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Abstract

Dementia is an umbrella term that covers a number of neurodegenerative syn-
dromes featuring gradual disturbance of various cognitive functions that are severe
enough to interfere with tasks of daily life. The diagnosis of dementia occurs fre-
quently when pathological changes have been developing for years, symptoms of
cognitive impairment are evident and the quality of life of the patients has already
been deteriorated significantly. Although brain imaging and fluid biomarkers allow the
monitoring of disease progression in vivo, they are expensive, invasive and not nec-
essarily diagnostic in isolation. Recent studies suggest that eye-tracking technology
is an innovative tool that holds promise for accelerating early detection of the disease,
as well as, supporting the development of strategies that minimise impairment during
every day activities. However, the optimal methods for quantitative evaluation of ocu-
lomotor behaviour during complex and naturalistic tasks in dementia have yet to be
determined.

This thesis investigates the development of computational tools and techniques
to analyse eye movements of dementia patients and healthy controls under natural-
istic and less constrained scenarios to identify novel digital oculomotor biomarkers.
Three key contributions are made. First, the evaluation of the role of environment
during navigation in patients with typical Alzheimer disease and Posterior Cortical
Atrophy compared to a control group using a combination of eye movement and ego-
centric video analysis. Secondly, the development of a novel method of extracting
salient features directly from the raw eye-tracking data of a mixed sample of dementia
patients during a novel instruction-less cognitive test to detect oculomotor biomark-
ers of dementia-related cognitive dysfunction. Third, the application of unsupervised
anomaly detection techniques for visualisation of oculomotor anomalies during vari-
ous cognitive tasks.

The work presented in this thesis furthers our understanding of dementia-related
oculomotor dysfunction and gives future research direction for the development of
computerised cognitive tests and ecological interventions.



Impact Statement

This thesis is intended to stimulate a paradigm-shift in attitudes toward the neu-
ropsychology of dementia. As the prevalence of dementia continues to rise rapidly,
there is a pressing need for greater insight into the nature and timing of the earliest
subtle changes in cognition, and how these changes can best be measured. This
study focuses on the investigation of oculomotor biomarkers using eye-tracking tech-
nology during navigation in a stimulated real-world environment and free-viewing of
images as part of a novel instruction-less cognitive assessment. Data provided from
the Computational PLatform for Assessment of Cognition In Dementia (C-PLACID)
and Seing What They See (SWTS) programmes were analysed that aim to enhance
the cognitive assessment of people with dementia and advance our understanding of
the functional impact of dementia-related visual impairment respectively. The true im-
pact of this study constitutes the empirically demonstrated potential of computational
techniques and sensing systems to enable a change in approach toward addressing
the current problems which impose a number of limitations.

The results in this study present evidence that firstly brief instruction-less eye-
tracking tests can detect abnormal oculomotor biomarkers and secondly, represen-
tation learning techniques can extract more discriminative features than standard
handcrafted eye-tracking metrics from an instruction-less eye-tracking cognitive test.
These findings have implications for the patients, clinicians and researchers. They
open the window to shorter, more personalised neuropsychological tests for patients
with different educational and cultural backgrounds. They also offer the potential for
remote testing, which can be of great value in studies seeking to screen or recruit
large numbers of people. The novel eye-tracking cognitive measures demonstrate
the importance of augmenting cognitive assessments with cognitively-relevant physi-
ological data and might offer future potential as outcomes in clinical trials.

The results support that representation learning and anomaly detection techniques
are suitable computational methods for neuropsychological problems that can be used
by researchers for similar problems of interest. Additionally, these methods provide
informative insights into individual abnormal cases that could be drivers of improve-
ment and enrichment in neuropsychological testing and experiment design. Finally,
the multi-modal approaches used in this thesis combining eye-movement with ego-
centric videos and motion capture data can be applied in future home-based interven-
tions in dementia and other diseases in order to improve independence and quality of
life of individuals and their caregivers.

The broader implications that derive from the attempt of this work to develop better
cognitive tests, constitute the reduction of healthcare costs for dementia by improving
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diagnosis, particularly in the earliest stages of disease when some established tests
lack sensitivity and particularly for rarer types of dementia. Improved cognitive as-
sessments will also play a critical role in validating and monitoring the effectiveness of
novel therapies; secondary benefits of this contribution will include boosting the econ-
omy by expediting the process of bringing those treatments to market, and relieving
suffering of individuals with dementia and their carers.
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Chapter 1

Introduction

1.1 Dementia, Alzheimer’s disease and subtypes

Dementia is a syndrome describing the progressive deterioration of cognitive and
functional abilities. It is not a specific disorder or disease, but a description for a
group of symptoms associated with the gradual disturbance of cognitive functions
including memory, reasoning and judgement among others, that are severe enough
to interfere with tasks of daily life, and not associated with loss of consciousness [88].
Deterioration in emotional control, behaviour and motivation is commonly observed
along with cognitive impairment [139]. Dementia is an issue of enormous medical and
socioeconomic significance particularly in societies with rapidly aging populations;
35.6 million people are currently living with dementia worldwide and this number is
expected to double by 2030 and more than triple by 2050 [139].

The most prevalent dementia is typical Alzheimer’s disease (tAD) and itis a chronic
progressive neurodegenerative disorder that usually affects people over 65 years of
age [5]. While characterised by gradual and progressive episodic memory impair-
ment (the memory of autobiographical events), it is also linked with other cognitive
impairments such as executive dysfunction (planning, self-control, focus), language
and complex visual processing deficits [173, 116]. Amyloid protein deposits and in-
tracellular neurofibrillary tangles are the hallmark pathological changes progressively
invading the cerebral cortex, accompanied by global brain atrophy with particular bur-
den on the temporal lobes and medial temporal structures [5]. Despite typical mem-
ory led AD being the most well recognised form of AD, atypical AD presentations
exist characterised by predominant visual, language, behavioural/executive or motor
presentations, with relatively spared memory.

Posterior Cortical Atrophy (PCA) is a usually young-onset (diagnosed in people
under the age of 65) neurodegenerative syndrome characterised by a progressive
decline primarily in visuoperceptual and visuospatial processing and dysfunction that
depends on parietal occipital and occipitotemporal regions of the brain [41]. PCA is
most often caused by Alzheimer’s disease pathology (often being referred to as the
visual variant of AD), although other underlying causes can include dementia with
Lewy bodies, corticobasal degeneration or prion disease [41]. Common symptoms
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include difficulties in tasks that require locating, interpreting and reaching items under
guidance and other everyday activities such as reading, writing, spelling and driving
[43]. It is distinguished from more common amnestic presentations by the fact that
usually memory and language remain relatively preserved at least in earlier stages of
the disease course [43].

Frontotemporal dementia (FTD) is the second most common young-onset demen-
tia. It is clinically characterised by gradual changes in behaviour including social dys-
function, apathy, executive dysfunction in planning, organisation, problem solving and
language difficulties. Memory, visual perception and spatial skills are usually relatively
well preserved [152]. The main subtypes of FTD are the following distinct syndromes:
the behavioural variant of FTD (bvFTD) and the language variants, semantic variant
(svPPA) and progressive non-fluent variant of primary progressive aphasia (nfvPPA)
[152]. In behavioural-variant FTD, brain atrophy is observed in symmetrical frontal
and anterior temporal lobe regions and striking changes are reflected in behaviour
and personality including apathy, lack of insight, reduced empathy and altered prefer-
ence for food [152]. In semantic variants, the areas of the brain affected first are in the
front of the left temporal lobe, dealing with verbal semantic memory which indicates
reduced single-word comprehension and impaired object knowledge but preserved
fluent speech abilities [100]. In contrast to svPPA, nfvPPA presents with a nonfluent
expressive language disturbance characterised with phonological errors and agram-
matism as the atrophy is present in the left frontal regions [152].

In recent years, logopenic variant primary progressive aphasia (IvPPA), another
language related syndrome, has been described and is commonly associated with
Alzheimer’s disease characterised by difficulty finding words in spontaneous speech
and repeating sentences and phrases. However, people living with IvPPA do not
present impairment in understanding words, as in the case of svPPA. Preliminary
studies suggest predominant left temporo-parietal involvement in this disorder [19].

The phenotypic variability across different forms of dementia is a well-known chal-
lenge in both clinical practice and research [178]. This heterogeneity has led to in-
consistencies in diagnosis and poor support management. Greater understanding
and awareness for the specific syndromes will enable accurate diagnosis, facilitate
non-pharmacological disease modifying treatment trials and provide new insights into
degenerative diseases.

1.1.1 Biomarkers and diagnosis

Standard diagnostic practice of dementia involves the evaluation of a person for
whom there has been expressed some concern related to a change in cognitive func-
tion or behaviour. It starts with the assessment of the clinical history of the individual,
followed by a neurological and cognitive examination and an interview with a relative
[40]. Before concluding to a dementia diagnosis, different examinations are made to
reject the potential existence of other physical or mental diseases that contribute to
cognitive impairment (e.g. depression). A neuroradiological examination with Com-
puted Tomography (CT) or Magnetic Resonance Imaging (MRI) is recently recom-
mended to exclude conditions with similar clinical phenotype, mistaken for dementia,
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Figure 1.1: The celebral cortex of one hemisphere of a human brain is divided into
four lobes: a. parietal: handles information from our senses about space, perception,
size and integration of sensory and motor functions, b. temporal: deals with mem-
ory (including recognition of faces/objects) and language, c. occipital: deals with vi-
sual information, d. frontal: involved in movement, decision-making, problem-solving,
and planning. Source: https://commons.wikimedia.org/wiki/File:Lobes_of _the_
brain_NL.svg

but different brain structure causes such as subdural haematoma. Finally, if a deficit
is detected in more than two cognitive domains at an extent that impairs functional ac-
tivities and additionally, the symptoms progress over time, then a dementia diagnosis
is defined [40].

The diagnosis of dementia occurs frequently when pathological changes have
been developing for years, symptoms of cognitive impairment are evident and the
functional independence of the patients has already been deteriorated significantly
[75, 124]. Based on our current understanding, most subtypes of dementia develop
over years, starting from an asymptomatic period where pathological changes accu-
mulate in the absence of clinical manifestations, through subtle cognitive, behavioural
or personality impairments and finally multiple cognitive domains are affected, as well
as, noticeable decline appears in executive functions [40]. An early diagnosis of the
disease is believed to offer the opportunity to reduce psychiatric symptoms associ-
ated with the disease (e.g. agitation), improve cognition through pharmacological
(e.g. Donepezil) and non-pharmacological (e.g. cognitive stimulation therapy) inter-
ventions and help caregivers to carefully plan and adjust their lives [48]. Moreover,
previous research supports that at least Alzheimer’s disease pathological changes
are present up to 20 years before its evident manifestations [11]. Presymptomatic
diagnosis, therefore, might be feasible with the investigation of different sensitive and
appropriate biomarkers related to the different types of dementia [11].

A biomarker is a “characteristic that can be objectively measured and evaluated
as an indicator of normal biological or pathogenic processes or pharmacological re-
sponses to a therapeutic intervention” [2]. Reproducibility, availability and direct re-
flection of the disease process are considered to be some characteristics of the ideal
biomarkers for dementia [2]. At present, the biomarkers that have been developed to
monitor neuronal atrophy of the brain in vivo and are being used in clinic can be di-
vided into imaging modalities and cerebrospinal fluid (CSF) measures. Blood-based
or urine-based biomarkers are recommended although are not available for routine
clinical use. However these methods have advanced our understanding of the dis-
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ease, they are expensive, require exposure to radiation (PET imaging) and are inva-
sive [105]. There is also considerable overlap in the clinical and pathological presenta-
tions in different forms of dementias, and indeed differences in clinical presentation in
patients with the same underlying pathology (e.g. memory problems in typical AD vs
visual problems in PCA). Some researchers, therefore, discourage diagnosis based
solely on neuropathological criteria [151].

1.1.2 Cognitive Testing

Cognitive tests are used to measure changes in cognitive functioning due to neu-
rodegenerative diseases [38]. The purpose of cognitive assessment is to eliminate
the use of subjective and self-reported measures and rather provide an objective,
quick to administer and minimally invasive evaluation of cognitive functions. Patients
are typically assessed on a variety of tasks, each of which examines different cog-
nitive domains such as attention, memory, language, and executive functions [10].
Behavioural observations and qualitative evaluation could also provide additional in-
formation for a patient’s cognitive profile [10].

Cognitive scores are not meaningful in their raw form because performance vari-
ations are influenced by demographic factors [10]. A frame of reference is therefore
required for impairment to be defined. Normative data are typically obtained from a
large sample of cognitive healthy individuals appropriately stratified by demographics,
reflecting healthy performance on a specific test. They are also adjusted for relevant
demographic factors including age, education and sex [15]. Individuals performance
is compared and contrasted to this reference group. These scores determine the
cut-off points that define the level of performance associated with impairment. In clin-
ical practice, impaired performance is conventionally defined as below the 5th or 1st
percentile based on normative data [51].

The list of neuropsychological tests used in clinical and research settings is rich
and diverse. The Folstein Mini-Mental State Examination (MMSE) is the most widely
used test. The MMSE assessment consists of 11 —items that evaluate the cognitive
function of the following domains: attention and orientation, memory, registration, re-
call, calculation, language and ability to draw a complex polygon [67]. The administra-
tion time is approximately seven minutes for a person with dementia and five minutes
for cognitive normal individuals. Apart from MMSE, there are more than 40 tests for
dementia including the Addenbrooke’s Cognitive Examination Revised (ACE-R), the
Mini-Cog test, the General Practitioner Assessment of Cognition (GPCOG) and the
Montreal Cognitive Assessment (MoCA).

Due to the diverse properties of the batteries, different cognitive tests are used for
dementia screening, staging or evaluating longitudinal change. Screening tools are
used to support early diagnosis of the disease detecting subtle changes prior to clear
impairment in daily functions and they are not intended to be diagnostic [40]. The
Mini-Mental State Examination14 (MMSE), Montreal Cognitive Assessment (MoCA)
and Addenbrooke Cognitive Examination (ACE) are commonly used for this purpose.
The MoCA having an increased focus in multiple cognitive domains might outperform
MMSE in detecting early cognitive changes [166]. On the other hand, MMSE and
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ADAS-COG are more sensitive for determining the stage of the disease (e.g. mild or
sever AD) and the longitudinal decline during the symptomatic phase.

1.2 Research Problem

Given the defining characteristics of most dementia syndromes are primarily cog-
nitive in nature, assessment of a person’s cognition is a vital component of both diag-
nostic services and research investigations, and is the most common outcome mea-
sure by which the effectiveness of potential pharmaceutical and non-pharmaceutical
therapies is judged. Standardised paper-and-pencil cognitive assessment tools are a
key component of the screening and diagnostic process, but have a number of limita-
tions:

1. Psychometrics: Accurate assessments are long and associated with participant
fatigue and stress, but brief tests often elicit floor and ceiling effects owing to a
lack of dynamic range [122]. Particularly in longitudinal studies, variation in dis-
ease severity means that reduced variability in participant’s scores is common.
Time and patient effort is wasted completing items that are too easy or hard to
contribute to ascertainment of an individual’s exact level of functioning.

2. Administration: Practice effects and complex task demands mask longitudinal
change and precise performance in certain cognitive domains. Practice effects
in sequential assessments expressed in the form of reduced anxiety or improved
performance due to test familiarity may hide evidence of cognitive decline or in-
stability. Moreover, many tasks purport to measure one skill (e.g. Cogstate
spatial problem solving) but are confounded by task demands that utilise other
skills (e.g. complex verbal test instructions that aphasic participants fail to un-
derstand).

3. Quantification: Current routine tests fail to capture critical, sensitive aspects of
task performance that alternative performance measures might be able to record
(e.g. eye-tracking). For instance, many tasks capture accuracy data but miss
other sensitive performance measures such as vocal reaction time and other
measures reflecting higher-order cognition in dementia. In addition, cognitive
profiles of individuals which characterise cognitive abilities across several cog-
nitive domains and tasks are usually described qualitatively because test prop-
erties and normative samples differ across tasks. Therefore, there is need for
quantitated scores across tasks that capture different aspects of performance
and are not biased by assessor’s subjectivity.

4. Statistical analysis: Cognition has traditionally been assessed using standard-
ised test batteries administered to large numbers of people, providing informa-
tion on average performance in broad domains (e.g. information-processing
speed, memory, executive function). Two major drawbacks with this approach
are: statistics based on accuracy or response latency are highly reductive, over-
looking informative sources of variability (e.g. effort levels, response strate-
gies). Individual differences are subsumed into descriptive summary statistics
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(e.g. group means), which fail to account for heterogeneity in task performance.
Moreover, performance across cognitive tasks is not independent. General fac-
tors (e.g. disease severity) and collateral deficits (e.g. language problems lim-
iting performance on a verbal memory test) mean a multivariate rather than
(mass) univariate approach is required.

5. Ecological validity: Certain domains (e.g. social cognition) and complex cogni-
tive functions (e.g. navigation) are poorly assessed via traditional paper-and-
pencil tests. Frontotemporal dementia patients exhibit profoundly abnormal be-
haviours in social settings (e.g. swearing; inappropriate comments; touching
children; loss of empathy) but it is currently impossible to recreate those scenar-
ios in the normal clinical or research environment. Static photo or picture-based
tests of skills such as emotion recognition often lack ecological validity. Even
more dynamic video-based tests (e.g. TASIT2) lack personal engagement and
require advanced linguistic skills (e.g. accurate labelling of emotional states).

As the prevalence of these devastating conditions continues to rise rapidly, there
is pressing need for greater insight into the nature and timing of the earliest subtle
changes in cognition, and how these changes can best be measured. Recent stud-
ies suggest that eye-tracking-based cognitive assessment might ameliorate some of
the existing problems as it enables a brief and quantitative evaluation of cognitive
functions [128, 21, 138]. Eye-tracking provides fine-grained information regarding
oculomotor information (pupil dilation and gaze) that provides additional information
about the association between brain and behaviour and has been used to uncover
eye movement abnormalities in different dementia syndromes [120]. It has also the
potential to alleviate some problems of standard paper-and-pencil cognitive tests re-
lated to administration, quantification and ecological validity. Novel eye-tracking tests
might be a window to a robust, natural and less complex and linguistically demanding
evaluation of cognition.

Most previous studies in the context of dementia have used eye-tracking to look
at basic oculomotor functions and checked if those have a relationship to disease
[154, 66, 25]. A small number of studies has shown that eye-tracking metrics can
be used as an outcome measure for evaluation of particular higher-order cognitive
functions (e.g. memory, attention) [44, 145, 62, 138]. Although the eye-tracking mea-
sures from these studies capture critical aspects of task performance, the tests are
still susceptible to the need for instructing patients on how to complete the tasks,
which is prone to mistakes caused by misunderstandings, language difficulties or pa-
tients at the later stages of the disease. Additionally, although several investigations
have explored dementia oculomotor biomarkers in controlled oculomotor tasks, more
experiments are necessary under naturalistic scenarios. Greater understanding of
eye movement abnormalities during Activities of Daily Living (ADL) might support the
detection of early signs of dementia [11].

Identification of oculomotor biomarkers in dementia is still in its infancy. Apart from
the need for more well-designed studies and cognitive tests for individuals with dif-
ferent disease severity and type that investigate more ecologically valid behaviour,
the complexity of eye-tracking data constitutes a major challenge that should be
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addressed. The transition from simple experimental tasks (e.g. anti-saccadic, fix-
ation stability - for example, in continuously fixating a dot) to more complex ones
requires the establishment of appropriate methods to analyse the dense and dynami-
cally changing time series of eye movements. While complex computational methods
are used for analysis of neuroimaging data in dementia research to detect changes
in brain atrophy, only a few studies have attempted to apply similar methods to inves-
tigate cognitive changes manifested through eye-tracking datasets. So far the eye-
tracking metrics used were solely based on the selection and intuition of neuropsy-
chologists that were spending their time creating areas of interests one-by-one and
visualising individual trials of experiments with hundred of trials to identify abnormal
behaviour. Here | tackle the problem of identifying dementia oculomotor biomarkers
by harnessing computational methods and artificial intelligent algorithms.

1.2.1 Problem Statement

My thesis will address the following problem:

* |dentifying novel less-constrained and ecological valid tests designed to aug-
ment dementia cognitive assessment with oculomotor measurements has been
investigated in a limited extent.

1.3 Thesis contributions

This thesis investigates the development of computational tools and techniques
that enable the identification of novel digital oculomotor biomarkers of dementia un-
der naturalistic and less constrained scenarios. With a multidisciplinary focus, it at-
tempts to bridge the gap between computer science and neuropsychology developing
algorithms that have an impact on our understanding of oculomotor abnormalities of
dementia patients relative to controls.

Three contributions were made in this thesis:

1. Investigating the effects of visual environment on navigation in Alzheimer’s
disease and Posterior Cortical Atrophy

This project attempts to address two core limitations of cognitive tests, namely,
the lack of ecological validity and quantification of performance measures (de-
scribed previously). Previous studies and design guidelines suggest that the
physical environment may play a major role in mitigating dementia’s functional
impairment [113]. In this work, we combine eye movement and egocentric video
analysis to investigate patients with PCA and tAD compared to a control group
performing a real-world visual search task while navigating a controlled environ-
ment. The analysis of eye movement patterns in naturalistic settings is achieved
through integrating gaze locations and scene information provided by egocentric
videos. Computational attention modelling techniques with saliency maps of the
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point of view (POV) frames used in [155] are combined with eye-tracking met-
rics and gait/orientation measures to investigate potential differences between
groups in:

» the extent to which environmental features distinctive in colour or orienta-
tion predicted fixation position.

* the particularly salient environmental features within POV frames.

