Zipser [1989] for RTRL. The real-time approach may be suitable in the case of a

data stream (i.e. T =∞), where Reverse-HG would be hardly applicable. Even in the
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case of finite (but large) datasets it is possible to perform one hyperparameter update

after a hyper-batch of data (i.e. a set of minibatches) has been processed. Algorithm 3

can be easily modified to yield a partial hypergradient when t mod ∆ = 0 (for some

hyper-batch size ∆) and letting t run from 1 to ∞, reusing examples in a circular or

random way. This is particularly meaningful when the outer objective does not depend

explicitly from the hyperparameter vector λ; that is E(wt(λ),λ) = E(wt(λ)), as it is

typical in HPO: in effect, computing the “direct gradient” ∂λE(wt) = 0 (i.e. without

considering the implicit dependence of st) would not yeield any update direction at all.

We use this strategy (which we further develop in Chapter 8) in a phoneme recognition

experiment for tuning critical hyperparameters of a large feed-forward neural network

in Section 7.1.2.

5.4.3 Implicit Differentiation

In this section we present derivations and algorithms that arise from the implicit view

of the bilevel program (5.1)-(5.2). We change here the notation for the inner objective

to L(w,λ) = Lλ(w) to improve readability. As mentioned in Section 5.3, the implicit

approach involves replacing the inner problem with the first order optimality condition

∇wL(w,λ) = 0. (5.24)

Under some conditions which we will specify in Section 6.3, the (exact) gradient of f

is given by

[∇ f (λ)]ᵀ = ∂λ f (λ) = ∂λE(w(λ),λ) +∂wE(w(λ),λ)
dw(λ)

dλ
. (5.25)

By applying the implicit function theorem [Krantz and Parks, 2012] to the implicit

equation given by (5.24) one obtains

dw(λ)
dλ

= −
∂2L(w(λ),λ)

∂w2

−1
∂2L(w(λ),λ)

∂w∂λ
(5.26)
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provided that the Hessian of the inner objective (w.r.t. w) is invertible6 on the solution

surface w(λ) for λ ∈ Λ. However, typically one does not have access to an analytic

expression of w(λ) and thus must resort to approximations. Let us denote by wT an

approximate solution of the inner problem (e.g. found with an iterative algorithm).

Then, after substituting w(λ) with wT and plugging (5.26) into (5.25), one can set

q = −∂wE
[
∂2L

]−2
∈ Rd and (approximately) solve the linear system (organized by

rows)

q
∂2L(wT ,λ)

∂w2 = −∂wE(wT ,λ). (5.27)

Call qT,K an approximate solution of (5.27). Then an approximate gradient of the

outer objective is given by

[∇ fT,K(λ)]ᵀ = ∂λE(wT ,λ) + qT,K∂
2
w,λL(wT ,λ). (5.28)

Hence the two possible sources of approximations stem from the solution of the inner

problem and of the linear system (5.27). Particular implementation of this computation

scheme depend on how (5.27) is solved; one classic procedure is the conjugate gradient

(CG) method. It features a linear rate of convergence that depends on the conditioning

number of the Hessian of the inner objective.

Another possible approach, somewhat linked to the iterative view, is given by the

so-called fixed-point method. It is based on the observation that one can rewrite the

condition (5.24) as a fixed point equation of an appropriate (contractive) dynamics7

w(λ) = Φ(w(λ),λ),

which could be, for instance, gradient descent Φ(w,λ) = w−η∇L. Then, the application

6 In fact, one would only need local invertibility as the implicit function theorem is a local result.
For simplicity we consider here the global case, which also allows us to derive convergence proprieties
of the hypergradient approximation of the implicit differentiation procedures. See Chapter 6 for details.

7As in the iterative case, the dynamics may be defined on an augmented state, for example when
using gradient descent with momentum.
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of the implicit function theorem yields

dw(λ)
dλ

=

(
I−

∂Φ(w(λ),λ)
∂w

)−1
∂Φ(w(λ),λ)
∂w∂λ

and, repeating the procedure described above, Equation (5.27) becomes

q (I−∂wΦ(wT ,λ)) = ∂wE(wT ,λ). (5.29)

Starting from any point qT,0 ∈ R
d, one can iterate

qT,k = qT,k−1∂wΦ(wT ,λ) +∂wE(wT ,λ) k ∈ [K] (5.30)

to find an approximate fixed-point of (5.29) (which is an approximate solution of the

linear system). Warm-starting qT,0 with the vector obtained at the previous optimization

iteration (of λ) may speed-up the convergence of (5.30). Algorithm 4 lists the resulting

procedure. We note that this computation method may be used also in the more general

case when Φ is not necessarily an optimization dynamics: Φ may represent a stable

recurrent neural network [Miller and Hardt, 2019], a graph neural network [Scarselli

et al., 2009] or an equilibrium model (Section 6.3.4). In this cases, the fixed-point

algorithm is usually known as recurrent backpropagation [Almeida, 1987, Liao et al.,

2018].

Algorithm 4 Fixed-point-HG
Input: λ current values of the hyperparameters, (fixed-
point) dynamics Φ, approximate minimizer of inner ob-
jective wT , number of iterations K, initial value q0
Output: Approximate gradient of f
for k = 1 to K do

qT,k← qT,k−1∂wΦ(wT ,λ) +∂wE(wT ,λ)
end for
return [∂λE(wT ,λ) + qT,K∂λΦ(wT ,λ)]ᵀ

Implicit differentiation methods are “oblivious” to the way the approximate

solution wT has been found. This means that they have a computational advantage

in memory over the reverse-mode differentiation as they do not require storing the
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entire dynamics. If implemented correctly, using algorithmic differentiation, they have

a run-time advantage over forward-mode differentiation since they only deal with

vector quantities (the qT,K’s). However, for this very reason, they do not directly allow

computing the gradient of hyperparameters related to the optimization of the inner

problem, such as the initialization mapping or the learning rate. Furthermore, as we

shall see in the next two chapters, they are also quite sensitive to the proprieties of the

inner problem (e.g. for the fixed-point method, the dynamics must be a contraction),

and therefore are applicable to a narrower class of problems.

5.5 Interim Summary

In this chapter, we have shown that both HPO and (a large portion of) MTL can be

formulated in terms of bilevel programming, which allows us to compactly express

several hyperparameter optimization problems and meta-learning algorithms. Our

framework encompasses recently proposed methods for meta-learning, such as MAML

and learning to optimize, but also suggests different design patterns for the inner learn-

ing algorithm which are the subject of ongoing studies and open up several routes for

future research. We have indicated two main paths to reformulate the bilevel problem

that lead to a series of algorithms to efficiently compute an approximate gradient

of the outer objective. In particular, we argued that the iterative approach reflects

more closely practical implementations of the underlying (base-level) learning algo-

rithms. It further supports natural extensions that allow considering hyperparameters

(or meta-parameters) related to how the algorithm searches for hypotheses (typically

by optimization).

In the last section, we derived and presented two algorithms that arise from the

iterative view. In this context, before [Franceschi et al., 2017], previous work has

mainly focused on the reverse-mode computation, attempting to deal with its space

complexity, that becomes prohibitive for very large models such as deep networks.

Forward-mode differentiation, especially the real-time counterpart that we will study

more closely in Chapter 8, constitute a compelling alternative for optimizing few criti-

cal hyperparameters, as we shall see in experiments of Section 7.1.2. We also derived
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algorithms that arise from the implicit view, presenting two particular implementations.

All these algorithms have different trade-offs in terms of computational complexity

and applicability, which we will analyze both theoretically and empirically in the next

two chapters.



Chapter 6

Analysis of the Framework

In this chapter we report some analytical result concerning the algorithms presented

in the previous section, focusing on the iterative procedures. We start by providing

a complexity analysis in Section 6.1 that reveals the trade-off between forward and

reverse mode, and establish the computational complexity of the fixed-point method.

The iterative procedure (5.8)-(5.9) raise the issue of the quality of the approxima-

tion to Problem (5.1)-(5.2). We provide sufficient conditions for assuring that the set of

minimizers of fT converges to the set of minimizers of f , first reported in [Franceschi

et al., 2018a]. We observe that these conditions are reasonable and apply to concrete

problems relevant to applications. We conclude the section with two experiments

regarding the effect of tuning some hyperparameters of the optimization dynamics and

the selection of the total number of iterations (the horizon) for iterative methods.

Next, we turn our attention to the convergence of the (approximate) hypergradi-

ents to the gradient of the outer objective ∇ f , considering an extension of the bilevel

program of Section 5.2, where the inner problem is given by a fixed-point equation.

We provide iteration complexity results for iterative differentiation and mention those

concerning implicit methods, when the mapping defining the fixed point equation is a

contraction. In particular, we prove non-asymptotic linear rates for the approximation

errors of both approaches. These results have appeared very recently in [Grazzi et al.,

2020]. We finally investigate empirically the impact of the contractiveness hypothesis

on the effectiveness of the iterative and the implicit methods in Section 6.3.4, con-

sidering as case study an implementation of the so-called equilibrium models, neural
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networks which use as internal representation fixed-points of a learnable dynamics.

6.1 Complexity Analysis
We discuss the time and space complexity of Algorithms 2, 3 and 4. The computational

complexity of the implicit differentiation procedure with conjugate gradient is the same

of that of Algorithm 4. We begin by recalling some basic results from the algorithmic

differentiation literature. We refer the reader to Chapter A for an introduction to the

topic. In particular, Section A.4 derives computational complexity bounds for the two

modes of algorithmic differentiation.

Let F : Rn 7→ Rp be a differentiable function and suppose it can be evaluated in

time t(n, p) and requires space m(n, p). Denote by DF the p×n Jacobian matrix of F.

Then the following facts hold true [Griewank and Walther, 2008] (see also [Baydin

et al., 2018b] for a shorter account):

(i) For any vector r ∈ Rn, the product DFr can be evaluated in time O(t(n, p)) and

requires space O(m(n, p)) using forward-mode AD.

(ii) For any row vector q ∈ R1×p, the product qDF has time and space complexities

O(t(n, p)) using reverse-mode AD.

(iii) As a corollary of item (i), the whole DF can be computed in time O(nt(n, p))

and requires space O(m(n, p)) using forward-mode AD (just use unitary vectors

r = ei for i = 1, . . . ,n).

(iv) Similarly, DF can be computed in time O(pt(n, p)) and requires space O(t(n, p))

using reverse-mode AD.

Let t(d′,m) and m(d′,m) denote time and space, respectively, required to evaluate

the update map Φt defined in Section 5.3.1. Then the response function fT : Rm 7→ R

defined in Equation (5.8) can be evaluated in time O(Tt(d′,m)) (assuming the time

required to compute the validation error E(λ) does not affect the bound1) and requires

space O(m(d′,m)) since variables st may be overwritten at each iteration. Then, a direct

1This is indeed realistic since the number of validation examples is typically lower than the number
of training iterations.
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application of Fact (i) above shows that Algorithm 3 runs in time O(Tmt(d′,m)) and

space O(m(d′,m)). The same results can also be obtained by noting that in Algorithm 3

the product AtZt−1 requires m Jacobian-vector products, each costing O(t(d′,m)) (from

Fact (i)), while computing the Jacobian Bt takes time O(mt(d′,m)) (from Fact (iii)).

Similarly, a direct application of Fact (ii) shows that Algorithm 2 has both time

and space complexities O(Tt(d′,m)). Again the same results can be obtained by noting

that αt+1At1 and αtBt are left Jacobian-vector products that in reverse-mode take both

time O(t(d′,m)) (from Fact (ii)). Unfortunately, in this case, the variables st cannot be

overwritten, explaining the much higher space requirement.

As an example, consider training a neural network with d weights2, using classic

iterative optimization algorithms such as SGD (possibly with momentum) or Adam,

where the hyperparameters are just learning rate and momentum terms. In this case,

d′ = O(d) and m = O(1). Moreover, t(d′,m) and m(d′,m) are both O(d). As a result,

Algorithm 2 runs in time and space O(Td), while Algorithm 3 runs in time O(Td) and

space O(d), which would typically make a dramatic difference in terms of memory

requirements.

Regarding the fixed-point hypergradient procedure of Algorithm 4, let t(d,m) and

m(d,m) be the time and space cost required for evaluating the mapping Φ, introduced

in Section 5.4.3. Then, still assuming that evaluating the gradient of the validation

error does not affect the bound, applying fact (ii) to the update (5.30), one obtains

that Algorithm 4 has time complexity O(Kt(d,m)) and space complexity O(t(d,m)),

where K is the set number of iterations. Indeed, in this case, one only needs to store

the last iterate wT , while the variables qt may be replaced. Furthermore we not that

also the conjugate gradient method only needs to compute at each step exactly one

Hessian vector product, hence the same bounds apply, where K denotes, this time, the

number of CG updates. Note that these estimates do not take into account the cost of

finding wT , since for implicit methods the approximate minimizer is considered to be

an input of the procedure.

2This includes linear SVM and logistic regression as special cases.
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6.1.1 Empirical Validation

To complement the complexity analysis in Section 6.1, we study empirically the

running time per hyperiteration (an optimization step for λ) and space requirements

of Reverse-HG and Forward-HG algorithms3. We trained three layers feed-forward

neural networks on MNIST dataset with SGDM, for T = 1000 iterations. In a first set of

experiments (Figure 6.1, left) we fixed the number of weights at 199210 and optimized

the learning rate, momentum factor and a varying number of example weights in the

training error, similar to the experiment on data-hypercleaning reported in [Franceschi

et al., 2017] As expected, the running time of Reverse-HG is essentially constant, while

that of Forward-HG increases linearly. On the other hand, when fixing the number

of hyperparameters (learning rate and momentum factor), the space complexity of

Reverse-HG grows linearly with respect to the number of parameters (Figure 6.1,

right), while that of Forward-HG remains constant.
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Figure 6.1: Time (left) and space (right) requirements for the computation of the hypergradient
with Forward-HG and Reverse-HG algorithms.

6.2 Approximation Proprieties of Iterative Approach
Procedure (5.8)-(5.9), though related to the bilevel problem (5.1)-(5.2), may not be, in

general, a good approximation of it. Indeed, making the assumptions (which sound

perfectly reasonable) that, for every λ ∈ Λ, wT (λ)→ w(λ) for some w(λ) ∈ argmin Lλ,

and that E(·,λ) is continuous, one can only assert that limT→∞ fT (λ) = E(w(λ),λ) ≥

f (λ). This is because the optimization dynamics converge to some minimizer of the

inner objective Lλ, but not necessarily to the one that also minimizes the function
3Code for this experiment, based on TensorFlow 1 [Abadi et al., 2015], is available at https:

//github.com/lucfra/RFHO.

https://github.com/lucfra/RFHO
https://github.com/lucfra/RFHO


6.2. Approximation Proprieties of Iterative Approach 177

w

Lλ

E (·,λ)

λ λ
(1) (2)w w

Figure 6.2: In this cartoon, for a fixed λ, argmin Lλ = {w(1)
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λ }; the iterates of an optimization
mapping Φ could converge to w(1)
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λ ,λ) > E(w(2)

λ ,λ).

E. This is illustrated in Figure 6.2. The situation is, however, different if the inner

problem admits a unique minimizer for every λ ∈ Λ. Indeed in this case, it is possible

to show that the set of minimizers of the approximate problems converge, as T → +∞

and in an appropriate sense, to the set of minimizers of the bilevel problem. More

precisely, we make the following assumptions:

Assumption A.

1. Λ is a compact subset of Rm;

2. E : Rd ×Λ→ R is jointly continuous;

3. the map (w,λ) 7→ Lλ(w) is jointly continuous and such that argmin Lλ is a

singleton for every λ ∈ Λ;

4. w(λ) = argmin Lλ remains bounded as λ varies in Λ.

Then, problem (5.1)-(5.2) becomes

min
λ∈Λ

f (λ) = E(w(λ),λ), w(λ) = argminuLλ(u). (6.1)

Under the above assumptions, in the following we give results about the existence

of solutions of problem (6.1) and the convergence of the approximate problems (5.8)-

(5.9) towards problem (6.1) — relating the minima as well as the set of minimizers. In

this respect we note that, since both f and fT are nonconvex, argmin fT and argmin f

are in general nonsingleton, so an appropriate definition of set convergence is required.
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Theorem 6.2.1 (Existence). Under Assumptions A problem (6.1) admits solutions.

Proof. See Appendix C.1.

The result below follows from general facts on the stability of minimizers in

optimization problems [Dontchev and Zolezzi, 1993].

Theorem 6.2.2 (Set Convergence of Minimizers). In addition to Assumptions A,

suppose that:

Assumption B.

1. E(·,λ) is uniformly Lipschitz continuous;

2. The iterates (wT (λ))T∈N converge uniformly to w(λ) on Λ as T → +∞.

Then

(a) inf fT → inf f ,

(b) argmin fT → argmin f , meaning that, for every (λT )T∈N such that λT ∈ argmin fT ,

we have that:

- (λT )T∈N admits a convergent subsequence;

- for every subsequence (λKT )T∈N such that λKT → λ̄, we have λ̄ ∈ argmin f .

Proof. See Appendix C.1.

We stress that assumptions A are very natural and satisfied by many problems

of practical interests. Thus, the above results provide full theoretical justification

to the proposed approximate procedure (5.8)-(5.9). The following remark discusses

Assumption B.2.

Remark 6.2.3. If Lλ is strongly convex, then many gradient-based algorithms (e.g.,

standard and accelerated gradient descent) yield linear convergence of the iterates

wT (λ)’s. Moreover, in such cases, the rate of linear convergence is of type (νλ −

µλ)/(νλ + µλ), where νλ and µλ are the Lipschitz constant of the gradient and the

modulus of strong convexity of Lλ respectively, (see Proposition 2.4.4). So, this rate

can be uniformly bounded from above by ρ ∈ ]0,1[, provided that supλ∈Λ νλ < +∞ and
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infλ∈Λµλ > 0. Thus, in these cases wT (λ) converges uniformly to w(λ) on Λ (at a linear

rate).

6.2.1 The Effect of T

Motivated by the theoretical findings, we empirically investigate how solving the

inner problem approximately (i.e. using small T ) affects convergence, generalization

performances, and running time. Let us consider the following form of the inner

objective:

LH(w) = ‖Y −XHw‖2 +µ‖w‖2, (6.2)

where X ∈ RN×d is a design matrix of N examples, Y ∈ RN×c is a target output, µ > 0

is a fixed regularization parameter and H ∈ Rd×d is the hyperparameter, representing

a linear feature map. LH is strongly convex, with modulus µ > 0 (independent on

the hyperparameter H), and Lipschitz smooth with constant νH = 2‖(XH)>XH +µI‖,

which is bounded from above, if H ranges in a bounded set of square matrices. In this

case assumptions (i)-(vi) are satisfied.

The solution of (6.2) is given by

wH = [(XH)T XH +µI]−1(XH)T Y.

As outer objective, we utilize a non-regularized square loss on validation data. In this

setting, the bilevel problem reduces to a (non-convex) optimization problem in H,

allowing us to compare the approximated solutions against the closed-form analytical

one.

We use a subset of 100 classes (c = 100) extracted from Omniglot dataset [Lake

et al., 2017] to construct a HPO problem aimed at tuning H. A training set Dtr and a

validation set Dval, each consisting of three randomly drawn examples per class, were

sampled to form the HPO problem. A third set Dtest, consisting of fifteen examples per

class, was used for testing. Instead of using raw images as input, we employ feature

vectors x ∈ R256 computed by the convolutional network trained on one-shot five-ways

ML setting as described in Sec. 7.2.2.

For the approximate problems we compute the hypergradient using Algorithm
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Figure 6.3: (Left) optimization of the outer objectives (validation error) f and fT for exact and
approximate problems. The optimization of H is performed with gradient descent
with momentum, with same initialization, step size and momentum factor for each
run. (Right) accuracy on Dtest of exact and approximated solutions (training and
validation accuracy scores reach almost 100% already for T = 4 and after few
hundred hyperiterations and therefore are not reported). These two plot shows
that for higher values of T , the approximate outer objectives converges toward the
exact one, as expected from Theorem 6.2.2. However, in this experimental setting,
lower values of fT do not necessarily correspond to higher test accuracy scores
and may lead to overfitting the validation error.

Table 6.1: Execution times on a NVidia Tesla M40 GPU.

T 1 4 16 64 256 Exact
Time (sec) 60 119 356 1344 5532 320

2. Figure 6.3 (left) shows the values of functions f and fT (see Eqs. (5.1) and

(5.8), respectively) during the optimization of H. As T increases, the solution of the

approximate problem approaches the true bilevel solution (in value). However, in

the setting of this experiment, performing a small number of gradient descent steps

for solving the inner problem acts as an implicit regularizer. As it is evident from

Figure 6.3 (right), the generalization error is better when T is smaller than the value

yielding the best approximation of the inner solution. Here we see that tuning T helps

contain this issue. As T increases, the number of hyperiterations required to reach the

maximum test accuracy decreases, further suggesting that there is an interplay between

the number of iterations used to solve the inner and the outer objective. Finally,

because of the memory complexity of Reverse-HG (studied in Section 6.1) it is even

more appealing to reduce the number of iterations when possible.

Despite the attractiveness of shorter horizons, we note, however, that some other

problem settings may benefit instead from larger values of T . For instance, Wu et al.
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[2018b] study the bias that stems from choosing too short horizons when optimizing

learning rates (see also Chapter 8). In general, T may be considered as a configuration

parameter of (iterative) gradient-based HPO and MTL methods which should be (meta-

)validated; see also experiments in Sections 7.2.2 and 9.4.3. A correct horizon length

may help avoid potential overfitting issues as in the numerical example of this section,

or unwanted “short-horizon” biases, as noted in [Wu et al., 2018b].

We remind the reader to [Grazzi et al., 2020] for comparative experiments between

iterative and implicit approaches regarding the hypergradient approximation errors.

We now conclude the section with a simple example showing that, in certain cases,

optimizing the parameters that control the dynamics Φ may lead to situations in which

some assumptions are no longer satisfied, possibly causing divergence.

6.2.2 On Tuning the Hyperparameters of the Optimization Dy-

namics

With the iterative approximation scheme it becomes feasible to optimize also config-

uration parameters of the optimization dynamics Φt, such as the learning rate. This

possibility has a great practical value (as we will see in Chapters 7 and 8) as it can

substantially automate the search of critical hyperparameters, possibly speeding up

the training procedure and leading to models with improved generalization. However,

tuning these hyperparameters against the outer objective (e.g. a validation error) may

result in situations in which some of the hypothesis of Theorem 6.2.2 are no longer

satisfied. Consider, for instance, the very simple scalar bilevel problem

min
λ∈[−M,M]

λ2−

(
w(λ)−

λ

2

)2
, s.t. w(λ) = argminu∈R

(u−λ)2

2
(6.3)

for M ∈R, which satisfies all the hypothesis of Theorem 6.2.2 (but E(w,λ) is not convex

when seen as a function of two variables). The solution of the inner problem is simply

given by w(λ) = λ and hence λ∗ = 0 is the unique minimizer of (6.3), with f (λ) = 0.

By replacing the inner problem with a gradient descent optimization dynamics, one

obtains

min
λ∈[−M,M]

λ2−

(
wT (λ)−

λ

2

)2
, (6.4)
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Figure 6.4: Results about the optimality gap (top rows) from the numerical solution of Problem
(6.4)-(6.5) when keeping the learning rate constant (top left) and when tuning the
learning rate as well (top right), for various horizons T . Bottom left: value of the
hypergradient ∂η fT . Bottom right: value of the outer objective (which, in this case,
is also a function of η).

s.t. w0 = w̄, wt(λ) = Φ(wt−1,λ,η) = wt−1−η(wt−1−λ) t ∈ [T ]. (6.5)

In Figure 6.4 top left we report the optimality gap (||λk −λ
∗|| = |λk|) as a function of

the hyperiterations (updates of λ) for various values of T , keeping a constant learning

rate of η = 10−1 (we use Forward-HG to compute the hypergradient). The procedure

approximately converges for all values of T , although for smaller horizons the gap

remain larger, as wT remains further away from w(λ). The situation changes radically

if we treat also the learning rate η ≥ 0 as an hyperparameter to optimize. In this case

we observe (Figure 6.4 top right) that for T ≤ 40 the iterate λk no longer converges

to 0. A closer inspection reveals that, during the optimization, the learning rate goes

to 0. In fact, by letting η→ 0 the outer objective fT (which becomes the single level

objective λ−
(
w̄− λ

2

)2
) achieves a smaller value than f (λ∗) (Figure 6.4 bottom right).

The same does not happen for T = 50 although the reason is that the hypergradient

w.r.t. η in this case, whilst still positive, vanishes toward 0 (bottom-left plot of the

figure). Hence, in this case, if the horizon T is too small, by optimizing η one clearly

ends up violating the hypothesis B.2 of Theorem 6.2.2 that wT → w(λ).
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This phenomenon does not necessarily occur in more realistic scenarios where

typically the inner and outer objective are “better aligned”, but should nevertheless

highlight the nature of the approximation that derives from the iterative approach. In

fact, substituting the inner problem with an optimization dynamics gives raise to a

constrained optimization problem. The solutions to this latter problem are those that

minimize the outer objective fT . Hence, if the formulation of the problem offers a

configuration that decreases fT (beyond min f ) while still respecting the T equality

constraints (for instance, by zeroing the learning rate), this can be returned by the outer

optimization procedure, irrespective of the optimality of the original inner problem.