+ the relationship between saliency at fixation and maximum saliency of POV
frames and completion time of the tasks (general measure of functional
performance).

* inindividual cases by visualisation of trials including information for position
in the room, orientation of the head and saliency measures.

Publications:

Yong, K.X., McCarthy, I.D., Poole, T., Ocal, D., Suzuki, A., Suzuki, T., Men-
goudi, K., Papadosifos, N., Boampong, D., Tyler, N. and Frost, C., 2020. Effects
of lighting variability on locomotion in posterior cortical atrophy. Alzheimer’s &
Dementia: Translational Research & Clinical Interventions, 6(1), p.e12077.

Mengoudi, K., Firth, N.C., Suzuki, A., McCarthy, |., Suzuki, T., Ocal, D., Pa-
padosifos, N.N., Tyler, N., Boampong, D., Alexander, D.C. and Crutch, S.J.,
2018. P17662: Effects of visual enviroment on fixation and gait parameters
in Alzheimer’s disease and posterior cortical atrophy. Alzheimer’'s & Dementia,
14(7S_Part_11), pp.P596-P596.

. Augmenting Dementia Cognitive Assessment with Instruction-less Eye-
tracking Tests

This project attempts to improve the administration and quantification of per-
formance measures of cognitive tests, introducing novel instruction-less eye-
tracking tests that reduce or eliminate task demands’. In this work, we introduce
a novel way of detecting abnormal behaviour and automatically extracting salient
features from a novel instruction-less eye-tracking cognitive test administered to
well-characterised patients with a variety of dementia diagnoses and healthy
controls. In more detail, the following contributions are made:

» We introduce a novel method for extracting features from instruction-less
eye-tracking cognitive tests. Our approach is based on self-supervised
representation learning where, by training initially a deep neural network
to solve a pretext task using well-defined available labels (e.g. cognitive
activity recognition in healthy individuals), the network encodes high-level
semantic information which is useful for solving other problems of interest
(e.g. dementia classification).

* Inspired by previous work in explainable Al, we use the Layer-wise Rele-
vance Propagation (LRP) technique to describe our network’s decisions in
differentiating between the distinct cognitive activities.
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» The extent to which eye-tracking features of dementia patients deviate from
healthy behaviour is then explored, followed by a comparison between self-
supervised and handcrafted representations on discriminating between par-
ticipants with and without dementia.

 Our findings not only reveal novel self-supervised learning features that
are more sensitive than handcrafted features in detecting performance dif-
ferences between participants with and without dementia across a variety
of tasks, but also validate that instruction-less eye-tracking tests can detect
oculomotor biomarkers of dementia-related cognitive dysfunction.

 This work highlights the contribution of self-supervised representation learn-
ing techniques in biomedical applications where the small number of pa-
tients and the complexity of the setting can be a challenge using state-of-
the-art feature extraction methods.

Publications:

Mengoudi, K., Ravi, D., Yong, K.X., Primativo, S., Pavisic, |.M., Brotherhood, E.,
Lu, K., Schott, J.M., Crutch, S.J. and Alexander, D.C., 2020. Augmenting De-
mentia Cognitive Assessment With Instruction-Less Eye-Tracking Tests. IEEE
journal of biomedical and health informatics, 24(11), pp.3066-3075.

Mengoudi, K., Ravi, D., Yong, K.X., Primativo, S., Pavisic, |.M., Brotherhood,
E., Lu, K., Schott, J.M., Crutch, S.J. and Alexander, D.C., 2020. Augmenting
Dementia Cognitive Assessment With Instruction-Less Eye-Tracking Tests: A
Machine Learning Approach for Detecting Abnormal Oculomotor Biomarkers.
Alzheimer’s & Dementia.

. Visualising oculomotor abnormalities based on unsupervised anomaly de-
tection

This project builds on the previous work on instruction-less tests and provides
a data-driven way of detecting individual cases of abnormal trials during free-
viewing of scenes for further clinical relevance and interpretation from neuropsy-
chologists. The following contributions are made:

» We propose an unsupervised framework for anomaly detection in sequen-
tial data, based on representation learning using convolutional autoen-
coders. This method is well-suited to our problem of biomarker discovery
when small number of patients data are only available since the models
require only controls data to be trained.

» Selection and visualisation of abnormal trials based on the model’s ranked
anomaly scores for different dementia types and cognitive tasks.

» This work establishes a starting-point for getting further insights into eye
movement abnormalities which are of greatest importance given the load
of available data and the instruction-less nature of the tasks that render
very difficult the prediction of anomalies even from experts.
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1.3.1 Structure of this thesis

To identify ecological valid and less-constrained eye-tracking tests for dementia
cognitive assessment, data from two novel neuropsychological experiments were ex-
plored in this thesis. The two batteries included participants (controls and dementia
patients) navigating in a naturalistic setting and viewing images in a computer screen
without any instructions given, respectively.

| firstly investigated in Chapter 3 oculomotor abnormalities during activities of daily
living (i.e. navigation in a naturalistic setting using a mobile eye-tracker) which poses
the challenge of integrating multi-modal datasets of egocentric videos and low fre-
quency eye movement time series. To address the limitations of this work including
the crude accuracy of the eye-tracker, a high frequency eye-tracker was used in the
study presented in Chapter 4 under a more-constrained but ecological setting (view-
ing naturalistic images without following any instructions). Analytic approaches that
identify properties of the complex eye-tracking time series that discriminate between
the dementia and controls group were explored. Finally, in Chapter 5 | approached
the task of identifying digital oculomotor biomarkers in instruction-less tests as an
anomaly detection problem by defining impairment based on normative eye-tracking
data in line with standard neuropsychological practices of defining abnormality.

The thesis has the following structure:

» Chapter 2 contains firstly background information about eye-tracking in demen-
tia research in terms of evidence from existing biomarkers and data analysis
techniques used. Then, as this thesis proposes the analysis of eye-tracking data
as time series, the general processing pipeline used for biosignals is presented,
followed by a more detailed description about the feature extraction, prediction
and anomaly detection phases.

» Chapter 3 contains the first project on evaluation of clinical/environmental factors
relating to function in naturalistic settings.

» Chapter 4 contains the second project on self-supervised representation learn-
ing of eye movement data from instruction-less cognitive tests.

» Chapter 5 contains the last project on visualisations of oculomotor abnormalities
based on an unsupervised learning technique.

» Chapter 6 presents a summary of the work in this thesis, and proposes direc-
tions for further research.
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Background

Various eye-tracking approaches have been developed to study the oculomotor
profile of people with neurodegenerative conditions. Among them there is a clear dis-
tinction between studies that characterise basic oculomotor function in people with
dementia with no explicit reference to cognition (e.g. do people with AD have more
saccadic intrusions than healthy age-matched controls) and those which use eye po-
sition as an outcome measure in a cognitive task designed to measure a particular
ability. The aim of this thesis is to push the state of the art in the latter line of re-
search in order to identify novel cognitive tests based on oculomotor measurements.
To this aim, in this chapter, we firstly provide a brief overview of the basics of eye-
tracking technology and a summary of the oculomotor deficits previously reported in
Alzheimer’s disease, frontotemporal dementia and posterior cortical atrophy. Sec-
ondly, we survey the methods previously used to extract eye-tracking metrics. These
can be grouped into three categories: statistics over the pupil dilation or the gaze sig-
nal, machine learning methods and computational visual saliency models applied on
static stimuli images and egocentric videos. Then, as this thesis investigates the de-
velopment of computational tools to identify novel digital oculomotor biomarkers from
eye-tracking data, we review eye-tracking studies that used machine learning tech-
niques and then describe computational methods for time-series feature extraction
in general and provide a comparison between classification and anomaly detection
techniques. This chapter concludes with a description of the machine learning meth-
ods used in the thesis (including a machine learning glossary for neuropsychologists)
and an overview of the identified gaps and limitations from the current state of the art.

2.1 Eye-tracking

One fundamental question that arises when one wants to interpret cognitive and
emotional patterns is what measurable information is required to capture these changes.
Manifestations of human behaviour can be measured using self-report, observed be-
haviour and physiology [185]. The first two methods are considered subjective (moni-
toring/observing questionnaire responses of subjects/patients) and they provide usu-
ally qualitative or quantitate data (e.g. ranks) with limited range of responses. Moni-
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toring of subjects’ physiological responses is considered a more objective route [71].
It is a more reliable neurophysiology-oriented approach based on rich quantitative
data with reduced sources of bias. In clinical application in particular, physiology is of
primary interest as some people living with dementia present difficulties in communi-
cation. Moreover, recent advancements in non-invasive technological sensors have
also contributed to the increase of the user’'s comfort (e.g., reduced size sensors or
wearable computers) and has assured the long-term physical contact with the subject
(better quality real-time data) [71].

Eye-tracking is the process of measuring eye activity estimating the gaze location
(where one looks) and the pupil size over time. It has both a physical (eye movement)
and physiological (eye movement, pupil dilation) component as the latter may not
be consciously controlled. To better understand the eye movement, the anatomy
of the human eye is described here briefly (Figure 2.1). The cornea is a hard and
transparent layer which forms the outer part of the eyeball. The visible parts of the
eye are the sclera (the white part), the iris (coloured part) and the pupil which is
in the centre of the iris and regulates the amount of light coming into the retina by
changing its size [121]. The retina is responsible for the transformation of the visual
stimuli to electric signals which pass to the visual cortex through the optic nerve [158].
Additionally, behind the pupil, the crystallines lens filter the input image by focusing
the image on the retina. The fovea is a special region in the retina that processes
high spatial resolution. Based on this information, the point of regard is calculated as
the intersection of the axis defined as passing through the fovea and the Line of Sight
(visual axis) with the closest object of the scene [121].
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Figure 2.1: The anatomy of the human eye.Image produced with copyright permission
from [121].

Eye movements are divided into two broad categories: a. stabilising movements
that hold the image of an object on the retina and saccades that move the eye around
the visual field bringing different objects to the fovea [158]. The first category consists
of either movements in which the gaze is stable in one location called fixations or
smooth pursuit and nystagmus in which the gaze is not stable (although the eyes look
the same object) because of head or object motion. During fixations, the eyes are
held fairly stable and they last between between 100-1000 ms, with the majority being
between 200-500 ms depending on the task. The second category includes vergence
movements which are involved in rotating the eyes in same or opposite directions and
saccades that are rapid eye movements used to change the location of the fovea and
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thus the position of the fixation.

In Figure 2.2 the time course of a saccadic movement is shown with the corre-
sponding velocity and position profiles. Peak velocity and duration is calculated from
the velocity profile, as the highest velocity during the saccadic movement and the
time to complete the saccadic movement respectively. Saccadic amplitude is another
commonly used measure that defines the size of the saccade (measured in degrees
or mins) by computing the difference in gaze location before and after the initiation
of the saccade [140]. The velocity of saccades rises to a maximum value which is
approximately in the midpoint of the movement and then it drops until the new target
location is reached. Peak accelerations can reach 40000 deg/s? ' and peak veloc-
ities vary between 400 and 600 deg/s, depending on the amplitude of the saccade.
The duration of saccades is influenced by the task and the distance covered [143].
Moreover, previous research has shown that during fixations information is taken in
and during saccades new information is not obtained because the very rapid moving
of the eyes allow only blur to be perceived [143].

Peak Velocity :
— Evye position
e Eye Velocity
A P4
t=0ms Duration

Figure 2.2: Characteristics of the velocity and position profile of a saccade between
two fixations. Source: https://www.liverpool.ac.uk/~pcknox/teaching/Eymovs/
params.htm.

Eye movements can be recorded with electrooculogram (EOG) signals measuring
the corneo-retinal potential occurring between the back and the front of the human
eye. During this method two electrodes are usually placed on either sides of the eye
(left and right or above and below). Another more popular technique is the recording
of eye movement with electronic devices called eye-trackers. The main advance in
the last years in these technologies is the adoption of the video-based eye tracking
technique in contrast to previously commonly used electrooculography, infrared re-
flection, search coil and dual purkinje tracking [121]. Video-based eye trackers have a
camera (or cameras) which take a series of images of the eyes and an infrared illumi-
nator (reflection of a fixed light source) next to the camera. The eye-tracking software
uses image processing algorithms to identify in all the images taken by the cameras
the centre of the pupil and centre of the corneal reflection (CR). Then, mathematical

'One degree of visual angle spans approximately 1 cm on a distance of 57 cm from the viewer’s
eye.
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algorithms are used with the help of a calibration procedure (in which the participants
look at predefined markers) to map the location of the centre of the pupil in images to
screen coordinates in pixels [80]. There are both static and mobile eye-trackers that
facilitate different purposes of research.

In practice, eye-tracking devices provide a 3-dimensional vector of x and y coor-
dinates of gaze and pupil diameter size over the course of the experimental setting.
The amount of the data produced depends on the sampling rate used by the sensor
which can vary between 30 and 1000 Hz. Eye movement events such as fixations
and saccades are identified from raw eye movement data by algorithms, which use
information on spatial dispersion and temporal characteristics of raw data by the eye-
tracking software [149].

2.2 Eye-tracking in Dementia

Recent technological advancement in hardware and software has enabled eye-
tracking systems to collect behavioural information that accurately reflects the strate-
gies people use to inspect visual stimuli and show preference over areas of interest
[156]. As vision is one of the most dominant senses in everyday activities, eye-
tracking technology provides fertile ground for different applications in a variety of
research areas including neuroscience and psychology, psycholinguistics and health-
care, user experience and interaction, education, consumer research and marketing
[95]. In dementia research, eye-tracking has been utilised to quantify cognitive func-
tions and subsequently measure deviations from healthy cognitive profiles.

In this section, we provide the reader with a brief overview firstly of some cogni-
tive functions that have been assessed with eye-tracking technology and secondly a
summary of the oculomotor deficits in Alzheimer’s disease, frontotemporal dementia
and posterior cortical atrophy.

A cognitive domain that has been evaluated to an increasing extent with eye-
tracking technology is executive functions which are cognitive processes associated
with ones ability to initiate, inhibit and plan behaviour. The anti-saccade task is com-
monly used to evaluate this cognitive domain, where the subject is requested to sup-
press saccades towards a specific target and instead generate saccades in the op-
posite direction [78]. There are also suggestions that eye movements reveal different
mnemonic processes that can be evaluated with tests such as the visual paired com-
parison task (VPC). This task involves firstly the presentation of an item by itself and
then after a small delay, the previous presented item is presented side-by-side with a
new item. The amount of time spent exploring each item is the measure of interest
[44]. Additionally, different neuropsychological tests assessing language and social
cognition have been recently adapted to be available for people with verbal and motor
impairment [136]. Visual search tasks (active scan of a visual scene searching for a
particular object among other objects) have been benefitted greatly from the use of
eye-tracking technology, providing a continuous window on the allocation of attention
[137]. The investigation of spatial navigation and the interaction of people with the
surrounding environment has been also facilitated by eye-tracking technology, mainly
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in laboratories, providing information about allocation of perceptual attention [93].

2.2.1 Alzheimer’s Disease

Oculomotor testing in Alzheimer’s disease reveals a range of eye movement ab-
normalities associated with impaired attentional processing, working memory, spatial
disorientation and episodic memory. Saccadic intrusions during fixation are among
the most common oculomotor features reported in tAD patients and are correlated
with disease severity [90]. Saccadic intrusions are described as a pair of horizontal
saccades, made in opposite directions that cause little change in eye position due to
the corrective nature of the second saccade. These unwanted microsaccades sup-
port the presence of gaze-fixation instability in tAD. A number of studies also report
increased latency for visually guided saccades (pro-saccades) [66, 25, 39]. This indi-
cates a delay in the initiation of eye movement towards the presented target compared
to controls. Moreover, in antisaccade tasks, patients with tAD have shown more anti-
saccade errors with fewer corrections than control groups [92, 174].

Apart from prossacade and antisaccade tasks that have been popular due to their
simplicity, research studies have investigated more complex tasks such as reading, vi-
sual search and spatial orientation among others [63, 61, 155]. Findings support that
mild Alzheimer’s disease patients produce shorter outgoing saccades when reading
sentences. A number of studies indicate that patients with tAD present longer re-
action times and number of fixations in visual search and exploration compared to
age-matched older adults [53, 169]. Lagun et al. [101] also found differences be-
tween healthy participants, mild cognitive impairment and AD patients in the memory
recognition related VPC task using a machine learning method.

Notably, eye-tracking measures can offer additional information to augment cog-
nitive assessment in dementia. Nevertheless, attentional dysfunction and disease
severity may interfere with oculomotor control and patients cooperation to perform
the task. A few studies have attempted to evaluate eye movement abnormalities
on scenarios that allow naturalistic assessment. Davis and Ohman [47] investigated
way-finding using VR and eye-tracking to assess whether salient cues make the envi-
ronment more supportive for older adults with tAD. Eye movement during locomotion
has been investigated with case studies by Suzuki et al. [164], but the area remains
unexplored in AD with no studies providing quantitative findings at the group level.

2.2.2 Frontotemporal Dementia

Few eye-tracking findings have been reported for patients diagnosed with FTD. In-
dividuals with FTD show impaired saccadic eye movements with increase pro-saccades
latency and higher rates of antisaccadic errors [72]. Regarding complex cognitive
tasks, Primativo et al. [138] developed a computerised version of the Brixton spa-
tial anticipation task to evaluate executive functions in bvFTD patients. In this test,
the participants must predict the location of a target which is following a specific pat-
tern and thus it measures a person’s ability to detect and follow a rule, as well, be-
ing cognitive flexible in new rules. Findings suggest that bvFTD patients produced
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less correct and more incorrect anticipatory saccades compared with healthy con-
trols and svPPA. Regarding language variants, Faria et al. [56] provided evidence
using eye-tracking that patients with svPPA show uncertainty in matching names to
objects. Finally, some studies evaluated pupillary responses as a biomarker of be-
haviour in language impaired dementias. Findings demonstrate that auditory salience
(approaching ‘looming’ versus withdrawing sounds) differentially affected nfvPPA and
svPPA patients; with looming sounds inducing greater pupil dilation in healthy controls
and svPPA compared to nfvPPA [65].

2.2.3 Posterior Cortical Atrophy

In PCA, the first detailed assessment of oculomotor functions indicates that the
most prominent oculomotor abnormalities were increased time to saccadic target fix-
ation, increased first major saccade latency and decreased saccade amplitude. Also,
the PCA patients show large saccadic intrusions, more saccades and lower pursuit
gain in sinusoidal pursuit, but normal peak velocity of saccades [154]. Another line
of research investigated scene perception in PCA using eye-tracking to evaluate the
relationship between visual saliency (i.e., brightness and contrast in low-level stimulus
features) and fixation location. Case studies from visual agnostic subjects reported
contradictory results with some work demonstrating that saliency is a good predictor
of fixation and some others indicating that top-down processes still have an effect in
scene scanning [110, 68, 69]. In the group level, the only work so far that attempted
to distinguish between top-down and bottom-up influences upon eye movement of
patients with different types of dementia using eye-tracking has been conducted by
Shakespeare et al. [155]. In this work, 7 PCA and 8 tAD patients undertook different
search and non-search tasks when looking at images. Results suggest an increased
tendency of individuals with PCA to fixate at salient locations compared to controls,
however, we need to consider that the experiment just evaluated a narrow topic within
visual search (vegetation within scenes). For further consideration of the role of visual
saliency influencing gaze position and a novel investigation applied in a real-world set-
ting during navigation of PCA and tAD patients, see section 2.3 and Chapter 3.

2.3 Computational Attention Modelling

One perspective in eye-tracking research has been the analysis of eye movement
to estimate the focus of visual attention, or in other words, what attracts human at-
tention. Some approaches suggest the analysis of eye-tracking data using compu-
tational visual saliency models applied on static images and egocentric videos [11].
In dementia research, limited studies have investigated the role of saliency and eye
movements, and to the best of our knowledge there is no research using saliency
maps on egocentric videos [68, 69, 155]. In this section, we will provide the reader
with some definitions about visual attention and computational visual attention mod-
els.
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2.3.0.1 Visual Attention and Eye Movement

Visual attention is directed using two information processing mechanisms. Bottom-
up selection is a fast and stimulus-driven mechanism which involves shifting attention
to conspicuous features based on colour, intensity, orientation and motion (e.g. red
item against a field of green or the sudden movement that could be a predator) [35].
The other mechanism, top-down attentional selection, is slower and is guided by the
observer’s expectations, emotions and intentions such as biasing attention toward
restaurants when we are hungry.

Visual attention is closely associated with eye movements which are considered
as “a proxy for attention” since they constitute a way to get information about it. When
we look at a scene or search for an object, we make saccades during which we do not
obtain any information and fixations which determine the parts of the visual field which
are consciously examined using higher order cortical brain functions [143]. Although
attention is not always directed to the gaze location [130], eye movements are driven
by both bottom-up and top-down attention [167, 176]. In other words, the location of
fixations within a visual scene is not random; it is determined by low-level properties
of the scene and high-level knowledge related to scene structures or items and task
demands [155].

2.3.1 Computational Visual Saliency Models

Computational models have used to measure the likelihood of a location in the
visual field to attract the attention of human observers. Saliency models “predict the
probability distribution of the location of the eye fixations over the image, i.e. saliency
map” [83]. Thus, given an image, a saliency map represents the extend to which the
image regions are distinguiable from each other and the order in which the nervous
system process them [18]. Each pixel of the image is represented by a scalar value
that demonstrates its saliency.

Various models exist which can be grouped into those that model bottom-up atten-
tion and those that try to predict human fixations. It is widely accepted that bottom-up
models are inadequate for modelling visual attention because of their lack of seman-
tics features [83]. Object recognition methods have been incorporated in saliency
models to include top-down attention and they improve prediction accuracy [28]. Re-
cently models have been proposed that can automatically learn features for saliency
prediction using deep neural networks pre-trained for object recognition in datasets
including eye movements of people looking at images [83].

In this thesis, since there is previous evidence that individuals with cognitive im-
pairments rely on bottom-up saliency with inefficient visual search predominantly at-
tributed to posterior parietal damage, we are interested in how low-level visual proper-
ties guide attention and thus we focus on bottom-up models [155, 153]. The seminal
works in this area have been conducted by Koch and Ullman [97] and liti et al [86]
and are based on the feature integration theory [167]. The second paper is one the
most widely used for comparison purposes. In this model the visual features of an
image are computed within three channels based on intensity, orientation and colour
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using linear filtering at several spatial scales and calculating centre-background dif-
ferences. The feature maps are combined into a single “conspicuity map” for each
channel and then they are summed into one saliency map. In addition, an inhibition-
of-return mechanism applies such that attention is not stuck in the most salient image
location but rather is shifted to the next most salient point. An example of this model
applied to three images of bars is displayed in Figure 2.3.

Figure 2.3: Itti et al [86] saliency maps overlapped with the original images that have
regions that immediately pop-out based on orientation, colour and luminance contrast,
from left to the right respectively. Regions coloured with orange are the most salient
areas in the images based on the model.

2.3.1.1 Graph-Based Visual Saliency

Different bottom-up models exist (e.g. [20], [82]) but here we choose to use the
Graph-Based Visual Saliency model [79] due to its improved prediction over other al-
gorithms such as ltti et al [86] and its publicly available toolbox [79]. In addition, it was
used by Shakespeare et al. [155] for the evaluation of low-level influences on scene
perception in people with PCA and tAD and thus enables extension of these previous
investigations involving computerised scenes to real world, naturalistic investigations.

The algorithm consists of three stages: feature maps are extracted from the image
from which activation maps are generated that are normalised and finally combined
to a single saliency map. In more detail, informative locations are extracted from the
image forming feature maps via linear and nonlinear filters in order to convert pixels
to regions. Orientation (e.g. based on Gabor filter), contrast based on luminance
variance in a local neighbourhoods and luminance maps are examples typically used.
Then for each feature map an activation map is computed in which the elements have
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high values if they are considered unusual for its neighbourhood. In order to find “un-
usual” elements a dissimilarity metric is defined. Given a feature map M with (i, j)
and (p, q) locations in M, the dissimilarity of these two elements is defined as

M(i, j)
M(p, q)

The map is converted to a fully-connected graph with the edge weights of nodes
(1,7) to (p,q) proportional to the dissimilarity of the two ends, as well as, to their
relative position on the map:

d((i,7) || (p,q)) = [log

wi((i,5), (p,q)) = d((i,5) || (,q)) - F(i —p,j —p), where
a® + b?

F(a,b) =exp — 5,2

Then a Markov chain is created on the previous graph. A Markov chain is a
stochastic model which describes the transitions (changes) of a system from one
state to another based on some probabilistic rules (transition probabilities). In the
previous graph, the nodes are treated as states and the weights as transition proba-
bilities normalising the weights to 1. Since transitions are more likely to nodes with
higher weights, more mass will be concentrated at nodes dissimilar with their sur-
rounding nodes. This results in an activation map which is normalised following a
similar process and it ultimately creates the output saliency map.

2.4 Eye-tracking using Machine Learning

Recent eye-tracking applications have given rise to a number of studies incorpo-
rating eye-tracking technology with machine learning algorithms (see section 2.9) that
demonstrate the potential of revealing information about human cognition, attention
and learning using eye movements and computational approaches. The majority of
research studies in this area are concerned with two phases; feature extraction and
classification.

Eye movement feature extraction has been extensively studied and it concerns
methods to summarise the large amount of spatiotemporal gaze recordings to un-
derstand cognitive processing [143]. Currently, the most commonly used way of sum-
marising eye-tracking information is the computation of statistics over the pupil dilation
and the gaze signal. The latter is converted to a sequential series of events predom-
inantly consisting of fixations (eyes held stable) and saccades (rapid movements to
change the position of fixations). Because of the high level of variability between and
within-individuals, a single measure such as mean fixation duration per spatial unit
(e.g. a word in a text) is not able alone to capture adequate characteristics of cog-
nitive processes during complex tasks [143]. Thus, a set of features are calculated
on carefully selected spatial areas of interest. Other methods for eye movement fea-
ture extraction include statistics and heatmaps over raw gaze data, similarity indices
of scanpaths, as well as, the so-called n-grams features that encode information for
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the direction and the amplitude of eye movements [81, 23]. In dementia research,
the previous features take the form of abnormalities and are expressed in terms of
latency, accuracy, stability and variability [132].

Regarding classification techniques, the support vector machine (SVM) classifier
(see section 2.9) is the most commonly used method applied to a predefined set of
features extracted from the raw eye-tracking data. It has demonstrated potential in a
variety of eye-tracking applications including detection of cognitive and mood imbal-
ances, learning disorders and performance prediction, among others. For instance,
Lagun et al. [101] implemented a SVM model with eye-tracking metrics including
novelty preference, fixation duration, refixations, saccade orientation, and pupillary
diameter, which discriminates between controls and patients with mild cognitive im-
pairment during a visual paired comparison task with 87% of accuracy, 97% of sen-
sitivity, and 77% of specificity. Rello and Ballestero [144] utilised a SVM binary clas-
sifier for dyslexia detection during reading of texts with different font sizes using a
sample size of 97 subjects (48 of which were diagnosed with dyslexia). Their model
reaches 80.18% accuracy with features including a combination of text characteris-
tics, eye-tracking metrics and subjects age. The feasibility of SVM in discriminating
between low and high performance during problem solving from eye-tracking metrics
is demonstrated in [54], where 87.5% accuracy is yielded from data of 14 participants
completing puzzle games in a computer screen. Other studies that highlight the ef-
fectiveness of combining eye-tracking with SVM classifiers include detecting readers
with low literacy skills [108], classification of the age of toddlers [46] and measuring
learning attention in elearning [106].

The Random Forest (RF) algorithm has also attracted attention as it uses an en-
semble of models (decision trees) with bootstrapping to make predictions [104]. In
a comparative study of SVM and RF classifiers on detecting task load during com-
plex mathematical problem solving, the latter produced higher accuracy (69.6% vs
56%)(using data from 48 participants on 10 tasks). Furthermore, a recent study on
detection of personality traits by Berkovsky et al. [14] (while 21 subjects viewed image
and video stimuli for 55 minutes), showed evidence for the superiority of naive Bayes
classifier [146] (85.71% accuracy) over the state-of-art machine learning methods
(including SVM and RF). The naive Bayes classifier is a probabilistic classifier with
strong assumptions about the independence of input features.

The recent success of deep learning in a variety of applications (see section 2.9)
has also encouraged researchers to investigate its effectiveness in eye-tracking data.
Sims and Conati [157] developed an Al system for detecting user confusion episodes
using data from 136 participants performing 5440 tasks while interacting with a vi-
sualisation tool for supporting decision making. They introduced a novel architecture
combining Recurrent Neural Networks (RNN) [118] (the Gated Recurrent Units (GRU)
variant of RNN trained on raw eye-tracking samples) and Convolutional Neural Net-
works (CNN) (see section 2.9.0.4) (trained on grayscale images of saccadic scan-
paths) achieving an AUC score of 0.84 on confusion detection (22% improvement
compared to a baseline RF model and 4% improvement compared to both baseline
CNN and GRU networks when trained seperately). The strength of their approach
is that it takes advantage of both temporal and visuospatial features of eye-tracking
data.
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Another study on identification of Autism Spectrum Disorder (ASD) using eye-
tracking by Xia et al. [179] leveraged both CNN and visual saliency features to encode
saccadic scanpaths of 74 children with and without ASD. Their experiment consisted
of 82 images presented on a computer screen for 3 seconds each without particular
instructions except to observe. By extracting features from each fixation using a pre-
trained CNN on patches around the fixation location on the stimulus image, along
with low and high level salient features and feeding them to an SVM classifier, they
achieved a maximum classification accuracy of 94.28% in the diagnostic tests.

Apart from these studies that combined different aspects of eye-tracking data,
other methods either used saliency-based approaches [46, 89] or focused on ways to
encode scanpaths. In the latter case, eye movement scanpaths are either converted
into images which are the input to 2D CNNs for classification tasks (e.g. classifica-
tion of web user interfaces, nationalities of users, types of information presentation,
relevance prediction [181, 180, 16]) or time series of x and y position of gaze during
fixations using 1D CNN networks (e.g. age prediction from gaze [188]).

Another line of eye-tracking research using deep-learning is end-to-end classifi-
cation for automatic detection of eye movement events (e.g. fixations, saccades).
Zemblys et al. [187] implemented a RNN architecture using velocity of x and y coordi-
nates of gaze and reported a classification performance equivalent of expert human
coders. Furthermore, for the same purpose Goltz et al. [76] compared different neural
network architectures including CNNs and sequential models (e.g. RNN) using as in-
put the time series of velocity and acceleration of gaze. The authors found that small
convolutional neural networks outperforms more complex architectures for eye move-
ment event detection. Startsev et al. [162] implemented a sophisticated architecture
capable of predicting smooth pursuits apart from fixations and saccades. The authors
included not only unprocessed gaze coordinates but also the speed of gaze, its di-
rection, and acceleration at different temporal scales to capture larger movement pat-
terns. The network architecture consisted of a combination of one-dimensional con-
volutional neural network (1D-CNN) and bidirectional long short-term memory block
(BLSTM) that outperformed state-of-the-art smooth pursuit detectors.

Lastly, another application combining eye-tracking and machine learning that rea-
ched the attention of researchers is the automatic prediction of gaze location from
images captured by a camera (without any sophisticated eye-tracking hardware sys-
tem). Krafka et al. [99] aiming to develop a software that works in mobile phones and
tablets implemented a deep learning framework with convolutional layers that given
the image of the face together with its location in the image and the image of the eyes
accurately predicts the location of gaze.

To conclude, based on the reviewed literature it becomes clear that machine learn-
ing techniques have made a significant contribution to the advancement of eye-tracking
research. Neural network architectures show particularly promising results on extract-
ing features from eye-tracking data compared to less complex methods such as ran-
dom forests and support vector machines. Although the most suitable architecture
might be dependent on the task of interest, convolutional and variations of recurrent
neural networks and their combinations demonstrate high performance in a variety of
problems. Reviewing the studies above, a current trend becomes apparent towards
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fusing features of the stimuli itself (e.g. saliency features) along with spatiotemporal
features of the raw eye-tracking data (or variations e.g. velocity) and encoded versions
of the reduced signal of scanpaths. Nevertheless, all the previous approaches focus
on classification tasks. In this thesis, we first processed eye-tracking data extracting
saliency measures of egocentric videos in Chapter 3 and then following the emerging
research on deep learning, we implemented a variant of the existing CNN architec-
tures with inputs including raw eye-tracking data of x and y coordinates of gaze and
additionally pupil size. The innovation of our work is the application of these neural
networks on a transfer learning setting in Chapter 4 and in an unsupervised learning
setting in Chapter 5. Finally, in Chapter 4 we applied an explainable Al framework
on eye-tracking data to investigate further the black box decisions of the networks.

2.5 Computational Eye-tracking Methods in Dementia
Research

In dementia research, the eye-tracking metrics take the form of abnormalities
and are expressed in terms of latency, accuracy, stability and variability [132]. How-
ever, the identification of a complete set of handcrafted features from cognitive tests
sensitive to subtle task and participant-specific abnormalities is non-trivial and time-
consuming. Additionally, these features are not generalisable to more complex stimuli
because they rely on specific stimulus characteristics (e.g. regions of interest).

Most studies in dementia research use the extracted features as input to mixed-
effects or generalised estimating equations statistical models to test univariate group
differences and group by task condition interactions. An emerging line of work ex-
ploits machine learning methods mainly for automatic classification of groups directly
from the features. Biondi et al. [17] developed a deep-learning framework for au-
tomated AD prediction based on eye movements during reading of predictable and
unpredictable sentences and proverbs using features commonly extracted from eye-
tracking data: mean and standard deviation of saccade amplitude, fixation duration
and duration of the fixation on a single word for each sentence, counts of fixation, first
fixations, re-fixations and single fixations on each sentence. Their autoencoder net-
work predicts the probability of a trial belonging to an AD patient with 89.9% accuracy
(see section 2.9 for more background on autoencoder networks).

A few other studies followed an alternative direction, developing machine learning
models on raw eye-tracking data hypothesising that additional information, more infor-
mative than hand-crafted features, can be extracted from the raw signal. Primativo et
al. [138] implemented a Bayesian model for dementia diagnosis which is first trained
to predict gaze coordinates in controls in a spatial anticipation task. Then a dementia
diagnosis prediction is made based on the magnitude of the error between the model
predictions and the real values in patients (bvFTD and svPPA) compared to controls.
This approach seems to achieve improved results in detecting cognitive deficits com-
pared to state-of-art methods. Moreover, in [132] a hidden Markov model was used to
extract feature vectors from a smooth pursuit task which achieved a 95% accuracy in
discriminating Alzheimer’s disease patients from controls. Nevertheless, it is explicitly
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fitted to model data from smooth pursuit experiments (one is anticipating the location
of a target over time) and possibly not generalisable in other less predictable tasks.

2.6 Modelling Eye-tracking as Time Series

A time series is a sequence of data points sampled from an underlying process
over time. Time series data differ from other types of data because they are noisy, high
dimensional and sometimes non-stationary. The property of non-stationarity implies
that data characteristics such as mean, frequency and variance are changing over
time. Time series are also highly time dependent which implies that in order to be
modelled memory past inputs are required [102].

Eye-tracking data consists of a multivariate time series of x and y position of gaze
and pupil size. As biosignals (signals that can be continually measured/monitored
in living organisms), they are time series readings and thus can be modelled using
techniques widely used in the literature for time series modelling [33].

In this section, we provide a general overview of the stages of data processing
used for biosignals and sensor data. Several reviews describe the data processing
of wearable sensors in health monitoring as a procedure of implementation of data
mining tasks [161, 8]. Data mining is defined as the process during which algorithms
are used for extracting patterns from data [60]. The common data mining architecture
used is summarised in Figure 2.4 which was adapted from [8].

For both supervised (i.e., classification, regression) and unsupervised (i.e., clus-
tering, association, summarisation) data mining tasks, the raw data are extracted from
the sensors and are divided into a training set for model development and a testing
set for model evaluation [8]. Data preprocessing is then implemented to maximise the
signal-to-noise ratio and to remove artefacts and sensor errors. A challenging part
of this step includes also data formatting, normalisation and synchronisation when
numerous sensors are used for data collection [161]. Subsequently, the abstraction
of raw data via feature extraction follows for the discovery of characteristics which
are representative of the original data and then the most discriminative features are
selected leading to dimensionality reduction of the input data. The feature extraction
algorithms are typically hand-engineered by experts and recently deep learning meth-
ods are being applied which automate the process. Machine learning techniques and
other models can then use these robust input features (considering expert knowledge
and metadata) to perform tasks such as anomaly detection, prediction and decision
making. Anomaly detection is used for retrieval of abnormal patterns in physiological
data, prediction for the estimation of events that have not occurred yet and decision
making for the evaluation of various patterns of the data which are meaningful for
decisions.

Given the general framework for data mining, in the following sections, we provide
more details about the feature extraction and the anomaly detection/prediction steps.
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Figure 2.4: Generic architecture of the data mining approach for sensory data.
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2.7 Feature extraction

The process of mining biosignals involves converting patterns in the data to fea-
tures which constitute condensed representations preserving only salient information
[34]. The set of features which is a reduced-dimensional representation of the ob-
served patterns in the data is called feature vector. This dimensionality reduction
reduces the computational cost of data processing and speeds up the model devel-
opment [163]. The accuracy and generalisation of modelling methods such as clas-
sification also increase, as the input feature vector is in a form that is amenable to
learning and it prevents overfitting [34, 52].

2.7.1 Hand-engineering Features

Hand-engineering of features is an approach that leverages ingenuity and expert
knowledge to select a set of features which are appropriate and boost the perfomance
of predictive models. The new features set is not generated by a machine but it is
computed manually by human intervention [163]. Hand-engineering of temporal data
often involves extracting features from the time and frequency domain.

The analysis in the time domain takes advantage of the temporal characteristic of
the data and the observable trends in the signal. The extracted features include sta-
tistical parameters such as mean, median, variance and basic waveform characters
such as peak counts and duration. The analysis in the frequency domain takes into
account the periodic behaviour of time series. In this case, the frequency is the or-
dering dimension instead of time. Fourier and Wavelet transforms are frequently used
tools for frequency domain feature extraction. The Fourier transform is based on the
logic that any time series can be expressed as a number of sinusoidal waves that ex-
tend with equal amplitude to the range of the entire the time series. Common features
derived from this transformation are spectral energy, power spectral density, low-pass
filter and high/low frequency [8]. Wavelet transform is a time-frequency transformation
which addresses the problem of non-stationarity by representing time series as fixed
blocks called wavelets. More complex feature extractors inspired by signal processing
have been also applied such as Legendre and Krawtchouk polynomials, approximate
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entropy and parameters of regression models [114].

Although hand-engineering feature extraction techniques are beneficial for the
data processing stages of complex time series, they present critical limitations and
thus their use is cumbersome [114]. Firstly, the attribute selection depends solely on
the creativity and knowledge of the expert. Secondly, these hand-crafted techniques
make necessary the implementation of the feature selection stage which is compu-
tationally expensive, time-consuming with no guarantee of converging to an optimal
features set. Therefore, automatic feature extraction approaches could help alleviate
the limitations of hand-engineering techniques.

2.7.2 Feature Learning

Representation learning or feature learning is a set of techniques in machine learn-
ing that automatically discover salient features of the input data. A representation is
considered to be good when it benefits supervised predictors when used as input.
Representation learning is an important component of machine learning pipelines as
the performance of any machine learning model is highly dependent on the input
data. Traditionally, feature extraction methods have been developed that generate
data representations by applying linear as well as nonlinear transformations to the
input variables.

Linear methods Principal Component Analysis (PCA) is one of the most com-
mon linear feature extraction techniques that is used for transformation of the feature
space. It transforms the original possibly correlated variables to an orthogonal set of
Principal Components (PCs) which are linearly uncorrelated variables accounting for
as much variability in the data as possible [163]. Linear Discriminant Analysis (LDA)
is used for dimensionality reduction and PCA alike, the obtained features of LDA are
linear combinations of the original data and not of constructed variables like principal
components.

Nonlinear methods Some nonlinear feature extraction methods include kernel PCA,
Restricted Boltzmann Machines (RBM) and manifold learning methods [31]. Kernel
PCA is a non-linear extension of PCA which maps the original data vector into a fea-
ture space using a kernel function (see 2.9.0.2) and then linear PCA is performed.
RBMs are undirected graphical models that consist of a two-layer neural network with
one visible layer and one hidden layer; the outputs of the latter are the set of ex-
tracted features. The manifold learning methods attempt to provide a mapping from
the high-dimensional space of the original features to a low-dimensional embedding.
Multidimensional scaling, locally linear embedding and laplacian eigenmaps are tech-
niques that fall under manifold learning. To conclude, although the above techniques
constitute automatic techniques for feature extraction, they are usually applied to a
set of features extracted a priori [114].
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2.7.3 Deep Representation learning

There are various ways of learning representations, but here we focus on deep
learning methods which are formed by combining multiple linear and non-linear trans-
formations to the input aiming to learn abstract and ultimately more useful represen-
tations of the data. Deep learning is a subcategory of machine learning based on
artificial neural networks (see section 2.9.0.3 for more details).

Representation learning [13] with neural networks can be either supervised or
unsupervised:

* In supervised learning, given a dataset of n observations X = {x;|i = 1,...,n},
there is a set of output values Y = {y;|i = 1, ..., n} associated with the examples
in X. The learning algorithm seeks to find a function f(x;#), characterised by
a set of parameters 6, that approximates Y as accurately as possible. The key
idea is to not only learn the mapping between the inputs and outputs, but also
the underlying structure of the data.

* In unsupervised learning, no labels are associated with the observations and
an unsupervised learning algorithm seeks to discover features in a lower di-
mensional space than the original high-dimensional input that still capture some
underlying patterns of the data.

One of the main challenges in machine learning is that we often have very large
amounts of unlabelled training data and little labeled data. Therefore, supervised
learning techniques trained on the labeled set often results in overfitting [77]. To
address this problem, pretraining is a commonly used in deep learning to learn rep-
resentations in a supervised way aiming to alleviate overfitting. There are two main
pretraining methods: transfer learning (supervised) and self-supervised learning (un-
supervised). The rationale behind both is that by training a network to solve a pretext
task, it encodes high-level semantic representations that are useful for solving other
tasks of interest that usually have little annotated data.

Transfer learning [129] is one of the most popular pretraning methods, which learns
the parameters of a representation network by solving a supervised problem (source
task) on a large-sized external dataset and then finetunes the parameters on the tar-
get data (available labeled examples) (Figure 2.5). This approach takes advantage of
the abundance of source data and enables the network to learn powerful represen-
tations of the target task with resilience to overfitting. However, one disadvantage of
transfer learning is that the representations might be biased to the source labels and
not generalise well on the target task where the classes are different.

Apart from supervised learning techniques, unsupervised methods have also been
used for feature learning since they need no labels to learn representations of the in-
put. Various deep neural network structures have been explored such as restricted
Boltzmann machines, deep belief networks and deep autoencoders; with the latter
being the most flexible unsupervised neural networks. Autoencoders create a bottle-
neck or apply a restriction in the learnt representations and their training objective is
the reconstruction of the original input from these representations [77]. They have
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been used in several applications from dimensionality reduction for feature visualisa-
tion and denoising images, to detecting abnormal patterns in sequential data [31].