6.3 Error Bounds for Hypergradient Approximation
We now derive non-asymptotic bounds on the hypergradient approximation error for

the algorithms presented in Section 5.4, first shown in [Grazzi et al., 2020]. In this

section we consider the following bilevel problem:

min
λ∈Λ

f (λ) := E(w(λ),λ) subject to w(λ) = Φ(w(λ),λ), (6.6)

where Λ is a closed convex subset of Rm, E : Rd ×Λ→ R and Φ : Rd ×Λ→ Rd are

continuously differentiable functions. Note that this problem is strongly related to (6.1)

and it represents, in a sense, an extension of it. Indeed, if in (6.1) we consider strictly

convex inner objectives Lλ ∈C2(Rd), we can let Φ be such that Φ(w,λ) = w−ηλ∇Lλ(w),

where ηλ is an appropriate step-size (that may depend on λ), then problem (6.1) and

problem (6.6) are equivalent.

We make the following assumptions, related to the continuous differentiability of

the outer objective and of the inner dynamics, and the contractiveness of the dynamics,

which strengthen those in A and B.

Assumption C. For every λ ∈ Λ,

1. ∂wΦ(w,λ) and ∂λΦ(w,λ) are Lipschitz continuous with constants ν1,λ and ν2,λ

respectively.

2. ∂wE(w,λ) and ∂λE(·,λ) are Lipschitz continuous with constants ξ1,λ and ξ2,λ
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respectively.

3. For every λ ∈ Λ, Φ(·,λ) is a contraction with constant ρλ ∈ (0,1).

A direct consequence of Assumption C.3 is that, for each λ, the dynamics Φ has a

unique fixed point w(λ), and that the mapping I−∂wΦ(w,λ) is invertible. This further

implies that, for the implicit function theorem [Krantz and Parks, 2012], w(·) and f (·)

are differentiable on Λ. Specifically, for every λ ∈ Λ, it holds that

∂λw(λ) = (I−∂wΦ(w(λ),λ))−1∂λΦ(w(λ),λ) (6.7)

[∇ f (λ)]ᵀ = ∂λE(w(λ),λ) +∂wE(w(λ),λ)∂λw(λ). (6.8)

When the dynamics Φ is gradient descent (with η = 1) applied to an inner objective Lλ,

equation (6.7) reduces to (5.26). Furthermore, one has that

∥∥∥(I−∂wΦ(w,λ))−1
∥∥∥ ≤ 1

1−ρλ
(6.9)

as a simple consequence of ‖∂wΦ(w,λ)‖ ≤ ρλ < 1, using the Neumann series for the

inverse.

Remark 6.3.1. Assumption C.3 looks quite restrictive, however it is satisfied in a

number of interesting cases:

(a) In the setting of Remark 6.2.3, for bilevel optimization problems of the form

(6.1), when Lλ is µλ-strongly convex with Lipschitz constant νλ, the optimization

dynamics of GD Φ(w,λ) = w−ηλ∇Lλ(w) is a contraction w.r.t. w with constant

ρλ =
νλ−µλ
νλ+µλ

when choosing the (optimal) learning rate ηλ = 2
µλ+ηλ

.

(b) For strongly convex quadratic functions, accelerated methods like [Nesterov,

1983] or heavy-ball [Polyak, 1987b] can be formulated as fixed-point iterations

of a contraction in the norm defined by a suitable positive definite matrix.

(c) In certain graph and recurrent neural networks of the form (6.15), where the

transition function is assumed to be a contraction [Scarselli et al., 2009, Almeida,

1987, Pineda, 1987].
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Before starting with the study of iterative and implicit differentiation, we give a

lemma which introduces three additional constants that will occur in the error bounds.

Lemma 6.3.2. Let λ ∈ Λ and let Dλ > 0 be such that ‖w(λ)‖ ≤ Dλ. Then there exist

νE,λ, νΦ,λ ∈ R+ such that

sup
‖w‖≤2Dλ

‖∂wE(w,λ)‖ ≤ νE,λ, sup
‖w‖≤2Dλ

‖∂λΦ(w,λ)‖ ≤ νΦ,λ

The proof [Grazzi et al., 2020] exploits the fact that the image of a continuous

function applied to a compact set remains compact.

6.3.1 Iterative Differentiation

In this section we derive bounds for Algorithms 2 and 3 (which, we recall, constitute

two different procedure to compute the same quantity) for the simplified case where

st = wt (no auxiliary variables), Φ = Φt for each t (fixed dynamics) and Φ0 = 0 (constant

initialization). With Assumption C.3 in force and if wT (λ) is defined as in Equation

(5.9), we have the following proposition that is essential for the final bound.

Proposition 6.3.3. Suppose that Assumptions C.1 and C.3 hold and let T ∈ N, with

T ≥ 1. Moreover, for every λ ∈ Λ, let wT (λ) be computed by Algorithm 2 or 3 (with

the above specifications) and let Dλ and νΦ,λ be as in Lemma 6.3.2. Then, wT (·) is

differentiable and, for every λ ∈ Λ,

‖∂λwT (λ)−∂λw(λ)‖ ≤
(
ν2,λ+ ν1,λ

νΦ,λ

1−ρλ

)
DλTρT−1

λ +
νΦ,λ

1−ρλ
ρT
λ , (6.10)

where ∂λwT is obtained by the recursion4

∂λwt = ∂wΦ(wt−1,λ)∂λwt−1 +∂λΦ(wt−1,λ) t ∈ [T ]. (6.11)

Proof. See Appendix C.2.

Leveraging Proposition 6.3.3, we give the main result of this section.

4 Note that (6.11) is essential (5.20) in the simplified case with no auxiliary variables, fixed dynamics
and constant initialization that we consider in this section.
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Theorem 6.3.4. (Error bound for iterative differentiation). Suppose that Assumptions

C hold and let T ∈ N with t ≥ 1. Let Dλ, νE,λ, and νΦ,λ be as in Lemma 6.3.2. Then,

fT (λ) = E(wT (λ),λ) is differentiable and, for every λ ∈ Λ,

‖∇ fT (λ)−∇ f (λ)‖ ≤
(
c1(λ) + c2(λ)

T
ρλ

+ c3(λ)
)
ρT
λ , (6.12)

where

c1(λ) =

(
ξ2,λ+

ξ1,λνΦ,λ

1−ρλ

)
Dλ,

c2(λ) =

(
ν2,λ+

ν1,λνΦ,λ

1−ρλ

)
νE,λDλ,

c3(λ) =
νE,λ νΦ,λ

1−ρλ
.

Proof. See Appendix C.2.

In its generality this result provides a non-asymptotic linear rate of convergence

for the gradient of fT towards that of f that applies to Algorithms 2 and 3.

6.3.2 Implicit Differentiation 5

In this section we derive approximation error bounds for the fixed-point implicit

differentiation procedure described in Algorithm 4. We refer the reader to [Grazzi

et al., 2020] for a more general result concerning the convergence of the broader

computation scheme of Section 5.4.3 that includes also the implementation with

conjugate gradient. The result in [Grazzi et al., 2020] relies on slightly less stricter

assumptions, in particular not requiring global contractiveness of the mapping Φ.

We recall that Fixed-point-HG regards wT (λ) as an input and that the the main

computation is carried out by the recurrence

qT,k = qT,k−1∂wΦ(wT ,λ) +∂wE(wT ,λ) k ∈ [K], (6.13)

with qT,k ∈ R
1×d.

5The content of this section is attributed to my coauthors of [Grazzi et al., 2020]; included here for
completion.
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Theorem 6.3.5. (Error bound for fixed-point iterative differentiation). Suppose that

Assumptions C hold. Let ∇ fT,K(λ) be defined according to (5.28), where qT,K is

computed by iterating (6.13). Then, for every T,K ∈ N,

||∇ fT,K(λ)−∇ f (λ)|| ≤

c1(λ) + c2(λ)
1−ρK

λ

1−ρλ

ρλ(T ) + c3(λ)ρK
λ , (6.14)

where c1(λ), c2(λ) and c3(λ) are given in Theorem 6.3.4 and ρλ(t) is the convergence

rate of wT → w(λ)

It is interesting to note that, if in Algorithm 4 we define wT (λ) as the T−th

iterate of Φ as in the iterative differentiation approach (so that ρλ(T ) = ρT
λ ), and take

K = T , then the bound for Fixed-point-HG (6.14) is lower than that of the iterative

differentiation algorithms (6.12), since

ρλ(1−ρT
λ )/(1−ρλ) =

T∑
i=1

ρi
λ < T

for every T ≥ 1. This analysis suggests that Fixed-point-HG may converge faster

than Reverse-HG or Forward-HG (in terms of iterations), when Assumptions C are

satisfied.

6.3.3 Discussion

Iterative differentiation for functions defined implicitly has been extensively studied

in the automatic differentiation literature. In particular [Griewank and Walther, 2008,

Chap. 15] derives asymptotic linear rates for iterative differentiation under the assump-

tion that Φ(·,λ) is a contraction. Iterative differentiation is also considered in [Shaban

et al., 2019] where ∇ ft(λ) is approximated via a procedure which is reminiscent of

truncated backpropagation. The authors bound the norm of the difference between

∇ ft(λ) and its truncated version as a function of the truncation steps. This is different

from our analysis which directly considers the problem of estimating the gradient of f .

In the case of implicit differentiation, an asymptotic analysis is presented in

[Pedregosa, 2016], where the author proves the convergence of an inexact gradient

projection algorithm for the minimization of the function f defined in problem (6.1),
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using increasingly accurate estimates of ∇ f (λ). Rajeswaran et al. [2019] present

complexity results in the setting of meta-learning with biased regularization.

We also mention the papers by [Amos and Kolter, 2017] and [Amos, 2019], which

present techniques to differentiate through the solutions of quadratic and cone programs

respectively. Using such techniques allows one to treat these optimization problems as

layers of a neural network and to use backpropagation for the end-to-end training of

the resulting learning model. In the former work, the gradient is obtained by implicitly

differentiating through the KKT conditions of the lower-level problem, while the latter

performs implicit differentiation on the residual map of Minty’s parametrization.

A different approach to solve bilevel problems of the form (6.1) is presented

by [Mehra and Hamm, 2019], who consider a sequence of “single level” objectives

involving a quadratic regularization term penalizing violations of the lower-level first-

order stationary conditions. The authors provide asymptotic convergence guarantees

for the method, as the regularization parameter tends to infinity, and show that it

outperforms both iterative and implicit differentiation on different settings where the

lower-level problem is non-convex.

All previously mentioned works except [Griewank and Walther, 2008] consider

bilevel problems of the form (6.1). Another exception is [Liao et al., 2018], which

proposes two improvements to recurrent backpropagation, one based on conjugate

gradient on the normal equations, and another based on Neumann series approximation

of the inverse.

6.3.4 The Effect of the Contractiveness Hypothesis

In this section we present experiments aimed at understanding the importance of the

contractiveness hypothesis C.3 on the (empirical) stability and convergence of iterative

and implicit hypergradient computation schemes. For this purpose we consider a

setting in which the mapping Φ is not an optimization dynamics, but rather constitute

(part of) the statistical model itself, as in case (c) of Remark 6.3.1. This help us better

control the factor ρλ, allowing us to consider non-trivial settings where ρλ is less than

1 by design.
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Specifically, we consider the following learning problem

min
λ=(γ,θ)∈Λ

f (λ) :=
N∑

i=1

Ei(wi(γ), θ),

subject to wi(γ) = φi(wi(γ),γ), for i ∈ [N],

(6.15)

where the operators φi : Rd ×Λ→ Rd are associated to the training points xi, and the

error functions Ei are the losses incurred by a standard supervised algorithm on the

transformed dataset {wi(γ),yi}
N
i=1. Here Φ = (φi)N

i=1 and w = (wi)N
i=1 When iterating the

dynamics φ (for T steps, or until convergence), one may consider that the wi
t for t ∈ [T ]

are internal intermediate representations akin to neural network activations.

We use a subset of N = 5000 instances randomly sampled from the MNIST dataset

as training data and employ a multiclass logistic classifier paired with a cross-entropy

loss. We picked a small training set and purposefully avoided stochastic optimization

methods to better focus on issues related to the computation of the hypergradients

itself, avoiding the introduction of other sources of noise. We model the learnable

dynamics with parameters γ = (C,C′,c) as

φi(wi,γ) = tanh
(
C?wi +µ2×2(C′? xi) + c

)
(6.16)

where wi ∈ R
h×14×14 are the state feature maps, ? denotes multi-channel bidimensional

cross-correlation, C and C′ contain h 3×3 convolutional kernels each and µ2×2 denotes

the max-pooling operator with a 2×2 field and stride of 2. The state feature maps are

passed through a max-pooling operator before being flattened and fed to a multiclass

logistic classifier. We set h = 10 for all the experiments. We use the results and the

code of Sedghi et al. [2019] to efficiently perform the projection of the linear operator

associated to C into the unit spectral ball. This ensures that the transition mappings

(6.16), and hence Φ, are contractions. This can be achieved during optimization by

projecting the singular values of p(C) onto the interval [0,1−ε] for ε > 0, where p(C)

is an h× h matrix of doubly block circulant matrices [see Sedghi et al., 2019, for

details]. We note that regularizing the norm of ∂wiφi or adding L1 or L∞ penalty terms
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Figure 6.5: Experiments with convolutional equilibrium models. Mean (solid line) and point-
wise minimum-maximum range (shaded region) across 5 random seeds. The seed
only controls the initialization of λ. The estimated hypergradient g(λ) is equal
to ∇ fT (λ) for iterative differentiation and ∇ fT,K(λ) for implicit differentiation.
We used T = K = 20 for all methods and Nesterov momentum (1500 iterations)
for optimizing λ, applying a projector operator at each iteration except for the
methods marked with †. In the first three plots we report for each method runs
executed with the step-size that lead to the highest validation accuracy on the gird
of the last plot (bottom-right). When the dynamics is contractive, all the three
methods perform equally well, with FP being the fastest. Conversely, CG and
especially FP are clearly outperformed by ITD in the unconstrained case.

on p(C) may encourage, but does not strictly enforce,
∥∥∥p(C)

∥∥∥ < 1.

The first three plots of Figure 6.5 report training objectives, test accuracy and

norms of the estimated hypergradient for hypergradient computation methods6, either

applying or not the constraint on p(C). The bottom-right plot explores the sensitivity

6 Specifically “CG” refers to implicit differentiation with conjugate gradient, “FP” to
Fixed-point-HG and “ITD” to iterative differentiation implemented with “Reverse-HG”. Note that,
since here ∂wΦ is not symmetric, the conjugate gradient method must be applied on the normal equa-
tions. Code for reproducing the experiments, developed on the top of Pythorch [Paszke et al., 2017], is
available at https://github.com/prolearner/hypertorch.

https://github.com/prolearner/hypertorch
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Figure 6.6: Visualization of the states filter maps wi ∈ R
10×14×14 for the image of a three from

the MNIST dataset, learnt with the fixed-point method with contractive dynamics.
Each of the ten rows represents a filter and the x-axis proceeds with the iterations
of the dynamics (6.16) (for a total of t = 20 iterations). The states are initialized at
0 (black images on the left) and the mapping (6.16) is iterated 20 times to reach
an approximate fixed point representation (rightmost images).

of the methods to the choice of the learning rate. Unconstrained runs are marked with

†. Referring to the rightmost plot, it is clear that not constraining the spectral norm

results in unstable behaviour of the “memory-less” implicit differentiation methods

(green and blue lines) for all but a few learning rates, while iterative differentiation

(violet), as expected, suffers comparatively less. Interestingly, when the projection is

not performed, optimization with the fixed-point scheme (akin to recurrent backpropa-

gation) does not reliably converge for all the probed values of the step-size, see green

shaded region in the rightmost plot of Figure 6.5. This indicates the importance of

the contractiveness assumption for implicit differentiation methods. On the contrary,

when
∥∥∥p(C)

∥∥∥ < 1 is enforced, all the approximation methods are successful and stable,

with Fixed-point-HG to be preferred being faster then CG on the normal equations

and requiring substantially less memory than Reverse-HG.

We show some visual examples of the learned dynamics in Figure 6.6, where we

plot the 10 state filter maps as the iterations of (6.16) proceed.

6.4 Interim Summary
The gradient-based algorithms for finding solutions to bilevel problems that arise in

HPO and MTL, introduced in the previous chapter, have different trade-offs in terms of

computational complexity, which we analyzed in Section 6.1. Reverse-HG is efficient

when λ is high dimensional and the number of iterations or the dimensionality of the
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parameter vector w are comparatively low. Forward-HG, on the contrary, is effective

when λ is low dimensional. Fixed-point-HG, needing to store only the last iterate

and maintaining only vector adjoints, inherits the computational advantages of both

the iterative procedures, at the cost of applying to a more restricted set of cases.

In the other two sections of the chapter we focused on the approximation pro-

prieties of the algorithms. First, the iterative approach constructs a sequence of

approximate problems indexed by the horizon length T . In Section 6.2 we showed that

when the inner problem has a unique solution (e.g. is strongly convex) the minimizers

of the approximate problems converge to those of the original bilevel program. Second,

in Section 6.3, we turned our attention to the approximation error on the computation

of the hypergradient, considering a more general version of the bilevel problem that

involves a fixed-point equation at the inner level. Under the assumption that the

equation is defined by a contraction mapping, we established results on the iteration

complexity of the two strategies to compute the hypergradient, showing that they both

exhibit liner rates of convergence.

We accompanied the theoretical analysis with four simple numerical simulations.

The first provides empirical evidence of the complexity analysis. Then, two set of

experiments investigate particular aspect of the iterative approach. The simulation

of Section 6.2.1 focuses on the potential statistical (and computational) benefits of

short horizons for problems with many hyperparameters, linking the effect to implicit

regularization akin to early stopping (Section 2.4.4). The numerical simulation will

also be relevant for experiments in few-shot meta-learning which we will report

in the next chapter. In Section 6.2.2, instead, we showed that tuning the learning

rate of the optimization dynamics may cause divergence in certain cases. While this

occurrence mainly depends on the specific outer objective and problem formulation, the

example highlights some aspects of the type of approximation arising from the iterative

reformulation. In Section 6.3.4 we presented some comparative results concerning

the stability of the hypergradient computation related to the findings of Section 6.3.

We found that the implicit schemes (and in particular Fixed-Point-HG) are more

sensitive to the contractiveness of the dynamics Φ and under-perform with this is not
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enforced. This suggests that, despite the computational advantages of the implicit

approaches, iterative schemes represent a more robust choice, when computationally

feasible.



Chapter 7

Experiments on Approximate Bilevel

Programming

We present here a series of experiments on both hyperparameter optimization and meta-

learning, instantiating the proposed bilevel framework in various learning scenarios.

While each experiment in the previous chapter was directly related to theoretical

aspects discussed there, the primary aim of the experiments of this chapter is to

showcase the effectiveness of the framework in learning scenarios closer to applications.

Specifically, we show how the framework seamlessly allows one to formulate different

learning problems and applications following a unified “design pattern”. Approximate

solutions of these problems may then be sought by a gradient-descent procedure (3.5)

that typically requires minimal adjustments, where the hypergradient is estimated with

one of the algorithms introduced in Section 5.4.

In standard supervised learning, the possibility of effectively optimize over high-

dimensional hyperparameter spaces utilizing Reverse-HGmakes it feasible to consider

learning algorithms that would be otherwise deemed too difficult to tune if tackled

with classic approaches to HPO. In our experiments of Section 7.1, we explore this

possibility, presenting a learning problem to discover the relationships between differ-

ent learning tasks. The forward mode, instead, is appropriate to tune a small number

of critical hyperparameters and, crucially, it applies to learning algorithms which make

use of large-scale models. In this regard, we give experimental evidence that the

real-time version of this approach (Section 5.4.2.1) is efficient enough to allow for the
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automatic tuning of important hyperparameters of a deep learning model and compare

the results with a number of other HPO techniques.

In Section 7.2, by taking inspiration on early work on representation learning

in the context of multi-task and meta-learning [Baxter, 1995, Caruana, 1998], we

instantiate the framework for MTL in a simple way, treating the weights of the last

layer of a neural network as the inner variables. The remaining weights, which

parameterize the representation mapping, act as the outer variables. As shown in

Section 7.2.2, the resulting MTL algorithm performs well in practice. At the time of

publication [Franceschi et al., 2018a], it outperformed most of the existing strategies

on two benchmark datasets on few-shot learning. We finally conclude the MTL section

with a comparative study that consider different baselines and optimization techniques

for the few-shot learning problem, including runs where we do not split the data of the

meta-training episodes (see Section 4.2).

Our experimental experience led to the development of two open-source Python

packages, both based on the deep learning library TensorFlow [Abadi et al., 2015].

The first, called RFHO1 has been used for the experiments of the first section of this

chapter. The second, called Far-HO2 is an expansion and revision of RFHO that

includes the implementation of all the algorithms derived in Section 5.4 and has been

presented at the AutoML workshop hosted at ICML 2018 [Franceschi et al., 2018b].

Far-HO has been used for the experiments of the second section of this chapter and

for those in Chapter 9.

7.1 Gradient-based Hyperparameter Optimization

In this section, we present a series of experiments on hyperparameter optimization

tasks, where the aim is to minimize a validation objective f (λ) as defined in (3.8). In all

the simulations, hyperparameters were updated with the Adam algorithm [Kingma and

Ba, 2015] in order to minimize an (approximate) response function. The experiments

of this section were first reported in [Franceschi et al., 2017].

1Available at https://github.com/lucfra/RFHO
2 Available at https://github.com/lucfra/FAR-HO)

https://github.com/lucfra/RFHO
https://github.com/lucfra/FAR-HO
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7.1.1 Learning Task Interactions

This second set of experiments is in the multitask learning (MTT) context, where

the goal is to find simultaneously the model of multiple related tasks. Many MTT

methods require that a task interaction matrix is given as input to the learning algorithm.

However, in real applications, this matrix is often unknown and it is interesting to learn

it from data. Below, we show that our framework can be naturally applied to learning

the task relatedness matrix.

We used CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton, 2009], two object

recognition datasets with 10 and 100 classes, respectively. As features we employed

the pre-activation of the second last layer of Inception-V3 model trained on ImageNet3.

From CIFAR-10, we extracted 50 examples as training set, different 50 examples

as validation set and the remaining for testing. From CIFAR-100, we selected 300

examples as training set, 300 as validation set and the remaining for testing. Finally,

we used a one-hot encoder of the labels obtaining a set of labels in {0,1}K (K = 10 or

K = 100).

The choice of small training set sizes is due to the strong discriminative power of

the selected features. In fact, using larger sample sizes would not allow us to appreciate

the advantage of MTT. In order to leverage information among the different classes,

we employed a multitask learning regularizer [Evgeniou et al., 2005]

ΩC,ρ(W) =

K∑
j,k=1

C j,k‖w j−wk‖
2
2 +ρ

K∑
k=1

‖wk‖
2,

where wk are the weights for class k, K is the number of classes, and the symmetric

non-negative matrix C models the interactions between the classes/tasks. We used

a regularized training error defined as Lλ(W) =
∑

i∈Dtr `(Wxi + b,yi) +ΩC,ρ(W) where

`(·, ·) is the categorical cross-entropy and b = (b1, . . . ,bK) is the vector of biases associ-

ated with each linear model. Here λ = (ρ,C). We wish solve the following optimization

problem:

min
{
E(WT ,bT ) subject to ρ ≥ 0, C = Cᵀ, C ≥ 0

}
,

3Available at tinyurl.com/h2x8wws

tinyurl.com/h2x8wws
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Figure 7.1: Relationship graph of CIFAR-10 classes. Edge thickness represents the interaction
strength between classes.

Table 7.1: Test accuracy±standard deviation on CIFAR-10 and CIFAR-100 for single task
learning (STL), naive MTT (NMTT) and our approach without (HMTT) and with
(HMTT-S) the L1-norm constraint on matrix C.

CIFAR-10 CIFAR-100

STL 67.47±2.78 18.99±1.12
NMTT 69.41±1.90 19.19±0.75
HMTT 70.85±1.87 21.15±0.36
HMTT-S 71.62±1.34 22.09±0.29

where (WT ,bT ) is the T -th iteration obtained by running gradient descent with momen-

tum (GDM) on the training objective. We solve this problem using Reverse-HG and

optimizing the hyperparameters by projecting Adam updates on the set {(ρ,C) : ρ ≥

0, C = Cᵀ, C ≥ 0}. We compare the following methods:

• SLT: single task learning, i.e. C = 0, using a validation set to tune the optimal

value of ρ for each task;

• NMTT: we considered the naive MTT scenario in which the tasks are equally

related, that is C j,k = a for every 1 ≤ j,k ≤ K. In this case we learn the two

non-negative hyperparameters a and ρ;

• HMTT: our hyperparameter optimization method Reverse-HG to tune C and ρ;

• HMTT-S: Learning the matrix C with only few examples per class could bring

the discovery of spurious relationships. We try to remove this effect by imposing

the constraint that
∑

j,k C j,k ≤ R, where4 R = 10−3. In this case, Adam updates

are projected onto the set {(ρ,C) : ρ ≥ 0, C = Cᵀ, C ≥ 0,
∑

j,k C j,k ≤ R}.

4We observed that R = 10−4 yielded very similar results.
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Results of five repetitions with different splits are presented in Table 7.1. Note

that HMTT gives a visible improvement in performance, and adding the constraint

that
∑

j,k C j,k ≤ R further improves performance in both datasets. The matrix C can

been interpreted as an adjacency matrix of a graph, highlighting the relationships

between the classes. Figure 7.1 depicts the graph for CIFAR-10 extracted from the

algorithm HMTT-S. Although this result is strongly influenced by the choice of the

data representations, we can note that animals tends to be more related to themselves

than to vehicles and vice versa.