Pretraining
Transfer Learning
human-provided labels
input source —> Representation «| Prediction network in in source task
task data learning network g source task . .
Self-supervised Learning
auto-generated labels
from source data
Fine-tuning v
input target Representation 4| Prediction network in ) human-provided labels
task data —> learning network g target task in target task

Figure 2.5: Workflow for transfer learning and self supervised learning.

A relatively new and promising subclass of unsupervised representation learning
which has produced state-of-the-art visual representations in standard computer vi-
sion problems is self-supervised representation learning [125]. It attempts to alleviate
the problems of previous approaches by unsupervised pretraining. This involves train-
ing the representation network in the source task only with the input data, as no labels
are required. The output labels are constructed directly from the data, compared to
transfer learning that human annotations are needed (Figure 2.5). Self-supervised
learning models are not prone to be biased to the labels in the source task and this
property might make them more generalisable. Therefore, this method uses informa-
tion already present in the data as a supervision signal so that supervised learning
techniques can be used.

The pretext tasks can be constructed using different mechanisms such as rota-
tion prediction (the network recognises the geometric transformation applied to an
image; [74]), inpainting (the network is trained to generate the contents of an arbitrary
blank image region conditioned on its surroundings; [131]) and automatic colorisa-
tion (given a grayscale image, the network predicts a plausible colour version of the
image; [189]).

2.8 Classification vs Anomaly Detection

Having discussed various methods for extracting useful information from a signal,
in this section, we focus on the last stage of the data mining pipeline which concerns
predictions. Predictions are closely linked with the existence or lack of labels. In stan-
dard neuropsychological practices we encounter two types of labels associated with a
performance in a cognitive task: scores (defining the level of performance associated
with impairment in a given scale) or a binary labels (impaired/normal). These two
categories can be translated into two machine learning problems, namely, anomaly
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detection and classification. The former deals with models that predict deviations from
a normal distribution assigning anomaly scores to observations and the latter with as-
signing observations to specific classes. A comparison of classification and anomaly
detection techniques are discussed in more detail here.

Table 2.1: Comparison of anomaly detection with classification in terms of proper-
ties of the dataset (Dataset), labels of the available classes (Class) and Category of
representation learning (Category).

Method Category Dataset Class
Anomaly Supervised Imbalanced | Binary
Detection Semi-supervised
Unsupervised
Classification | Supervised Balanced Binary
Imbalanced | Multi-class

Classification is a type of supervised learning which is used to classify observa-
tions into two or more classes. lts targets are always categorical and expected to be
balanced so that all classes have almost equal importance.

Anomaly detection refers to the problem of discovering nonconforming patterns in
the data such as anomalies, outliers and peculiarities. Anomalies are patterns in the
data that deviate from normal behaviour [1]. There are different types of anomalies
and can be classified into three categories [30]:

» Point anomalies refers to the case that an individual observation is anomalous
with reference to the rest of the data.

« Contextual anomalies concern those data instances that are considered abnor-
mal only in within a specific context [160].

* Collective anomalies are observed when a collection of related data instances
is anomalous relative the entire data, although the individual data instances are
not anomalies.

In anomaly detection problems, the labels associated with each data point denote
whether that instance is normal or anomalous. Typically, getting labels for normal
behaviour is easier than getting a labelled set of all possible anomalous behaviour.
Therefore, based on the availability of the labels, anomaly detection techniques are
grouped in three different types [30]:

» Supervised Anomaly Detection: Techniques trained in a supervised mode as-
suming availability of labels for both anomalous and normal observations. A
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typical approach is to build a classification model for prediction of normal vs
anomalous classes. However, there are major issues using this approach be-
cause firstly the anomalous instances are fewer compared to the normal ones
in the training set (imbalanced classes) and secondly, obtaining accurate labels
for the anomaly class is challenging.

» Semi-supervised Anomaly Detection: Techniques assuming that the training
data has labels only for the normal class.

» Unsupervised Anomaly Detection: Techniques that do not require labels for
training assuming that normal observations are far more than anomalous ones.
Therefore, the model is assumed to be robust during training to a few anomalies.

The output of anomaly detection techniques are either scores or labels. Methods
that produce scores, assign an anomaly score to each data instance in the test set
analogous to the extend that the instance is considered anomalous. Therefore a list of
ranked anomalies is provided by the algorithm and then either the top few anomalies
are analysed or a cutoff threshold is used to select anomalies. On the other hand,
methods that provide labels, assign a binary label (normal or anomalous) to each test
instance.

Various models have been explored for anomaly detection, however in the last
years Deep Anomaly Detection (DAD) has gained a lot of attention. DAD techniques
solve the problem end-to-end; taking raw input data, learning hierarchical discrimina-
tive features and then providing anomaly scores. Generative models, autoencoders,
sequence models, convolutional neural networks, word2vec models are some archi-
tectures that have been used successfully for anomaly detection [29]. A fundamental
method for anomaly detection is using deep autoencoders. When these models are
trained solely on normal data, they are not able to reconstruct previously not seen
anomalous data. There samples that produce large reconstruction error are those
predicted as outliers.

To conclude, anomaly detection and classification methods are two distinct ma-
chine learning problems. The key factors for differentiating them depend on the la-
beled classes and the imbalance of the dataset. In general, in binary problems where
there are very little positive data instances and large number of negative, anomaly
detection is recommended. If there are enough positive examples, then classification
is preferred; whereas if they are many types of anomalies, anomaly detection might
be advantageous.
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2.9 Overview of Machine Learning Models

Here we briefly describe the machine learning methods used in this thesis. Firstly,
we provide a glossary with common machine learning terms to provide a basis for
non-technical readers. Then, more details for the support vector machine classifier
and artificial neural networks are given for the interested readers. A definition of the
support vector machine classifier is given which is used in Chapter 4 as the default
method for classifying whether one has a dementia given various eye-tracking met-
rics. This is followed by a introduction to some basic neural network architectures
such single-layer and multi-layer perceptrons which give the basis for the description
of convolutional neural networks. Convolutional neural networks are used in both
Chapters 4 and 5 to automatically extract features from the dense and dynamically
changing eye movement time series. Lastly, the architecture of autoencoders is de-
scribed which is the method used in Chapter 5 for detecting trial-level eye movement
anomalies by defining the distribution of healthy eye-tracking data.

2.9.0.1 Machine Learning Glossary for Neuropsychologists

Terminology Definition

Machine learning Mathematical algorithms that have an ability to learn
itself and predict future behaviour from data.

Neural Network Mathematical algorithms inspired by the brain’s archi-
tecture modelled to recognise patterns in data.

Deep learning A branch of machine learning methods based on arti-
ficial neural networks.

Supervised learning Training a model using a labeled dataset.

Unsupervised learning Training a model to find patterns in unlabelled data.

Self-supervised represen- | Training a model using information already present in
tation learning the data in a supervised way without needing labels.

Convolutional Neural Net- | Hierarchical models designed to process input data
work where a spatial or temporal relation exists (e.g. im-
ages, speech or physiological signals).

Autoencoder A type of artificial neural networks that learns repre-
sentations in an unsupervised manner, typically for di-
mensionality reduction.
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Terminology

Definition

Latent space

A compressed representation of the data in which sim-
ilar data are closer together.

Feature

Variables used as inputs to make predictions.

Feature vector

A list of features representing an input instance
passed into the model.

Loss function

A method of evaluating how well an algorithms models
the data.

Epoch A full training pass over the entire dataset.

Ensemble A merge of predictions from multiple models.

Optimiser A specific implementation of the gradient descent al-
gorithm which gradually adjusts the model’s parame-
ters to find the best combinations of weights.

Batch The set of training examples used in one iteration of

model training.

L1 regularisa-
tion

A regularisation technique that penalises the model’s
complexity.

Data augmenta-
tion

The process of using algorithms to increase the size
of a collected dataset.

Learning rate

A scalar value used during model training in gradient
descent.

SVM A supervised machine learning model that maps in-
put examples in a space so that examples of different
classes are divided by a clear gap.

Kernel A method of using a linear classifier to solve a non-
linear problem applying non-linear functions.

F1-score The weighted average of precision and recall.

AUC An evaluation metric that considers different classifi-

cation thresholds.
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2.9.0.2 Support Vector Machine

Support Vector Machine [37] is an extension of Maximal Margin Classifier (MMC)
and Support Vector Classifier (SVC) which are supervised learning models based
on the concept of finding a hyperplane that best separates the different classes [87].
In MMC, the classification of observations is defined by a linear boundary which is
a hyperplane that has the farthest minimum distance to the training observations or
in other words a large margin. This approach was considered problematic for many
applications, because it is very sensitive to a single observation changes (prone to
overfit the training data). The SVC similarly classifies observations depending on
whether they lie on the correct side of the margin for their class, allowing though some
instances to be on the incorrect side of the margin or hyperplane. These observations
lying directly on the margin or on the wrong side of the margin are called support
vectors. The performance of this classifier depends on a parameter C' which controls
the tolerance of observations being on the wrong side of the margin; as C decreases,
the margin narrows. A SVC can be represented as:

f(z) = 5o+ Zai(x,xﬁ

€8

where S is the collection of indices of the support points, z is a new example, x; is
the ¢ observation of the input data with » number of observations and the function ()
represents the inner product.

The SVM classifier extends SVC by enlarging the feature space using kernels
or in other words replacing the inner product form with a non-linear kernel function
K(z,x;) = (¢(z), ¢(z;), where ¢ is a given function. This is equivalent to applying the
function ¢ to the inputs and then learning a linear model in the new feature space
with a computationally efficient way (¢ is applied only to the support vectors). A pop-
ular kernel function is the radial basis function (RBF) that ensures that only nearby
observations have an effect on the classification and it has the following form:

K (2, 2;) = e el

where v is a positive constant that needs to be optimised.

Next, another model is described called Artificial Neural Network (ANN) that does
not apply a linear model to a general function ¢(z) to learn the non-linear mapping
between inputs and outputs as seen in SVMs, but rather learns this function from
training examples so that y = ¢(a;0)"w where 0,a are parameters and ¢ a hidden
layer.
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2.9.0.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is a biologically-inspired computational model
defined as a network of processing units called neurons [77]. Each neuron receives
a number of inputs and calculates its output as follows:

n—1
Yj = f(z Tijwi; + 0;)
n=0

where w; = [wjo, w1, . . ., w;n—1] @re the connection weights, z; = [0, 1, - .., Tjn_1]
are the inputs, y; is the output, 6; is the bias term and f(x) is the activation function of
neuron j. The weights and bias are adjusted to yield different functions. The activa-
tion function is usually a logistic sigmoid or hyperbolic tangent, as their output ranges
are bounded to the intervals [0, 1] and [—1, 1] respectively.

Input Hidden Hidden Hidden Output
layer layer layer layer layer
T
h
T2
Y2
Zs3
Ys
Ty

Figure 2.6: A multi-layer perceptron architecture with three hidden layers.

A single-layer perceptron (SLP) is the simplest ANN topology in which the inputs
of the network are connected to neurons and the output of each neuron forms the
outputs of the network. A multi-layer perceptron (MLP), a non-linear extension of
SLP, is a neural network architecture where neurons are organised in stack hidden
layers. The outputs of every neuron in one layer are connected only to every neuron
in the next layer. In a multi-layer perceptron architecture, like the one presented in
Figure 2.6, the outputs of the intermediate layers constitute abstract representation of
the original input data.

The approximation of the mapping function between the inputs and outputs of the
neural network is achieved using different training strategies. In this context, training
refers to the process of selecting the weights, activation functions and topology of the
the network. For this process, a cost function and a training algorithm is required
to determine how good a given configuration is and to search the space of possible
configurations respectively.
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The cost function used in this thesis is the cross entropy or in other words the
negative log-likelihood between the training data and the model’s predictions. The
objective therefore during the training phase is to minimise the dissimilarity between
the data and model distribution.

For a network with C' output neurons the categorical cross entropy is defined as
following:

c
Loss = — Z yilogy;

=1

where y; is the i-th neuron’s output in the model, y; is the corresponding target
value.

Given a fixed network topology and activation function, the back-propagation al-
gorithm is used to configure the weights of the network [147]. This popular training
algorithm optimises the cost function in an iterative way across a number of epochs
(number of times the algorithm sees the entire data set) by adjusting the weights pro-
portionally to the gradient of the cost function. In this thesis the Adam optimisation
algorithm was used which is an adaptive learning rate algorithm in which the size of
the update steps of the network weights during the optimisation process is changing
as learning unfolds [94]. Typically a regulariser is also used to keep the weights low
and thus avoid overfitting. Overfitting occurs when the model memorises the training
data too well and it performs poorly on the test set.

Although the structure of MLPs enables the learning of complex non-linear func-
tions, it presents certain limitations for time series data: a. it is computational ex-
pensive (many parameters) because of the interconnectivity of the units from different
layers, b. same features in different time points in the input do not appear with the
same representation in the output and c. subtle translations of the input change sig-
nificantly the output [77].

2.9.0.4 Convolutional Neural Networks

To eliminate these shortcomings, another network architecture is developed which
is called a Convolutional Neural Network (CNN) or Time-Delay Neural Network (TDNN)
for 1-dimensional signals [77]. These networks have sparse interactions, are equiv-
ariant and invariant to translation. They have shown to be well-suited for pattern
recognition in large input spaces with a spatial or temporal structure among the in-
puts. A common convolutional architecture for time series classification consists of
a feed-forward network with convolution, pooling and fully connected layers (dense
layers).

Convolutional layers contain a set of neurons that identify local patterns on a time
window of the input time series (Figure 2.7). In contrast to MLP, in which the hid-
den units are fully-connected to the inputs, each neuron of a convolutional layer has
trainable weights equal to the number of its inputs (equal to the patch size, called
receptive field) and a trainable bias term. The output of each neuron is an activation
function applied to the weighted sum of its inputs. This filter is applied to every patch
of the signal (with same shared weights) or in other words, the weights of each neu-
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ron convolve over the input signal assembling a feature map [127]. The number of
feature maps, which are the outputs of the convolutional layers, are equal to the num-
ber of neurons in each layer. This operation makes feasible the removal of outliers,
the filtering of data and the detection of patterns regardless of their location. Sub-
sequently, the pooling technique aggregates features of the same feature map using
average or maximum operations so that the features are presented in lower resolu-
tion. Lastly, the fully-connected layer establishes a weighted sum of all the outputs
from the previous layer and it determines the output of the network [58]. Apart from
the fully-convolutional layers described above, dilated convolutional layers have been
applied for time series modelling (usually in cases where the input and output size
of the model is equal) which enable an exponentially large receptive field by applying
the convolution operation to samples d steps apart instead of consecutive samples
of the input [7]. Expanding the receptive field of a convolutional network enables the
network to accumulate information from very far into the past to make predictions [7].
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Input signal

{ Convolutional y
{layer 1

Feature maps 1

iPooling layer 1

Feature maps 1

Feature extraction (subsampled)

(Convolutional
Neural Network)

Convolutional

Feature maps 2
(subsampled)

Extracted features

(Single-layer perceptron)

Figure 2.7: Example of structure of a deep CNN architecture modified from [114]
(with copyright permission) which contains two convolutional blocks and a single-
layer perceptron (SLP). The first convolutional layer has 3 neurons with patch size
of 20 samples and an average pooling layer with window length of 3 samples. The
second convolutional layer processes the features maps of the previous convolutional
block with 3 neurons and patch length of 11, as well as an average-pooling layer of 6
samples. The final feature map of length 9 are the input of SLP.
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2.9.0.5 Autoencoder

The autoencoder is a unsupervised neural network trained using unlabelled data
that encodes these inputs in a small feature space and subsequently reconstructs
them as precisely as possible (Figure 2.8) [77]. The encoder part of the network
projects the original data into the feature space and the decoder performs the inverse
operation. The training objective of the network is to recover as much information as
possible from the reduced representation minimising the distance between the inputs
and the outputs (reconstruction error). Restrictions can be imposed to produce inter-
esting representations with models such as the sparse or denoising autoencoders. In
the former, adding a sparsity penalty term in the loss function obtains representations
with very few activated neurons. The latter adopts the loss function to minimise the
error between the reconstruction and a corrupted noisy copy of the input attempting
to repair corrupted data. Convolutional autoencoders are popular networks for non-
static data that combine the bottle-tie architecture of autoencoders with the properties
of the convolution operation.

Input Output

N 1

Encoder Decoder

Figure 2.8: The bottleneck architecture of a basic autoencoder: an encoder and a
decoder are linked by the encoding layer. Source: https://towardsdatascience.
com/applied-deep-learning-part-3autoencoders-1c083af4d798.
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2.10 Critical Assessment

To date, various eye-tracking approaches have been developed to study the ocu-
lomotor profile of people with dementia. However, they remain an emerging area
of research, as those studies that have attempted to investigate eye-tracking as an
outcome measure in cognitive tasks (deviating from the norm of identifying abnormal-
ities in basic oculomotor functions) are very few and share a number of limitations.
One strong assumption in these studies (e.g. [44, 145, 62, 138]) is that all dementia
patients understand the instructions of the tests. However, mistakes caused by mis-
understandings, language difficulties or patients at the later stages of the disease are
known to mask disease signature. Moreover, previous studies do not consider that
attentional dysfunction present in various types of dementia might interfere with ocu-
lomotor control and patients cooperation. Although there have been some attempts
addressing this limitation with evaluation of oculomotor behaviour during naturalistic
activities (e.g. [164]), they are restricted to specific dementia subtypes (AD), and are
characterised by small sample sizes and inadequate quantification of the measure-
ments. Apart from the limitations related to the methods used to acquire accurate
oculomotor information, the analysis of the complex eye-tracking data is still a chal-
lenge for researchers. Some studies (e.g. [17]) rely on known biomarkers restricting in
this way the potential of eye movement time series containing far richer relevant infor-
mation. Some others (e.g. [132]) have attempted to find the discriminative boundary
between the classification classes assuming a homogenous pattern of abnormality in
the patient group (e.g. similar degrees of disease severity). Although, recent work
by Primativo et al. [138] introduces the concept of normative eye-tracking data by
defining abnormal behaviour based on deviations from a normative reference, it has
results that are less interpretable compared to standard eye-tracking measures anal-
yses. To conclude, a variety of eye-tracking batteries and data analytics have been
investigated so far. However, augmenting cognitive assessment with novel outcome
measures based on oculomotor metrics is still an emerging area of research, and will
require further refinement and validation before it is translated into a useful clinical
tool.
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Investigating the effects of visual
environment on navigation in
Alzheimer’s disease and Posterior
Cortical Atrophy

3.1 Introduction

Core characteristics of different forms of dementia create particular challenges
to people’s functional autonomy. Visual processing difficulties are under-recognised
consequences of Alzheimer’s disease (AD), the most common form of dementia.
Such difficulties, combined with other cognitive deficits (planning, memory), affect
people’s perception and representation of the environment and underlie patients get-
ting lost in both familiar and unfamiliar environments [32]. Previous studies and design
guidelines suggest that the physical environment may play a major role in mitigat-
ing dementia’s functional impairment [113]. However, limited quantitative investiga-
tion of effects of environmental conditions featuring well-characterised patients has
prompted strong recommendations for further empirical research [64, 177]

Individuals with dementia have been proposed to rely more on salient visual land-
marks that are prominent or conspicuous compared to other features in the envi-
ronment for navigation [126]. Although intricately challenging to determined, "good”
landmarks are considered those spatial features that either are architecturally differ-
entiable (e.g in color, texture, size, shape; low-level features) or semantically salient
(e.g. recognisable or idiosyncratic objects; high-level factors) [26]. As visual deficits
in AD include symptoms of diminished spatial mapping, restricted window of spatial
attention and inefficient visual search, visual environment might modulate functional
abilities in individuals with AD [165, 111, 50]. However, the evidence supporting the
benefits of environment in dementia is almost exclusively based on anecdote and
observation rather than formal investigation, prompting strong recommendations for
empirical research to evaluate the effect of environmental factors on supporting ev-
eryday patient functional abilities.
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A neurodegenerative syndrome that might offer valuable insights into the role of
the visual environment on functional abilities is Posterior Cortical Atrophy (PCA) [41]).
PCA is characterised by a progressive decline in visuoperceptual and visuospatial
processing ([41]) and particular pathological involvement of posterior parietal and
occipito-temporal cortices. While most commonly caused by AD pathology, in con-
trast to typical Alzheimer’s disease (tAD), PCA patients demonstrate relatively pre-
served episodic memory at least in early stages of the disease. PCA patients exhibit
a range of complex and unusual visual deficits including excessive visual crowding,
restrictions in the effective visual field and eye movement abnormalities [43, 155, 183].
Notably, clinical anecdote and empirical investigation emphasise how the expression
of visual deficits is modulated by low-level environmental and stimulus conditions;
with individuals with PCA presenting better perception of objects presented in isola-
tion, with reduced clutter [183], small vs large objects [182], and better localisation of
moving vs static objects [42]. Moreover, eye-tracking investigations of scene percep-
tion in PCA have noted the increased influence of low-level (visual saliency of parts
of scenes) rather than top down factors (adapting gaze behaviour based on task de-
mands) on fixation patterns.

Eye-tracking studies have demonstrated that individuals with PCA when viewing
a scene that they find difficulty to recognise, present eye movements initially similar
to those of controls and different only on later fixations [110]. This phenomenon was
interpreted as a potential impairment of PCA patients in top-down control processing
which is presumably activated after the initiation of bottom-up level mechanisms dur-
ing scene perception [42]. Foulsham et al. [68] conducting a case study observed that
the most bottom-up salient region in the scene was more likely to be fixated by the
patient than by controls. Nevertheless, a following case study presented contradicting
results supporting the idea that saliency is not always a good predictor of fixation in
PCA [69]. Shakespeare et al. [155] attempted to extend the single-case observations
in a quantitative group study evaluating how scanning patterns are influenced by task
instructions and low-level visual properties in 7 patients with PCA, 8 patients with tAD,
and 19 healthy age-matched controls. Participants viewed vegetation scenes under
four task conditions (encoding, recognition, search and description). Interestingly,
PCA patients presented significantly less consistent scanpaths than tAD patients and
controls across tasks. The findings also suggest the influence of conspicuous, visu-
ally salient features of static scenes on fixation of PCA patients relative to controls
irrespective of the viewing task and indicate no differences between AD and PCA or
controls.

Although previous research demonstrates that the role of visual saliency in influ-
encing gaze in static scenes, there is limited understanding about the extent to which
these findings may generalise to everyday life in complex tasks such as navigation.
During navigation, the saliency of the observed visual environment is complex, as it
is dynamically changing based on the view of the world from the current position. It is
also determined by the relationship between the observer, the referenced spatial fea-
tures and the physical environment [26]. Therefore, advanced computational methods
have particular promise to investigate visual perception of dementia patients in natu-
ralistic settings. Categorical measures based on manually defined areas of interest
need to be replaced by methods that provide a continuous window on the allocation

51



Chapter 3

of attention considering dynamically changing spatiotemporal information. The inte-
gration of computational approaches with ecologically valid settings has potential to
change drastically the way we understand egocentric navigation (compared to stud-
ies of static head viewing static scenes or virtual reality) as the role of proprioception
(the ability to sense the orientation of the body in the environment) will be taken into
account [73].

In this work, we combine eye movement and egocentric video analysis to investi-
gate patients with PCA and tAD compared to a control group performing a real-world
visual search task while navigating a controlled environment. The analysis of eye
movement patterns in naturalistic settings is achieved through integrating gaze loca-
tions and scene information provided by egocentric video. Here computational atten-
tion modelling techniques with saliency maps of the point of view (POV) frames used
in Shakespeare et al. [155] are combined with eye-tracking metrics and gait/orientation
measures to investigate the following hypotheses:

+ Both patient groups will exhibit greater functional impairment relative to controls.

» Group effects of POV frame saliency/saliency at fixation are expected to be
higher in PCA, followed by tAD patients and controls (PCA>tAD>Control).

* A stronger relationship between saliency measure and functional performance
is anticipated in both patient groups relative to controls.

3.2 Materials and Methods

3.2.1 Dataset

Eye-tracking data from a total of 10 PCA patients, 9 AD patients and 12 healthy
controls with comparable age (mean + SD: PCA:69.1 + 7.6; tAD: 67.7 + 7.5; Con-
trol: 68.4 + 5.6) and relatively mild disease severity (MMSE/30 mean + SD: PCA:
23.7 + 5.6; tAD: 22.6 + 4.8) were used in this study. The data were collected from
a simulated domestic environment which was set up in Pedestrian Accessibility and
Movement Environment Laboratory (PAMELA) at University College London. Patient
groups fulfilled clinical criteria for PCA-pure ([115, 45]) and research criteria for prob-
able AD respectively. Ethical approval was provided by the National Research Ethics
Service Committee London Queen Square. All participants provided written informed
consent.

3.2.1.1 Background Neuropsychology

A standard battery of neuropsychological tests was administered to PCA and tAD
patients. Overall, PCA patients exhibited poorer performance relative to tAD patients
on visual processing measures (visuoperceptual: related to recognition of form, pat-
tern, colour; and visuospatial: related to spatial relationships between multiple ob-
jects/modalities, object localisation). In particular, PCA patients presented higher
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visual deficits relative to tAD patients in the Fragmented letters and Dot Counting
tasks from the Visual Object and Space Perception (VOSP) battery [171]. In the for-
mer task, participants were asked to identify visually degraded letters and in the later
participants were asked to count the number of black dots presented as quickly as
possible (from arrays of 5-9 black dots on white background). PCA patients exhibited
poorer performance overall relative to tAD patients on a measure of visual search
(Letter Cancellation) [175] in which participants were requested to mark as quickly
as possible with a pencil the location of 19 targets (letter As) presented among dis-
tractors (letters B-E) in a grid on an A4 sheet. Overall, performance on a measure of
recognition memory was comparable between patient groups [170].

3.2.2 Stimuli and Procedure

The experimental setting consisted of a room with two doors (positioned at 400cm
from the starting position), a table and an entry corridor serving as the trial starting
point. For each trial, one door was opened at 46 degrees to indicate the target door,
with the other door serving as the distractor. Participants began each trial with their
feet at the starting position, 0.4m before a blind restricting the view of the experimental
setting. Participants were repeatedly requested (36 trials) to walk to the visible open
door (target) under different environmental conditions:

» Door position (left/right)
+ Lighting position (=target destination, =middle, =distractor)

+ Table position (obstacle/no obstacle).

Trials were administered through a repeated-measures design ensuring an equal
number of trials involving each of the following variables: target position (Left, Right),
lighting position (Left, Middle, Right), clutter position (Left, Right). Lighting and clut-
ter position variables were arranged in counterbalanced variants of a Latin square
design (Lighting: 6 sets of 3 trials; Clutter: 2 sets of 6 trials). Variable combina-
tions were assigned randomly to each participant to control for order effects. Mean
ground illuminance was matched between lighting conditions (40Ix). The setting was
designed so as not to place requirements on spatial representation beyond the range
of immediate perception; with both doors being visible from the starting point, the
task could, in principle, be completed using only visual information available at the
start of each trial. Overall, the experimental set up was built to assess low-level en-
vironmental effects and thus it is controlled and unfamiliar to participants. Different
environmental conditions were featured to require participants to adapt behaviour to
each trial and vary saliency of features between each trial so that sometimes these
are more (Target) or less relevant (Distractor) to completing the task.

Participants’ eye movements was recorded using SMI Eye-Tracking Glasses, a
head-mounted binocular mobile hardware eye-tracker, at 30 Hz. Eye movement
events (saccades, fixations, blinks) were automatically parsed using SMI software
Begaze 3.6. The eye-tracker’s ego-centric camera with a resolution of 1280 x 960
pixels recorded the user’s surroundings at 24 fps. Each fixation event was matched to
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Distractor Target Middle

Obstacle

Not

Figure 3.1: Room lighting (columns) and clutter conditions (rows).

the egocentric video’s frames assuming a constant 24 Hz frame rate. The eye tracker
was calibrated for each participant using 3 calibration points in the beginning of the
experiment. The participants were asked to maintain fixation on a dot positioned at
eye level on the blind before every trial.

3.2.3 Pre-processing and Analysis

3.2.3.1 Measures

Completion time is the primary measure of functional performance and is defined
as the difference between the start of each trial and the time one reaches the target.

To quantify the effects of environmental features on visual attention, the following
saliency measures of the egocentric video frames were computed:

1. The maximum normalised salience value (MaxS) of people’s point of view (POV)
frame during fixation periods is the difference between an area of peak visual
saliency relative to the mean overall saliency of the frame.

2. The mean normalised saliency at fixation location (FixationMS) assesses the ex-
tent to which environmental features distinctive in colour or orientation predicted
fixation position.

Figure 3.2: Saliency maps of consecutive frames from the perspective of a participant
where red indicates salient regions and the green circle the fixation position in the
course of a trial.

54



Chapter 3

Observations with x, y coordinates outside of the stimulus dimensions (1280 x
960) and data points outside of the trial period were excluded. Fixations with duration
less than 99 ms and more than 800 ms were also excluded from analysis based on
typical ranges outlined by Munn et al. [123]. Fixation events with standard deviation of
x and y coordinates more than 200 pixels were not considered reliable for the analysis
and excluded. Additionally, observations which correspond to pupil diameter equal to
zero in pixels or mm on either left or right eye were considered to indicate erroneous
measurement and were excluded.

To calculate the saliency during fixation periods, the mapping between frames of
the scene videos and the fixation coordinates provided by SMI software was used.
Given that the gaze location of one fixation event corresponds to a time interval in the
video, for each frame of this interval a low-level saliency map was calculated using
the GBVS toolbox [79] with the default features (colour, intensity and orientation) (see
section 2.3.1.1). The maps included the computed salience at each pixel of the image
which ranges from 0 to 1. To obtain comparable results between different frames,
the salience maps were normalised. Therefore, the normalised saliency at fixation
was the mean normalised saliency of the gaze pixel across the frames during the
fixation. The maximum normalised saliency value of each fixation was the average of
the maximum normalised saliency across frames corresponding to each fixation time
interval.
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Figure 3.3: The process of computing the bottom-up saliency of a fixation event : (a)
frames corresponding to fixation event overlapped with fixation location with red , (b)
GBVS saliency map (the most salient areas are illustrated with lighter colour) for each
frame, (c) the normalised salience maps, (d) the normalised saliency of the fixated
pixel averaged over all frames (FixationMS).

The saliency measures (MaxS, FixationMS) averaged across each trial were used
to test differences between groups, the effect of saliency on completion time and
group by saliency interactions using Generalised Estimating Equation (GEE) model
with independence correlation structure and robust standard errors to adjust for re-
peated measures for each subject [84]. In addition to group, GEE models included the
following variables: group (PCA, tAD, Controls) and environmental condition (Lighting:
L/M/R; Clutter:L/R; Door: L/R).

The same GEE model was used to test differences in completion time between
groups. Tukey’s multiple comparison tests were implemented to test differences be-
tween pairs of groups. All statistical analyses were conducted using R.
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3.3 Resulis

Completion time Overall task performance was slower in both PCA (estimated
mean completion time: 9.09 seconds; 95%ClI [8.63, 9.55]) and tAD groups (7.10;
95% ClI [6.76, 7.44]) relative to controls (5.46; 95% CI [5.30, 5.36]), and in the PCA
relative to the tAD group. Between-group differences were statistically significant (all
p<0.005).

Saliency features a) MaxS: The maximum normalised saliency of fixated frames
was numerically higher in PCA (MaxS =6.65; p = 0.114) and tAD (MaxS = 6.49; p
= 0.464) patients overall relative to controls (MaxS = 6.30). However, there were no
statistically significant differences in maximum normalised saliency overall compared
to controls or between patient groups (p=0.395).

b) FixationMS: Overall, although tAD patients fixated on less salient regions (Fixa-
tionMS = 0.696) than controls (FixationMS = 0.826; p = 0.5620), this difference wasn'’t
statistically significant. There was no evidence of a difference between PCA patients’
tendency to fixate salient regions (FixationMS = 0.810) relative to controls (p = 0.9950)
and AD (p =0.8090).

MaxS

FixationMS

Controls PCA tAD Controls PCA tAD

Figure 3.4: Boxplots maximum normalised saliency of fixated frames (MaxS) for each
group (Controls, PCA and AD) in the left and mean normalised saliency at fixation
(FixationMS) in the right side.

Completion time and saliency measures We compared the relationship between
saliency and functional measures between patient and control groups. A Wald Chi-
Squared test showed that there are no statistically significant effects of the interaction
term maxS or FixationMS by group on completion time (Chisq = 2, df = 5.3 , p =
0.072; Chisq = 2, df = 2, p =0.36). This indicates that there are not expected to be
any differences in the relationship between saliency and completion time by group.
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To better understand the dynamic functional behaviour of participants, we at-
tempted to further investigate these findings by including kinematic information, head
orientation relative to the target door and displacement, as a third measure for visu-
alisation of individual patient cases associated with slow completion times. Here, we
picked two trials as examples of where patients had exhibited poor functional perfor-
mance based on completion time and indirect walking paths. In Figure 4.3.4, we see
a trial from a tAD patient when the light is a distractor and the table functions as clutter
to his/her way to the target door. It is obvious from the diagram that during the period
that the patient got lost (indicated with increased purple color) and started heading
towards the close door (wrong target), there are no fixations measured. The same is
the case for a PCA patient (Figure 3.6). Critical parts of the trials are missing, there-
fore, from our analysis. In addition, unexpectedly, in both trials we observe that the
highest normalised saliency at fixation corresponds to a fixation on a small light close
to the door (used to detect the end of each trial) and thus other areas (e.g. shadows
on the floor due to lighting) don’t appear to be as salient as expected.
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Figure 3.5: Trial from a tAD patient of light right (yellow), target left (pink) and table
(lilac) overlapping with target. The plot depicts the location of the patient in the room
coordinates with darker shades of purple indicating displacement values with higher
absolute angle of head relative to the target door. Grey circles depict the fixation
events during walking with bigger radius for higher salient values at fixations. Image i)
corresponds to the last fixation before the point of maximum deviation of head orienta-
tion from the target and it depicts a saliency map with the most salient (75 percentile)
parts of the image overlapped with the original image, ii) shows the frame with the
maximum normalised saliency and highest normalised saliency at fixation.
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Figure 3.6: Trial from a PCA patient door left, light (3) and table not overlapping with
Images i) corresponds to the second fixation during the trial, ii) maximum
saliency at fixation during the trial and iii) highest maximum normalised saliency in

target.

POV.
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3.4 Discussion

In this study, we investigated the effects of the saliency of environmental features
on fixation dynamics in patients with PCA and tAD combining eye-tracking metrics
with egocentric videos. Participants navigated to one of two destinations in a sim-
plified real-world setting. The two patients’ groups were matched in disease severity
(mild) but differ in the clinical presentations of the disease to investigate the extent
to which functional disabilities relate to visual and memory deficits in PCA and tAD
respectively. To assess functional performance, a repeated-measures design was
employed using completion time as a measure. Both patient groups were slower than
controls, with PCA patients slower than both controls and tAD patients overall. There
was not enough evidence to support patients’ tendency to include salient environmen-
tal features within their egocentric frames or a strong relationship between saliency
measures and function performance relative to controls.

To investigate the influences of environmental factors on slow performance, we
evaluated two saliency measures for non-static scenes during recorded fixations. The
first measure determined whether particularly salient environmental features were in-
cluded within participants’ egocentric frame. The second measure determined the
saliency of features at fixation. In contrast to the static scene viewing task in Shake-
speare et al. [155], in our real-world navigation setting there was no evidence of
differences between PCA or tAD and controls.

These findings might show that bottom-up saliency is not the dominant factor
that drives visual search in PCA and tAD during navigation in naturalistic settings,
or demonstrate that the equipment and saliency measures used in this work are not
able to capture saliency-related biomarkers. Another explanation might be that the
patients are choosing or tending in directions not necessarily related to the room itself
but to check, verify or gain confidence about things (e.g. leg position, floor flatness,
walls when they are nearing a boundary) that healthy individuals don’t even have to
glance at/towards. This behaviour caused by patients anxiety during walking might
have drag down the mean saliency at fixations. This is an inevitable downside of
ecologically valid paradigms. As all glances in any direction will have some kind of
environmental background, we can wrongly assume that these head and eye move-
ments were directed to the visual scene in view, whereas there may have been other
factors motivating this behaviour.

Previous findings confirm that the fixation-saliency changes with task and also
the influence of top-down factors on viewing [70, 69]. Further analysis including a
comparison with top-down models of attention would be needed to derive any con-
crete conclusions in our experiment. Mannan and colleagues, for instance, provide
evidence of the dominant role of saliency when early viewing a scene and the di-
vergence of attention to top-down processes as time progresses [110]. Our analysis
aggregating the saliency measures over the course of each trial to a single might have
masked the effects of this phenomenon. Alternatively, one hypothesis, for instance,
might be that during visual search in navigation, the allocation of bottom-up attention
might happen in different or even multiple time points or locations relative to the start-
ing point for the different groups. However, the poor detection of fixations attributed to
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fast movement of the head or body during walking (and particular when getting lost or
frustrated) and the crude accuracy of mobile eye-tracking might not have permitted to
extract precise measures for saliency analysis.

To better understand the dynamic functional behaviour of participants, we at-
tempted to further investigate these findings by including kinematic information, head
orientation relative to the target door and displacement, as a third measure for vi-
sualisation of individual patient cases associated with slow completion times. This
visualisation gives insights about the entire time course of the trial and associates
deviations in the walking path as well as in the head orientation relative to the target
with characteristics (saliency) of the visual surroundings. From the case studies we
investigated, it is interesting that the most salient visual feature (at least detected in
the two example patient participants) is a part of the room that wasn’t intended to pro-
vide a cue/salient feature (see Figure 4.3.4 (ii) and 3.6 (ii) where small light intended
to detect the end of the trial is the most salient feature of the visual field).

To the best of our knowledge, this study represents the first empirical investiga-
tion of navigation in PCA using a high-volume multi-modal data to better understand
which perceptual factors moderate the expression of functional impairment in real-
world environments in tAD and PCA. However, this study has several limitations. The
sampling frequency of the mobile eye-tracker was too low to accurately detect sac-
cades and some fixations were detected to be out of the screen’s resolution, ren-
dering the investigation of the full spectrum of oculomotor patterns impossible and
limited to a restricted number of fixations within trials. Therefore, caution is neces-
sary with the selection of the mobile eye-tracking equipment in future investigations
in naturalistic scenarios. Future directions might include the application of features
used in this work (such as MaxS; maximum normalise saliency of frames) not only
to eye-tracking devices but also cameras (e.g. SenseCam) to get insights related to
the role of bottom-up saliency in point of view scenes. Additionally, measures such
the angle of head relative to the objects in the environment (here limited to the target
door), presented only in case observations in this study, could be implemented in the
group level. This measure would be a surrogate of top-down saliency to measure the
effect of distractors and targets in visual search during navigation, and it can also be
combined with other modalities such as foot acceleration or displacement information.

Impaired way-finding and navigation abilities are disabling symptoms in dementia.
Previous anecdotal evidence supports the benefits of salient visual cues on functional
outcomes in AD. However, the relationship between function and the saliency of spa-
tial features from the perspective of the observer in controlled naturalistic settings
remains unclear. This study represents the first empirical investigation of navigation
in PCA and tAD using eye-tracking data and egocentric videos to investigation per-
ceptual biomarkers. It provides empirical directions for future ecological investigations
in dementia with respect to the sensors and methods that can be used to extract rel-
evant information from the signals.
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Augmenting Dementia Cognitive
Assessment with Instruction-less
Eye-tracking Tests

4.1 Introduction

Given the defining characteristics of most dementia syndromes are primarily cog-
nitive in nature, assessment of a person’s cognition is a vital component of both diag-
nostic services and research investigations, and is the most common outcome mea-
sure by which the effectiveness of potential pharmaceutical and non-pharmaceutical
therapies is judged. Standardised paper-and-pencil cognitive assessment tools are
a key component of the screening and diagnostic process, but have a number of
limitations. Accurate assessments are long and associated with participant fatigue
and stress, but brief tests often elicit floor and ceiling effects owing to a lack of dy-
namic range [122]. Literacy and education effects on cognitive scores due to the high
linguistic demands of instructions, lack of reproducibility due to the assessor’s subjec-
tivity bias and ecological validity of some cognitive domains (e.g. social cognition) are
further potential confounding factors [128].

Recent studies suggest that eye-tracking-based cognitive assessment might ame-
liorate some of the existing problems as it enables a brief and quantitative evalu-
ation of cognitive functions [21, 128, 138]. Eye-tracking technology provides fine-
grained information regarding oculomotor information (pupil dilation and gaze) and
has been used to uncover eye movement abnormalities in different dementia syn-
dromes [138, 155]. Previous studies explored its usability mainly for diagnostic pur-
poses using it as a proxy to cognition during basic oculomotor functions (e.g. saccadic
behaviour) and for evaluation of particular higher-order cognitive functions (e.g. mem-
ory, attention) [4, 120]. Recently Oyama et al. [128] used it as a communication tool
during cognitive assessment to collect answers from patients with dementia and mild
cognitive impairment that indicated their preference with their gaze while the tasks
instructions were written on the screen. Although these tests capture critical aspects
of task performance, they are still susceptible to the need for instructing patients on
how to complete the tasks, which is prone to mistakes caused by misunderstandings,
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language difficulties or patients at the later stages of the disease. Novel instruction-
less tests might be a window to more natural, robust and ecologically valid cognitive
evaluation.

Currently, the most commonly used way of summarising eye-tracking information
is the computation of statistics over the pupil dilation and the gaze signal. The latter
is converted to a sequential series of events predominantly consisting of fixations
(eyes held stable), saccades (rapid movements to change the position of fixations)
and blinks. Then, a set of eye movement event features are calculated on carefully
selected spatial areas of interest. Other methods for eye movement analysis include
statistics and heatmaps over raw gaze data, similarity indices of scanpaths, as well
as, the so-called n-grams features that encode information for the direction and the
amplitude of eye movements [81, 22, 110]. In dementia cognitive assessment, the
previous features take the form of abnormalities and are expressed in terms of latency,
accuracy, stability and variability [132]. However, the identification of a complete set
of handcrafted features from cognitive tests sensitive to subtle task and participant-
specific abnormalities is non-trivial and time-consuming. Additionally, these features
are not generalisable to more complex stimuli because they rely on specific stimulus
characteristics (e.g. regions of interest).

To overcome the limitations of handcrafted features, researchers have explored
different computational approaches using unsupervised representation learning; by
learning an embedding that captures some of the semantics of the input placing se-
mantically similar inputs close together in the embedding space [12]. Self-supervised
representation learning is a promising subclass of unsupervised representation learn-
ing which has produced state-of-the-art visual representations in standard computer
vision problems [125]. This method uses information already present in the data
as a supervision signal so that supervised learning techniques can be used. The
rationale behind self-supervised learning is that by training a network to solve a pre-
text task, it encodes high-level semantic representations that are useful for solving
other tasks of interest that usually have little annotated data. For sensors data, su-
pervised representation learning with deep learning models has been shown to be
competent in tasks including Human Activity Recognition (HAR) from wearable de-
vices and detection of seizures or arrhythmia from electroencephalogram (EEG) and
electrocardiogram (ECG), respectively [59, 141, 142]. However to our knowledge for
eye-tracking data, supervised representation learning has only been used for detec-
tion of gaze events (e.g. fixations, saccades) from raw eye-tracking sequences and
self-supervised representation learning has not been exploited [186].