Comparison with task-specific approaches. In Table 7.2, we report compara-

tive results obtained with two state-of-the-art multitask learning methods ([Dinuzzo

et al., 2011] and [Jawanpuria et al., 2015]) on the CIFAR-10 dataset.

Table 7.2: Test accuracy±standard deviation on CIFAR-10. Hyperparameters of MTT algo-
rithms were validated by grid-search with the same experimental setting of Section
7.1.1. Jawanpuria et al. [2015] algorithm contains a p-norm regularizer for the
task interaction matrix C, for p ∈ (1,2]. The value of p used in the experiment is
specified in the third column.

CIFAR-10 p

Dinuzzo et al. [2011] 69.96±1.85
Jawanpuria et al. [2015] 70.30±1.05 2
Jawanpuria et al. [2015] 70.96±1.04 4/3
HMTT-S 71.62±1.34

Both methods improve over STL and NMTT but perform slightly worse than

HMTT-S. The task interaction matrix is treated as a model parameter by these algo-

rithms, which may lead to overfitting for such a small training set, further highlighting

the advantages of considering C as an hyperparameter. Computation times are compa-

rable in the order of 2-3 hours.

Other approaches [e.g. Kang et al., 2011] tackle the same problem in a similar

framework, but a complete analysis of MTT is beyond the scope of this work.

7.1.2 Phoneme Classification

The aim of the third set of experiments is to assess the efficacy of the real-time

Forward-HG algorithm (RTHO) introduced in Section 5.4.2.1. We run experiments
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Table 7.3: Frame level phone-state classification accuracy on standard TIMIT test set and
execution time in minutes on one Titan X GPU. For RS, we set a time budget of
300 minutes.

Method Accuracy % Time (min)

STL 59.81 12
RS 60.36 300
SMBO 60.91 300

RTHO 61.97 164
RTHO-NT 61.38 289

on phoneme recognition in the multitask framework proposed in [Badino, 2016, and

references therein]. Data for all experiments was obtained from the TIMIT phonetic

recognition dataset [Garofolo et al., 1993]. The dataset contains 5040 sentences

corresponding to around 1.5 million speech acoustic frames. Training, validation and

test sets contain respectively 73%, 23% and 4% of the data. The primary task is a

frame-level phoneme state classification with 183 classes and it consists in learning a

mapping hP from acoustic speech vectors to hidden Markov model monophone states.

Each 25ms speech frame is represented by a 123-dimensional vector containing 40

Mel frequency scale cepstral coefficients and energy, augmented with their deltas and

delta-deltas. We used a window of eleven frames centered around the prediction target

to create the 1353-dimensional input to hP. We consider a secondary (or auxiliary)

task that consists in learning a mapping hS from acoustic vectors to 300-dimensional

real-valued vectors of context-dependent phonetic embeddings defined in [Badino,

2016].

As in previous work, we assume that the two mappings hP and hS share inputs

and an intermediate representation, obtained by four layers of a feed-forward neural

network with 2000 units on each layer. We denote by W the parameter vector of these

four shared layers. The network has two different output layers with parameter vectors

WP and WS each relative to the primary and secondary task. The network is trained

to jointly minimize Lλ(W,WP,WS ) = LP(W,WP) + ρLS (W,WS ), where the primary

error LP is the average cross-entropy loss on the primary task, the secondary error

LS is given by mean squared error on the embedding vectors and ρ ≥ 0 is a design
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hyperparameter. Since we are ultimately interested in learning hP, we formulate the

hyperparameter optimization problem as

min
{
E(WT ,WP

T ) subject to ρ,η ≥ 0,0 ≤ µ ≤ 1
}
,

where E is the cross entropy loss computed on a validation set after T iterations of

stochastic GDM, and η and µ are defined in (5.10). Here λ = (ρ,η,µ) comprises both

optimization and regularization/design hyperparameters. In all the experiments we fix

a mini-batch size of 500. We compare the following methods:

1. STL: the secondary target is ignored (ρ = 0); η and µ are set to 0.075 and 0.5

respectively as in [Badino, 2016].

2. RS: random search (Section 3.4.3) with ρ ∼ U(0,4), η ∼ E(0.1) (exponential

distribution with scale parameter 0.1) and µ ∼ U(0,1).

3. SMBO: sequential model-based Bayesian optimization with Gaussian processes5

(Section 3.4.5). We set the following definition intervals for the hyperparameters:

η ∈ [10−5,1], µ ∈ [0,0.999] and ρ ∈ [0,4]; we used expected improvement as

acquisition function and initialized the Gaussian Process with the observed

validation error of five randomly sampled configurations.

4. RTHO: real-time hyperparameter optimization with initial learning rate and

momentum factor as in STL and initial ρ set to 1.6 (best value obtained by

grid-search in [Badino, 2016]).

5. RTHO-NT: RTHO with “null teacher,” i.e. when the initial values of ρ, η and

µ are set to 0. We regard this experiment as particularly interesting: this initial

setting, while clearly not optimal, does not require any background knowledge

on the task at hand.

We also tried to run Forward-HG for a fixed number of epochs, not in real-time mode.

Results are not reported since the method could not make any appreciable progress

after running 24 hours on a Titan X GPU.
5 Implementation available at https://github.com/fmfn/BayesianOptimization/.

https://github.com/fmfn/BayesianOptimization/
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Figure 7.2: Learning curves and hyperparameter evolution for RTHO-NT: the horizontal axis
runs with the hyper-batches. Top-left: frame level accuracy on mini-batches
(Training) and on a randomly selected subset of the validation set (Validation).
Top-right: validation error E on the same subset of the validation set. Bottom-left:
evolution of optimizer hyperparameters η and µ. Bottom-right: evolution of design
hyperparameter ρ.

Test accuracies and execution times are reported in Table 7.3. Figure 7.2 shows

learning curves and hyperparameter evolutions for RTHO-NT. In Experiments 1 and 2

we employ a standard early stopping procedure on the validation accuracy, while in

Experiments 4 and 5 a natural stopping time is given by the decay to 0 of the learning

rate (see Figure 7.2 left-bottom plot). In Experiments 4 and 5 we used a hyper-batch

size of ∆ = 200 (see Eq. (5.23)) and a hyper-learning rate of 0.005.

The best results in Table 7.3 are very similar to those obtained in state-of-the-

art recognizers using multitask learning [Badino, 2016, 2017]. In spite of the small

number of hyperparameters, random search yields results only slightly better than

the STL network (the result reported in Table 7.3 are an average over 5 trials, with a

minimum and maximum accuracy of 59.93 and 60.86, respectively). Within the same

time budget of 300 minutes, RTHO-NT is able to find hyperparameters yielding a

substantial improvement over the STL version, thus effectively exploiting the auxiliary

task. Bayesian optimization finds in the same amount of time a model that outperforms

that found by RS, but is slightly worse than RTHO-NT. This may also indicate that part
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of the performance gain with RTHO runs is due to use an hyperparameter scheduling6

(Section 3.3) rather than fixed hyperparameter values. As a final remark, we note

that the model trained has more that 15× 106 parameters for a corresponding state

of more than 30×106 variables. At the time of publication [Franceschi et al., 2017],

reverse-mode or approximate implicit methods had not been applied to models of this

size.

7.2 Meta-learning

We now turn our attention to the application of the framework described in Chapter 5

to the setting of meta-learning. We first describe a simple model in Section 7.2.1 which

we call hyper-representation. We test our method in the context of few-shot learning

on two benchmark datasets in Section 7.2.2 and, finally, we contrast the bilevel MTL

approach against classical approaches to learn shared representations in Section 7.2.3.

The meta-learning algorithm and the experiments of this section were presented in

[Franceschi et al., 2018a].

7.2.1 Learning Hyper-Representations

Finding good data representations is a centerpiece of machine learning. Classical

approaches [Baxter, 1995, Caruana, 1998] learn both the weights of the representation

mapping and those of the base-level classifiers jointly on the same data. Here we

follow the bilevel approach in the case of deep learning where representation layers

are shared across episodes. According to the practice presented in Section 4.2, we split

each dataset/episode in training and test sets.

6This may also partially explain the comparatively poor performances of random search in this
setting. In fact, one may consider to tune hyperparameter schedules with random search. To do so, one
could utilize predefined scheduling functions, or could seek for updates of the type λt = λt−1 +εt, εt ∼ νt
where each νt are given probability distributions. However, both of these routes introduce a number
of additional non-trivial design choices (i.e the shape of the scheduling function or the choice of the
distributions νt) which are beyond the scope of our presentation.
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Algorithm 5 Reverse-HG for Hyper-representation
Input: λ: current values of the hyperparameter; T : number of
iteration of GD; η: base-level learning rate; B: mini-batch of
episodes from Dtr
Output: Gradient of meta-training error w.r.t. λ on B
for j = 1 to |B| do

w j
0 = 0

for t = 1 to T do
w j

t ← wt−1−η∇wL j(w j
t−1,λ,D

j
tr)

end for
α

j
T ←∇wL j(w j

T ,λ,Dval)
p j←∇λL j(w j

T ,λ,Dval)
for t = T −1 downto 0 do

p j← p j−α
j
t+1η∇λ∇wL j(w j

t ,λ,D
j
tr)

α
j
t ← α

j
t+1

[
I−η∇w∇wL j(w j

t ,λ,D
j
tr)

]
end for

end for
return

∑
j p j

Our method involves the learning of a cross-task intermediate representation

rλ : X → Rk (parametrized by a vector λ) on top of which task specific models

s j : Rk→ Y j (parametrized by vectors w j) are trained. The final base-level model for

task j is thus given by s j ◦ rλ. To find λ, we solve Problem (5.1)-(5.2) with inner and

outer objectives as in Equations (5.6) and (5.7), respectively. We follow the iterative

scheme (Section 5.3.1) to define the approximate problem, that is given by:

min
λ

fT (λ) =

N∑
j=1

L j(w j
T ,λ,D

j
ts) (7.1)

w j
t = w j

t−1−η∇wL j(w j
t−1,λ,D

j
tr), t ∈ [T ], j ∈ [N]. (7.2)

Starting from an initial value, the weights of the task-specific models are learned by

T iterations of gradient descent. The gradient of fT can be computed efficiently in

time by making use of the extended reverse-hypergradient procedure of Section 5.4.1,

which we specify for this setting in Algorithm 5. Since, in general, the number of

episodes in a meta-training set is large, we compute a stochastic approximation of the

gradient of fT by sampling a mini-batch of episodes. At test time, given a new episode
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D̄, the representation rλ is kept fixed, and all the examples in D̄ are used to tune the

weights w̄ of the episode-specific model s̄.

Our method belongs to the class of parametric algorithmic MTL techniques,

outlined in Section 4.4.2.3. Like other initialization and optimization strategies for

MTL, our method does not require lookups in a support set as the memorization and

metric strategies do [Santoro et al., 2016, Vinyals et al., 2016, Mishra et al., 2018].

Unlike [Andrychowicz et al., 2016, Ravi and Larochelle, 2017] we do not tune the

optimization algorithm, which in our case is plain empirical loss minimization by

gradient descent, and rather focus on the hypothesis space. Unlike [Finn et al., 2017],

that aims at maximizing sensitivity of new task losses to the model parameters, we

aim at maximizing the generalization to novel examples during training episodes, with

respect to λ. Our assumptions about the structure of the model are slightly stronger

than in [Finn et al., 2017] but still mild, namely that some (hyper)parameters define

the representation and the remaining parameters define the classification function.

In [Munkhdalai and Yu, 2017] the meta-knowledge is distributed among fast and

slow weights and an external memory; our approach is more direct, since the meta-

knowledge is solely distilled by λ. A further advantage of our method is that, if the

episode-specific models are linear (e.g. logistic regressors) and each loss L j is strongly

convex in w, the theoretical guarantees of Theorem 6.2.2 apply (see Remark 6.2.3).

These assumptions are satisfied in the experiments reported in the next section.

Finally, we note that the method proposed by Bertinetto et al. [2019] (published

short after [Franceschi et al., 2018a]) is related very closely to our proposed approach.

In particular, Bertinetto et al. use ridge regression (rather than multinomial logistic

regression) at the base-level7. Hence, by taking advantage of the closed-form solution,

they obtain and solve a single level problem for learning the parameters of the feature

extractor at the meta-level.

7Akin to the problem presented in Section 6.2.1; the linear transformation H is replaced by a deep
learning model in [Bertinetto et al., 2016], as we do in the next section.
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7.2.2 Few-shot Learning

We now turn our attention to few-shot supervised learning, implementing the MTL

strategy outlined above on two different benchmark datasets:

• Omniglot [Lake et al., 2015], a dataset that contains examples of 1623 different

handwritten characters from 50 alphabets. We downsample the images to 28×28.

•MiniImagenet [Vinyals et al., 2016], a subset of ImageNet [Deng et al., 2009], that

contains 60000 downsampled images from 100 different classes.

Following the experimental protocol used in a number of recent works, we build

a meta-training set Dtr, from which we sample datasets to solve Problem (7.1)-(7.2),

a meta-validation set Dval for tuning MTL hyperparameters, and finally a meta-test

set Dts which is used to estimate accuracy. Operationally, each meta-dataset consists

of a pool of samples belonging to different (non-overlapping between separate meta-

dataset) classes, which can be combined to form base-level classification datasets

D j = D j
tr∪D j

ts with 5 or 20 classes (for Omniglot). The D j
tr’s contain 1 or 5 examples

per class which are used to fit w j (see Eq. 7.2). The D j
ts’s, containing 15 examples per

class, is used either to compute fT (λ) (see Eq. (7.1)) and its (stochastic) gradient if

D j ∈ Dtr or to provide a generalization score if D j comes from either Dval or Dts. For

MiniImagenet we use the same split and images proposed in [Ravi and Larochelle,

2017], while for Omniglot we use the protocol defined by [Santoro et al., 2016].

As base-level classifiers we use multinomial logistic regressors and as task losses

` j we employ cross-entropy. The inner problems, being strongly convex, admit unique

minimizers, yet require numerical computation of the solutions. We initialize base-

level models parameters w j to 0 and, according to the observation in Sec. 6.2.1, we

perform T gradient descent steps, where T is treated as an hyperparameter of the

meta-learning algorithm that has to be validated. Figure 7.3 shows an example of

meta-validation of T for one-shot learning on MiniImagenet. We compute a stochastic

approximation of ∇ fT (λ) with Algorithm 5 and use Adam with decaying learning rate

to optimize λ.

Regarding the specific implementation of the representation mapping rλ, we em-

ploy for Omniglot a four-layers convolutional neural network with strided convolutions
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Table 7.4: Accuracy scores, computed on episodes from Dts, of various methods on 1-shot and
5-shot classification problems on Omniglot and MiniImagenet. For MiniImagenet
95% confidence intervals are reported. For Hyper-representation the scores are
computed over 600 randomly drawn episodes. For other methods we show results
as reported by their respective authors: [1] Koch et al. [2015]; [2] Vinyals et al.
[2016]; [3] Edwards and Storkey [2017]; [4] Kaiser et al. [2017]; [5] Ravi and
Larochelle [2017]; [6] Finn et al. [2017]; [7] Munkhdalai and Yu [2017]; [8] Snell
et al. [2017]; [9] Mishra et al. [2018]

Omniglot 5 cl. Omniglot 20 cl. MiniImagenet 5 classes
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Siamese nets [1] 97.3 98.4 88.2 97.0 − −

Matching nets [2] 98.1 98.9 93.8 98.5 43.44±0.77 55.31±0.73
Neural statistician [3] 98.1 99.5 93.2 98.1 − −

Memory modules [4] 98.4 99.6 95.0 98.6 − −

Meta-LSTM [5] − − − − 43.56±0.84 60.60±0.71
MAML [6] 98.7 99.9 95.8 98.9 48.70±1.75 63.11±0.92
Meta-networks [7] 98.9 − 97.0 − 49.21±0.96 −

Prototypical Nets [8] 98.8 99.7 96.0 98.9 49.42±0.78 68.20±0.66
SNAIL [9] 99.1 99.8 97.6 99.4 55.71±0.99 68.88±0.92
Hyper-representation 98.6 99.5 95.5 98.4 50.54±0.85 64.53±0.68

and 64 filters per layer as in [Vinyals et al., 2016] and other successive works. For

MiniImagenet we tried two different architectures:

• C4L, a four-layers convolutional neural network with max-pooling and 32 filters per

layer;

• RN: a residual network [He et al., 2016] built of four residual blocks followed by

two convolutional layers.

The first network architecture has been proposed in [Ravi and Larochelle, 2017]

and then used in [Finn et al., 2017], while a similar residual network architecture has

been employed in a more recent work [Mishra et al., 2018]. We report our results,

using RN for MiniImagenet, in Table 7.4, alongside scores from various proposed

methods (at the time of publication) for comparison. See 4.4 for a review of most of

the methods cited in the table. Many recent works that report experimental results

on MiniImagenet have used much more powerful feature extractors, often pretrained

on vary large datasets [e.g. Rusu et al., 2019] and sometimes using higher resulution

images [Sung et al., 2018]. These differences make it difficult to directly compare

several results of the more recent literature with the one that we report here.

The proposed method achieves competitive results highlighting the relative im-
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Figure 7.3: Meta-validation of the number of gradient descent steps (T ) of the base-level mod-
els for MiniImagenet using the RN representation. Early stopping on the accuracy
on meta-validation set during meta-training resulted in halting the optimization
of λ after 42k, 40k, 22k, and 15k hyperiterations for T equal to 3, 5, 8 and 12
respectively; in line with our observation in Sec. 6.2.1.

Figure 7.4: After sampling two datasets D ∈ Dtr and D′ ∈ Dts, we show on the top the two
images x ∈ D, x′ ∈ D′ that minimize ||rλ(x)− rλ(x′)|| and on the bottom those that
maximize it. In between each of the two pairs we compare a random subset of
components of rλ(x) (blue) and rλ(x′) (green).

portance of learning a task independent representation, on the top of which logistic

classifiers trained with very few samples can perform, in average, well. Moreover, uti-

lizing more expressive models such as residual network as representation mappings, is

beneficial for our proposed strategy. Indeed, compared to C4L, RN achieves a relative

improvement of 6.5% on one-shot and 4.2% on five-shot. Figure 7.4 provides a visual

example of the goodness of the learned representation, showing that MiniImagenet

examples (the first from meta-training, the second from the meta-testing sets) from

similar classes (different dog breeds) are mapped near each other by rλ and, conversely,

samples from dissimilar classes are mapped afar.

7.2.3 On Variants of Representation Learning Methods

In this section, we examine if there are benefits of learning a representation within

the proposed bilevel framework compared to other possible approaches that involve

an explicit factorization of a classifier as s j ◦ r. The representation mapping r is

either pretrained or learned with different meta-learning algorithms. We focus on
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the problem of one-shot learning on MiniImagenet and we use C4L as architecture

for the representation mapping. In all the experiments the base-level models s j are

multinomial logistic regressor as in Sec. 7.2.2, tuned with 5 steps of gradient descent.

We ran the following experiments:

•Multiclass: the mapping r :X →R64 is given by the linear outputs before the softmax

operation of a network8 pretrained on the totality of examples contained in the training

meta-dataset (600 examples for each of the 64 classes). In this setting, we found that

using the second last layer or the output after the softmax yields worst results;

• Bilevel-train: we use a bilevel approach but, unlike in Sec. 7.2.1, we optimize

the parameter vector λ of the representation mapping by minimizing the loss on the

training sets of each episode. The hypergradient is still computed with Algorithm 5,

albeit we set D j
ts = D j

tr for each training episodes;

• Approx and Approx-train: we consider an approximation of the hypergradient

∇ fT (λ) by disregarding the optimization dynamics of the inner objectives (i.e. we set

∂λw j
T = 0). In Approx-train we just use the training sets;

• Classic: as in [Baxter, 1995], we learn r by jointly optimize f̂ (λ,w1, . . . ,wN) =∑N
j=1 L j(w j,λ,D j

tr) and treat the problem as standard multitask learning, with the

exception that we evaluate f̂ on mini-batches of 4 episodes, randomly sampled every

5 gradient descent iterations.

Table 7.5: Performance of various methods where the representation is either transfered or
learned with variants of hyper-reprefsentation methods. The last raw reports, for
comparison, the score obtained with hyper-representation.

Method # filters Accuracy 1-shot

Multiclass 64 43.02
Bilevel-train 32 29.63
Approx 32 41.12
Approx-train 32 38.80
Classic-train 32 40.46
Hyper-representation-C4L 32 47.51

In settings where we do not use the test sets, we let the training sets of each episode

contain 16 examples per class. Using training episodes with just one example per
8The network is similar to C4L but has 64 filters per layer.
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class resulted in performances just above random chance. While the first experiment

constitutes a standard baseline, the others have the specific aim of assessing (i) the

importance of splitting episodes of meta-training set into training and test and (ii)

the importance of computing the hypergradient of the approximate bilevel problem

with Algorithm 5. The results reported in Table 7.5 suggest that both the training/test

splitting and the full computation of the hypergradient constitute key factors for

learning a good representation in a meta-learning context. On the other side, using

pretrained representations, especially in a low-dimensional space, turns out to be a

rather effective baseline, stronger than many reported prior to [Franceschi et al., 2018a].

One possible explanation is that, in this context, some classes in the training and testing

meta-datasets are rather similar (e.g. various dog breeds) and thus base-level classifiers

can leverage on very specific representations.

7.3 Discussion
In this chapter we demonstrated some practical aspects of the proposed bilevel program-

ming framework for gradient-based hyperparameter optimization and meta-learning,

instantiating it in four different learning settings. The framework, in practice, translates

into a simple and direct operative pipeline that adapts well to the modern computational

environments. Broadly speaking, the pipeline comprises the following steps:

1. determine inner and outer objectives with their respective decision variables

(weights and hyper or meta parameters);

2. formulate the exact and the approximate programs (here we have focused on the

iterative approach);

3. find solutions to the approximate problem by gradient descent on the outer

objective, computing the hypergradient with the most appropriate method.

On the one hand, many existing learning and meta-learning algorithms may be re-

cast into this framework and adapted to the pipeline, allowing us to efficiently tune

real-valued hyperparameters or extracting common knowledge by optimizing the pa-

rameters of a meta-learner. On the other hand, the pipeline provides a solid ground,
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backed by the analysis of Chapter 6, on which to develop novel methods, especially in

the meta-learning setting.

We have empirically shown, with several numerical simulations, that the resulting

optimized standard or base-level learning algorithms compare favourably with case-

specific methods and baselines. For HPO, we have presented experiments in both

conventional (Section 7.2) and less conventional (Section 7.1.1) learning settings.

For MTL we presented an adaptation of classic strategies of connectionist multi-

task learning that adheres to the meta-learning paradigm presented in Section 4.2 and

practically follows the above-mentioned pipeline. From a series of ablative experiments

conducted in Section 7.2.3 we concluded that the two peculiar “innovations” of

computing the gradient through the base-level learning algorithm (multinomial logistic

regression, in our case9) and splitting the data during meta-training are paramount for

the success of the MTL procedure.

9Bertinetto et al. [2019] report ablative experiments suited to their MTL algorithm that agree with
our findings.
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Chapter 8

Online Hypergradients

This and the next chapter compose the third part of the thesis, where we study two

extensions of the framework and algorithms presented in the second part.

In this chapter, we focus on the real-time hypergradient computation based on the

forward mode, introduced in Section 5.4.2.1; see also experiments of Section 7.1.2. The

RTHO method offers a compelling strategy to quickly tune few critical hyperparameters

on-the-fly, generating entire hyperparameter schedules (Section 3.3). However, it is

not directly clear how the updates produced by RTHO compare to the “exact iterative

hypergradient”, as computed by either Algorithm 2 or 3. Moreover, as we shall

see in Section 8.2.1, RTHO can be sensitive to sudden changes in the instantaneous

response surface, making it potentially unstable. We investigate these issues taking

as a case study the problem of tuning task-specific learning rate schedules. Based

on our findings, we introduce MARTHE (moving average real time hyperparameter

estimation) in Section 8.3, a novel online algorithm guided by cheap approximations of

the hypergradient that uses discounted past information from the optimization trajectory

to simulate future behaviour. It interpolates between RTHO and another recently

proposed technique called hypergradient descent (HD) [Baydin et al., 2018a]. We

show empirically that MARTHE produces learning rate schedules that are more stable

and lead to models that generalize better in a series of time-controlled comparative

experiments with deep neural networks, which we report in Section 8.5.

This chapter is based on [Donini et al., 2020].
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8.1 Introduction

Learning rate (LR) adaptation for first-order optimization methods is one of the most

widely studied aspects in optimization for learning methods, in particular neural

networks. Recent research in this area has focused on developing complex schedules

that depend on a small number of hyperparameters [Loshchilov and Hutter, 2017,

Orabona and Pál, 2016] or proposed methods to optimize LR schedules w.r.t. the

training objective [Schaul et al., 2013, Baydin et al., 2018a, Wu et al., 2018b]. While

quick optimization is desirable, the true goal of supervised learning is to minimize the

generalization error, which is commonly estimated by holding out part of the available

data for validation. Hyperparameter optimization (Chapter 3), a related but distinct

branch of the literature, specifically focuses on this aspect, with less emphasis on the

goal of rapid convergence on a single task. Additionally, in meta-learning, works

in the area of learning to optimize (Section 4.4.2) have focused on the problem of

tuning parameterized optimizers on whole classes of learning problems but require

prior expensive optimization and are not designed to speed up training on a single task.

One of the goal of this chapter is to automatically compute in an online fashion

a learning rate schedule for stochastic optimization methods (such as SGD) only on

the basis of the given learning task, aiming at producing models with associated small

validation error. We study the problem of finding a LR schedule under the framework

of (iterative) gradient-based hyperparameter optimization (Section 5.3.1): we consider

an optimal schedule η∗ = (η∗0, . . . , η
∗
T−1) ∈ RT

+ as a solution to the following constrained

optimization problem

min{ fT (η) = E(wT (η)) : η ∈ RT
+} (8.1)

s.t. w0 = w̄, wt+1(η) = Φt(wt(η),ηt) t ∈ [T ]

where [T ] = {0, . . . ,T −1}, where E : Rd→ R+ is an objective function, Φt : Rd×R+→

Rd is a (possibly stochastic) weight update dynamics, w̄ ∈ Rd represents the initial

model weights (parameters) and finally wt are the weights after t iterations. This

problem is related to (5.1)-(5.2), although we focus here solely on the iterative view
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of Problem (8.1) (cf. Equations (5.8)-(5.9)), since in this chapter we are explicitly

interested in tuning the LR schedule. Most of the arguments developed in the following

are, however, easily adjustable to the more general setting where at each step one may

consider an hyperparameter vector λt that can comprise e.g. (also) regularization or

design coefficients (as in Section 7.1.2).

We can think of E as either the training or the validation loss of the model, while

the dynamics Φ describe the update rule (such as SGD, SGD-Momentum, Adam etc.).

For example in the case of SGD, Φt(wt,ηt) = wt −ηt∇Lt(wt), with Lt(wt) the training

loss on the t-th minibatch. The horizon T should be large enough so that the training

error can be effectively minimized to avoid underfitting. A too large value of T does

not necessarily harm since ηk = 0 for k > T̄ is still a feasible solution, implementing

early stopping in this setting. The learning rate is among the critical hyperparameters

affecting the performances of learnt statistical models such as neural networks [Bengio,

2012, Bergstra and Bengio, 2012]. Beside convergence arguments from the stochastic

optimization literature, for all but the simplest problems, non-constant schedules yield

generally better results [Bengio, 2012].

Problem (8.1) can be in principle solved by any HPO technique. However, most

HPO techniques, including those based on hypergradients and the general bilevel

programming framework of Chapter 5, would not be suitable for the present purpose

since they require multiple evaluations of f (which, in turn, require executions of the

weight optimization routine). This clearly defeats one of the main goals of determining

LR schedules, i.e. speed. In fact, several other researchers [Almeida et al., 1999,

Schraudolph, 1999, Schaul et al., 2013, Franceschi et al., 2017, Baydin et al., 2018a,

Wu et al., 2018b] have investigated related solutions for deriving greedy update rules

for the learning rate. A common characteristic of methods in this family is that the LR

update rule does not take into account information from the future. At a high level, we

argue that any method should attempt to produce updates that approximate the true

and computationally unaffordable hypergradient of the final objective with respect

to the current learning rate. In relation to this, [Wu et al., 2018b] discuss the bias

deriving from greedy or short-horizon optimization and [Micaelli and Storkey, 2020]
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recently proposed hyperparameter sharing (similar to the “hyper-batch” of Section

5.4.2.1) and long horizon hypergradient computation as a partial remedy. In practice,

different methods resort to different approximations or explicitly consider greedily

minimizing the performance after a single parameter update [Almeida et al., 1999,

Schaul et al., 2013, Baydin et al., 2018a]. The type of approximation and the type

of objective (i.e. the training or the validation loss) are in principle separate issues,

although, in literature, there is a lack of reported comparative experiments with both

objectives and the same approximation.

A second goal of this chapter, not limited to the exercise of tuning LR schedules,

is to make a step forward in understanding the behavior of real-time gradient-based

hyperparameter optimization techniques. In this regard, we analyze in Section 8.2

the structure of the true hypergradient that could be used to solve Problem (8.1) if

wall-clock time was not a concern, and conduct some numerical experiments to gain

further insight (Section 8.4). We then study in Section 8.2.1 some failure modes of

previously proposed methods along with a detailed discussion of the type of approxi-

mations that these methods exploit. Based on these considerations, we develop a new

hypergradient-based algorithm, which we call MARTHE (Moving Average Real-Time

Hyperparameter Estimation). MARTHE has a moderate computational cost and can

be interpreted as a generalization of RTHO (Section 5.4.2.1, [Franceschi et al., 2017])

and the algorithm described by Baydin et al. [2018a].

8.2 Structure of the Hypergradient

In this section we analyze the specific structure of the “exact iterative hypergradient”

of Problem 8.1 where the hyperparameter vector given by the learning rate schedule

η = (η0, . . . , ηT−1) is treated as a vector of hyperparameters and T is a fixed horizon.

Since the learning rates are positive real-valued variables, assuming both E and Φ are

smooth functions, we can compute the gradient of f ∈ RT . Recall from Section 5.4.2,

that the gradient is given by

∇ fT (η) = ∂ηw
ᵀ
T∇E(wT ), ∂ηwT =

dwT

dη
∈ Rd×T , (8.2)
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The total derivative ∂ηwT can be computed iteratively with forward-mode algorithmic

differentiation (Section A.3.1) as

∂ηw0 = 0, ∂ηwt+1 = At∂ηwt + Bt, (8.3)

with At =
∂Φt(wt,ηt)

∂wt
, Bt =

∂Φt(wt,ηt)
∂η

. (8.4)

The Jacobian matrices At and Bt depend on wt and ηt, but we will leave these depen-

dencies implicit to ease our notation. In the case of SGD1,

At = I−ηtHt(wt), and [Bt] j = −δt j∇Lt(wt),

where subscripts denote columns (starting from 0), δt j = 1 if t = j and 0 otherwise and

Ht is the Hessian of the training error Lt : Rd→ R+ on the t−th mini-batch.

Given the high dimensionality of η, reverse-mode differentiation would result

in a more efficient (running-time) implementation. We use here forward-mode both

because it is easier to interpret and because it is closely related to the computational

scheme behind MARTHE, as we will show in Section 8.3. We note that stochastic

approximations of Equation (8.2) may be obtained with randomized telescoping

sums [Beatson and Adams, 2019] or hyper-networks based stochastic approximations

[MacKay et al., 2019].

Equation (8.3) describes the so-called tangent system [Griewank and Walther,

2008] which is a discrete affine time-variant dynamical system that measures how the

parameters of the model would change for infinitesimal variations of the learning rate

schedule, after t iterations of the optimization dynamics. Notice that the “translation

matrices” Bt are very sparse, having, at any iteration, only one non-zero column.

This means that [∂ηwt] j remains 0 for all j ≥ t: ηt affects only the future parameters

1Throughout we use SGD to simplify the discussion, however, similar arguments hold for any
smooth optimization dynamics such as those including momentum terms. In such case one must
consider the extended dynamics that includes also the auxiliary variables, as derived in Section 5.4.
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trajectory. Finally, for a single learning rate ηt, the derivative (a scalar) is

∂ fT (η)
∂ηt

= [∇ fT (η)]t =


 T−1∏

s=t+1

As

Bt


ᵀ

t

∇E(wT ) (8.5)

= −∇Lt(wt)ᵀPt+1:T−1∇E(wT ), (8.6)

where the last equality holds true for SGD. Equation (8.5) can be read as the scalar

product between the gradients of the training error at the t-th step and the objective

E at the final iterate, transformed by the accumulated (transposed) Jacobians of the

optimization dynamics, shorthanded by Pt+1:T−1 in (8.6). As it is apparent from (8.5),

given wt, the hypergradient of ηt is affected only by the future trajectory and does not

depend explicitly on ηt.

In its original form, where each learning rate is left free to take any permitted

value, Problem (8.1) presents a highly nonlinear setup. Although in principle it could

be tackled by a projected gradient descent method, in practice this is not feasible even

for relatively small problems: evaluating the gradient with forward-mode is inefficient

in time since it requires maintaining a large matrix tangent system. Evaluating it with

reverse-mode is inefficient in memory since the entire weight trajectory (wi)T
i=0 should

be stored2. Furthermore, it can be expected that several updates of η are necessary

to reach convergence – each update requiring the computation of fT and the entire

parameter trajectory in the weight space. Since this approach is computationally very

expensive, we turn out attention to online updates where ηt is required to be updated

online based only on trajectory information up to time t.

8.2.1 Online Gradient-Based Adaptive Schedules

Before developing and motivating our proposed technique, we discuss two previous

methods to compute the learning rate schedule online. The real-time hyperparameter

optimization (RTHO) algorithm [Franceschi et al., 2017] introduced in Section 5.4.2.1,

reminiscent of stochastic meta-descent [Schraudolph, 1999], is based on forward-mode

differentiation and uses information from the entire weight trajectory by accumulating

2Techniques based on implicit differentiation and fixed-point equations (see Section 5.4.3) cannot
be readily applied to compute ∇ fT since the training loss L does not depend explicitly on η.
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partial hypergradients. Hypergradient descent (HD), proposed in [Baydin et al., 2018a]

and closely related to the earlier work by Almeida et al. [1999], aims at minimizing the

loss with respect to the learning rate after one step of optimization. It uses information

only from the past and current iterate.

Both methods implement an update rules of the type (cf. Equation (3.27))

ηt = max
[
ηt−1−β∆ηt,0

]
,

where ∆ηt is an online estimate of the hypergradient, β > 0 is a step-size or hyper-

learning rate and the max ensures positivity3. To ease the discussion, we omit the

stochastic (mini-batch) evaluation of the training error L and possibly of the objective

E.

The update rules4 are given by

∆RTHOηt =

 t−1∑
i=0

Pi+1: t−1Bi


ᵀ

∇E(wt); (8.7)

∆HDηt = Bᵀt−1∇E(wt) (8.8)

for RTHO and HD respectively, where Pt: t−1 B I. Thus ∆RTHO = ∆HD + r((wi,ηi)t−2
i=0):

the correction term r can be interpreted as an “on-trajectory approximations” of longer

horizon objectives as we will discuss in Section 8.3.

Although successful in some learning scenarios, we argue that both these update

rules suffer from (different) pathological behaviors, as HD may be “shortsighted”,

being prone to underestimate the learning rate (as noted by Wu et al. [2018b]), while

RTHO may be too slow to adapt to sudden changes of the loss surface or, worse, it may

be unstable, with updates growing uncontrollably in magnitude. We exemplify these

behaviors in Figure 8.1, using two bidimensional test functions5 from the optimization

3Updates could be also considered in the logarithmic space, e.g. by Schraudolph [1999]; we find it
useful, to let η reach 0 whenever needed, offering a natural way to implement early stopping.

4 In [Franceschi et al., 2017], the hyperparameter is updated every K iterations. Here we focus on
the case K = 1 which better allows for a unifying treatment. HD is developed using as objective the
training loss L rather than the validation loss E. We consider here without loss of generality the case of
optimizing E.

5We use the Beale function defined as L(x,y) = (1.5− x + xy)2 + (2.25− x + xy2)2 + (2.625− x + xy3)2
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Figure 8.1: Loss surface and trajectories for 500 steps of gradient descent with HD and RTHO
for Beale function (left) and (smoothed and simplified) Bukin N.6 (right). Center:
best objective value reached within 500 iterations for various values of β that do
not lead to divergence.

literature, where we set E = L and we perform 500 steps of gradient descent. The

Beale function, on the left, presents sharp peaks and large plateaus. RTHO consistently

outperforms HD for all probed values of β that do not lead to divergence (Figure 8.1

upper center). This can be easily explained by the fact that in flat regions gradients

are small in magnitude, leading to ∆HDηt to be small as well. RTHO, on the other

hand, by accumulating all available partial hypergradients and exploiting second order

information, is capable of making faster progress. We use a simplified and smoothed

version of the Bukin function N.6 to show the opposite scenario (Figure 8.1 lower

center and right). Once the optimization trajectory closes the valley of minimizers

y = 0.01x, RTHO fails to discount outdated information, bringing the learning rate

first to grow exponentially, and then to suddenly vanish to 0, as the gradient changes

direction. HD, on the other hand, correctly damps η and is able to maintain the

trajectory close to the valley.

These considerations suggest that neither ∆RTHO nor ∆HD provide globally useful

update directions, as large plateaus and sudden changes on the loss surface are common

features of the optimization landscape of neural networks [Bengio et al., 1994, Glorot

and Bengio, 2010]. Our proposed algorithm smoothly interpolates between these two

methods, as we will present next.

and a simplified smoothed version of Buking N.6: L(x,y) =
√

((y−0.01x)2 +ε)1/2 +ε, with ε > 0.
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8.3 MARTHE
In this section, we develop and motivate MARTHE, which we instantiate for the case

of tuning LR schedules on-the-fly, during a single training run. This method maintains

a moving-average over approximations of (8.5) of increasingly longer horizon, using

the past trajectory and gradients to retain a low computational overhead. Further, we

show that RTHO [Franceschi et al., 2017] and HD [Baydin et al., 2018a] outlined

above, can be interpreted as special cases of MARTHE, shedding further light on their

behaviour and shortcomings.

Shorter horizon auxiliary objectives. For K > 0, define gK(u, ξ), with ξ ∈ RK
+ as

gK(u, ξ) = E(uK(ξ)) (8.9)

s.t. u0 = u, ui+1 = Φ(ui, ξi) for i = [K]. (8.10)

The gKs define a class of shorter horizon objective functions, indexed by K, which

correspond to the evaluation of E after K steps of optimization, starting from u ∈ Rd

and using ξ as the LR schedule6. Now, the derivative of gK with respect to ξ0, denoted

g′K , is given by

g′K(u, ξ) =
∂gK(u, ξ)
∂ξ0

= [B0]ᵀ0 P1: K−1∇E(uK) (8.11)

= −∇L(u)ᵀP1: K−1∇E(uK), (8.12)

where the last equality holds for SGD dynamics. Once computed on subsets of the

original optimization dynamics (wi)T
i=0, the derivative reduces for K = 1 to

g′1(wt,ηt) = −∇E(wt+1)∇L(wt)ᵀ,

assuming SGD dynamics, and for K = T − t to

g′T−t(wt, (ηi)T−1
i=t ) =

[
∇ f (η)

]
t .

6 Formally, ξ and u are different from η and w from the previous sections; later, however, we will
evaluate the gK’s on subsequences of the optimization trajectory.
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Intermediate values of K yield cheaper, shorter horizon approximations of (8.5).

Approximating the future trajectory with the past. Explicitly using any of the ap-

proximations given by g′K(wt,η) as ∆ηt is, however, still largely impractical, especially

for K � 1. Indeed, it would be necessary to iterate the map Φ for K steps (in the

future), with the resulting (wt+i)K
i=1 iterations discarded after a single update of the

learning rate. For K ∈ [t], we may then consider evaluating g′K exactly K steps in the

past, that is evaluating g′K(wt−K , (ηi)t−1
i=t−K). Selecting K = 1 is indeed equivalent to

∆HD, which is computationally inexpensive. However, when past iterates are close to

future ones (such as in the case of large plateaus), using larger K’s would allow us, in

principle, to capture longer horizon dependencies present in the hypergradient structure

of (8.5). Unfortunately the computational efficiency of K = 1 does not generalize to

K > 1, since setting ∆ηt = g′K would require maintaining K different tangent systems.

Discounted accumulation of g′ks. The definition of the gKs, however, allows one to

highlight the recursive nature of the accumulation of g′K . Indeed, by maintaining the

vector tangent system,

Z0 =
[
B0(u0, ξ0)

]
0 (8.13)

Zi+1 = µAi(ui, ξi)Zi + [Bi(ui, ξi)]i for i ≥ 0, (8.14)

with Zi ∈ R
d, computing the moving average

S K,µ(u, ξ) =

K−1∑
i=0

µK−1−ig′K−i(ui, (ξ j)K−1
j=i ) = ZᵀK∇E(uK) (8.15)

from S K−1 requires only updating (8.14) and recomputing the gradient of E. We note

that (8.15) is reminescent of the GDM update (2.24). The total cost of this operation

is O(c(Φ)) per step both in time and memory using fast Jacobians vector products

[Pearlmutter, 1994] where c(Φ) is the cost of computing the optimization dynamics

(typically c(Φ) = O(d)). The parameter µ ∈ [0,1] allows us to control how quickly past

history is forgotten. One can notice that

∆RTHOηt = S t,1(w0, (η j)t−1
i=0),
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Algorithm 6 MARTHE; requires β, µ, η0[= 0]

Initialization of w and Z0← 0
for t = 0 to T do
ηt←max

[
ηt−1−β∆ηt,0

]
{Update LR if t > 0}

Zt+1← µAt(wt,ηt)Zt + [Bt(wt,ηt)]t {Equation (8.14)}
wt+1← Φt(wt,ηt) {Parameter update}

end for

while µ = 0 recovers

∆HDηt = S t,0(w0, (η j)t−1
i=0) = g′1(wt−1,ηt−1).

Values of µ < 1 help discount outdated information, while as µ increases so does the

horizon of the hypergradient approximations. The computational scheme of (8.13)

is quite similar to that of forward-mode algorithmic differentiation for computing

∂ηw (see Section 8.2 and Equation (8.3)); however, the “tangent system” in (8.13),

exploiting the sparsity of the matrices Bt, only keeps track of the variations with

respect to the first component ξ0, drastically reducing the running time.

Algorithm 6 presents the pseudocode of MARTHE, which uses S t,µ as learning

rate update at the t-th iteration, where µ is a configuration parameter. The runtime

and memory requirements of the algorithm are dominated by the computation of the

variables Z. Being these structurally identical to the tangent propagation of forward

mode algorithmic differentiation for scalar function, we conclude that the runtime

complexity is only a multiplicative factor higher over the cost of the underlying

optimization dynamics Φ and requires two times the memory (see [Griewank and

Walther, 2008, Ch. 4] and Section A.4).

8.4 Optimized Schedules and Quality of MARTHE

Approximations
In this section, we empirically compare the optimized LR schedules found by ap-

proximately solving Problem 8.1 by gradient descent (denoted LRS-OPT), where the
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Figure 8.2: Left: schedules found by LRS-OPT (after 500 iterations of SGD) on 4 different
random seeds. Center: comparison between optimized and MARTHE schedules
for one seed, for indicative values of µ. We report the schedule generated with
the hyper-learning rate β that achieves the best final validation accuracy. Right:
Average validation accuracy of MARTHE over 20 random seeds, for various values
of β and µ. The best performance of 94.2% is obtained with µ= 0.99. For reference,
the average validation accuracy of the network trained with η= 0.01 ·1512 is 87.5%,
while LRS-OPT obtains an average accuracy of 96.1%. For µ ∈ [0.9,1), when
MARTHE converges it consistently outperforms HD and it performs at least as
well as RTHO, but converges for a wider range of β.

hypergradient is given by (8.5), against those generated by MARTHE, for a wide

range of hyper-momentum factors µ (including HD and RTHO) and hyper-learning

rates β. We are interested in understanding and visualizing the qualitative similari-

ties among the schedules, as well as the effect of µ and β on the final performance

measure. To this end, we trained three-layers feed forward neural networks with 500

hidden units per layer on a subset of 7000 MNIST [LeCun et al., 1998] images. We

used a cross-entropy loss and SGD as optimization dynamics Φ, with a mini-batch

size of 100. We further sampled 700 images to form the validation set and defined

E to be the validation loss after T = 512 optimization steps (about 7 epochs). For

LRS-OPT, we randomly generated different mini-batches at each iteration, to prevent

the schedule from unnaturally adapting to a specific progression of mini-batches7. We

initialized η = 0.01 ·1512 for LRS-OPT and set η0 = 0.01 for MARTHE, and repeated

the experiments for 4 random seeds.

Figure 8.2 (left) shows the LRS-OPT schedules found after 5000 iterations of

gradient descent: the plot reveals a strong initialization (random seed) specific behavior

of η∗ for approximately the first 100 steps. The LR schedule then stabilizes or slowly

decreases up until around 50 iterations before the final time, at which point it quickly

7We retained, however, the random initialization of the network weights, to account for the impact
that this may have on the initial part of the trajectory. This offers a fairer comparison between LRS-OPT
and online methods, which compute the trajectory only once.
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decreases (recall that, in this setting, all ηi, including η0, are optimized “independently”

and may take any permitted value). Figure 8.2 (center) present a qualitative comparison

between the offline LRS-OPT schedule and the online ones, for indicative values of µ.

Too small values of µ result in an underestimation of the learning rates, with generated

schedules that quickly decay to very small values – this is in line with what observed in

[Wu et al., 2018b]. For too high values of µ (µ = 1 i.e. RTHO [Franceschi et al., 2017]

in the figure) the schedules linger or fail to decrease, possibly causing instability and

divergence. For certain values of µ, the schedules computed by MARTHE seems to

capture the general behaviour of the optimized ones. Finally, Figure 8.2 (right) shows

the average validation accuracy (rather than loss, for easier interpretation) of MARTHE

methods varying β and µ. Higher values of µ translate to higher final performances –

with a clear jump occurring between µ = 0.9 and µ = 0.99 – but may require a smaller

hyper learning rate to prevent divergence.

8.5 Experiments8

We performed an extensive set of experiments in order to compare MARTHE, RTHO,

and HD. We also considered a classic LR scheduling baseline in the form of exponential

decay (Exponential) where the LR schedule is defined by ηt = η0γ
t. The purpose

of these experiments is to perform a thorough comparison of various learning-rate

scheduling methods, with a focus on those that are (hyper-)gradient-based, in the

fairest possible manner: indeed, these methods have very different running-time per

iteration – HD and Exponential being much faster than MARTHE and RTHO – as

well as different configuration spaces. It would be unfair to compare them using the

number of iterations as computational budget. We therefore designed an experimental

setup that allowed us to account for it: we implemented a random search strategy

over the respective algorithms’ configuration spaces and early-stopped each run with a

10-epochs patience window. We repeatedly drew configurations parameters (hyper-

hyperparameters) and run respective experiments until a fixed time budget of 36 hours

was reached. The proposed experimental setting tries to mimic how machine learning

8The experiments reported in this section were performed by my coauthors of [Donini et al., 2020].
We include them here for completion.
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practitioners may approach the parameter-tuning problem.

We used two alternative optimization dynamics: SGDM with the momentum

hyperparameter fixed to 0.9 and Adam with the commonly suggested default values

β1 = 0.9 and β2 = 0.999. We fixed the batch size to 128, the initial learning rate η0 = 0.1

for SGDM and 0.003 for Adam, and the weight decay to 5 ·10−4. For the adaptive

methods, we sampled β in [10−3,10−6] log-uniformly, and for our method, we sampled

µ between 0.9 and 0.999. Finally, we picked the decay factor γ for Exponential

log-uniformly in [0.9,1].

In our first set of experiments, we used VGG-11 [Simonyan and Zisserman, 2015]

with batch normalization [Ioffe and Szegedy, 2015] after the convolutional layers, on

CIFAR10 [Krizhevsky et al., 2014], and SGDM as the inner optimizer. In the second

set of experiments, we used ResNet-18 [He et al., 2016] on CIFAR100 [Krizhevsky

et al., 2014], in this case with Adam. This choice of models and learning settings has

been made with the goal of striking a balance between diversity and computational time,

so that in the first setting we could obtain in the 36 hours of budget a sizable number

of runs with all the methods. The second setting instead uses a more recent model,

which is possibly closer to practical applications. For both CIFAR10 and CIFAR100,

we used 45000 images as training images and 5000 images as the validation dataset.

An additional set of 10000 test images was finally used to estimate generalization

accuracy10. We used standard data augmentation, including mean-std normalization,

random crops and horizontal flips. Gradients were clipped to an absolute value of

100.0.

We kept track of the model with the best validation accuracy found so far, re-

porting in Figure 8.3 (left and center) the relative mean test accuracy (solid line) and

10 Please note that the experiment reported in an earlier version of the reference work of this chapter,
published on ArXiv on the 18th of October 2019 with the title “Scheduling the Learning Rate via
Hypergradients: New Insights and a New Algorithm” (https://arxiv.org/abs/1910.08525v1),
featured a different experimental protocol, whereby only two splits were used. Learning rate schedules
were tuned on the second split, and the accompanying plots reported accuracy scores and errors on the
same second split. We acknowledge that such practice may potentially hide overfitting issues and may
unfairly advantage methods that exploit more information form that dataset, such as gradient-based one.
The experiments reported in the final version of the reference paper [Donini et al., 2020] and in this
section follow, instead, the more standard protocol of partitioning the data in training, validation and
test splits.

https://arxiv.org/abs/1910.08525v1
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Figure 8.3: Left and center: we randomly draw parameters from each algorithm’s configu-
ration space (hyper-hyperparameters) and run the resulting experiments using
early stopping with a patience window of 10 epochs. We keep track of the best
model (i.e. the model with the highest validation accuracy) found so far and we
report the relative test accuracy as a function of time. The solid line represents
average accuracy, while shaded regions depict minimum and maximum accuracy
across different seeds. On the left we show results for the experiments with VGG
networks trained on CIFAR10 with SGDM as inner optimization method. The
center plot reports experiments with ResNet models trained on CIFAR100 with
Adam as optimization dynamics. Right: samples of learning rate schedules that
lead to the best found model for each scheduling method and for the relative seed.
Experiments on CIFAR10 (top) and CIFAR100 (bottom). Experiments conducted
by my coauthors of [Donini et al., 2020] and included for completion.

minimum and maximum (limits of the shaded regions) across 5 repetitions. Inspecting

the figure, it is possible to identify which method is the best performing one for any

give time budget, both in average and in the worst/best case scenario. Figures 8.3

(right) shows examples of the LR schedules obtained by using the different methods.