In this work, we introduce a novel way of detecting abnormal behaviour and auto-
matically extracting salient features from a novel instruction-less eye-tracking cogni-
tive test administered to well-characterised patients with a variety of dementia diag-
noses and healthy controls. We use the pretext task of identifying the particular cogni-
tive task from which a particular eye-tracking sequence came. Labels are well-defined
and known from this task and it supports self-supervised learning to identify salient
features of eye-tracking sequences. Our results not only validate that instruction-less
eye-tracking tests can detect dementia status but also reveal novel self-supervised
learning features that are more sensitive than handcrafted features in detecting per-
formance differences between participants with and without dementia across a variety
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of tasks.

4.2 Materials

4.2.1 Datasets

Controls A: Eye-movement data from 432 healthy adults between 18 and 82 years
were collected during a residency at the London Science Museum as part of the C-
PLACID project. Thirty-one of these (mean age: 62.03 [SD: 7.79], 19 females [F], 12
males [M]) were over fifty years old, had proficient skills in English and reported no
neurological conditions, visual impairment or dyslexia.

Controls B: Data from the Insight 46, a sub-study of the National Survey of Health
and Development (NSHD) (British 1946 Birth Cohort) were also used for validation.
144 healthy individuals (67 F : 77 M) born in the same week in 1946 underwent the
eye-tracking test and standard cognitive assessments at age 69-71 years. 121 of
these individuals were cognitively healthy and amyloid negative based on Amyloid
PET imaging.

Patients: Thirty patients with dementia (10 F : 20 M) participated in the study with
mean age 68.9 years (SD : 9.16), of which 20 were less than 65 years of age at the
time of their diagnosis. In terms of disease severity, their average MMSE score was
22.6 (SD: 6.68) and 18 of the patients had mild symptoms (based on correspondence
with Clinical Dementia Rating scale; MMSE>20) [98]. These participants fulfilled
standard clinical criteria for diagnosis of one of the following dementia subtypes: AD
(6 subjects), bvFTD (7), IvPPA (5), nfvPPA (6) and svPPA (6).

Table 4.1: Demographic characteristics of the patients’ group.

Group Age Gender | MMSE
(F:M)

AD 74.33 3:3 17.33

bvFTD 64.14 1.6 24.85

IvPPA 65.60 1:4 22.0

nfvPPA 72.50 3:3 26.16

svPPA 66.66 2:4 22.16

4.2.2 Stimuli and Procedure

All participants (patients and Controls A & B) completed a free-viewing eye-tracking
test in which 48 images were presented on a computer screen for 3 seconds each (for
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a total of 192s) and their eye movements were recorded using a desk-mounted video-
based eye-tracker (Eyelink 1000 Plus) at 1000 Hz. Participants were not given explicit
task instructions; they were just asked to look at the screen. A chin rest was used to
maintain a constant viewing distance of 80cm in all participants. Stimuli were selected
to engage different cognitive functions:

1. Scene exploration: i) social interaction; 10 images with social (people present)

and non-social context (people absent) (e.g. Figure 4.1 a.) , ii) missing items;
10 images, half complete and half incomplete (e.g. Figure 4.1 b.) and iii) social
scenes; 8 images depicting either a garden or a kitchen scene where a person
is present on one side of the screen and absent on the other (e.g. Figure 4.1
C.).
The missing items task is a computerised instruction-less version of the Picture
Completion subtest of the Wechsler Adult Intelligence Scale (WAIS) [172]. On
this test, the participants are instructed to find the missing parts of the presented
image. The test measures visual perception, in particular, visual recognition of
essential details of objects and executive functioning [159]. Previous research
has shown the efficacy of this test in discriminating between AD and other de-
mentia subtypes [109, 107]. This task was included in the instruction-less bat-
tery to measure impairment in executive processes and also concentration/effort
during the assessment.

The social interaction and social scenes tasks were designed to evaluate de-
creased social interest which is a core diagnostic feature of bvFTD [134]. To
date, the majority of research examining emotion and social perception has fo-
cused on pictures of basic facial expression. Hutchings et al. [85] found that
bvFTD patients initiated more fixations to the eyes of emotional faces compared
to controls. Patients with bvFTD are impaired in the Reading the Mind in the
Eyes Test [9], in which participants are asked to label mental states based on
visual information displayed by the eyes. Eye-tracking variants of this battery
have also been developed [135]. Recently, Russel et al. [148] also created
a novel instruction-less battery for identification of emotion recognition deficits
in frontotemporal dementia which measures the extent by which participants
match an emotion written on the screen with the corresponding photograph. Al-
though previous research proved invaluable towards understanding social and
emotional cognition, it fails to capture emotion and social skills as perceived in
day-to-day life. Therefore, the social tasks in this battery attempt to explore high-
order social cognitive functions including social apathy and disinhibition in more
complex scenarios.

2. Semantic processing: 10 sentences, half of which were semantically congru-
ent (e.g. “In the jungle there are many different animals.”) and half semantically
incongruent (e.g. “She likes having a cup of injury in the morning.”), adminis-
tered in pseudorandom order (e.g. Figure 4.1 d.). The sentences used in one of
the batteries are displayed in Table 4.2. Half of the target words used have low
frequency (based on bigram and celex frequencies).

This paradigm was targeted towards the language-led dementia subtypes (se-
mantic, logopenic and non-fluent variant primary progressive aphasia). Diffi-
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culty in understanding sentences is a common symptom in many individuals
with aphasia, especially in low frequency or complex sentences structures [49].
Previous studies have revealed increased ambivalence in gaze patterns in in-
dividuals with svPPA when looking at a target and semantically related foils
compared to other variants of PPA and controls [57]. A recent study by Merck
et al. [117] also reflected the semantic deficits in semantic dementia (com-
pared to a control group) using an eye-tracking word-to-picture matching task,
in which participants had to identify a target among semantically related items
and distractors. Silent reading has been also evaluated using eye-tracking in
individuals with aphasia [96, 49]. These studies demonstrated that structural,
syntactic complexity and animated cues modulate online reading patterns in
aphasia. Therefore, eye-tracking tasks seem particularly useful for discrimi-
nating individuals with svPPA and those with other variants of PPA. Here, the
instruction-less semantic processing task included in this study combined stimuli
from low frequency words and semantic incongruent sentences hypothesising
higher overlap in gaze patterns between semantically congruent and incongru-
ent sentences in svPPA compared to the other variants of PPA and controls.

3. Recognition memory: 10 pairs of images, one of which was seen previously
in the social interaction task and the other which is a new image of equivalent
style and complexity (e.g. Figure 4.1 d.).

The social interaction task combined with the recognition memory task consti-
tute a computerised version of the Visual Paired Comparison task for memory
impairment detection [55]. During this task, in the familiarisation phase (social
interaction) the subjects look at the pictures for a specific amount of time and
then in the test phase, the subjects are presented with pictures of both old stim-
ulus and novel stimulus (recognition memory). Previous eye-tracking studies by
Crutcher et al. [44] and Lagun et al. [101] found that control subjects spend
more time during the test phase looking at the novel stimulus which indicates
that they have a memory of the old, now less interesting stimulus. The authors
also demonstrated that this pattern is not evident in patients with tAD or mild
cognitive impairment. Therefore, based on existing literature, this component of
the instruction-less eye-tracking battery intends to detect memory impairment
which we expect to be more prevalent on the tAD group.

There were four different versions of this test. V1-2 included all tasks (semantic
processing, scene exploration, recognition memory) but had different stimulus sets.
V3-4 included the same stimuli as V1-2 but excluded the semantic processing task.
Controls A (Science Museum) participants were randomly assigned to one of the four
versions. Controls B (Insight 46), Controls A elderly and patients were administered
either version V1 or 2.

The eye-tracker was calibrated for each participant using 9 calibration points. Each
trial was initiated by the experimenter and every trial was preceded by a centrally pre-
sented fixation point used as a drift correct stimulus. The fixation point also enabled
a drift check, as the experiment only proceeded if the participants was looking at the
drift target. Images were presented in a fixed random order within each task, and
tasks were administered to all participants in the same order.
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Figure 4.1: Example stimuli from the five cognitive tasks illustrated as they were pre-
sented on the computer screen sequentially (one image at a time) in the order admin-
istered: a. social interaction; image with people present (social), b. missing items;
a chair with a missing part, c. social scenes; combination of pictures depicting two
gardens scenes with a person present on the right, d. semantic processing; an ex-
ample of a semantically incongruent sentence; "She likes having a cup of injury in the
morning”, e. recognition memory; the previously presented picture (from the social
interaction task) on the right (see a.) is coupled with a new picture on the left.

sentences target word | congruent
Some people questioned the equity of the action. equity true
She likes having a cup of injury in the morning. injury false
She had a major cinema on her leg after the crash. cinema false
A green candle was placed on the wooden table. candle true
If you ever feel in coffee run as fast as you can. coffee false
He will bring her a carafe of wine and flowers. carafe true
The most beautiful square is in that direction. square true
They went to the new bucket after a long time. bucket false
In the jungle there are many different animals. jungle true
Yesterday he used a danger to make sandcastles. danger false

Table 4.2: Sentences stimuli used in one the eye-tracking batteries.

4.3 Methodology

To mine the information of the eye-tracking time series of this instruction-less eye-
tracking test, we implemented the following steps (Figure 4.2):

1. Cognitive activity recognition: Firstly, self-supervised representation learning
(see section 2.7.3) was implemented in which condensed abstract represen-
tations of the input signal are learnt training a deep neural network on Cognitive
Activity Recognition (CAR) based on healthy individual’s data (Controls A). [sec-
tion 4.3.2.1]

2. Feature relevance visualisation: Once the distribution of healthy behaviour was
learnt, LRP was used to explain the networks’ decisions in differentiating be-
tween cognitive activities and eventually to better understand the mechanisms
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underpinning healthy behaviour. [section 4.3.3]

3. Abnormality detection: Next, the extent to which eye-tracking features of demen-
tia patients deviate from healthy behaviour was explored. [section 4.3.4]

4. Dementia classification: This was followed by a comparison between self-supervised
and handcrafted representations on discriminating between participants with
and without dementia. [section 4.3.5 for the comparison, section 4.3.1.1 for
handcrafted features]

For the following analysis, the models’ performance was evaluated in terms of F'1
score which is the harmonic mean of precision and recall.

4.3.1 Data Processing

The Eyelink system recorded gaze position and pupil size in a monocular tracking
mode providing 1000 samples per second. Gaze position reports the (x, y) coordi-
nates of a subject’s gaze on the display (resolution: 1920 x 1080) in actual display
coordinates (pixels) with origin (0, 0) at the top left. Pupil size is reported as the pupil
area measured in arbitrary units typically ranging between 100 to 10000 units. Raw
samples, therefore, consist of three-time series of x, y coordinates of gaze and pupil
size having a dimension of [sampling rate x trial duration].

Eye movement events were generated by the EyelLink tracker including fixations,
saccades and blinks using standard velocity and acceleration thresholds. Saccades
identified as containing blinks were considered blinks. Trials with total nhumber of
samples outside the screen’s resolution or total blink duration more than 500ms were
considered erroneous and were excluded from the analysis.

Gaze position signal was normalised to the display coordinates by dividing the
gaze coordinates by the screen resolution. Missing values of gaze position were
imputed with a constant zero value to avoid interpolation bias; as missing values
might have a physical meaning indicating fatigue or cognitive load.

Processing of pupil size data involved discarding data before and after blinks and
linear interpolation of missing values and lowpass Butterworth filter with cut-off fre-
quency of 5 Hz. This cut-off frequency was found to be optimal for noise minimisation
and signal restitution in our data. The baseline pupil size was measured as the av-
erage pupil size for a period of 300 ms immediately preceding each stimulus onset.
This baseline value was selected because firstly it is a duration long enough to give
a robust estimate which is longer than the average blink duration. Secondly, it is
small enough to minimise the influence of pupil dilations from a previous trial since
the inter-trial intervals in the battery are 1000 ms. Baseline corrected pupil diameters
were computed by subtracting the baseline pupil size from the raw pupil size after
stimulus onset.
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4.3.1.1 Handcrafted Features

The following basic eye movement statistics were chosen to summarise the free-
viewing tasks of the experiment:

saccade counts, total duration of saccades, median of the length of saccades
(x-coordinate of gaze), number of progressive saccades (forwards), number of re-
gressive saccades (backwards), fixation counts, mean/max/standard deviation, blinks
counts, total duration of blinks and total duration of fixation duration, mean/std/min/max
of peak velocity, visual angle, pupil size, pupil size during fixations, x and y coordinates
of gaze.

Scanpath length, namely, the Euclidean distance of saccadic movements with re-
spect to x and y position of gaze, was also selected as a measure of the overall
functional performance of participants since it has been associated with higher fluid
intelligence scores in healthy individuals [150].

Overall differences in eye-movement handcrafted features across all tasks be-
tween healthy controls and dementia patients were evaluated using a Generalised
Estimating Equation (GEE) model with independence correlation structure and robust
standard errors to adjust for repeated measures for each subject [103]. In addition to
the group category (controls/dementia), the following variables were included in the
GEE models: age, education, gender, task and task by group interactions.

4.3.2 Representation Learning Methodology

4.3.2.1 Cognitive Activity Recognition

Cognitive activity recognition from eye movements was used in this work as the
pretext task and a deep neural network was trained in a trial-wise manner (rather than
subject-wise) given the raw eye-tracking signals. CAR can be considered as a clas-
sification problem, where the inputs are time series and the outputs are the cognitive
task one is being assessed on (semantic processing; scene exploration; recognition
memory). In particular, a multi-head Convolutional Neural Network (CNN; see section
2.9.0.3) architecture was implemented which takes as an input the three eye-tracking
time series, processes them separately by individual one-dimensional convolutional
heads and extracts features specific to each time series [27]. This network’s architec-
ture processes the entire sequence at once generating a single feature map for each
sample and then all the features maps are concatenated. In this way, the features
extracted from each time series are kept separated which improves the interpretabil-
ity of the model and captures better data of different natures and scales that are not
correlated (e.g. gaze coordinates and pupil size). After the feature extraction stage, a
global average pooling operation was applied which calculates the average output of
each feature map and prepares the model for the final classification layer.

Defining the number of output classes is not straightforward, as the instruction-less
nature of the test increases between-trial variability causing label ambiguity. Although
the stimuli were designed to trigger specific reactions, it is not guaranteed that partic-
ipants were performing in a similar/uniform way, especially on the missing item, social
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Figure 4.3: Model A and B Neural Networks Architectures for cognitive activity recog-
nition with 3 (scene exploration, recognition memory and semantic processing task)
and 5 (missing items, social scenes, social interaction, recognition memory and se-
mantic processing task) output classes respectively.

scenes and interaction tasks which fall broadly into the scene exploration task.
The following two multi-class problems were investigated which differ on the number
of output classes in the final classification layer:

i. Model A: Three-class problem (scene exploration, recognition memory and se-
mantic processing task)

ii. Model B: Five-class problem (missing items, social scenes, social interaction,
recognition memory and semantic processing task)

Figure 4.3 demonstrates the architectures of model A and B. Model A consists
of a single 1-D convolutional layer (kernel size 5, stride equal to 1, no padding) with
5 features maps for each input signal followed by a batch normalisation layer and a
RelLU activation function. Model B includes 12 blocks of the following architecture
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in the order presented: 1-D convolutional layer (kernel size 5, stride equal to 1, no
padding) with 30 features maps, batch normalisation layer, ReLU activation function,
dropout layer (p = 0.2) and average pooling layer (pool size 2). In both cases, a global
average pooling layer follows the feature extraction block and reduces the dimension
to 15 and 90 features for model A and B respectively. These features are the input of
a perceptron applied with a softmax activation function.

4.3.2.2 Training Details

Hyper-parameter selection and model comparisons were implemented within the
following pipeline: data were split in train and test set under the constraint that trials
of an individual appear in only one of the sets (leaving some participants out). 5-fold
cross-validation was implemented on the train set for each combination of parameters
selected using grid or random search. The set of parameters with the best 5-fold
cross-validation score (F'1 score) was selected and the model with weights from the
best fold was evaluated on the test set.

The proposed framework was implemented and trained in KERAS. The network
parameters were optimised by minimising the categorical cross-entropy loss function
using gradient descent with Adam optimiser having learning rate of 0.001 and batch
size of 50. Weights were randomly orthogonally initialised with the Glorot normal
initialiser. The L1-norm weight regularisation was applied with regularisation rate of
10~°. The maximum number of epochs was 50 and early stopping was implemented
which stops the training process if the validation loss does not increase for 50 con-
tiguous epochs. After training the model, only the weights of the epoch with the higher
F'1 score on the validation set were saved and used for the evaluation of the model.

4.3.2.3 Data Augmentation

Given the intrinsic within and between person variability and the limited amount
of eye movement data, data augmentation can be used to prevent overfitting and im-
prove the generalisability of the models [168]. Finding invariant properties of the data
against certain transformations is the main idea behind the selection of the following
four techniques implemented: shifting, jittering, scaling and cropping. For each gaze
position time series, transformations were applied by randomly selecting two out of
the four techniques.

Shifting involves generating samples by shifting x and y coordinate of gaze by a
scalar (randomly sampled from the interval [-10, 100] for the semantic processing
task and from [-100, 100] for all other tasks). In this way, we covered unexplored input
space by accounting for variability of the movement while preserving the shape of it.
Jittering is a way of simulating additive noise attributed to varying levels of gaze sta-
bility in individuals or noise associated with the sensor. Three seconds of Gaussian
noise was generated with a standard deviation value sampled from a uniform distribu-
tion U(0.05, 1). Scaling the input by multiplying the x and y coordinates of gaze with
the same scaling factor attempts to change the magnitude of the signal and subse-
quently slightly the shape of the gaze scanpath. The scaling factor was sampled from
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the normal distribution with a mean of one and standard deviation between 0.05 and
0.2 for the semantic processing task or 0.1 for the others. Cropping the input involves
removing the first (or last) x time points (x in [5, 100]), shifting the signal x points
in the time axis and consequently interpolating with zero values to keep the original
dimension.

4.3.3 Feature Relevance Visualisation

LRP, proposed in [6], was applied to the best performing CAR model to better
understand the mechanisms underpinning healthy behaviour during different cognitive
activities. LRP attempts to explain the decisions of non-linear models such as deep
neural networks. The goal of this technique is to quantify the contribution of each
component of an input « to the prediction f(a) made by a given decision function f.
To this aim, LRP decomposes f attributing relevance scores R; to all components
i of a such that f(a) = ) . R;. The algorithm starts from an output neuron j by
defining f(a) = R, and it iterates over all the layers of the model backwards to the
input attributing relevance messages to each neuron under the constraint that the
total amount of relevance is conserved in each layer.

The relevance value being propagated from neuron j to its input i is proportional to
each input ¢ contribution to the activation of the neuron ;j and is defined as:
Riej - @Rj, (41)

Zj

where where z;; is the contribution of the input neuron i to the output neuron ;5 and
z; = y_.%;. In this work a modification of this formula is used, the so-called e-rule,
which introduces a stabiliser € > 0 to the denominator of formula 4.1 to avoid possible
unbounded values of R;_,; with small values of z;. The relevance score R; at input
neuron 1 is then obtained by summing all incoming relevance values R,_,; from the
output neurons to which ¢ contributes to and is defined as:

Ri = Z Ri<—j~ (4-2)
J

By replacing R, ; with the above formula, it is obvious that a neuron is relevant if it
contributes to neurons that are relevant themselves.

In the CAR classification setting, for input neurons i, R; ~ 0 indicates inputs with
no or little influence on the model’s decision, R; > 0 represents parts of the input that
explain a specific class while R; < 0 contradicts the prediction of that class.

Once the relevance values were computed, they were normalised to the interval
[—1, 1] by dividing with the maximum absolute relevance value of the entire input sig-
nal.

4.3.4 Abnormality Detection

Once the normal behaviour during this cognitive assessment was learnt, the extent
to which the eye movement patterns of dementia patients deviate from it was investi-
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gated. In particular, a question of interest is whether dementia patients passively look
at the screen without following the implied instructions (e.g. reading when a sentence
is presented on the screen) which is the expected activity from the controls. To inves-
tigate that, data from unseen elder controls (controls B) and dementia patients were
fed into the pre-trained CAR neural network and the number of misclassified sam-
ples were estimated for each cognitive task and group. Since misclassifications might
be attributed to behaviour patterns not seen in the training set, abnormality was de-
fined in relation to an unseen elderly controls’ dataset. A threshold that discriminates
normal from abnormal cases for each cognitive task was created by calculating the
average predicted probability of an elder control trial belonging to each cognitive task
classes. A trial from the dementia group was considered abnormal if the model as-
signed it to a class with probability less than the threshold value of that specific class.
Finally, a majority voting strategy was applied to determine abnormal participants of
the dementia cohort using the median value of the abnormality scores of their trials.

4.3.5 Dementia Classification

Since the ultimate purpose of this instruction-less cognitive assessment is the de-
tection of dementia related oculomotor biomarkers, we evaluated whether the repre-
sentations learnt using the cognitive activity recognition task (i.e. pretext task) are
useful for dementia classification (i.e. target task). If the representations learnt are
general and not specific to the pretext task, then the target task is expected to per-
form well. To this aim, the data of the elderly healthy controls A and dementia patients
were fed to the pre-trained CAR neural network and the outputs of the average global
pooling layer were the features to be transferred for dementia classification. The per-
formance of a support vector machine (SVM) classifier with these abstract features
and handcrafted features was compared. The following procedure was applied to both
feature sets.