We performed all experiments using AWS P3.2XL instances, each providing one

NVIDIA Tesla V100 GPU. Finally, our PyTorch implementation of the methods and

the experimental framework to reproduce the results is available at https://github.

com/awslabs/adatune.

8.5.1 Analysis of Results

We will mainly focus on the accuracy on the test dataset achieved by different methods

within a fixed time budget. For all the experiments, results summarized in Figure 8.3

show that both Exponential and HD were able to obtain a reasonably good accuracy

within the first 4 hours, while RTHO and MARTHE required 6 hours at least to reach

the same level of accuracy. This is due to the fact that the wall-clock time required

to process a single minibatch is different: MARTHE takes approximately 4 times

https://github.com/awslabs/adatune
https://github.com/awslabs/adatune
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the wall-clock time of HD; there is negligible wall-clock time difference between

MARTHE and RTHO or between HD and Exponential. MARTHE was able to surpass

all the other methods consistently after 10 hours.

Our experimental protocol resulted in HD and Exponential getting more trials

compared to RTHO and MARTHE (in average around 24 trials for the first two

compared to 8 of RTHO and MARTHE). Despite the fact that MARTHE could only

afford fewer trials, it could still achieve better performance, suggesting that it is able to

produce better learning rate schedules more reliably. Moreover, MARTHE maintains a

better peak accuracy compared to RTHO showing the effectiveness of down-weighting

outdated information.

Our experimental setup helped us investigate the robustness of the methods with

respect to the choice of the hyper-hyperparameters13. To that end, we can see from

Figure 8.3 (left) that the average and worst case test set accuracies (measured across

multiple seeds) of MARTHE are better in comparison to the other methods. This is

a strong indication that MARTHE demonstrated superior adaptability with respect

to different hyper-hyperparameters and seeds compared to other methods. This is

also reflected by the result that MARTHE outperforms other strategies on a consistent

basis if given a sufficient time budget (4-6 hours in our experiments): the higher

computational cost of MARTHE is outbalanced by the fact that it needs fewer trials to

reach the same performance level of faster methods like Exponential or HD.

Overall, our experiments reveal that RTHO and MARTHE provide better perfor-

mance, giving a clear indication of the importance of the past information. Due to its

lower computational overhead, Exponential should be still preferred under tight budget

constraints, while MARTHE with µ ∈ [0.9,0.999] should be preferred if enough time

is available.

13We note that it is not common in the existing literature to mention the necessity of tuning hyper-
hyperparameters for adaptive learning-rate methods, although different datasets and/or networks may
require some tuning that may strongly affect the results.
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8.6 Discussion
Finding a good learning rate schedule is an old but crucially important issue in ma-

chine learning. Here, we makes a step forward, analyzing previously proposed online

gradient-based methods and introducing a more general technique to obtain performing

LR schedules based on an increasingly long moving average over hypergradient ap-

proximations. MARTHE interpolates between HD and RTHO, and its implementation

is fairly simple with modern automatic differentiation tools, adding only a moderate

computational overhead over the underlying optimizer complexity.

In this chapter, we studied the case of optimizing the learning rate schedules; we

note, however, that MARTHE is a general technique for finding online hyperparameter

schedules (albeit its runtime scales linearly with the number of hyperparameters),

possibly implementing a competitive alternative in other application scenarios, such as

tuning regularization parameters. Interestingly, for that case of regularization, we note

that the method proposed by Luketina et al. [2016] (called T1 −T2) is based on the

same one-step approximation of HD [Baydin et al., 2018a]. Hence MARTHE would

also generalize T1−T2 in that setting.

As the RTHO method, presented in Section 5.4.2.1, is a special case of MARTHE

with hyper-momentum factor µ= 1, our derivation of Section 8.3 sheds also some lights

in understanding the type of approximation that derives from computing the hypergra-

dients in real-time. Specifically, we characterized the algorithm as the accumulation of

the gradients of shifted shorter-horizon approximations of the outer objective. Unfortu-

nately, it appears difficult to quantify exactly the amount of error introduced by these

approximations. Nevertheless, MARTHE (and RTHO) updates allow reducing the

computational complexity by orders of magnitude (either in time w.r.t. Forward-HG or

in memory w.r.t. Reverse-HG), while still providing useful information that we found

empirically superior to simpler, first-order (one-step) approximations. By discounting

past and possibly outdated trajectory information, MARTHE reveals also more stable

than RTHO, finding good schedules in a shorter amount of time when configuration

parameters for both methods are randomly drawn from a very simple prior distribution.



Chapter 9

Learrning Discrete Structures

In this last content chapter, we extend the range of applicability of the gradient-based

bilevel framework to a class of discrete hyperparameters (outer variables). We develop

a variant of Reverse-HG (Section 5.4.1) that computes gradient estimates w.r.t. the

parameters of a discrete probability distribution over which we define an appropriate

outer objective.

We take as case study the problem of learning graph edges for node-level classi-

fication with graph neural networks (GNNs). GNNs are a popular class of machine

learning models whose major advantage is their ability to incorporate a sparse and

discrete dependency structure between data points. Unfortunately, GNNs can only be

used when such a graph-structure is available. In practice, however, real-world graphs

are often noisy and incomplete or might not be available at all. With this work, we

propose to jointly learn the graph structure and the parameters of graph convolutional

networks (GCNs) by approximately solving a bilevel program that learns a discrete

probability distribution on the edges of the graph (Section 9.3). This allows one to

apply GCNs not only in scenarios where the given graph is incomplete or corrupted

but also in those where a graph is not available. In section 9.4, we report a series of

experiments that analyze the behavior of the proposed method and demonstrate that it

outperforms related methods by a significant margin.

This chapter is based on [Franceschi et al., 2019]. Alongside [Jiang et al., 2019],

which was published concurrently to [Franceschi et al., 2019], the work reported here

is one of the first attempts to simultaneously learn the graph and the parameters of a
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GNN for semi-supervised (transductive) classification.

9.1 Introduction

Relational learning is concerned with methods that cannot only leverage the attributes

of data points but also their relationships. Diagnosing a patient, for example, not

only depends on the patient’s vitals and demographic information but also on the

same information about their relatives, the information about the hospitals they have

visited, and so on. Relational learning, therefore, does not make the assumption of

independence between data points but models their dependency explicitly. Graphs are

a natural way to represent relational information and there is a large number of learning

algorithms leveraging graph structure. Graph neural networks (GNNs) [Scarselli et al.,

2009] are one such class of algorithms that are able to incorporate sparse and discrete

dependency structures between data points.

While a graph structure is available in some domains, in others it has to be inferred

or constructed. A possible approach is to first create a k-nearest neighbor (kNN) graph

based on some measure of similarity between data points. This is a common strategy

used by several learning methods such as LLE [Roweis and Saul, 2000] and Isomap

[Tenenbaum et al., 2000]. A major shortcoming of this approach, however, is that the

efficacy of the resulting models hinges on the choice of k and, more importantly, on the

choice of a suitable similarity measure over the input features. In any case, the graph

creation and parameter learning steps are independent and require heuristics and trial

and error. Alternatively, one could simply use a kernel matrix to model the similarity

of examples implicitly at the cost of introducing a dense dependency structure.

In this chapter, we follow a different route with the aim of learning discrete and

sparse dependencies between data points while simultaneously training the parameters

of graph convolutional networks (GCN), a class of GNNs. Intuitively, GCNs learn node

representations by passing and aggregating messages between neighboring nodes [Kipf

and Welling, 2017, Monti et al., 2017, Gilmer et al., 2017, Hamilton et al., 2017,

Duran and Niepert, 2017, Velickovic et al., 2018]. We propose to learn a generative

probabilistic model for graphs, samples from which are used both during training and
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at prediction time. Edges are modelled with random variables whose parameters are

treated as hyperparameters in a bilevel learning framework (Chapter 5, [Franceschi

et al., 2018a]). We iteratively sample the structure while minimizing an inner objective

(a training error) and optimize the edge distribution parameters by minimizing an outer

objective (a validation error).

9.2 Background
We first provide some background on graph theory and graph convolutional networks

which complements the introduction to neural network models of Section 2.3.

9.2.1 Graph Theory Basics

A graph G is a pair (V,E) with V = {v1, ...,vN} the set of vertices and E ⊆ V ×V the

set of edges. Let N and M be the number of vertices and edges, respectively. Each

graph can be represented by an adjacency matrix A of size N ×N: Ai, j = 1 if there is

an edge from vertex vi to vertex v j, and Ai, j = 0 otherwise. The graph Laplacian is

defined by L = D−A where Di,i =
∑

j Ai, j and Di, j = 0 if i , j. We denote the set of all

N ×N adjacency matrices by MN .

9.2.2 Graph Convolutional Neural Networks

Graph neural networks are a popular class of machine learning models for graph-

structured data. We focus specifically on graph convolutional networks (GCNs) and

their application to semi-supervised learning. All GNNs have the same two inputs.

First, a feature matrix X ∈XN ⊂ R
N×n where n is the number of different node features,

second, a graph G = (V,E) with adjacency matrix A ∈HN . Given a set of class labels

Y and a labeling function y : V → Y that maps (a subset of) the nodes to their true

class label, the objective is, given a set of training nodes Vtr, to learn a function

hw : XN ×MN → YN

by minimizing some regularized empirical loss

L(w,A) =
1
|Vtr|

∑
v∈Vtr

`(hw(X,A)v,yv) +Ω(w), (9.1)
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Aτ~Pθ

θ ...  wt+1= Φ(wt,A1) = wt - γ∇Lt(wt,A1)

 wt+τ= wt+τ-1 - γ∇Lt+τ-1(wt+τ-1,Aτ)

...
w
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Sample graphs Compute hypergradients
 and update θ of graph generator

GCN:

Graph
generator:

A1~Pθ

Compute gradients of and
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∇θ 𝔼[F(wθ,τ , θ)] nodes

Figure 9.1: Schematic representation of our approach for learning discrete graph structures
for GNNs.

where w ∈ Rd are the parameters of hw, hw(X,A)v is the output of hw for node v,

` : Y ×Y → R+ is a point-wise loss function, and Ω is a regularizer. An example of the

function hw proposed by Kipf and Welling [2017] is the following two hidden layer

GCN that computes the class probabilities as

hw(X,A) = Softmax(Â ReLu(Â X W1) W2), (9.2)

where w = (W1,W2) are the parameters of the GCN and Â is the normalized adjacency

matrix, given by Â = D̃−1/2(A + I)D̃−1/2, with diagonal, D̃ii = 1 +
∑

j Ai j. GCNs for

node-level classification may be seen as either transductive or inductive learning

algorithms. Indeed, the training regime is typical of the transductive setting (Section

2.1), where the training set comprises also the inputs of the examples that one wishes

to classify. However, once the the weights of the models are learnt, it may also make

sense to compute predictions for another set of points with their respective adjacency

matrix, provided that the this second graph with features concerns the same concept or

phenomenon of the one used during training.

9.3 Learning Discrete Graph Structures
We address the challenging scenarios where a graph structure is either completely

missing, incomplete, or noisy. To this end, we learn a discrete and sparse dependency

structure between data points while simultaneously training the parameters of a GCN.

We frame this as a bilevel programming problem whose outer variables are the param-

eters of a generative probabilistic model for graphs. The proposed approach, therefore,

optimizes both the parameters of a GCN and the parameters of a graph generator so

as to minimize the classification error on a given dataset. We developed a practical
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algorithm based on truncated reverse-mode algorithmic differentiation [Williams and

Peng, 1990] and hypergradient estimation to approximately solve the bilevel problem.

A schematic illustration of the resulting method is presented in Figure 9.1.

9.3.1 Jointly Learning the Structure and Parameters

Let us suppose that information about the true adjacency matrix A is missing or

incomplete. Since, ultimately, we are interested in finding a model that minimizes

the generalization error, we assume the existence of a second subset of instances with

known target, Vval (the validation set), from which we can estimate the generalization

error. Hence, we propose to find A ∈MN that minimizes the function

E(w(A),A) =
1
|Vval|

∑
v∈Vval

`(hw(A)(X,A)v,yv), (9.3)

where w(A) is the minimizer, assumed unique, of L (see Equation (9.1)) for a fixed

adjacency matrix A. We can then consider Equations (9.1) and (9.3) as the inner

and outer objective of a mixed-integer bilevel programming problem where the outer

objective aims to find an optimal discrete graph structure and the inner objective the

optimal parameters of a GCN given a graph.

The resulting bilevel problem is intractable to solve exactly even for small graphs.

Moreover, it contains both continuous and discrete-valued variables, which prevents us

from directly applying Equation (5.25) or its iterative counterpart (5.19). A possible

solution is to construct a continuous relaxation (see e.g. Frecon et al. [2018] for

an application to group lasso, or Zheng et al. [2018] for estimating the structure of

Bayesian networks), another is to work with parameters of a probability distribution

over graphs. The latter is the approach we follow here. We maintain a generative model

for the graph structure and reformulate the bilevel program in terms of the (continuous)

parameters of the resulting distribution over discrete graphs. Specifically, we propose

to model each edge with a Bernoulli random variable. Let MN = Conv(MN) be

the convex hull of the set of all adjacency matrices for N nodes. By modeling all

the possible edges as a set of mutually independent Bernoulli random variables with

parameter matrix θ ∈MN we can sample graphs as MN 3 A ∼ Ber(θ). Equations (9.1)
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and (9.3) can then be replaced by considering the expected loss over graph structures.

The resulting bilevel problem becomes

min
θ∈MN

EA∼Ber(θ) [E(w(θ),A)] (9.4)

such that w(θ) = argmin
w
EA∼Ber(θ) [L(w,A)] , (9.5)

assuming that the inner problem has a unique solution for all θ ∈MN . By taking the

expectation, both the inner and the outer objectives become continuous (and smooth if

E and L are smooth) functions of the Bernoulli parameters. The bilevel problem given

by Equations (9.4)-(9.5) is still challenging to solve efficiently. This is because the

solution of the inner problem is not available in closed form for GCNs (the objective

is non-convex); and the expectations are intractable to compute exactly1.

Before describing a method to solve the optimization problem given by Equations

(9.4)-(9.5) approximately with hypergradient descent, we first turn to the question of

obtaining a final GCN model that we can use for prediction. For a given distribution

pA(·|θ) over graphs with N nodes and with parameters θ, the expected output of a GCN

is

hexp
w (X) = EA[hw(X,A)] =

∑
A∈MN

pA(·|θ)hw(X,A). (9.6)

Unfortunately, computing this expectation is intractable even for small graphs; we can,

however, compute an empirical estimate of the output as

ĥw(X) =
1
S

S∑
i=1

hw(X,Ai), (9.7)

where S > 0 is the number of samples we wish to draw. Note that ĥ is an unbiased

estimator of hexp
w . Hence, to use a GCN hw learned with the bilevel formulation

for prediction, we sample S graphs from the distribution pA(·|θ) and compute the

prediction as the empirical mean of the values of hw.

Given the parametrization of the graph generator with Bernoulli variables

1 This is different from e.g. (model free) reinforcement learning, where the objective function is
usually not observable, depending in an unknown way from the action and the environment.
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(pA(·|θ) = Ber(θ)), one can sample a new graph in O(N2). Sampling from a large

number of Bernoulli variables, however, is highly efficient, trivially parallelizable, and

possible at a rate of millions per second. Other sampling strategies such as MCMC

sampling are possible in constant time. Given a set of sampled graphs, it is more

efficient to evaluate a sparse GCN S times than to use the Bernoulli parameters as

weights of the GCN’s adjacency matrix2. Indeed, for GCN models, computing ĥw has

a cost of O(S Cd), rather than O(N2d) for a fully connected graph, where C =
∑

i j θi j is

the expected number of edges, and d is the dimension of the weight vector. Another

advantage of using a graph-generative model is that we can interpret it probabilistically

which is not the case when learning a dense adjacency matrix.

9.3.2 Structure Learning via Hypergradient Descent

The bilevel programming formalism is a natural fit for the problem of learning both a

graph generative model and the parameters of a GNN for a specific downstream task.

Here, the outer variables θ are the parameters of the graph generative model and the

inner variables w are the parameters of the GCN.

We now discuss a practical algorithm to approach the bilevel problem defined by

Equations (9.4) and (9.5). Regarding the inner problem, we note that the expectation

EA∼Ber(θ) [L(w,A)] =
∑

A∈MN

pA(·|θ)L(w,A) (9.8)

is composed of a sum in the order of 2N2
terms, which is intractable even for relatively

small graphs. We can, however, choose a tractable approximate learning dynamics Φ

such as stochastic gradient descent (SGD, see also Section 2.4.2),

wt+1(θ) = Φ(wt(θ),At) = wt(θ)−γt∇L(wt(θ),At), (9.9)

where γt is a learning rate and At ∼Ber(θ) is drawn at each iteration. Under appropriate

assumptions and for t→∞, SGD converges to a weight vector w(θ) that depends on

the edges’ probability distribution [Bottou, 2010].

2Note also that Ehw(X,A) , hw(X,EA) = hw(X, θ), as the model hw is, in general, nonlinear.
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Let wT (θ) be an approximate minimizer of E [L] where T may depend on θ. We

now need an estimator for the hypergradient ∇θEA∼Ber(θ) [E(wT (θ),A)]. Let us first

consider the more general case of estimating ∇θEz∼pz(·|θ) [h(z)] for some distribution

z ∼ pz(·|θ) with parameters θ. If there exists a differentiable and reversible sampling

path sp(θ,ε) for pz(·|θ), with z = sp(θ,ε) for ε ∼ pε, then one can use the general form

of the pathwise gradient estimator [see Mohamed et al., 2020, Sec. 5]:

∇θEz∼pz(·|θ) [h(z)] = Eε∼pε [∇θh(sp(θ,ε))] = Ez∼pz(·|θ)
[
∇zh(z)∇θz

]
. (9.10)

Since we are concerned with discrete random variables, any sampling path would

have discontinuities, making (9.10) not directly applicable. Nevertheless, by using

an inexact but smooth reparameterization for pz(·|θ), we may employ an approximate

version of (9.10) that allows us to derive a biased estimator of the gradient ∇E[h].

For z = sp(θ,ε) = θ the resulting gradient estimator is an instance of the class of

straight-through estimators (STE) [Bengio et al., 2013].

Now, in our setting, we simply use the identity mapping A = sp(θ,ε) = θ and

approximate

∇θEA∼Ber(θ) [E(wT (θ),A)] ≈ EA∼Ber(θ) [∇AE(wT (θ),A)] . (9.11)

The second line instantiates (9.10) since ∇θA = ∇θθ = I with our choice of reparame-

terization for pA(·|θ). This allows us to both take discrete samples in the forward pass

and to use an efficient (low variance) pathwise gradient estimator in the reverse pass.

The cost of this operation is the introduction of a bias, as setting A = sp(θ,ε) = θ is not

the same as sampling A from Ber(θ) (see also Appendix D for further details on the

STE). Recalling equation (5.19), we can further write EA∼Ber(θ) [∇AE(wT (θ),A)] as

EA [∂wE(wT (θ),A)∇AwT (θ) +∂AE(wT (θ),A)] (9.12)

noting that wθ,T depends on the distribution of A through the optimization dynamics

(9.9).
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Algorithm 7 LDS
1: Input data: X, Y , Y ′[, A]
2: Input parameters: η, τ[, k]
3: [A← kNN(X,k)] {Initialize A to kNN graph if A = 0}
4: θ← A {Initialize pA(·|θ) as a deterministic distribution}
5: while Stopping condition is not met do
6: t← 0
7: while Inner objective decreases do
8: At ∼ Ber(θ) {Sample structure}
9: wθ,t+1← Φt(wt(θ),At) {Optimize inner objective}

10: t← t + 1
11: if t = 0 (modτ) or τ = 0 then
12: G← computeHG(E, Y , θ, (wθ,i)t

i=t−τ)
13: θ← ProjMN

[θ−ηG] {Optimize outer objective}
14: end if
15: end while
16: end while
17: return w, pA(·|θ) {Best found weights and prob. distribution}

Computing the hypergradient by fully unrolling the dynamics may be too expen-

sive both in time and memory3. We propose to truncate the computation and estimate

the hypergradient every τ iterations, where τ is a parameter of the algorithm. This is

essentially an adaptation of truncated back-propagation through time [Werbos, 1990,

Williams and Peng, 1990] and can be seen as a short-horizon optimization procedure

with warm restart on w. A sketch of the method is presented in Algorithm 7. The pro-

cedure computeHG computes the hypergradient with the reverse mode (see Algorithm

2), sampling at each iteration a new adjacency matrix.

The algorithm contains stopping conditions at the outer and at the inner level.

While it is natural to implement the latter with a decrease condition on the inner

objective4, we find it useful to implement the first with a simple early stopping

criterion. A fraction of the examples in the validation set is held-out to compute, in

each outer iteration, the accuracy using the predictions of the empirically expected

model (9.7). The optimization procedure terminates if there is no improvement for

some consecutive outer loops. This helps avoid overfitting the outer objective (9.4),
3Moreover, since we rely on biased estimations of the gradients, we do not expect to gain too much

from a full computation.
4We continue optimizing L until L(wt−1,A)(1 + ε) ≥ L(wt(θ),A), for ε > 0 (ε = 10−3 in the experi-

ments). Since L is non-convex, we also use a patience window of p steps.



9.4. Experiments 238

which may be a concern in this context given the quantity of (hyper)parameters being

optimized and the relative small size of the validation sets (see also Section 3.6).

The hypergradients estimated with Algorithm 7 at each outer iteration are biased.

The bias stems from both the straight-trough estimator and from the truncation pro-

cedure introduced in lines 11-13 [Tallec and Ollivier, 2017]. Nevertheless, we find

empirically that the algorithm is able to make reasonable progress, finding configura-

tions in the distribution space that are beneficial for the tasks at hand.

9.4 Experiments
We conducted a series of experiments with three main objectives. First, we evaluated

LDS on node classification problems where a graph structure is available but where

a certain fraction of edges is missing. Here, we compared LDS with graph-based

learning algorithms including standard GCNs. Second, we wanted to validate our

hypothesis that LDS can achieve competitive results on semi-supervised classification

problems for which a graph is not available. To this end, we compared LDS with

a number of existing semi-supervised classification approaches. We also compared

LDS with algorithms that first create k-NN affinity graphs on the data set. Third, we

analyzed the learned graph generative model to understand to what extent LDS is able

to learn meaningful edge probability distributions even when a large fraction of edges

is missing.

9.4.1 Datasets

Cora and Citeseer are two benchmark datasets that are commonly used to evaluate

relational learners in general and GCNs in particular [Sen et al., 2008]. The input

features are bag of words and the task is node classification. We use the same dataset

split and experimental setup of previous work [Yang et al., 2016, Kipf and Welling,

2017]. To evaluate the robustness of LDS on incomplete graphs, we construct graphs

with missing edges by randomly sampling 25%, 50%, and 75% of the edges. In

addition to Cora and Citeseer where we removed all edges, we evaluate LDS on

benchmark datasets that are available in scikit-learn [Pedregosa et al., 2011] such

as Wine, Breast Cancer (Cancer), Digits, and 20 Newsgroup (20news). We take 10



9.4. Experiments 239

classes from 20 Newsgroup and use words (TFIDF) with a frequency of more than 5%

as features. We also use FMA, a dataset where 140 audio features are extracted from

7,994 music tracks and where the problem is genre classification [Defferrard et al.,

2017].

9.4.2 Setup and Baselines

For the experiments on graphs with missing edges, we compare LDS to standard

GCNs. In addition, we also conceived a method (GCN-RND) where we add randomly

sampled edges at each optimization step of a standard GCN. With this method we

intend to show that simply adding random edges to the standard training procedure of

a GCN model (perhaps acting as a regularization technique) is not enough to improve

the generalization.

When a graph is completely missing, GCNs boil down to feed-forward neural

networks. Therefore, we evaluate different strategies to induce a graph on both labeled

and unlabeled samples by creating (1) a sparse Erdős-Rényi random graph [Erdos and

Rényi, 1960] (Sparse-GCN); (2) a dense graph with equal edge probabilities (Dense-

GCN); (3) a dense RBF kernel on the input features (RBF-GCN); and (4) a sparse

k-nearest neighbor graph on the input features (kNN-GCN). For LDS we initialize

the edge probabilities using the k-NN graph (kNN-LDS). We further include a dense

version of LDS where we learn a dense similarity matrix (kNN-LDS (dense)). In this

setting, we compare LDS to popular semi-supervised learning methods such as label

propagation (LP) [Zhu et al., 2003], manifold regularization (ManiReg) [Belkin et al.,

2006], and semi-supervised embedding (SemiEmb) [Weston et al., 2012]. ManiReg

and SemiEmb are given a k-NN graph as input for the Laplacian regularization. We

also compare LDS to baselines that do not leverage a graph-structure such as logistic

regression (LogReg), support vector machines (Linear and RBF SVM), random forests

(RF), and feed-forward neural networks (FFNN). For comparison methods that need

a kNN graph, k ∈ {2,3, . . . ,20} and the metric (Euclidean or Cosine) are tuned using

validation accuracy. For kNN-LDS, k is tuned from 10 or 20.

We use the two layers GCN given by (9.2) with 16 hidden neurons and ReLu

activation. Given a set of labelled training instances Vtr (nodes or examples) we use
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the regularized cross-entropy loss

L(w,A) = −
∑
v∈Vtr

yv ◦ log[hw(X,A)v] +ρ||w1||
2,

where yv is the one-hot encoded target vector for the v-th instance, ◦ denotes the

element-wise multiplication and ρ is a non-negative coefficient. As additional regular-

ization technique we apply dropout [Srivastava et al., 2014] with β = 0.5 as in previous

work. We use Adam [Kingma and Ba, 2015] for optimizing L, tuning the learning

rate γ from {0.005, 0.01, 0.02}. The same number of hidden neurons and the same

activation is used for SemiEmb and FFNN.

For LDS, we set the initial edge parameters θi, j to 0 except for the known edges

(or those found by kNN) which we set to 1. We then let all the parameters (including

those initially set to 1) to be optimized by the algorithm. We further split the validation

set evenly to form the validation (A) and early stopping (B) sets. As outer objective

we use the un-regularized cross-entropy loss on (A) and optimize it with stochastic

gradient descent. with exponentially decreasing learning rate. Initial experiments

showed that accelerated optimization methods such as Adam or SGD with momentum

underperform in this setting. We tune the step size η of the outer optimization loop

and the number of updates τ used to compute the truncated hypergradient. Finally, we

draw S = 16 samples to compute the output predictions (see Equation (9.7)). For LDS

and GCN, we apply early stopping with a window size of 20 steps.

LDS was implemented in TensorFlow [Abadi et al., 2015] and is available at

https://github.com/lucfra/LDS. The implementations of the supervised base-

lines and LP are those from the scikit-learn python package [Pedregosa et al., 2011].

GCN, ManiReg, and SemiEmb are implemented in Tensorflow. The hyperparameters

for all the methods are selected through grid search optimizing for the validation

accuracy.

9.4.3 Results

The results on the incomplete graphs are shown in Figure 9.2 for Cora (left) and

Citeseer (center). For each percentage of retained edges the accuracy on validation

https://github.com/lucfra/LDS
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Figure 9.2: Mean accuracy ± standard deviation on validation (early stopping; dashed lines)
and test (solid lines) sets for edge deletion scenarios on Cora (left) and Citeseer
(center). (Right) Validation of the number of steps τ used to compute the hyper-
gradient (Citeseer); τ = 0 corresponds to alternating minimization. All results are
obtained from five runs with different random seeds.

Table 9.1: Initial number of edges and expected number of sampled edges of learned graph by
LDS.

% Edges 25% 50% 75% 100%

Cora Initial 1357 2714 4071 5429
Cora Learned 3635.6 4513.9 5476.9 6276.4

Citeseer Initial 1183 2366 3549 4732
Citeseer Learned 3457.4 4474.2 7842.5 6745.2

(used for early stopping) and test sets are plotted. LDS achieves competitive results in

all scenarios and accuracy gains of up to 7 percentage points. Notably, LDS improves

the generalization accuracy of GCN models also when the given graph is that of the

respective dataset (100% of edges retained), by learning additional helpful edges. At

the time of publication [Franceschi et al., 2019], the accuracy of 84.1% and 75.0% for

Cora and Citeseer, respectively, exceed all previous state-of-the-art results. Conversely,

adding random edges does not help decrease the generalization error. GCN and GCN-

RND perform similarly which indicates that adding random edges to the graph is not

helpful.

Figure 9.2 (right) depicts the impact of the number of iterations τ to compute the

hypergradients. Taking multiple steps strongly outperforms alternating optimization5

(i.e. τ = 0) in all settings. Increasing τ further to the value of 20, however, does not

yield significant benefits, while increasing the computational cost (cf. Section 6.2.1).

5For τ= 0, one step of optimization of L w.r.t. w, fixing θ is interleaved with one step of minimization
of E w.r.t. θ, fixing w. Even if computationally lighter, this approach disregards the nested structure of
(9.4)-(9.5), not computing the first term of Equation (5.19).
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Table 9.2: Test accuracy (± standard deviation) in percentage on various classification datasets.
The best results and the statistical competitive ones (by paired t-test with α = 0.05)
are in bold. All experiments have been repeated with 5 different random seeds. We
compare kNN-LDS to several supervised baselines and semi-supervised learning
methods. No graph is provided as input. kNN-LDS achieves high accuracy results
on most of the datasets and yields the highest gains on datasets with underlying
graphs (Citeseer, Cora).

Wine Cancer Digits Citeseer Cora 20news FMA

LogReg 92.1 (1.3) 93.3 (0.5) 85.5 (1.5) 62.2 (0.0) 60.8 (0.0) 42.7 (1.7) 37.3 (0.7)
Linear SVM 93.9 (1.6) 90.6 (4.5) 87.1 (1.8) 58.3 (0.0) 58.9 (0.0) 40.3 (1.4) 35.7 (1.5)
RBF SVM 94.1 (2.9) 91.7 (3.1) 86.9 (3.2) 60.2 (0.0) 59.7 (0.0) 41.0 (1.1) 38.3 (1.0)
RF 93.7 (1.6) 92.1 (1.7) 83.1 (2.6) 60.7 (0.7) 58.7 (0.4) 40.0 (1.1) 37.9 (0.6)
FFNN 89.7 (1.9) 92.9 (1.2) 36.3 (10.3) 56.7 (1.7) 56.1 (1.6) 38.6 (1.4) 33.2 (1.3)

LP 89.8 (3.7) 76.6 (0.5) 91.9 (3.1) 23.2 (6.7) 37.8 (0.2) 35.3 (0.9) 14.1 (2.1)
ManiReg 90.5 (0.1) 81.8 (0.1) 83.9 (0.1) 67.7 (1.6) 62.3 (0.9) 46.6 (1.5) 34.2 (1.1)
SemiEmb 91.9 (0.1) 89.7 (0.1) 90.9 (0.1) 68.1 (0.1) 63.1 (0.1) 46.9 (0.1) 34.1 (1.9)

Sparse-GCN 63.5 (6.6) 72.5 (2.9) 13.4 (1.5) 33.1 (0.9) 30.6 (2.1) 24.7 (1.2) 23.4 (1.4)
Dense-GCN 90.6 (2.8) 90.5 (2.7) 35.6 (21.8) 58.4 (1.1) 59.1 (0.6) 40.1 (1.5) 34.5 (0.9)
RBF-GCN 90.6 (2.3) 92.6 (2.2) 70.8 (5.5) 58.1 (1.2) 57.1 (1.9) 39.3 (1.4) 33.7 (1.4)
kNN-GCN 93.2 (3.1) 93.8 (1.4) 91.3 (0.5) 68.3 (1.3) 66.5 (0.4) 41.3 (0.6) 37.8 (0.9)

kNN-LDS (dense) 97.5 (1.2) 94.9 (0.5) 92.1 (0.7) 70.9 (1.3) 70.9 (1.1) 45.6 (2.2) 38.6 (0.6)
kNN-LDS 97.3 (0.4) 94.4 (1.9) 92.5 (0.7) 71.5 (1.1) 71.5 (0.8) 46.4 (1.6) 39.7 (1.4)

In Table 9.1 we computed the average number of edges in a sampled graph for

Cora and Citeseer, to analyze the properties of the graphs sampled from the learned

graph generator. The expected number of edges for LDS is higher than the original

number which is to be expected since LDS has better accuracy results than the standard

GCN in Figure 9.2. Nevertheless, the learned graphs are still very sparse (e.g. for

Cora, on average, less than 0.2% edges are present). This facilitates efficient learning

of the GCN in the inner learning loop of LDS.

Table 9.2 lists the results for semi-supervised classification problems. The super-

vised learning baselines work well on some datasets such as Wine and Cancer but fail

to provide competitive results on others such as Digits, Citeseer, Cora, and 20News.

The semi-supervised learning baselines LP, ManiReg and SemiEmb can only improve

the supervised learning baselines on 1, 3 and 4 datasets, respectively. The results for

the GCN with different input graphs show that kNN-GCN works well and provides

competitive results compared to the supervised baselines on all datasets. kNN-LDS

significantly outperforms kNN-GCN on 4 out of the 7 datasets. In addition, kNN-LDS

is among the most competitive methods on all datasets and yields the highest gains

on datasets that have an underlying graph (Cora and Citeseer; see also Figure 9.5 for
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Figure 9.3: Mean edge probabilities to nodes aggregated w.r.t. four groups during LDS
optimization, in log10 scale for three example nodes. For each example node,
all other nodes are grouped by the following criteria: (a) adjacent in the ground
truth graph; (b) same class membership; (c) different class membership; and (d)
unknown class membership. Probabilities are computed with LDS (τ = 5) on
Cora with 25% retained edges. From left to right, the example nodes belong to
the training, validation, and test set, respectively. The vertical gray lines indicate
when the inner optimization dynamics restarts, that is, when the weights of the
GCN are reinitialized.

a visual representation of the learned embeddings with various methods). Moreover,

kNN-LDS performs slightly better than its dense counterpart where we learn a dense

adjacency matrix. The added benefit of the sparse graph representation lies in the

potential to scale to larger datasets.

In Figure 9.3, we show the evolution of mean edge probabilities during optimiza-

tion on three types of nodes (train, validation, test) on the Cora dataset. LDS is able to

learn a graph generative model that is, on average, attributing 10 to 100 times more

probability to edges between samples sharing the same class label. LDS often attributes

a higher probability to edges that are present in the true held-out adjacency matrix

(green lines in the plots). In Figure 9.4 (left) we report the normalized histograms of

the optimized edges probabilities for the same nodes of Figure 9.3, sorted into six bins

in log10-scale. Edges are divided in two groups: edges between nodes of the same

class (blue) and between nodes of unknown or different classes (orange). LDS is able

to learn highly non-uniform edge probabilities that reflect the class membership of the

nodes.

Figure 9.4 (right) shows similar qualitative results as Figure 9.4 (left), this time

for three Citeseer test nodes, missclassified by kNN-GCN and correctly classified by

kNN-LDS. Again, the learned edge probabilities linking to nodes of the same classes

is significantly different to those from different classes; but in this case the densities
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Figure 9.4: (Left) Normalized histograms of edges’ probabilities for the same nodes of Figure
9.3. (Right) Histograms for three Citeseer test nodes, missclassified by kNN-GCN
and rightly classified by kNN-LDS.

Figure 9.5: T-SNE visualization of the output activations (before the classification layer) on
the Citeseer dataset. Left: Dense-GCN, Center: kNN-GCN, Right kNN-LDS

are more skewed toward the first bin. On the datasets we considered, what seems to

matter is to capture a useful distribution (i.e. higher probability for links between

same class) rather than pick exact links; of course for other datasets this may vary. We

further visualize the embeddings learned by GCN and LDS using T-SNE [Maaten and

Hinton, 2008] in Figure 9.5.

9.5 Related work
Semi-supervised Learning. Early works on graph-based semi-supervised learning

use graph Laplacian regularization and include label propagation (LP) [Zhu et al.,

2003], manifold regularization (ManiReg) [Belkin et al., 2006], and semi-supervised

embedding (SemiEmb) [Weston et al., 2012]. These methods assume a given graph

whose edges represent some similarity between nodes. Later, [Yang et al., 2016]

proposed a method that uses graphs not for regularization but rather for embedding

learning by jointly classification and graph context prediction. Kipf and Welling

[2017] presented the first GCN for semi-supervised learning. There are now numerous

GCN variants all of which assume a given graph structure. Contrary to all existing

graph-based semi-supervised learning approaches, LDS is able to work even when the
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graph is incomplete or missing.

Graph Synthesis and Generation. LDS learns a probabilistic generative model for

graphs. The earliest probabilistic generative model for graphs was the Erdős-Rényi

random graph model [Erdos and Rényi, 1960], where edge probabilities are modelled

as identically distributed and mutually independent Bernoullis. Several network

models have been proposed to model well particular graph properties such as degree

distribution [Leskovec et al., 2005] or network diameter [Watts and Strogatz, 1998].

Leskovec et al. [2010] proposed a generative model based on the Kronecker product

that takes a real graph as input and generates graphs that have similar properties.

Recently, deep learning based approaches have been proposed for graph generation

[You et al., 2018, Li et al., 2018c, Grover et al., 2019, De Cao and Kipf, 2018]. The

goal of these methods, however, is to learn a sophisticated generative model that

reflects the properties of the training graphs. LDS, on the other hand, learns graph

generative models as a means to perform well on classification problems and its input

is not a collection of graphs. More recent work proposed an unsupervised model

that learns to infer interactions between entities while simultaneously learning the

dynamics of physical systems such as spring systems [Kipf et al., 2018]. Contrary to

LDS, the method is specific to dynamical interacting systems, is unsupervised, and

uses a variational encoder-decoder. Finally, we note that Johnson [2017] proposed

a fully differentiable neural model able to process and produce graph structures at

both input, representation and output levels; training the model requires, however,

supervision in terms of ground truth graphs.

Link Prediction. Link prediction is a decades-old problem [Liben-Nowell and Klein-

berg, 2007]. Several survey papers cover the large body of work ranging from link

prediction in social networks to knowledge base completion [Lü and Zhou, 2011,

Nickel et al., 2016]. While a majority of the methods are based on some similarity

measure between node pairs, there has been a number of neural network based methods

[Zhang and Chen, 2017, 2018]. The problem we study in this chapter is related to link

prediction as we also want to learn or extend a graph. However, existing link predic-

tion methods do not simultaneously learn a GNN node classifier. Statistical relational
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learning (SRL) [Getoor and Taskar, 2007] models often perform both link prediction

and node classification through the existence of binary and unary predicates. However,

SRL models are inherently intractable and the structure and parameter learning steps

are independent.

Gradient Estimation for Discrete Random Variables. Due to the intractable nature

of the two bilevel objectives, LDS needs to estimate the hypergradients through a

stochastic computational graph [Schulman et al., 2015]. Using the score function

estimator, also known as REINFORCE [Williams, 1992], would treat the outer ob-

jective as a black-box function and would not exploit E being differentiable w.r.t. the

sampled adjacency matrices and inner optimization dynamics. Conversely, the path-

wise estimator is not readily applicable, since the random variables are discrete. LDS

borrows from a solution proposed before [Bengio et al., 2013], at the cost of having

biased estimates. Recently, Jang et al. [2017] and Maddison et al. [2017] presented

an approach based on continuous relaxations to reduce variance, which Tucker et al.

[2017] combined with REINFORCE to obtain an unbiased estimator. Grathwohl et al.

[2018] further introduced surrogate models to construct control variates for black-box

functions. Unfortunately, these latter methods require to compute the function in the

interior of the hypercube, possibly in multiple points [Tucker et al., 2017]. This would

introduce additional computational overhead6.

9.6 Discussion
In this chapter we presented LDS, a method that follows the bilevel framework to

simultaneously learn the graph structure and the parameters of a GNN. While we

have used a specific GCN variant [Kipf and Welling, 2017] in the experiments, the

method is more generally applicable to other GNNs. The strengths of LDS are its

high accuracy gains on typical semi-supervised classification datasets at a reasonable

computational cost. Moreover, due to the graph generative model LDS learns, the

edge parameters have a probabilistic interpretation. Bedsides its specific application

to relational learning, we have shown that it is possible to compute efficiently update

6Recall that E can be computed only after (approximately) solving the inner optimization problem.
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directions for parameters of discrete distributions that appear at the outer level by

employing the STE. Suitable variants of LDS algorithm may also be applied to other

problems such as neural architecture search or to tune other discrete hyperparameters.

The method has its limitations. While relatively efficient, it cannot currently scale

to large datasets: this would require an implementation that works with mini-batches

of nodes. We evaluated LDS only in the transductive setting, when all data points

(nodes) are available during training. Adding additional nodes after training (the

inductive setting) would currently require retraining the entire model from scratch.

When sampling graphs, we do not currently enforce the graphs to be connected. This

is something we anticipate to improve the results, but this would require a more

sophisticated sampling strategy. All of these shortcomings motivate future work.



Chapter 10

Conclusions

In this thesis, we proposed and studied a unifying framework for hyperparameter

optimization and meta-learning, motivated by the central observation that both HPO

and MTL revolve around the search for good learning algorithms, albeit the scale and

the experimental settings typically differ.

The framework hinges on the formulation of a bilevel program that abstracts

away from these differences, allowing one to express a large portion of learning and

meta-learning algorithms (in particular, those based on the ERM paradigm) concisely

and effectively. We declined the framework for HPO, where the outer variables

are interpreted as hyperparameters and are instrumental in finding hypotheses that

generalize well, and for MTL, where the outer variables represent, instead, the object of

learning, playing the role of parameters of meta-learners shared among different tasks.

In MTL, the inner and outer problems naturally correspond to the base and the meta

levels of learning, as identified by the seminal work of Thrun and Pratt. Contextually

to our review of meta-learning of Chapter 4, we discussed the extent to which the

proposed framework covers and reflects existing MTL methodologies, finding in the

so-called parametric (optimization-based) algorithmic strategies the closest match.

Various authors have suggested bilevel programming for hyperparameter optimization

and other areas of machine learning. Yet, showing that the formalism adapts well also

to the meta-learning context is a novel contribution of our work.

We saw that the inner problems linked to most learning algorithms do not typically

admit closed-form solutions, except for a few cases such as ridge regression. Thus, in
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order to provide general and practical algorithms, one must resort to approximations.

A compelling strategy is to replace the minimization of the inner objective with a

set of constraints. These constraints can be either given by the first order optimality

conditions (implicit view) or by the equations of an optimization dynamics (iterative

view). We argued that the iterative view reflects more closely how learning algorithms

are implemented in practice, crucially allowing one to consider as outer variables

hyperparameters (or meta-parameters) that pertain the dynamics itself (e.g. learning

rates or initialization points). In turns, this makes it possible to include into the

framework a larger class of important HPO problems and popular MTL strategies.

When the inner and outer variables are real-valued and the objectives are smooth,

the iterative and implicit approximation approaches give rise to two different families

of procedures to compute approximate gradients of the outer objective. Concerning

iterative differentiation, we derived the reverse mode, generalizing previous work by

Domke [2012] and Maclaurin et al. [2015a], and proposed the forward mode, linked

to classic algorithms for training recurrent neural networks presented by Williams and

Zipser [1989] in the late eighties. For implicit differentiation, we considered a general

strategy which uses the conjugate gradient method, explored by Pedregosa [2016] in

HPO and Rajeswaran et al. [2019] in MTL, and one that involves differentiating a

fixed point equation, linked to recurrent backpropagation and recently adopted by Liao

et al. [2018] and MacKay et al. [2019]. We provided convergence results regarding the

set of minimizers of the iterative approximate programs and proved non-asymptotic

linear rates for the hypergradient approximation error of the iterative and fixed-point

approaches when the underlying dynamics is contractive. Overall, our presentation

brings together a series of methods and procedures previously scattered throughout

the literature, generalizing from case-specific formulations and filling some existing

gaps, especially under a theoretical standpoint.

Our experience with numerical simulations has been motivated by two funda-

mental goals. First, we wanted to complement our theoretical analysis by showing

some limit cases and investigating the effect of various assumptions. We found that,

for the iterative approach, small horizons may help improve generalization – possibly
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acting as a form of implicit regularization – while saving computation. However, for

too small values, the computed hypergradient may incur in too high approximation

errors, thus preventing successful optimization. We also found that the hypothesis

of contractiveness of the inner dynamics that we used for deriving the hypergradi-

ent error bounds has a more visible impact on the implicit differentiation methods,

which exhibited an unstable behaviour when this falls. Second, we wanted to provide

evidence of the practical benefits of the proposed framework on real-world-inspired

problems. With this aim, we showed the advantages of high dimensional gradient-

based hyperparameter optimization, possible with the application of Reverse-HG, and

the competitive performances of a real-time version of the forward mode for tuning

few critical hyperparameters. We further adapted a simple and classic strategy for

multitask learning (sharing a common representation) to the MTL setting and showed

that it can extrapolate to novel tasks and perform comparably well. Contextually,

we verified that the two main “innovations” associated to the MTL setting and our

proposed framework1 are essential in achieving good results with our meta-learning

algorithm.

Some limitations of the main algorithms presented in the central part of the

thesis led us to develop extensions in two main directions. First, we focused on the

online version of the forward mode hypergradient computation scheme. An early

version of the procedure, dubbed RTHO in Chapter 5, achieved promising results on

some application settings, automatically generating schedules for few hyperparameters

that could lead to trained models with improved generalization. Nonetheless, some

aspects of the method remained unclear. We also encountered some stability issues

(e.g. as reported in Section 8.4) which could prevent a broader utilization of RTHO.

These facts motivated the development of MARTHE, We took as a specific case

study the optimization of the learning rate schedule, widely recognized as one of the

most critical hyperparameters for training deep neural networks – often researchers

and practitioners spend a good amount of time to hand-tune it. By comparing the

online update directions compute by RTHO with those calculated with exact (but

1 Namely, optimize at the meta-level to achieve good generalization on the test splits and use
hypergradients rather than performing alternating or joint optimization.
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computationally unfeasible) iterative differentiation, we realized that a conceivable

source of instability was the accumulation of undiscounted (and possibly outdated)

information on the tangent system. Hence, we reinterpreted the computation of the

online forward-mode system through the lens of a two-stage approximation process

that involves the differentiation of shifted shorter-horizon auxiliary objectives. Under

this perspective, it appeared natural to introduce a discount factor to reduce the impact

of past information, effectively modelling MARTHE updates as moving averages

rather than summations, mimicking, in a way, the update rule of gradient descent

with momentum. Even though this modification adds a new configuration parameter

(besides the hyper-learning rate), we empirically showed that it substantially helps

improve the procedure’s stability, enabling MARTHE to outperforms RTHO and other

approaches on a series of carefully designed time-controlled experiments.

Next, we turned our attention to another challenging goal: extending the appli-

cability of the proposed framework to the optimization of a class of discrete hyper-

parameters. We considered, in this case, a relational learning setting, picking graph

convolutional neural networks as underlying models. Introducing a simple discrete

probability distribution over adjacency matrices, we formulated a bilevel problem

where the outer variables are the (real-valued) parameters of the distribution. We de-

fined the inner and outer objectives as the expected training and validation errors of a

GCN that takes as input (alongside the node features) the random variable representing

the adjacency matrix. Following once again the iterative approximation approach, we

used stochastic gradient descent as optimization dynamics (the stochasticity stemming

from the graph distribution) and derived an hypergradient estimator leveraging the

straight-through estimator. Accordingly, we developed a practical algorithm based on

a truncated version of Reverse-HG which we named LDS to jointly learn discrete

graph structures and the weights of the GCN. We showed that LDS manages to find

meaningful dependencies among data point leading to improved performances in the

presence of incomplete graphs. We empirically demonstrated that once a dependency

structure is learned with LDS, GCNs are good candidate models for semi-supervised

transductive learning, consistently matching or exceeding baselines and competitor
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techniques on several datasets. Despite some current limitations, this may be con-

sidered a fascinating result on its own which might sparkle interest in the area of

learning or generating complex dependency structures, moving beyond the assumption

of independence between data points assumed in many learning settings.

10.1 Future Work

The perspective we have taken in this work and the proposed framework contribute to

blur the border between hyperparameter optimization and meta-learning. However,

with the partial exception of Chapter 9, we have mostly investigated the descriptive

power of the framework, proposing instantiations that “do not fall too far” from existing

and classical learning and meta-learning problems and algorithms. Beside extending

our descriptive analysis to the other major paradigms of machine learning, we believe

that a first natural direction of future research is that of exploring the constructive

potential of the framework. In this regard, designing learning systems that integrate

more closely HPO (alongside algorithm selection) and MTL might be a particularly

fruitful effort. Some core ideas of so-called pool-based algorithmic MTL methods

(Section 4.4.2.1) could provide useful starting points.

As we mentioned in our review of Chapter 4 (see ending paragraph of Sections

4.2), interesting and challenging meta-learning problems may arise from (and be de-

scribed by) joint distributions where the marginal distribution of the data observations

may be quite far from (few) i.i.d. examples of a given concept or phenomenon. For in-

stance, one may consider a situation where observed datasets are biased in some sense

(e.g. representing unfair credit score assignment), or where observations are given

in the form of natural language descriptions of a task rather than a set of supervised

examples. We believe that another interesting line of research is that of investigating

the applicability and effectiveness of our proposed framework in these meta-learning

scenarios that substantially differ from few-shot learning.

Under a more technical standpoint, it would be valuable to extend our conver-

gence results to settings in which inner problems do not satisfy the assumptions of

our convergence analysis. These include bilevel problems in which the lower level
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dynamics is only locally contractive, non-smooth, possibly non-expansive (e.g. when

the inner objective is only convex) or can only be solved via a stochastic procedure.

Additionally another important step to close the gap between practical procedures and

theoretical understanding is to study the statistical properties of bilevel strategies where

the outer objectives are based on the generalization ability of the inner models. As our

framework links meta-learning and hyperparameter optimization, an analysis in this

direction may be useful to both fields. Ideas from [Maurer et al., 2016, Denevi et al.,

2018b, Konobeev et al., 2020, Chen et al., 2020a] may be helpful in this direction.

Lastly, the algorithm that we have developed in Chapter 9 is a first step toward

the development of gradient-based strategies to tune discrete hyperparameters or meta-

parameters. For LDS, we have considered only a rather simple discrete probability

distribution, where the straight through estimator has been proved effective in prac-

tice. However, settings in which the outer variables appear as parameters of more

complex discrete distributions or define the cost or constraints of combinatorial opti-

mization problems would very likely require different estimation strategies. Further

developments in this directions could enable the effective design of a novel class of

meta-learning methods. For example, one could imagine a MTL algorithm in which

the structure of the base-level algorithm could be determined by the solution of an

integer programming problem where the constraints could possibly encode previous

knowledge or requirements specified by the user.