The features were adjusted by controlling for potential confounding effects of gen-
der, age and education levels before being fed to the classifier. A multivariate multiple
linear regression model was fitted on the controls’ data with the features as dependent
variables and age, education and gender as independent variables. Subsequently,
the residuals were calculated for the features matrix which measure unexplained vari-
ance presumably attributed to the task or to other individual characteristics. Using
the model with the estimated coefficients the residuals were also calculated for the
patients’ features. The inputs, therefore, of the classifier were the residuals instead
of the initially calculated features. In addition, all the features were standardised by
removing the mean and scaling to unit variance inside the cross-validation procedure
using the mean and variance of the train set.

For each cognitive task, we extracted abstract or handcrafted features for each
trial and then made trial-wise predictions of dementia status based on all set of fea-
tures, whether abstract or handcrafted. Five SVMs (with a radial basis function (RBF)
and tuning parameters the kernel coefficient (v) and the penalty parameter (C); see
section 2.9.0.2) were fitted to the features of each task separately (missing items,
social scenes, social interaction, recognition memory and semantic processing task)
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[36]. This ensemble approach was preferred to a single global classifier, because we
hypothesised that the task information would improve the predictions. Lastly, to obtain
subject-specific from trial-wise predictions, a majority voting scheme (median opera-
tion) was applied to the five classifiers’ predictions; twice for each subject (Figure 4.2).
In more detail, for each cognitive task, the corresponding SVM made several predic-
tions (votes) for all trials of each subject (e.g. for semantic processing 10 predictions
for each subject). The final prediction for each subject’s performance on a particular
task was the one that received the most votes. Finally, the global output prediction of
each subject was the one that received more than 3 votes (out of 5).

Nested cross-validation was implemented for the evaluation of the classifiers: data
were split into a train set, within which parameters were selected with 5-fold cross-
validation, and a test set, for evaluation. It was ensured in the process that the same
participants appeared in the test sets for all five classifiers. This process was repeated
100 times and since the classifier’s performance was evaluated in terms of F'1 score,
100 F'1 scores were obtained for each experiment.

A label permutation test was implemented as a baseline which determines the
performance of the model when there is no relationship between the features and
the output labels. The features of the best performing model were selected for this
procedure. Comparisons between the performance of the model with different feature
sets were made using Mann-Whitney U test and bootstrap confidence intervals with
1000 iterations were calculated.

4.4 Results

4.4.1 Cognitive Activity Recognition

Table 4.3 summarises the results of the CAR model, which classifies cognitive
activity given eye-tracking data, in terms of 5-fold cross-validation and left-out test
set performance with two combinations of output classes (3 or 5 output neurons) and
four combinations of training datasets (with or without augmented data, controls B
and combined controls A and B). The original dataset includes 15,996 trials and the
augmented 18,793. Figure 4.4 shows that the distribution of the computed statistics
(mean, variance, range) for x and y coordinates of gaze for original and augmented
data are similar. In cropping, the range of the samples is higher because the minimum
value is always zero, as the signal is interpolated. The best performance in terms of
F'1 score on the test set appears to be on the simplest model with three classes
(scene exploration, memory and semantic processing) trained on the original dataset
of healthy controls. Data augmentation and increasing the size of the training set (A
and B) improves slightly the performance of CARS but not CAR3 model.

4.4.2 Feature Relevance Visualisation

Relevance maps were computed for the best performing model (CAR3) for both
dominantly and not-dominantly firing output neurons as the latter can reveal interest-
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Table 4.3: Performance scores of the multi-head CNN models on activity recogni-
tion with different multi-class and augmentation settings evaluating with 5-fold cross

validation and the left-out test set.

Model Control | Output Augment | CV F1 | Test
Dataset | classes F1

CARS3 A 3 False 0.955 0.967
(0.01)

CAR3_AUG| A 3 True 0.948 0.954
(0.014)

CARS3 B 3 False 0.941 0.926
(0.014)

CARS3 A+B 3 False 0.946 0.959
(0.012)

CAR5 A 5 False 0.841 0.821
(0.023)

CAR5_AUG| A 5 True 0.857 0.834
(0.019)

CAR5 B 5 False 0.854 0.859
(0.014)

CAR5 A+B 5 False 0.852 0.854
(0.01)
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Figure 4.4: Histogram of statistics for original and augmented data. Statistics: mean,
variance and range of the time series signal were computed for all samples for x and
y coordinate of gaze.

ing information about the learnt strategy of the model e.g. why a certain class has
not been picked for prediction. Figure 4.5 provides some insight on the methods the
network uses to classify with high certainty eye-tracking trials belonging to the scene
exploration (neuron 1), semantic processing (neuron 2) or memory recognition task
(neuron 3). It shows the contribution of the input to the prediction of each class, or
in other words, to the output of each neuron of the final layer of the model. Positive
values of relevance in the not-dominantly firing neurons indicate parts of the input
sharing properties with the dominant neuron. Negative values in the not-dominantly
firing neurons indicate parts of the input that significantly oppose the properties of the
dominant neuron.

Figure 4.5.a constitutes an example of a semantic processing trial of a healthy con-
trol which is correctly classified with 0.982 probability. The neural network attributes
positive relevance to peaks, high values or gradually increasing stair-wise trends of
the x coordinate of gaze. The network discriminates between scene exploration and
semantic processing or recognition memory largely by these x position properties of
the signal. This is reflected in the negative relevance of the same points in neuron 1
compared to neuron 2 and 3.

Figure 4.5.b displays an example of a memory recognition task (class 3) which
is correctly classified by the network with probability 0.981. As seen in Figure 4.5.a
previously, positive relevance values are attributed primarily in the x position of gaze in
both neuron 2 and 3. Here to discriminate between memory recognition and semantic
processing, the network looks at the y position of gaze and gives higher values of
relevance to fixations (flat areas) with higher values (bigger jumps) of the y coordinate
of gaze. Intuitively this means that it learns that in the semantic relative to the memory
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Figure 4.5: Relevance plots of Cognitive Activity Recognition (CAR) features discrim-
inating between cognitive tasks in healthy controls. Features are presented from the
best performing activity recognition model (CARS). Three different input eye-tracking
samples (a, b, ¢) are presented, each of a separate healthy control performing a read-
ing (a) or episodic memory (b, c) task. Rows: Relevance maps with respect to the
network’s (class representing) output neurons (neuron 1: scene perception, neuron
2: reading, neuron 3: episodic memory). Columns: X, y coordinate of gaze and pupil
size respectively. Warm hues (standing for R > 0) identify input components support-
ing the model prediction and cold hues (mapped from R < 0) pointing out evidence
in the input considered as contradictory to the learned class by the model. (a). The
model indicates that peaks, high values or gradually increasing stair-wise trends of x
coordinate of gaze are associated with either the reading or episodic memory task.
(b). These trends accompanied by relatively stable values of y position of gaze are at-
tributed to the reading task, whereas long fixations with higher values (bigger jumps)
of the y coordinate of gaze to the episodic memory task. (c) In samples where there
are no jumps with respect to the horizontal axis of the screen, the network identifies
big jumps in y position of gaze and variations in pupil size as features associated with
the episodic memory task.

task the eyes stay relatively still with respect to the vertical axis of the screen while
moving horizontally to read the sentence.

In the memory recognition task when the previously seen feature of x position of
gaze is not apparent, i.e. there are no jumps with respect to the horizontal axis of the
screen, the network looks for big jumps at the y position of gaze (Figure 4.5. c, prob-
ability = 0.99). Interestingly, since this property is shared between scene exploration
and memory recognition task, the network classifies the trial as memory recognition
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relying also on the pupil size signal.

4.4.3 Abnormality Detection

4.4.3.1 Handcrafted Features

Based on the results of the handcrafted features, overall dementia patients searched
less extensively and scanned the stimuli significantly more slowly than controls with
lower scanpath lengths (estimate = -276.56, SE = 97.09, z = 8.11, p = 0.00439) (Ta-
ble 4.4). Mean x position of gaze was lower in dementia patients compared to controls
(estimate = -22.895, SE = 11.220, z = 4.16, p = 0.0413). There was also a significant
interaction between the effects of group and task (p < 0.0001); dementia patients
showed a greater relative impairment relative to controls in the semantic processing
task, looking at lower values of the x coordinate of gaze on average when the sen-
tences appeared on the screen. The same patterns appear on median and max x
coordinate of gaze (max: estimate = -37.466, SE = 15.999, z = 5.48, p =0.0191,
median: estimate =-29.1, SE = 12,7, z = 5.25, p =0.022).

4.4.3.2 Self-supervised Learning Features

To investigate whether dementia patients passively look at the screen without fol-
lowing the implied instructions, the CAR5_AUG model trained on healthy behaviour
was used. The percentage of misclassified trials when the controls B validation set
vs dementia data were fed into the model were higher for the dementia patients for
all the cognitive tasks: social scenes (Controls: 27.4% vs Dementia group: 37.3%),
semantic processing (0.4% vs 2.7%), memory recognition (5.7% vs 8.8%), social in-
teraction (22.4% vs 28.5%), missing items (13.6% vs 19.2%). The distribution of the
predicted probabilities of a trial belonging to a task were statistically significantly differ-
ent between controls B and dementia patients trials apart from the social interaction
task (social interaction: z = 20067.5, p = 0.067, semantic processing: z = 24236, p <
0.0001, missing items: z = 14576.5, p= 0.0084, social scenes: z = 13682, p < 0.0001,
memory recognition: z = 17305, p = 0.0002).

In terms of the detection of abnormal participants, even in the absence of explicit
task instructions, 13 out of 30 dementia patients were considered abnormal in the
social scenes task (threshold p = 0.6851), 10 in the social interaction task (p = 0.71)
and 4 in the missing items task (p = 0.808).

4.4.4 Dementia Classification

Figure 4.6 and Table 4.5 summarise the results of the model on the dementia
classification task using handcrafted and deep learning features obtained from dif-
ferent variations of the CAR models presented above. Overall, the features from
CARS5 present the best results capturing differences between the two groups (95%
Cl: [0.7870, 0.8241]). The handcrafted features [0.6175, 0.6723] show lower perfor-
mance compared to CAR5_AUG [0.7522, 0.7944] (t = 2334 , p < 0.0001), CARS5 (¢
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Table 4.4: Wald statistic and p values for group category variable (dementia /controls)
of the GEE models with outcome the handcrafted features and independent variables:
age, education, gender and task.

Features Wald statistic | p-value
fixation counts 0.28 0.59468
saccade counts 0.78 0.38

saccade median length 3.67 0.0553
progressive saccades counts 0.12 0.727
regressions counts 1.66 0.20
blink counts 2.32 0.1279
fixation duration sd 1.01 0.315
fixation duration mean 0.17 0.6773
fixation duration sum 0.06 0.813
saccade duration sum 3.18 0.07468
blink duration sum 1.67 0.19602
peak velocity mean 1.87 0.17124
peak velocity sd 0.02 0.902
peak velocity min 2.35 0.1257
peak velocity max 0.54 0.463
pupil during fixation mean 0.51 0.4743
pupil during fixation sd 0.06 0.81
pupil raw mean 0.0001 0.99
pupil raw sd 0.02 0.8845
pupil raw min 0.0001 0.96
pupil raw max 0.0002 0.98
pupil raw median 0.02 0.878
X mean 4.16 0.0413 *
x sd 2.86 0.091
X min 0.04 0.84
X max 5.48 0.01919*
x median 5.25 0.022 *
y mean 2.09 0.148
y sd 0.09 0.7615
y min 1.31 0.25
y max 2.85 0.091

y median 1.30 0.255 81

scanpath length 8.11 0.00439 **
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Figure 4.6: Performance of the SVM-ensemble model trained on the dementia classi-
fication task in terms of F'1 score using different handcrafted and deep learning fea-
tures. The self-supervised learning features were transferred from different variations
of the CAR neural network trained on activity recognition. CAR3 and CAR3_AUG have
three output neurons (scene exploration, recognition memory and semantic process-
ing task) and are trained with and without data augmentation, respectively. CAR5 and
CARS5_AUG have five output neurons (missing items, social scenes, social interaction,
recognition memory and semantic processing task). For a baseline, the case where
there is no relationship between the features and the output labels is considered. Bars
represent 95% bootstrap confidence intervals.

= 1628, p < 0.0001) but not CAR3_AUG [0.6412, 0.71097] (t = 4371, p = 0.094) and
CAR3 [0.6367, 0.6979] (t = 4287, p = 0.064), mainly as CAR3_AUG and CARS3 are
performing better, but this improvement is not statistically significant. There was no
evidence that data augmentation improved classification performance in the CARS5, (¢
=4195.5, p = 0.013) nor in CARS3 problem (¢t = 4894.5, p = 0.398). Both handcrafted
features and CARS differ significantly from the baseline case (¢t = 3479, p < 0.001, ¢
= 1628, p < 0.001).

82



Chapter 4

Table 4.5: Mean of 100 iterations of nested cross-validation metrics (TN: True Nega-
tive, FP: False Positive, FN: False Negative, TP: True Positive) of the SVM-ensemble
model trained on the dementia classification task and tested on 6 patients and 6 con-
trols.

Model TN |FP |FN |TP

(%) | () | (%) | (%)
CAR3 37.08| 12.91 | 16.33 | 33.66
CAR3_AUG |335 |16.5 |15.25|34.75
CAR5 335 | 165 |5.16 | 44.8

CAR5_AUG | 30.5 | 19.5 | 6.33 | 43.66
Baseline 11.08 | 38.91 | 12.91 | 37.08
Handcrafted | 34 15.98 | 17.94 | 32.05

4.5 Discussion

A mixed sample of well-characterised dementia patients varying in disease sever-
ity participated in a free-viewing test which was designed to assess specific cognitive
functions selectively impaired in different subtypes of dementia. In this study, we
present evidence that firstly brief instruction-less eye-tracking tests can detect ab-
normal oculomotor biomarkers and secondly self-supervised representation learning
techniques can extract more discriminative features from this instruction-less eye-
tracking cognitive test that are more discriminative than standard handcrafted eye-
tracking metrics.

To assess the overall functional performance of participants in the cognitive test,
scanpath length and some relevant handcrafted features were computed. We found
that dementia patients search less extensively and scan the stimuli significantly more
slowly than controls. They also present a tendency to fixate towards the left side of the
screen during sentence presentation compared to controls, which might indicate that
either they are slower in reading or they are not reading the sentences. While these
primary findings are unable to indicate the basis of such abnormal performance, such
as whether this relates to a diminished ability to adapt eye behaviour in response to
task demands [155], they demonstrate that features extracted from even this brief and
instruction-less test may detect abnormal oculomotor biomarkers of dementia-related
cognitive dysfunction.

With the aim to evaluate whether the dementia patients were performing the activ-
ities that were implied by the test, we first tried to understand the cognitive behaviour
of the average healthy control. We trained a neural network on healthy controls to
predict cognitive activity from eye movements and the network’s decision strategies
were analysed. All three input channels of the network, x and y coordinates of gaze
and pupil size, contribute to the prediction of the cognitive task one is performing;
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with the first two having a higher impact. The network’s decisions seem to associate
the combination of jumps towards high values of x position and stable y position or
jumps towards y position with the sentence reading task (since one normally scans
the screen from left to right when reading) and the recognition memory respectively.
Interestingly, to discriminate between scene exploration and memory recognition, the
networks seem to use information from pupil size which is consistent with previous
evidence of pupil response being modulated during memory tasks [91].

When this network was used to classify cognitive activities of elderly controls and
dementia patients, higher misclassification errors were observed in dementia patients
than in controls indicating that dementia patients perform the distinct cognitive tasks
differently than healthy participants. If slower performance in a task is associated
with eye-tracking sequences with the same features to the average performance but
shifted later in time, then we know that trials of slower participants are not misclas-
sified by the network. This is because according to the equivariance to translation
property of convolutional neural networks, two different input signals with the same
feature presented in different locations in the input space produce the same output.
Misclassified trials of dementia patients, therefore, might be attributed to cases where
the mechanisms underpinning cognitive activities differ substantially to controls.

The cognitive activity recognition pretext task not only contributes to the detection
of abnormal behaviour but also provides general condensed representations of the
eye-tracking data useful for dementia classification from a variety of cognitive tasks.
This is demonstrated by the ability of our framework to predict dementia status in this
heterogeneous group with an F'1 score between 0.7870 and 0.8241. This result was
achieved with abstract features obtained from the most complex model (deep neural
network) trained on the most difficult classification problem (activity recognition of five
cognitive tasks) with 90 features in total. Although this model achieves a significantly
lower performance on activity recognition than other less complex models, it learns
richer representations of eye-tracking data that are more sensitive in detecting per-
formance differences between participants with and without dementia. In addition, all
sets of abstract features outperform standard handcrafted features, highlighting the
added value of new feature extraction techniques for eye-tracking data from cogni-
tive tests especially under the lack of instructions. These findings demonstrate the
importance of self-supervised representation learning to healthcare applications in
the absence of a large number of patients data. Future work would investigate fur-
ther whether the improvement in performance using abstract features is attributed to
a specific input channel (e.g. horizontal gaze movement and not vertical movement
or pupil size, as indicated by the statistical analysis in Table 4.4) by fitting models
separately for each channel.

To the best of our knowledge, this is the first application of deep learning for clas-
sifying and interpreting cognitive activity and dementia status from raw eye-tracking
measurements. These methods were applied to a particularly complex dataset that
included different versions of an instruction-less cognitive test with varying levels of
stimulus complexity (abstract scene viewing versus simple sentence stimuli). Addi-
tionally, the test was also administered to clinically well-characterised patients, not
only those with typical presentations, but a combination of rare dementia syndromes
varying in disease severity. Our results show that self-supervised representation
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learning methods hold promise for augmenting cognitive assessment with instruction-
less eye-tracking tests to monitor patients at different stages of the disease in a brief,
low-stress manner.

This study opens the door to a more ecologically valid assessment of natural cog-
nitive behaviour in dementia. It develops an instruction-less paradigm for the as-
sessment of multiple domains of cognition. This paradigm provides an alternative to
lengthy batteries of individual tests that have different task demands, properties and
instructions. However, this is not a clinic-ready screening test, as more work needs
to be done to evaluate its validity. Future evaluation of patients in the early stages
of dementia, with mild cognitive impairment or living at autosomal dominant genetic
risk of a dementia, might determine whether this battery can be used for early de-
tection of cognitive change/impairment. Next stages of development should include
a comparison of test performance with results on established paper-and-pencil neu-
ropsychological tests of each cognitive domain. The battery could also be expanded
to incorporate additional cognitive domains (e.g. social cognition). Moreover, the
current method is not able to show whether eye-tracking metrics are sensitive to the
different dementia subtypes nor evaluate the effectiveness of the specific parts of the
tests to the targeted groups (e.g. memory test for tAD patients). This can be poten-
tially addressed in the future with the recruitment of larger within-subtype dementia
cohorts. From a methodological perspective, although the current dementia classifi-
cation methodology shows whether the features learnt in the pretext task are mean-
ingful for dementia-related abnormality detection, it might not be the best approach for
screening patients highlighting abnormalities in different subtypes and stages of the
disease. The reason being is that it assumes a homogenous pattern of abnormality
in the dementia group, which might not be true given the variability of eye movement
behaviour between subjects. Anomaly detection based on detecting outliers given
a distribution of normal behaviour might be a more appropriate tool here for future
research.

To conclude, this work highlights the contribution of self-supervised representation
learning techniques in medical applications where the small number of patients, the
non-homogenous presentations of the disease and the complexity of the setting can
be a challenge using state-of-the-art methods. It also demonstrates that the appli-
cation of methods for interpreting artificial intelligence systems constitutes a window
to better understand human cognitive functions. The proposed methodology of the
unsupervised representation learning technique with the LRP interpretability frame-
work presented above is applicable to different cognitive tests, instruction-less or not,
under the only assumption that they include activities associated with distinct eye-
movements.

85



Chapter 5

Oculomotor anomalies in
instruction-less eye-tracking tests

5.1 Introduction

Defining impairment typically based on normative data is critical in clinical neu-
ropsychology. Neuropsychologists and neurobehavior specialists are faced with the
challenge of decoding a plethora of numerical and qualitative data, that to be mean-
ingful must have a frame of reference. Normative data are typically obtained from a
large sample of cognitive healthy individuals appropriately stratified by demographics,
reflecting healthy performance on a specific test adjusted for relevant demographic
factors. Individuals performance is compared and contrasted to this reference group
[119]. Although such definitions are considered standard in neuropsychological as-
sessments, they have not been used in more complex cognitive measures such as
eye-tracking data [24].

Most eye-tracking studies in dementia research have focused on describing sta-
tistically significant differences in basic oculomotor features or features within areas
of interest between different cognitive tasks or groups (e.g. patients versus controls).
Although these approaches can reveal associations between cognitive function and
oculomotor behaviour, this information can not be used for a diagnosis of a single new
subject. Eye-tracking technology could be used to support diagnosis only if expert re-
view by a highly specialised professional was available. Additionally, relying only on
known biomarkers restrains the potential of eye movement time series containing far
richer relevant information. A few studies have used machine learning methods to
eliminate these problems; these methods identify discriminative patterns in the data
between groups of subjects. For instance, Pavisic et al [132] and Biondi et al [17]
applied a Markov model and a neural network, respectively, to eye-tracking data from
a reading and smooth pursuit task that discriminate between Alzheimer’s patients and
controls. These classification approaches try to find the discriminative boundary be-
tween the classification classes assuming a homogenous pattern of abnormality in
the patient group (e.g. similar degrees of disease severity) and well-balanced classes
in terms of sample size; which might not be always valid.
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Following an alternative approach, Primativo et al. [138] implemented a Bayesian
model which is first trained to predict gaze coordinates in controls in a spatial antici-
pation task. Then a dementia diagnosis prediction is made based on the magnitude
of the error between the model predictions and the real values in patients (bvFTD
and svPPA) compared to controls. Although this approach is explicitly fitted to model
data from a spatial anticipation task, it introduces the concept of defining abnormal
behaviour based on deviations from a normative reference.