Appendix A

Fundamentals of Algorithmic

Differentiation

In this chapter we review the fundamentals of algorithmic differentiation. After a intro-

duction that defines the concepts and boundaries of this area of applied mathematics,

in Section A.2 we discuss general structures for evaluating functions, representation

schemes and assumptions employed in the context of algorithmic differentiation. We

then continues with the introduction and derivation of the two main modes for comput-

ing derivatives, i.e. forward and reverse-mode differentiation (Section A.3). Finally, in

Section A.4 we analyze the computational complexities these two modes. This chapter

is intended as a convenient summary of the first five chapters of the book by Griewank

and Walther [2008].

A.1 Introduction
Algorithmic differentiation, also known as automatic differentiation deals with the

problem of automatically augmenting a given program with operations that allow

the evaluations of its derivatives or other related quantities, such as Hessians or

Jacobian vector products. It is based on the assumption that the vast majority of

scientific programs executes a series of elementary operations that can be tracked and

differentiated through efficiently. Perhaps one of the best known results of algorithmic

differentiation is the so-called cheap gradient principle, which states that gradients of

scalar functions can be obtained through reverse-mode algorithmic differentiation at a
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run-time cost which is only a small multiple of that of computing the original function

(see Section A.4). Clearly, this fact has rather important practical implications e.g.

when optimizing high dimensional objective functions, as having access to cheap and

accurate gradients through automatically generated code may greatly simplify the task.

In the last decade, the systematic applications of algorithmic differentiation tools

[Theano Development Team, 2016, Paszke et al., 2017, Abadi et al., 2015] has been

recognized one of the key drivers behind the recent successes of machine learning

[Baydin et al., 2018b], and deep learning in particular. The fact that compositionality

of simple nonlinear mappings is among the core design features of artificial neural

networks has certainly favoured the early adoption of (a subset of) such tools in

the field – backpropagation [Rumelhart et al., 1986] and backpropagation through

time [Werbos, 1990] being two major examples, implementing reverse-mode gradient

computation for feed-forward and recurrent neural networks, respectively.

Before proceeding, we briefly remark the main differences between algorithmic

differentiation and two other approaches for computing derivatives, namely numerical

and symbolic differentiation. Algorithmic differentiation produces programs that

return numerical values once evaluated at a point; yet, it greatly differs from numerical

derivation, where the derivative of a function f in the direction e is often computed

with difference quotients

D+
h,e f (x) =

f (x + he)− f (x)
h

or D±h,e f (x) =
f (x + he)− f (x−he)

2h
, h > 0.

Numerical differentiation is inflexible and prone to truncation errors, worsened in

high dimensionality settings; algorithmic differentiation, on the other hand, makes

no additional approximation1 and allows for seamless and efficient computation of

gradients and higher order derivatives.

Algorithmic differentiation differs from symbolic differentiation since it does not

manipulates nor return algebraic expressions and rather revolves around computing

intermediate values. Consider as an example the multivariate function f (x) =
∏

i xi.

1Of course algorithm differentiation is not immune to errors deriving from finite precision arithmetic,
once implemented in a computer software.
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Symbolically differentiating f would yield expressions such as ∂ f
∂xi

=
∏

j,i x j. Com-

puting ∇ f would then require multiplying several times the independent variables, as

there is in principle no relation between different components of the gradient. This

would clearly neglect the particular structure of f , where partial multiplications could

be stored and reused; algorithmic differentiation provides methods to automatically do

so, leading to substantial computational savings.

A.2 Evaluating Functions
Let

f : X ⊆ Rn→ Y ⊆ Rm (A.1)

be the function of interest we wish to differentiate. Algorithmic differentiation requires

additional structure with respect to other differentiation techniques, as it requires

knowing how f is evaluated, beside being able to compute its numerical value at a

point. In this section we will specify the implications of this requirement and how

this naturally leads to defining different and complementary ways to represent the

evaluation of f , each capturing peculiar aspects of the computational process.

Let xi for i = 1, . . . ,n and y j, for j = 1, . . . ,m be the set of independent and

dependent variables, respectively. The central assumption of algorithmic differentiation

is that most of the functions of interest are computed (e.g. by a CPU or a GPU) using

simple operations and intermediate variables. More formally, we denote by vk the set

of intermediate (or auxiliary) variables and let

vk = ψk(x1, . . . , xn,v1, . . . ,vk−1) for k = 1, . . . , l

where l depends on the specific function and ψk : Xk→ R are scalar functions called

elementals2 belonging to a predefined library Ψ. The library may include from very

simple arithmetic operations3 such as addition and multiplication to look-up tables

2 For the sake of simplicity, in this section we consider only scalar variables and elementals; the
generalization to vector valued variables and elementals is straightforward.

3 A somewhat minimal requirement is that Ψ contains at least the so-called polynomial core, i.e.
addition, multiplication, unary sign switch and constant assignment. These elementals allow computing
polynomial functions, which in turn may be used to approximate other operations such as trigonometric
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and stochastic random variables. We assume that the the output of f is simply given

by the last m intermediate variables, so that

y j = vl− j for j = 1, . . . ,m

For example, for the product function f (x) =
∏

i xi, the intermediate variables may

be defined as the partial products vk =
∏k

i=1 xk = vk−1 ∗ xk, and the scalar output

y1 = f (x) = vn; the number of auxiliary variables l would be n in this case.

Clearly, there may be multiple choices for writing down a function in this way,

which may in turn depend on the granularity of the available elementals. Some

choices could be preferable to others when considering possible numerical errors or

overflows. Algorithmic differentiation is strongly tied to the implementation of the

evaluation procedure: informally, what is good for computing the function is also

good for calculating derivatives. In any case, considering f as the results of a series

of intermediate operations which make use of a number of auxiliary variables (rather

than thinking of f as a monolithic expression), let us better reason about strategies to

save and reuse computation and paves the way to think about differentiation under an

operational (rather than symbolic) standpoint.

A.2.1 Evaluation procedure and evaluation trace.

To unify the notation we introduce the set of auxiliary variables with non-positive

indices vi−n for i = 1, . . . ,n to account for the input assignment. The general evaluation

procedure for algorithmically differentiable functions (with library Ψ) is listed in Table

A.1. This is not a mere restatement of Eq. (A.1), as the existence of an evaluation

procedure for a function f implies that f is the result of a finite list of explicitly known

operations laid down in a precise known order. In short, we say that f ∈ Span(Ψ)

if there exists a (not necessarily unique) evaluation procedure for f with elementals

belonging to Ψ.

The evaluate of the function at a point x̂ ∈ X (instantiation) proceeds by simply

assigning the numerical values of x̂ to the first n variables and then continues by

and exponential functions. It is far more common, however, to include in Ψ also more complex
operations.
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Table A.1: General evaluation procedure for a function f ∈ Span(Ψ).

vi−n = xi i = 1, . . . ,n Assign inputs

vi = ψi(v1−n, . . . ,vi−1) i = 1, . . . , l Compute intermediate variables

yi = vl−i i = 1, . . . ,m Copy output

computing the intermediate and output values v̂i = ψi(v̂1−n, . . . , v̂i−1). This produces the

so called evaluation trace {v̂i}
l
i=1−n at x̂, which essentially is the record of a particular

execution of f .

A.2.2 Computational graph.

Most of elementals of practical interest are unary or binary functions, this means

that very often the computation of ψi (second row of Table A.1) will only directly

depend on few variables. For instance, in the product function example we have vi =

vi−n ∗ vi−1 = ψi(vi−n,vi−1): given the value of the two multiplicands, vi is independent

from the rest of the intermediate variables. Furthermore, it may be the case that

operations may be carried out in parallel4, as the computation of one does not affect

the other. The computational graph offers a way to represent the evaluation of a

function that concisely captures these two aspects. We can represent f by a directed

acyclic graph G f = (V f ,E f ) where the nodes V f = {vi}
l
i=1−n play the role of input, output

and intermediate variables. The edges encode the relationship of direct dependence,

denoted with the symbol ≺:

(v j,vi) ∈ E f ⇔ vi ≺ v j ⇔ vi = ψi(v j, . . . ).

The direct dependence relation ≺ constitute a partial ordering of the set of indices.

Its transitive closure, denoted ≺∗, represents the “usual” mathematical computational

dependence. For instance, it is most often the case that y j ≺
∗ xi but y j ⊀ xi, i.e. the

outputs depend, but not directly, from the input (as typically the input is transformed

by a series of operations which define f ). The roots of the graph are the independent

variables while the leafs are the dependents. We refer to Figure A.1 for a concrete

4 Sadly, this does not apply to the product example, as computing vi requires knowing vi−1.
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example of a computational graph for a toy function.

The second row of Table A.1 can then be replaced with the more concise notation

vi = ψi(v j) j≺i = ψi(ui) for i = 1, . . . , l

where, from now on, we will use the notation ui = (v j) j≺i ∈ R
ni .

A.2.3 System of equations

The evaluation procedure can also be thought of as system of n + l equations

0 = E(x,v) = (vi−ψi(ui))l
i=1−n (A.2)

where the first n components are simply the input assignment functions ψi(ui) = xi,

for i = 1−n, . . . ,0. This representation mode is particularly useful when deriving the

reverse mode algorithmic differentiation using the Lagrangian formulation. The square

Jacobian matrix of E w.r.t. the intermediate variables v has, by construction, the block

structure

DvE(x,v) =


I 0 0

C1 I−C2 0

C3 C4 I

 = I−C,

where the strictly lower triangular matrix C = (ci j) contains the partial derivatives of

the elemental functions: ci j = ∂v jψi. Thus, DvE(x,v) is (globally) non-singular, and

by the implicit function theorem the variables v are uniquely determined as functions

of x. In particular this is true for the last m components of v, and we have that

y = (vi)l
i=l−m = f (x), as expected.

A.2.4 State Transformations

The evaluation procedure for f may be also represented with a dynamical system

where the state is given by the vector of auxiliary variables v = (vi)l
i=1−n ∈ R

n+l. We

introduce the state transitions

Φi : Rn+l→ Rn+l [Φi(v)] j =

 ψi(ui) if j = i

v j if j , i
(A.3)
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v−2 = x0

v−1 = x1

v0 = x2

v1 = πv−1

v2 =

sinv1

v3 = −v2
1

v4 =

cosv1

v5 = ev3

v6 =

v0 ∗ v4

v7 =

v−2 + v2

v8 =

v5 + v6

Figure A.1: Example of a computational graph for the function of Example A.2.1

In other words, the maps (A.3) perform the i-th elemental operation on the i-th compo-

nent of the state vector, and leave everything else unvaried. Denoting by

Pn =

(
In 0 · · · 0

)
∈ Rn×n+l and Qm ∈

(
0 · · · 0 Im

)
∈ Rm×n+l

the projections of the first n and last m components, then evaluating f is equivalent to

compute

y = f (x) = Qm
(
Φl ◦Φl−1 ◦ · · · ◦Φ1(Pᵀn x)

)
(A.4)

Example A.2.1. We illustrate the computational graph and relative evaluation proce-

dure for a a simple bivariate function given by

f : R3→ R2; f (x0, x1, x2) =

 x0 + sin(πx1)

x2 cos(πx1) + e−(πx1)2

 . (A.5)

Assuming that our elemental library includes the polynomial core, trigonometric

functions and exponentiation, we sketch in Figure A.1 a possible computational graph,

organized from left to right5. Operations on nodes at the same horizontal coordinate

may be carried out in parallel. The relevant evaluation procedure is listed in Table A.2.

5 Some operations such as constant assignment (of π) and negative square at node v3 have been
merged to improve readability.
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Table A.2: Evaluation procedure for the function in Equation (A.5).

v−2 = x0
v−1 = x1
v0 = x0

v1 = π∗ v−1
v2 = sinv1
v3 = −v2

1
v4 = cosv1

v5 = ev3

v6 = v0 + v4
v7 = v−2 + v2
v8 = v5 + v6

y1 = v7
y2 = v8

A.3 Forward and Reverse Mode Differentiation
Clearly, in order for f ∈ Span(Ψ) to be differentiable, we require every elemental in Ψ

to be d ≥ 1 times continuously differentiable on the interior of its domain. Since f is

writable as composition of functions in the library, we have that

f ∈ Span(Ψ) ∈Cd

on the interior of its domain (which, however, may be in principle empty).

The forward and reverse modes offer efficient and truncation-errors free ways to

compute

ẏ = D f (x) ẋ ∈ Rm×1 (A.6)

and

x̄ᵀ = ȳᵀD f (x) ∈ R1×n, (A.7)

respectively, where6 D f :X ⊆Rn→Rm×n is the differential operator and D f (x) ∈Rm×n

denotes the Jacobian of f at x. The column vector ẋ is called seed direction, while the

row vector ȳ is named weight functional7. These vectors should be thought of as input

of the two procedures that will compute Equations (A.6) and (A.7), respectively.

Notably, when f is a curve (i.e. n = 1), and ẋ = 1, ẏ represents the tangent, or

6 We follow Euler’s notation for Jacobians, which we may also write as Dx f , ∂x f or ∂ f
∂x to underline

the variable with respect to which we differentiate. The dotted notation – reminiscent of the Newton’s
notation – is used for tangents as it reminds to velocities of curves, while the barred notation is, in a
way, “proprietary” of the reverse-mode differentiation literature.

7Technically, the barred quantities ȳ and x̄ should belong to the dual space of Rm and Rn, i.e. the
space of linear functions between with range in R. For simplicity, since we are dealing only with real
spaces, here we identify them with their canonical representation as vectors.
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velocity, of the curve, forward mode algorithmic differentiation allows one to compute

D f in only a single pass. Conversely, when f is a scalar function (i.e. m = 1), with

the choice of ȳ = 1, x̄ corresponds to the gradient ∇ f , which can be computed in only

one pass using reverse mode differentiation. When full Jacobians are needed, forward

or reverse procedures should be called multiple times with the corresponding seeds

or weight functionals set to the relevant canonical base vectors. Neither of the two

modes compute D f (x) explicitly, at any point during execution – and in this fact lies

the ground for the computational saving that is achievable using these differentiation

techniques.

A.3.1 Forward mode differentiation

The forward mode algorithmic differentiation, also known as tangent propagation,

computes ẏ = D f (x)ẋ and may be essentially described as the systematic application

of the chain rule to the evaluation procedure of f . Geometrically, it can be viewed as

computing the first derivative of f along a smooth curve γ : R→ X ⊂ Rn such that

γ(0) = x and γ′(0) = ẋ. By the chain rule one has

ẏ =
∂

∂t
f (γ(t))|t=0 = D f (γ(0))γ′(0) = D f (x)ẋ.

The tangent of the curve γ′ is propagated from the domain space to the codomain by

the mapping

ḟ : X ×Rn→ Rm, ḟ (x, ẋ) = D f (x)ẋ = ẏ, (A.8)

as represented in Figure A.2.

Table A.1 may be augmented in a straightforward way to implement the mapping

(A.8) by introducing a set of dotted intermediate variables (v̇i)l
i=1−n and the dotted

elementals

ψ̇i : Xi×R
ni → R; ψ̇i(ui, u̇i) = Dψ(ui)u̇i =

∑
j≺i

∂ψ

∂v j
(ui)v̇ j (A.9)

where u̇i = (v j) j≺i. The resulting procedure is listed in Table A.3 which implements

(A.8). One derivative statement follow each of the evaluation statements. If there
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Figure A.2: A geometrical representation of the tangent propagation (forward mode algorith-
mic differentiation) for the toy function of Example A.2.1.

Table A.3: General forward mode (tangent) procedure.

(vi−n, v̇i−n) = (xi, ẋi) i = 1, . . . ,n Assign inputs and seed directions

(vi, v̇i) =
(
ψi(ui), ψ̇i(ui, u̇i)

)
i = 1, . . . , l Comp. intermediate var. and tangents

(yi, ẏi) = (vl−i, v̇l−1) i = 1, . . . ,m Copy output and tangent

is no memory overwriting, the operations in the tangent space may be computed

simultaneously with those to evaluate the function itself.

A.3.2 Reverse mode differentiation

If tangent propagation enables the efficient computation of velocities of curves, reverse

mode algorithmic differentiation, or gradient propagation, provides a scheme for

computing normals or cotangents of hyper-surfaces (which are gradients, if the function

is real-valued) at a cost that is only a fixed multiple of that of evaluating f itself. Similar

to forward mode (but note the different dimensionalities), reverse mode algorithmic

differentiation can be thought of as an implementation of the mapping

f̄ : X ×Rm→ Rn, f̄ (x, ȳ) = ȳᵀD f (x) = x̄. (A.10)

The function f̄ propagates the normals to hyper-surfaces {y ∈ Y : ȳᵀy = c} in the

codomain space to normals of the hyper-surfaces {x ∈ X : ȳᵀF(x) = c} in the domain

space, for c ∈ R; Figure A.3 offers a visualization for the toy example A.2.1; where,

differently from forward propagation, the mapping (A.10) has been represented with

an arrow from the output space to the input space since f must be evaluated before f̄ .
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Figure A.3: Geometric visualization of the gradient propagation with reverse mode for the toy
function A.2.1.

There are various routes to derive reverse mode gradient computation scheme.

A first, more informal, way involves tracking backward the dependencies on the

computational graph and computing sensitivities with respect to the inputs of each of

the nodes. A second one, which we consider here, revolves around the representation

of f as a dynamical system and the fundamental equation

x̄ᵀ ẋ = ȳᵀẏ. (A.11)

A third way, which makes use of the representation as system of equations and follows

a Lagrangian derivation, will be explored in details in Section 5.4.1 in the context of

gradient-based hyperparameter optimization and meta-learning.

Differentiating the state transformation (A.3)

y = f (x) = Qm
(
Φl ◦Φl−1 ◦ · · · ◦Φ1(Pᵀn x)

)
,

w.r.t. x and multiplying by ẋ yields, by the chain rule, the expression

ẏ = QmAlAl−1 · · ·A1Pᵀ︸                 ︷︷                 ︸
=D f (x)

ẋ,

where the matrices Ai = DΦi(x) ∈ Rn+l×n+l. Now, left multiplying by ȳᵀ one has

ȳᵀẏ = ȳᵀQmAlAl−1 · · ·A1Pᵀn ẋ, ⇒ x̄ = PnAᵀ1 · · ·A
ᵀ
l−1Aᵀl Qᵀmȳ (A.12)
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by transposing and by (A.11). Mirroring the dotted intermediate variable of the

forward mode, we introduce now the barred intermediate variables v̄ = (v̄i)l
i=1−n, called

adjoint variables, which will incrementally keep track of the reverse mode computation

of the cotangent. The last m components of v̄ are initialized in the right-most side

of (A.12) by the projection Qᵀmȳ as v̄l−m+i = ȳi for i ∈ [m] and successively backward

multiplied by the matrices Aᵀi until the first n components of v̄ are computed and then

assigned to x̄ through the projection Pn. The computational savings derive from the

particular structure of the matrices Ai. Indeed, by inspecting the transposed differential

of the state transformations, one may see that

Aᵀi = In+l + (∇ψi(ui)− en+i)e
ᵀ
n+i

where, with a little abuse of notation, we embed the gradient of the elementals ψi

into Rn+l by letting [∇ψi(ui)] j = ∂v jψi(ui) for j ≺ i and 0 otherwise. This means that

computing

Aᵀi v̄ = v̄ + (∇ψi(ui)− en+i)v̄i

only requires vector operations. In other words, at each iteration, v̄ j is incremented by

∂v jψi(ui)v̄i if j ≺ i, it is set to 0 if i = j and left unchanged otherwise.

The resulting procedure is listed in Table (A.4), where, similarly to (A.9), we

introduce the barred (adjoint) elementals

ψ̄i : Xi ⊆ R
ni ×R→ Rni ψi(ui, v̄i) = ∇ψi(ui)v̄i, (A.13)

and ūi is the collection of the adjoints (v̄ j) j≺i . Comparing with the forward mode

in Table A.3, reverse mode does not allows for parallel evaluation of the function

and the cotangent, as the adjoint variables must be computed backward once all the

intermediate and output values are known. Furthermore, the values of the intermediate

variables stored in the evaluation trace should be, in principle, maintained and not

overwritten since they may be needed in the reverse pass (5th line in the Table). As we

shall see in the next section, this has an impact on the space complexity of this scheme.
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Table A.4: General reverse mode (gradient propagation) procedure; incremental formulation.

vi−n = xi i = 1, . . . ,n Assign inputs

vi = ψi(ui) i = 1, . . . , l Compute intermediate variables

yi = vl−i i = 1, . . . ,m Copy output

v̄l−m+i = ȳi i = 1, . . . ,m Initialize adjoints

ūi = ūi + ψ̄i(ui, v̄i) i = l−m, . . . ,1−n Increment adjoints

x̄i = v̄i−n i = 1, . . . ,n Copy cotangent (gradient)

Table (A.4) corresponds to the incremental version of the reverse mode. The

instructions in the second last row may be swapped with the non-incremental formula-

tion

v̄ j =
∑
i� j

∂ψi(ui)
∂v j

v̄i

that arises from a Lagrangian derivation and does not requires cycling through the

elementals’ inputs. The incremental version is however more widespread in practice,

being easier to implement. In fact, the non-incremental version would require having

access to a graph of backward dependencies (encoding and storing the relation i � j)

which is not always easy to obtain automatically.

A.4 Computational Complexity Analysis

We provide in the following the main results concerning relative time and space

complexity of forward and reverse mode algorithmic differentiation, in terms of the

cost of computing the original function f , under an idealized time and space model.

We consider a simple memory complexity measure which we denote mem. Regard-

ing the temporal complexity model we consider a vector value complexity measure,

denoted work, designed to take into account the different costs of basic operations. For

the sake of concreteness we consider four components: memory access and storage

(moves), addition and subtraction (adds), multiplication (mults) and (unary) non-

linear operations (nlops), which may include reciprocal, exponentials, trigonometrics,
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and so on. Thus, the computational cost of a task is given by the vector

work(task( f )) =



moves

adds

mults

nlops


∈ N4 (A.14)

that counts the number of basic operations needed to execute it. Specifically we

are interested in the tasks of evaluating functions, tangents and gradients with the

procedures outlined in the previous sections and deriving temporal complexity bounds

for the last two. As these tasks require (sequentially) evaluating each elemental once

we shall assume that

work(task( f )) ≤
l∑

i=1

work(task′(ψi)), (A.15)

with the task of evaluating f at a point being strictly additive:

work( f ) =

l∑
i=1

work(ψi). (A.16)

In (A.15), task′ denotes the series of operations to be performed on each elemental

which, in principle, might differ from the original task. This is e.g. the case of

gradient propagation, where task′ involves also storing and retrieving additional

values in the forward and backward passes.

To simplify the analysis and allow for constructive proofs, we consider in the

following an essential elemental library, slightly larger than the polynomial core, which

mirrors the temporal complexity model (A.14) and contains assignment to constants

(c), addition/subtraction, multiplication, and a “generic” non-linearity (σ):

Ψ = {c,±,∗,σ}. (A.17)

For example multiplication, as binary operation, requires 2 fetches, a mults operation

and then a store, thus resulting in work(∗) = (3,0,1,0).
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In light of (A.16), The temporal complexity of evaluating f , work( f ), can be

easily expressed as linear combination of elemental complexities

work( f ) = Weval| f | =



1 3 3 2

0 1 0 0

0 0 1 0

0 0 0 1





l1

l2

l3

l4


(A.18)

where | f | may be called the elemental frequency vector of f . Likewise, (A.15) implies

that there exist a matrix Wtask such that work(task( f )) ≤ Wtask| f |, where the ≤

is intended component-wise. The columns of Weval and Wtask contain the cost of

evaluating ψ and executing task’(ψ), respectively, for each ψ ∈ Ψ.

The runtime is defined defined as a linear combination of work:

time(task( f )) = ωᵀwork(task( f )), (A.19)

where ω is a system-dependent vector which may measure the clock-cycles needed for

each of the four operations. By taking adds as unit, we may assume that

ω = (µ,1,π,ν)ᵀ such that µ ≥ π ≥ 1 and ν ≥ 2π. (A.20)

(Sub)-additiveness transfers to the the runtime and implies that

time(task( f ))
time( f )

≤

∑l
i=1time(task(ψi))∑l

i=1time(ψi)
≤ sup
ψ∈Ψ

time(task(ψi))
time(ψi)

(A.21)

where the supremum becomes a maximum for the case of Ψ defined in (A.17).

We are now ready to state the fundamental complexity bounds for the two main

modes of algorithm differentiation.

Proposition A.4.1 (Complexity of forward mode differentiation). For every x ∈ X

and seed direction ẋ ∈ Rn, executing the procedure listed in Table A.3 has a runtime

time([ f (x), ḟ (x, ẋ)]) ≤ ωtangtime( f ) with ωtang ∈ [2,5/2] (A.22)
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and requires memory

mem([ f (x), ḟ (x, ẋ)]) ≤ 2mem( f ). (A.23)

Proposition A.4.2 (Complexity of reverse mode differentiation). For every x ∈ X and

weight functional ȳ ∈ Rm, executing the procedure listed in Table A.4 has a runtime

time([ f (x), f̄ (x, ȳ)]) ≤ ωgradtime( f ) with ωtang ∈ [3,4] (A.24)

and requires memory

mem([ f (x), f̄ (x, ȳ)]) ∼ l. (A.25)

where l ∈ N is the number of elementals that compose f .

Thus, with the simple temporal complexity model described above, forward mode

differentiation may be faster than reverse mode, as we will verify in practice for the

case of computing hypergradient (cf. Figure 6.1) – the exact values of ωtang and ωgrad

depending on the system dependent constants of the basic operation (A.20). In the

remainder of the section we give a sketch of the proof of (A.22) and refer the reader to

[Griewank and Walther, 2008] for the rest.

The proof revolves around the concept of bounded complexity on Span(Ψ). For

finite Ψ and sub-additive tasks there exists a square matrix Ctask (that depends on the

particular library) such that

work(task′(ψ)) ≤Ctaskwork(ψ) for all ψ ∈ Ψ. (A.26)

This means that the temporal complexity of executing an additive task (on the ele-

mentals) can grow at most linearly with respect to the complexity of evaluating the

elementals themselves. The property of bounded complexity carries over to functions

in Span(Ψ), since

work(task( f )) ≤
l∑

i=1

work(task′(ψi))

≤

l∑
i=1

Ctaskwork(ψi) = Ctaskwork( f )

(A.27)
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Concerning the runtime one can show by using (A.21) that (A.27) implies

time(task( f )) ≤ ωtasktime( f ).

This proves the first part of the bound (A.22). The coefficient ωtask is computed as

ωtask = max
ψ∈Ψ

ωᵀwork(task′(ψ))
ωᵀwork(ψ)

≤
∥∥∥diag(ω)Ctaskdiag(ω)−1

∥∥∥
1 .

which, for our case, becomes simply

ωtask = max
1≤i≤4

ωᵀWtaskei

ωᵀWevalei
(A.28)

where Wtask is the matrix in (A.18). In order to prove the second prat of the statement

(A.22) we only need to compute Wtask, with task = tang, which means computing

the measures work([ψi, ψ̇i]) for the four elementals in our library.

1. For the constant assignment C, one has ψ̇c = 0 which requires one additional

store w.r.t. evaluating ψc.

2. For addition and subtraction, given bidimensional inputs and tangents u, u̇, one

has v̇ = ψ̇±(u, u̇) = u̇1± u̇2, requiring two (scalar) fetches for u̇, an adds operation

and a store of the result v̇. Therefore work([ψ±, ψ̇±]) = 2work(ψ±).

3. Similarly to the previous case v̇ = ψ̇∗(u, u̇) = u̇1 ∗ u2 + u1 ∗ u̇2 which result in

work(ψ̇∗) = (5,1,2,0)ᵀ. Note, however, that fetching u is already executed when

evaluating ψ∗, thus work([ψ∗, ψ̇∗]) = (6,1,3,0)ᵀ.

4. Finally, differentiating nonlinearities requires work([ψσ, ψ̇σ]) = (4,0,1,2) since,

for scalar input and tangent, v̇ = ψ̇σ(u, u̇) = ψ′(u)∗ u̇. As in the previous case the

cost of fetching u is counted as one moves, as the operation is carried out when

evaluating the nonlinearity.
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In summary, the task complexity matrix is

Wtang =



2 6 6 4

0 2 1 0

0 0 2 1

0 0 0 2


which can be plugged in (A.28) together with Weval from (A.18), leading to the

interval estimation ωtang ∈ [2,5/2] when taking into account the conditions for the

runtime cost coefficients ω given in (A.20).



Appendix B

Cross-validation and Bilevel

Programming

We note that the (approximate) bilevel programming framework easily accommodates

also estimations of the generalization error generated by a cross-validation procedures.

We describe here the case of K-fold cross-validation, which includes also leave-one-out

cross validation.

Let D = {(xi,yi)}ni=1 be the set of available data; K-fold cross validation, with

K ∈ {1,2, . . . ,N} consists in partitioning D in K subsets {D j}Kj=1 and fit as many models

gw j on training data D j
tr =

⋃
i, j Di. The models are then evaluated on D j

val = D j.

Denoting by w = (w j)K
j=1 the vector of stacked weights, the K-fold cross validation

error is given by

E(w,λ) =
1
K

K∑
j=1

E j(w j,λ)

where E j(w j,λ) =
∑

(x,y)∈D j `(gw j(x),y). E can be treated as the outer objective in the

bilevel framework, while the inner objective Lλ may be given by the sum of regularized

empirical errors over each D j
tr for the K models. Under this perspective, a K-fold

cross-validation procedure closely resemble the bilevel problem for ML formulated in

Sec. 5.2.2, where, in this case, the meta-distribution collapses on the data (ground)

distribution and the episodes are sampled from the same dataset of points.

By following the procedure outlined in Sec. 5.3 we can approximate the minimiza-

tion of Lλ with T steps of an optimization dynamics and compute the hypergradient of
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fT (λ) = 1
K
∑

j E j(w j
T ,λ) by training the K models and proceed with either forward or

reverse differentiation. The models may be fitted sequentially, in parallel or stochasti-

cally. Specifically, in this last case, one can repeatedly sample one fold at a time (or

possibly a mini-batch of folds) and compute a stochastic hypergradient that can be

used in a SGD procedure in order to minimize fT . At last, we note that similar ideas

for leave-one out cross-validation error are developed in [Beirami et al., 2017], where

the hypergradient of an approximation of the outer objective is computed by means of

the implicit function theorem.



Appendix C

Proofs of Results in Chapter 6

In this appendix chapter we provide proofs of the results of Chapter 6.

C.1 Approximation Proprieties of Iterative Approach
Proof of Theorem 6.2.1. Since Λ is compact, it follows from Weierstrass theorem

that a sufficient condition for the existence of minimizers is that f is continuous.

Thus, let λ̄ ∈ Λ and let (λn)n∈N be a sequence in Λ such that λn→ λ̄. We prove that

f (λn) = E(w(λn),λn)→ E(w(λ̄), λ̄) = f (λ̄). Since (w(λn))n∈N is bounded, there exists

a subsequence (wkn)n∈N such that wkn → w̄ for some w̄ ∈ Rd. Now, since λkn → λ̄ and

the map (w,λ) 7→ Lλ(w) is jointly continuous, we have

∀w ∈ Rd, Lλ̄(w̄) = lim
n

Lλkn
(wkn) ≤ lim

n
Lλkn

(w) = Lλ̄(w).

Therefore, w̄ is a minimizer of Lλ̄ and hence w̄ = w(λ̄). This prove that (wλn)n∈N is a

bounded sequence having a unique cluster point. Hence (wλn)n∈N is convergence to

its unique cluster point, which is w(λ̄). Finally, since (w(λn),λn)→ (w(λ̄), λ̄) and E is

jointly continuous, we have E(w(λn),λn)→ E(w(λ̄), λ̄) and the statement follows. �

We recall a fundamental fact concerning the stability of minima and minimizers

in optimization problems [Dontchev and Zolezzi, 1993]. We provide the proof for

completeness.

Theorem C.1.1 (Convergence). Let ϕT and ϕ be lower semicontinuous functions

defined on a compact set Λ. Suppose that ϕT converges uniformly to ϕ on Λ as
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T → +∞. Then

(a) infϕT → infϕ,

(b) argminϕT → argminϕ, meaning that, for every (λT )T∈N such that λT ∈

argminϕT , we have that:

- (λT )T∈N admits a convergent subsequence;

- for every subsequence (λKT )T∈N such that λKT → λ̄, we have λ̄ ∈ argminϕ.

Proof. Let (λT )T∈N be a sequence in Λ such that, for every T ∈ N, λT ∈ argminϕT .

We prove that

1) (λT )T∈N admits a convergent subsequence.

2) for every subsequence (λKT )T∈N such that λKT → λ̄, we have λ̄ ∈ argminϕ and

ϕKT (λKT )→ infϕ.

3) infϕT → infϕ.

The first point follows from the fact that Λ is compact.

Concerning the second point, let (λKT )T∈N be a subsequence such that λKT → λ̄. Since

ϕKT converge uniformly to ϕ, we have

|ϕKT (λKT )−ϕ(λKT )| ≤ sup
λ∈Λ
|ϕKT (λ)−ϕ(λ)| → 0.

Therefore, using also the continuity of ϕ, we have

∀λ ∈ Λ, ϕ(λ̄) = lim
T
ϕ(λKT ) = lim

T
ϕKT (λKT ) ≤ lim

T
ϕKT (λ) = ϕ(λ).

So, λ̄ ∈ argminϕ and ϕ(λ̄) = limT ϕKT (λKT ) ≤ infϕ = ϕ(λ̄), that is, limT ϕKT (λKT ) =

infϕ.

Finally, as regards the last point, we proceed by contradiction. If (ϕT (λT ))T∈N does

not convergce to inf f , then there exists an ε > 0 and a subsequence (ϕKT (λKT ))T∈N

such that

|ϕKT (λKT )− infϕ| ≥ ε, ∀T ∈ N (C.1)
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Now, let (λK(1)
T

) be a convergent subsequence of (λKT )T∈N. Suppose that λK(1)
T
→ λ̄.

Clearly (λK(1)
T

) is also a subsequence of (λT )T∈N. Then, it follows from point 2)

above that ϕK(1)
T

(λK(1)
T

)→ infϕ. This latter finding together with equation (C.1) gives a

contradiction. �

Proof of Theorem 6.2.2. Since E(·,λ) is uniformly Lipschitz continuous, there

exists ν > 0 such that for every T ∈ N and every λ ∈ Λ

| fT (λ)− f (λ)| = |E(wT (λ),λ)−E(w(λ),λ)|

≤ ν‖wT (λ)−w(λ)‖.

It follows from assumption (vi) that fT (λ) converges to f (λ) uniformly on Λ as

T → +∞. Then the statement follows from Theorem C.1.1 �

C.2 Error Bounds for Hypergradient Approximation

In the following technical lemma we give two results which are fundamental for the

proofs of the bounds for the iterative and fixed-point approach. The first result is

standard (see [Polyak, 1987b], Lemma 1, Section 2.2).

Lemma C.2.1. Let (uk)k∈N and (τk)k∈N be two sequences of real non-negative numbers

and let q ∈ [0,∞). Suppose that, for every k ∈ N, with k ≥ 1,

uk ≤ quk−1 +τk−1. (C.2)

Then, the following hold.

1. If (τk)k∈N ≡ τ, then uk ≤ qku0 +τ(1−qk)/(1−q).

2. If, for every integer k ≥ 1, τk ≤ qτk−1, then uk ≤ qku0 + kqk−1τ0.
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Proof. Let k ∈ N, with k ≥ 1. Then, we have

uk ≤ quk−1 +τk−1

≤ q(quk−2 +τk−2) +τk−1

= q2uk−2 + (τk−1 + qτk−2)
...

≤ qku0 +

k−1∑
i=0

qiτk−1−i. (C.3)

Point 1: Suppose that (τk)k∈N ≡ τ. Then it follows from (C.3) that uk ≤ qku0 +

τ
∑k−1

i=0 qi = qku0 +τ(1−qk)/(1−q).

Point 2: Suppose that, for every integer k ≥ 1, τk ≤ qτk−1. Then, for every integers

k, i with i ≤ k−1, we have τk−1−i ≤ qk−1−iτ0, which substituted into (C.3) yields

uk ≤ qku0 +

k−1∑
i=0

qiqk−1−iτ0

and Point 2 follows. �

Proof of Proposition 6.3.3. We assume that (wT (λ))T∈N is defined through the

iteration

wT (λ) = Φ(wt−1(λ),λ) (C.4)

starting from w0(λ) = 0 ∈ Rd. Let t ∈ N with t ≥ 1. Then, the mapping λ 7→ wt(λ) is

differentiable since it is a composition of differentiable functions and ∂λw(λ) exists for

the implicit function theorem. Differentiating the lower-level equation in (6.6) and the

recursive equation in (C.4), we get

∂λwt(λ) = ∂wΦ(wt−1(λ),λ)∂λwt−1(λ) +∂λΦ(wt−1(λ),λ)

∂λw(λ) = ∂wΦ(w(λ),λ)∂λw(λ) +∂λΦ(w(λ),λ). (C.5)
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Therefore, we get

‖∂λwt(λ)−∂λw(λ)‖ ≤ ‖∂wΦ(wt−1(λ),λ)−∂wΦ(w(λ),λ)‖‖∂λw(λ)‖

+ ‖∂wΦ(wt−1(λ),λ)‖‖∂λwt−1(λ)−∂λw(λ)‖

+ ‖∂λΦ(wt−1(λ),λ)−∂λΦ(w(λ),λ)‖

and hence, we derive from Assumption C, Equations (6.7) and 6.9 and Lemmas 6.3.2,

that

‖∂λwt(λ)−∂λw(λ)‖ ≤(ν2,λ+ ν1,λνΦ,λ/(1−ρλ))‖wt−1(λ)−w(λ)‖

+ρλ ‖∂λwt−1(λ)−∂λw(λ)‖ .

Then, setting p := ν2,λ + ν1,λνΦ,λ/(1 − ρλ), ∆t := ‖wt(λ)−w(λ)‖ and ∆′t :=

‖∂λwt(λ)−∂λw(λ)‖, we get

∆t ≤ ρλ∆t−1 and ∆′t ≤ ρλ∆
′
t−1 + p∆t−1.

Therefore, it follows from Lemma C.2.1 Point 2 (with ut = ∆′t and τt = p∆t) that

∆′t ≤ ρ
t
λ∆
′
0 + tρt−1

λ p∆0 ≤
νΦ,λ

1−ρλ
ρt
λ+ pDλtρt−1

λ ,

where in the last inequality we used the bounds (see (C.5) and Lemmas 6.3.2 and 6.9)

∆0 = ‖w(λ)−w0(λ)‖ = ‖w(λ)‖ ≤ Dλ

∆′0 = ‖∂λw(λ)−∂λw0(λ)‖ = ‖∂λw(λ)‖ ≤
νΦ,λ

1−ρλ
. (C.6)

Recalling the definitions of p and ∆′t , (6.10) follows. �
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Proof of Theorem 6.3.4. It follows from the definitions of fT and f in Equation

(6.6), respectively, and the chain rule for differentiation that

∇ fT (λ) = ∇λE(wt(λ),λ) +∂λwt(λ)>∇wE(wt(λ),λ)

∇ f (λ) = ∇λE(w(λ),λ) +∂λw(λ)>∇wE(w(λ),λ).

Therefore,

‖∇ fT (λ)−∇ f (λ)‖ ≤‖∇λE(wt(λ),λ)−∇λE(w(λ),λ)‖

+‖∂λw(λ)‖‖∇wE(wt(λ),λ)−∇wE(w(λ),λ)‖

+‖∂λwt(λ)−∂λw(λ)‖‖∇wE(wt(λ),λ)‖ .

Now, we note that ‖wt(λ)‖ ≤ ‖wt(λ)−w(λ)‖+ ‖w(λ)‖ ≤ (ρK
λ + 1)‖w(λ)‖ ≤ 2Dλ. There-

fore, it follows from Assumption C.2, Lemma 6.3.2 and Equation 6.9 that

‖∇ fT (λ)−∇ f (λ)‖ ≤
(
ξ2,λ+ ξ1,λνΦ,λ/(1−ρλ)

)
ρK
λ Dλ+ νE,λ ‖∂λw(λ)−∂λwt(λ)‖ ,

where we used ‖wt(λ)−w(λ)‖ ≤ ρt
λ ‖w0(λ)−w(λ)‖ = ρt

λ ‖w(λ)‖ ≤ ρt
λDλ. Then, (6.12)

follows from Proposition 6.3.3. �

Fixed-point Method. The following two propositions allow us to derive the iteration

complexity bound for the fixed-point method.

Proposition C.2.2. Suppose that (6.13) holds. Let λ ∈Λ,T ∈N. Let uT,0(λ) = 0 ∈Rd×n

and for every integer k ≥ 1,

uT,K(λ) = ∂wΦ(wT (λ),λ)uT,K−1(λ) +∂λΦ(wT (λ),λ).

Then, for every k ∈ N,

uT,K(λ)>∇wE(wT (λ),λ) = ∂λΦ(wT (λ),λ)>qT,K(λ). (C.7)

Proof. We set Y = ∂1Φ(wT (λ),λ) ∈ Rd×d, C = ∂λΦ(wT (λ),λ) ∈ Rd×n, and b =
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∇1E(wT (λ),λ) ∈ Rd. Let K ∈ N, K ≥ 1. Then,

uT,K(λ) = YuT,K−1(λ) +C

= Y2uT,K−2(λ) + (1 + Y)C
...

= YKuT,0(λ) +

K−1∑
i=0

Y iC =

K−1∑
i=0

Y iC.

In the same way, it follows from (6.13) that qT,K(λ) = Y>vT,K−1(λ) + b =
∑K−1

i=0 (Y>)ib.

Therefore, we have

uT,K(λ)>b = C>
K−1∑

i=0

Y i


>

b = C>
K−1∑
s=i

(Y>)ib = C>qT,K(λ)

and the statement follows. �

Using Proposition C.2.2, for the fixed-point method we can write

∇ fT,K(λ)=∇2E(wT (λ),λ) + uT,K(λ)>∇1E(wT (λ),λ). (C.8)

Then a result similar to Proposition 6.3.3 can be derived.

Proposition C.2.3. Suppose that Assumption C holds. Let λ ∈ Λ and (uT,K(λ))K∈N be

defined as in Proposition C.2.2. Then, for every T,K ∈ N, with T ≥ 1,

∥∥∥uT,K(λ)−∂λw(λ)
∥∥∥ ≤ (

ν2,λ+ ν1,λ
νΦ,λ

(1−ρλ)

)
Dλ(1−ρK

λ )
1−ρλ

ρλ(T ) +
νΦ,λ

1−ρλ
ρK
λ .

Proof. Let T,K ∈ N, with T,K ≥ 1. Recalling that

uT,K(λ) = ∂wΦ(wT (λ),λ)uT,K−1(λ) +∂λΦ(wT (λ),λ)

∂λw(λ) = ∂wΦ(w(λ),λ)∂λw(λ) +∂λΦ(w(λ),λ)
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we can bound the norm of the difference as follows

‖uT,K(λ)−∂λw(λ)‖ ≤‖∂wΦ(wT (λ),λ)−∂wΦ(w(λ),λ)‖‖∂λw(λ)‖

+‖∂wΦ(wT (λ),λ)‖
∥∥∥uT,K−1(λ)−∂λw(λ)

∥∥∥
+‖∂λΦ(wT (λ),λ)−∂λΦ(w(λ),λ)‖

≤(ν2,λ+ ν1,λνΦ,λ/(1−ρλ))‖wT (λ)−w(λ)‖

+ρλ
∥∥∥uT,K−1(λ)−∂λw(λ)

∥∥∥ ,
which gives a recursive inequality. Then, setting p := ν2,λ + ν1,λνΦ,λ/(1−ρλ), ∆T :=

‖wT (λ)−w(λ)‖ and ∆̂′k :=
∥∥∥uT,K(λ)−∂λw(λ)

∥∥∥, we have ∆̂′k ≤ ρλ∆̂
′
K−1 + p∆T . Therefore,

it follows from Lemma C.2.11 with τ = p∆T , that

∆̂′k ≤ ρ
K
λ ∆̂′0 + p∆T

1−ρK
λ

1−ρλ
≤

νΦ,λ

1−ρλ
ρK
λ + pDλρλ(T )

1−ρK
λ

1−ρλ
.

The statement follows. �

Proof of Theorem 6.3.5. Let T ∈ N with T ≥ 1 and let (uT,K(λ))k∈N be defined as

in Proposition C.2.2. Then, the difference between exact and approximate gradients

can be bound as follows

‖∇ fT,K(λ)−∇ f (λ)‖ ≤‖∇λE(wT (λ),λ)−∇λE(w(λ),λ)‖

+‖∂λw(λ)‖‖∇wE(wT (λ),λ)−∇wE(w(λ),λ)‖

+
∥∥∥∂λw(λ)−uT,K(λ)

∥∥∥‖∇wE(wT (λ),λ)‖ .

Now note that ‖wt(λ)‖ ≤ ‖wt(λ)−w(λ)‖+ ‖w(λ)‖ ≤ (ρλ(T ) + 1)‖w(λ)‖ ≤ 2Dλ. Then it

follows from the assumptions and Lemmas 6.9 and 6.3.2 that

‖∇ fT,K(λ)−∇ f (λ)‖ ≤
(
ξ2,λ+

ξ1,λνΦ,λ

1−ρλ

)
ρλ(T )Dλ+ νE,λ

∥∥∥uT,K(λ)−∂λw(λ)
∥∥∥ ,

and the last term can be bounded using Proposition C.2.3. �



Appendix D

On the Straight-through Estimator

LDS borrows from an heuristic solution proposed before [Bengio et al., 2013], at

the cost of having biased (hyper)gradient estimates. Given a function h(z), where

z ∼ Pθ is a discrete random variable whose distribution depends on parameters θ, the

STE is a technique that consists in computing a biased estimator of the gradient of

`(θ) = Ez∼Pθh(z) by using an inexact, but smooth, reparameterization for z, together

with the application of an approximate version of (9.10).

When z is Bernoulli distributed, such reparameterization can be simply chosen1

as z = sp(θ,ε) = θ in which case the STE boils down to

ĝ(z) =
∂h(z)
∂z

, z ∼ Pθ. (D.1)

If h is a smooth function of z, Eq. D.1 is well defined and yields, in general, non-zero

quantities. This operation may be viewed under different angles: e.g. as “setting”
∂z
∂θ to the identity, or, as “ignoring” the hard thresholds in the backward pass. ĝ is a

random variable that depends, again, from θ. The true gradient ∇`(θ) can be estimated

by drawing one or more samples from ĝ.

As an illustrative example, consider the very simple case where h(z) = (az−b)2/2

for scalars a and b, with z ∼ Ber(θ), θ ∈ [0,1]. The gradient (derivative) of E [h] w.r.T.

1An exact, but discontinuous reparameterization for z ∼Ber(θ) is, for instance, z = sp(θ,ε) = H(θ−ε)
for ε ∼ U(0,1), where H is the Heaviside function and U is the (continuous) uniform distribution.
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θ can be easily computed as

∂

∂θ
Ez∼Ber(θ) [h(z)] = =

∂

∂θ

[
θ

(a−b)2

2
+ (1− θ)

(−b)2

2

]
=

a2

2
−ab,

whereas the corresponding straight-through estimator, which is a random variable, is

given by

ĝ(z) =
∂h(z)
∂z

= (az−b)a, z ∼ Ber(θ).

One has, however, that

Ez∼Ber(θ)
[
ĝ(z)

]
= θ(a−b)a + (1− θ)(−ab) = θa2−ab,

resulting in ĝ to be biased for θ , 1
2 .



Bibliography

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew

Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
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Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso. Learning constrained task similarities in

graph-regularized multi-task learning. Regularization, Optimization, Kernels, and Support Vector

Machines, page 103, 2014.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

Chuan-sheng Foo, Chuong B. Do, and Andrew Y. Ng. Efficient multiple hyperparameter learning for

log-linear models. In Advances in neural information processing systems, pages 377–384, 2008.

Martin Ford. Architects of Intelligence: The truth about AI from the people building it. Packt Publishing

Ltd, 2018.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse

gradient-based hyperparameter optimization. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel

programming for hyperparameter optimization and meta-learning. In International Conference on

Machine Learning, pages 1563–1572, 2018a.

Luca Franceschi, Riccardo Grazzi, Massimiliano Pontil, Saverio Salzo, and Paolo Frasconi. Far-HO: A

bilevel programming package for hyperparameter optimization and meta-learning. AutoML workshop

at International Conference on Machine Learning, 2018b.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for

graph neural networks. In International Conference on Machine Learning, pages 1972–1982, 2019.

Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive processing of

data structures. IEEE transactions on Neural Networks, 9(5):768–786, 1998.

Jordan Frecon, Saverio Salzo, and Massimiliano Pontil. Bilevel learning of the group lasso structure. In

Advances in Neural Information Processing Systems 31, pages 8311–8321, 2018.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Springer

series in statistics New York, 2001.

Frauke Friedrichs and Christian Igel. Evolutionary tuning of multiple svm parameters. Neurocomputing,

64:107–117, 2005.

Nicolo Fusi, Rishit Sheth, and Melih Elibol. Probabilistic matrix factorization for automated machine

learning. In Advances in Neural Information Processing Systems, pages 3348–3357, 2018.



BIBLIOGRAPHY 292

Alex Gammerman, Volodya Vovk, and Vladimir Vapnik. Learning by transduction. In Proceedings of

the Fourteenth conference on Uncertainty in artificial intelligence, pages 148–155, 1998.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. International Conference

on Learning Representations, 2018.

John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathon G. Fiscus, and David S. Pallett. DARPA

TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1. NASA

STI/Recon technical report, 93, 1993.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points: online stochastic

gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

Lise Getoor and Ben Taskar. Introduction to statistical relational learning, volume 1. MIT press

Cambridge, 2007.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural

message passing for quantum chemistry. International Conference on Machine Learning, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics

(AIStat), pages 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In

Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages

315–323, 2011.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley.

Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD

international conference on knowledge discovery and data mining, pages 1487–1495, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Diana F Gordon and Marie Desjardins. Evaluation and selection of biases in machine learning. Machine

learning, 20(1-2):5–22, 1995.

Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. arXiv preprint

arXiv:1905.10108, 2019.



BIBLIOGRAPHY 293

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation through

the void: Optimizing control variates for black-box gradient estimation. International Conference on

Learning Representations, 2018.

Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with multidimensional recurrent

neural networks. In Advances in neural information processing systems, pages 545–552, 2009.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,

2014.

Riccardo Grazzi, Luca Franceschi, , Massimilano Pontil, and Saverio Salzo. On the iteration complexity

of hypergradient computation. In International Conference on Machine Learning, 2020.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier,

Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-learning. arXiv

preprint arXiv:1910.01727, 2019.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algorith-

mic Differentiation, volume 105. Siam, 2008.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.

International Conference on Machine Learning, 2019.
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