Anomaly detection involves identifying unexpected items or events in unseen data
instances that deviate from the normal distribution (which is learnt during training).
Deep learning-based algorithms have received a lot of attention recently and have
been applied in various tasks ranging from video analysis to Internet of Things (loT)
systems. Anomaly detection plays a particularly prominent role in the healthcare do-
main; with studies demonstrating that malignant tumors can be inferred from anoma-
lous MRI images and cardiac problems can be detected from anomalous electro-
cardiogram traces [29]. Anomaly detection has the potential of providing healthcare
professionals with useful information to make clinical decisions as well as respond
faster to adverse events. For sensor data, although both supervised and unsuper-
vised deep learning models are competent for anomaly detection, the latter plays a
more and more important role for applications including detection of seizures or ar-
rhythmia from electroencephalogram and electrocardiogram, respectively [133, 184].
To the best of our knowledge, for eye-tracking data, unsupervised anomaly detection
has not been explored yet.

In this work, we propose a data-driven way of detecting anomalous trials of demen-
tia patients using healthy controls as a frame of reference during an instruction-less
eye-tracking test (Chapter 4). Under this setting, we define as anomalous those tri-
als that deviate from healthy controls normal oculomotor behaviour. Thus anomalies
could be related to cognitive processing of the stimuli, as well as, eye-tracking is-
sues unavoidably inherited to the dementia group such as motion artefacts (due to in-
creased head motion), poor calibration and irregular blinks. Given the instruction-less
nature of the battery, we also consider the potential lack of engagement or attention
of the patients to the stimuli as an anomaly which might be a valuable information for
the diagnostic procedure and the experimental design of cognitive tests. The main
contribution of this work is a novel unsupervised anomaly detection framework for
eye-tracking data based on representation learning using convolutional autoencoders.
This framework could be used to identify disease biomarkers, assess the quality of
recordings, as well as, the efficacy of the experimental stimuli towards a specific tar-
get group. This work establishes a starting-point for getting further insights into eye
movement abnormalities which is of greatest importance given the load of available
data and the instruction-less nature of the tasks that render very difficult the prediction
of anomalies even from experts.

5.2 Methods

To detect abnormal trials of dementia patients, the distribution of normal eye-
tracking data was first learned on data of healthy individuals using an autoencoder
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neural network (see section 2.9.0.3) that models the variety of healthy performance.
We then performed the following experiments:

i. We firstly investigated the ability of the model to capture the distribution of eye-
tracking data by closely reconstructing the input signal. Thus, we assessed the
performance of the model on trials of healthy individuals extracted from the test
set.

ii. We then examined the accuracy of our approach in detecting eye-tracking data
of dementia patients. We calculated anomaly scores on the trial and patient
level and reported the results.

iii. The accuracy was also compared between the different dementia groups and
cognitive tasks.

iv. We provided more details in individual trial abnormalities by visualising trials of
patients and controls with high and low anomaly scores.

5.2.1 Data

The materials and data used in this chapter are the same as presented in sec-
tion 4.2.

5.2.1.1 Data preprocessing

The Eyelink system recorded gaze position and pupil size in a monocular tracking
mode providing 1000 samples per second. Gaze position reports the (x, y) coordi-
nates of a subject’s gaze on the display (resolution: 1920 x 1080) in actual display
coordinates (pixels) with origin (0, 0) at the top left. Raw samples, therefore, consist
of three-time series of x, y coordinates of gaze and pupil size having a dimension
of[sampling rate x trial duration].

Given the aim of this chapter is the identification of oculomotor abnormalities, only
the x and y coordinates of gaze were included for further analysis. Additionally, we
used velocity per sampling interval instead of position signal since we were interested
in global abnormalities rather than stimulus-specific abnormalities; thus we believe
that the patterns of velocity over time would be more informative than the specific
displacement of gaze [186].

The velocity of gaze signal was firstly normalised by subtracting the mean value
of each trial and dividing by its corresponding standard deviation. Missing values
of velocity of gaze were imputed prior to normalisation with a constant zero value
to avoid interpolation bias. Trials with total number of missing samples more than
1500ms were considered erroneous and were excluded from the analysis. Addition-
ally, trials with normalised signal values more or less than 13 and -13, respectively,
were excluded from the analysis because we found empirically that it helps with the
convergence of the algorithm as extreme values correspond to incidents where the
participant looks out of the screen resolution. Finally, each time series is scaled to
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the [0, 1] interval by applying a min-max transformation; subtracting from each time
point the minimum value that appears in the training set and dividing by the difference
between the maximum and the minimum value of the training set.

5.2.2 Proposed Pipeline

5.2.2.1 Anomaly Detection Problem

This work is based on an unsupervised approach for anomaly detection and the
conceptual framework builds on work similar to [3]. We train our proposed convolu-
tional network architecture in an unsupervised manner; training the model on normal
samples and testing on both normal and abnormal ones. The input dataset D is split
into train Dtrn and test set Dsts, where Dirn = {(x1, 1), (z2,Y2), ..., (Tn, yn) } ANA y; =
0 corresponds to the normal class. The test set Dist = {(z1,y1), (x2,y2), s (Tmy Ym) }
where y; in [0,1], consists of normal (Controls B) and abnormal classes (patients
data), so that the number of data from normal classes in the test set equals the ab-
normal ones. Therefore, we hypothesise that all patients data are anomalous. Data
from battery controls A and the rest of controls B data that were not included in the
test set were used for training.

The training objective of the model is to capture the distribution of Dtrn which
will enable the model to learn features that are representative of normal eye-tracking
data. The hypothesis here is that an anomaly score based on the training objective
would generate minimal anomaly scores for normal samples (since they have the
same distribution as the training samples), but higher scores for abnormal samples.

5.2.2.2 Pipeline

Figure 5.1 shows the bow-tie architecture of the proposed approach, which com-
prises an encoder and a decoder network. The encoder network captures the distri-
bution of the input data by mapping the 2-dimensional time series x (dimension: 2 x
3000; 2 channels of x and y velocity of gaze for 3 seconds) into a lower-dimensional la-
tent representation z (dimension: 300 x 1). The encoder passes the input through five
Convolutional and Batch Normalisation layers and one linear activation layer (dense
layer) as well as ReLU activation functions and generates the latent representation
z which carries a unique representation of the input. The linear layers were added
to the architecture, so that the dimension of the latent representation could stay the
same and can be easily compared with different manifestations of the network (e.g.
with a variational autoencoder architecture). The decoder upsamples the latent repre-
sentation z back to dimension of the original input time series and produces an output
2’ which is the reconstruction of the input.

The model is trained by minimising a reconstruction loss, enforcing the output of
the decoder to be similar to the original input signal. Since the values of the time
series lie in the [0, 1] interval, the binary cross entropy as a measure of uncertainty
between the training data and the model distribution, is the loss function used:

Loss = =" wylog(z),) + (1 — x,)log(1 — x,), where z is the input, 2’ is the output
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Figure 5.1: Details of the network architecture used.
of the network and n corresponds to each point of the input.

Implementation details The training objective is optimised via Adam optimiser with
learning rate Ir = 1072 and momentums 3; = 0.5, 3; = 0.999 and batch size 200. The
model is trained for 20 epochs and we save the weights of the network during training
that corresponds to the lowest reconstruction error in the test set.

5.2.2.3 Detection of anomalies

To find the anomalies during testing, the reconstruction error (anomaly score) for
each sample in the test set is calculated. The anomaly scores for each test trial are
then scaled, following the same procedure proposed in [3], within the probabilistic
range of [0, 1], by subtracting the calculated minimum anomaly score from the test set
and dividing by the difference between the maximum and minimum anomaly score in
the test set. The trial-level anomaly scores were converted to individual-level scores
by calculating the average normalised anomaly score per individual.

The metric used for the the evaluation of model’s performance is the area under
the curve (AUC) of the receiver operating characteristic curve (ROC) which is a plot
of true positive and false positive rates at various threshold values.
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Figure 5.2: Example of two semantic processing trials (a, b) from two healthy partici-
pants in the test set. First block row: Real input time series of x and y velocity of gaze.
Second block row: Corresponding eye-tracking data generated by the model. Third
block row: Overlapped real and generated time series.

5.3 Results

Can the model generate realistic eye movement data? The model captures many
properties of the signal and it generates a denoised version of the input time series
(second block row in Figure 5.2). In Figure 5.2, the pairs of input and generated
time series of the two case observations from healthy participants drawn from the test
set suggest that the latent representation includes information about the location of
saccades in time and the direction of saccades (e.g. negative and positive velocity),
as well as the duration of fixations. The amplitude of saccades is also adequately
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Figure 5.3: Distribution of the anomaly score evaluated on normal trials of the test set
(blue), and on trials extracted from diseased cases (orange).

reconstructed. At least in these two trials the reconstruction precision is very high for
velocity x and less for velocity y, as the latter has higher amount of noise in the signal.
In some cases the residual values were higher between the real and generated signal,
demonstrating the high variability and thus unexplained variance even in controls data.
Overall, the model is able to capture the distribution of healthy eye-tracking data since
it reconstructs quite precisely unseen time series trials from the test set.

Can the Model Detect Anomalies? The AUC score for trial and participant level
anomaly detection based on the anomaly score described in Section 5.2.2.3 is 0.5650
and 0.652 respectively. In addition, the distribution of the anomaly scores of the nor-
mal and abnormal cases in the test set are presented in Figure 5.3. It is worthy
mentioning that all trials from the dementia patients are considered abnormal and this
might contribute to the little separability of the distributions of normal and abnormal
samples.

Which dementia groups and cognitive tasks present the most abnormal eye
movements? Figure 5.4 presents the AUC for the anomaly scores between the
dementia and control group for the five different cognitive tasks of the battery. The se-
mantic processing and social interaction task present the least abnormal cases (AUC:
semantic processing; 0.4353, social interaction; 0.5297), whereas the discriminative
power of the model is slightly higher for the missing items (0.6257), social scenes
(0.6117) and recognition memory task (0.60091).

To further investigate oculomotor abnormalities within dementia subgroups, the
anomaly scores were normalised for each cognitive task and AUC scores were com-
puted to compare each dementia subgroup with the healthy controls group. The
anomaly detection performance of the model on the trial and participant level, are
summarised in Table 5.1 and 5.2. Based on our approach, the bvFTD group trials in
the missing items, social scenes and recognition memory task, as well as the trials
of the tAD group in the missing items task, seem to be the cases in which the most
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Table 5.1: Trial level AUC scores on anomaly detection for each cognitive task and
dementia group versus healthy controls.

Task tAD bvFTD | IvPPA | nfvPPA| svPPA
social inter- | 0.533 | 0.599 | 0.493 | 0.533 | 0.484
action

missing 0.670 | 0.711 | 0.589 | 0.596 | 0.565
items

social 0.611 | 0.715 | 0.563 | 0.600 | 0.565
scenes

semantic 0.429 | 0.406 | 0.456 | 0.373 | 0.528
processing

recognition | 0.554 | 0.727 | 0.534 | 0.574 | 0.604
memory

Table 5.2: Participant level AUC scores on anomaly detection for each cognitive task
and dementia group versus healthy controls.

Task tAD bvFTD | IvPPA | nfvPPA| svPPA
social inter- | 0.608 | 0.566 | 0.460 | 0.590 | 0.488
action

missing 0.747 | 0.735 | 0.615 | 0.636 | 0.627
items

social 0.687 | 0.752 | 0.587 | 0.655 | 0.597
scenes

semantic 0.359 | 0.389 | 0.439 | 0.276 | 0.524
processing

recognition | 0.590 | 0.804 | 0.513 | 0.607 | 0.636
memory

abnormal eye movements are detected. Additionally, the AUC values are highest for
svPPA patients on the semantic processing task. Combined with the bvFTD’s having
the highest AUC values for social scenes, there is a suggestion that this approach
can yield cognitive profiling information which is consistent with established cognitive
phenotypes of each dementia subtype.
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Figure 5.4: Barplots for the trial level AUC scores for each cognitive task in the
computerised test: Social Interaction (social), Missing Items (items), Social Scenes
(scenes), Semantic Processing (reading) and Recognition Memory (memory).

What do the most and least abnormal trials based on the model look like? To
better understand the oculomotor abnormalities that our model is able to detect, we
visualised individual trials from patients and controls for all five cognitive tasks of the
test. Figure 5.5 shows the input data (normalised velocity of x and y coordinates of
gaze) of patients with the highest anomaly score (relative to the data in the test set),
controls with highest anomaly scores and controls with the lowest anomaly scores.
The latter present velocity patterns with clear saccade (peaks) and fixation (flat ar-
eas) sequences with minimal noise. Compared to the least abnormal trials showing
distinct and well defined saccades, the abnormal patients trials correspond to cases
in which the patient does not engage or fixates in one location of the image (social
interaction, social scenes), gets distracted and looks at something out of the stimuli
(semantic processing), presents very noisy scanpaths (recognition memory) or there
is a tracking error (saccades are not tracked) (missing items). The anomalies in the
controls trials seem to be related to unusual saccadic patterns (social scenes, seman-
tic processing), limited engagement suggestive of tracking error (social interaction,
recognition memory) and noisy samples presumably associated with poor recording
quality (missing items).
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5.4 Discussion

In this chapter we propose an application of a convolutional autoencoder neural
network as a framework to assess deviations from normative behaviour based on
eye-tracking data. We investigated whether we could use this framework to identify
outliers in eye-tracking trials of dementia patients and healthy controls participating in
a free-viewing test which was designed to assess particular cognitive functions that
are impaired to varying extents in different subtypes of dementia.

We explored a data driven-way of detecting abnormal trials by creating a normative
reference of the healthy eye-tracking appearance and comparing the patients’ data to
it. Normative eye-tracking data were created by a neural network with a convolutional
autoeconder architecture which was trained to learn the distribution of normal eye-
tracking data based on the data from healthy cases. Deviations of the patients and
controls data held in the test set from the normal distribution, or in other words the
anomaly scores, were estimated by calculating the reconstruction error of the trained
model on the test data. The values were then scaled to the probabilistic interval [0,
1] to correspond to the probability of a trial being abnormal and the AUC score was
computed.

Although the model seems to encode a rich representation of the original signal
in the latent space, the AUC metric for the dementia versus controls case is 0.5650
and 0.652, for trial and participant level anomaly detection. This is not unexpected as
we anticipate not all dementia trials to be abnormal and thus we are not necessarily
interested in the model performance.

Our method demonstrates that fewer anomalies are present in the semantic pro-
cessing task. This might be due to the specific type of anomalies that our approach
is trained to detect. From the visualisations of individual trials and since our method
is not task or trial specific, the anomalies detected seem to be global rather than local
patterns, such as frozen gaze, error of the device or distractions. Since the semantic
processing task involves participants voluntarily reading sentences, the participants
might be more engaged to this task compared to the scene perception tasks. This is
because the nature of the semantic processing task yields a much more predictable
set of fixations and saccades (reading left to right along a fixed y value) compared to
the other tasks (free viewing scenes).

Additionally, our method is particularly sensitive to the bvFTD group in the recog-
nition memory and social scenes tasks, demonstrating that these tasks’ stimuli mod-
ulate participants eye movements during scene perception. Patients with bvFTD are
characterised by early behavioural disinhibition, apathy, loss of empathy and preser-
vative compulsive behaviour. There is therefore a suggestion that their eye move-
ments on these tasks reflect cognitive profiling information which is consistent with
established cognitive phenotypes for bvFTD.

This work establishes a starting-point for getting further insights into eye move-
ment abnormalities in dementia patients. This is of greatest importance because the
load of available data and the instruction-less nature of the tasks render the identifi-
cation of anomalies very difficult (even from experts). Future directions could involve
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the investigation of different types of abnormalities which are trial or task specific
by incorporating this information in the latent space. Comparisons of the autoen-
coder architecture with variational autoencoders or Generative Adversarial Networks
for anomaly detection might also show whether richer representations can be en-
coded. Another interesting direction might be the application of clustering algorithms
in the latent space features to identify potential clusters of anomalies. The purity of
the clusters (dementia vs controls) might indicate whether detected anomalies are
disease specific and not due to a device error. Finally, future work could involve the
applications of our anomaly detection pipeline to other eye-tracking large datasets
and also the development of new cognitive batteries driven by the findings presented
here (e.g. stimuli which generate more predictable gaze pathways).

To conclude, this work presents an alternative approach for oculomotor biomarker
discovery; instead of building models to identify properties of the data that discrimi-
nate between the dementia and controls group, we address the problem of measuring
departures from a distribution of typical oculomotor patterns during instruction-less
eye-tracking tests. The biggest challenge in this context compared to other medical
problems (e.g. MRI tutor anomaly detection) is the lack of labels determining abnor-
mal trials within patients and controls data. However, our visualisations of abnormal
cases improve our understanding of the oculomotor anomalies in dementia. Our ap-
proach indicates that limited engagement and distractions during free-viewing might
be markers of the disease that can be detected in this short instruction-less test.
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Conclusions

In this thesis | have presented my work on the application of machine learn-
ing methods for the detection of dementia oculomotor biomarkers from eye-tracking
based assessments. In this chapter | will present a summary of the thesis and future
research directions for the potential application of the techniques used here to similar
neuropsychological problems and also suggestions for the further improvement of the
techniques themselves.

6.1 Thesis Summary

The aim of this thesis was to investigate computational approaches for the anal-
ysis of eye-tracking data of dementia patients and healthy controls under naturalistic
and less constrained scenarios to identify novel digital oculomotor biomarkers. To-
wards this goal, this thesis brings together expertise from the disciplines of dementia
research, cognitive neuropsychology, biosensors and machine learning.

Early detection of the disease, before the quality of life of the patients has already
been deteriorated significantly, could revolutionise the healthcare system; reducing
healthcare costs and suffering of individuals with dementia and their carers. From
the neuropsychological perspective, although the defining characteristics of most de-
mentia syndromes are primarily cognitive and behavioural in nature, the current cog-
nitive assessment tools do not capture adequately and precisely different aspects of
cognitive function. Technological innovation might support substantial improvements
in techniques and devices that analyse and acquire cognitive data. Given the re-
cent success in the area of machine learning, this thesis attempts to identify novel
cognitive tests based on oculomotor measurements using computational techniques
suitable for neuropsychological problems.

To summarise, the computational principals and techniques that have been inves-
tigated in this thesis as suitable for neuropsychological problems are the following:

» Anomaly detection (Chapter 5)
» Deep neural networks (Chapter 4, 5)
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» Data augmentation (Chapter 4)
» Unsupervised learning with auto-encoders (Chapter 5)

 Layer-wise Relevant Propagation for feature visualisation (Chapter 4)

Self-supervised learning/ transfer learning (Chapter 4)

« Fusion of multi-modal data (videos with eye movement time series) (Chapter 3)

Chapter 3 investigates the potential of identifying oculomotor biomarkers during ac-
tivities of daily living. In particular, the effect of saliency of environmental features
on oculomotor dynamics in patients with posterior cortical atrophy and Alzheimer’s
disease is explored to investigate the extent to which physical environment mitigates
dementia functional impairment. | combined eye movement and egocentric videos of
participants performing a real-world visual search task navigating in a controlled en-
vironment. | extracted two saliency based features that could also be generalised in
other naturalistic experiments. | found that although both patient groups were slower
in reaching their target destinations, there is no evidence of a strong relationship be-
tween saliency and fixation or completion time. In comparison, the findings by Shake-
speare et al. [155] suggest the influence of conspicuous, visually salient features
of static scenes on fixation of PCA patients. To conclude, it is difficult to infer, from
this study only, whether bottom-up saliency is the dominant factor that drives visual
search during navigation in AD and PCA. A mobile eye-tracker with higher frequency
is recommended to be used in future investigations to investigate the full spectrum of
oculomotor patterns.

Chapter 4 explores the extent to which eye-tracking metrics capture dementia re-
lated oculomotor deficits during a novel instruction-less eye-tracking cognitive test. To
address the limitations of the previous chapter, a high frequency (1000 Hz) eye-tracker
was used in this study under a more-constrained but ecological setting (naturalistic
images) with analytic approaches accommodating complex time series data. This
chapter also introduces a novel method for extracting features from instruction-less
eye-tracking cognitive tests based on self-supervised representation learning and a
technique for interpreting the network’s decisions in differentiating between the dis-
tinct cognitive activities.

| found that dementia patients search less extensively and scan the stimuli sig-
nificantly more slowly than controls. They also present a tendency to fixate towards
the left side of the screen during sentence presentation compared to controls, which
might indicate that either are slower in reading or they are not reading the sentences.
This study provides quantitative evidence that eye-tracking metrics reflect dementia-
related oculomotor deficits during processing of complex visual stimuli even under the
lack of any instructions given to the participants. | also found that self-supervised
learning features are more sensitive than handcrafted features in detecting perfor-
mance differences between participants with and without dementia across a variety
of tasks. This work highlights the contribution of self-supervised representation learn-
ing techniques in biomedical applications where the small number of patients, the
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non-homogenous presentations of the disease and the complexity of the setting can
be a challenge using state-of-the-art feature extraction methods.

Chapter 5 proposes anomaly detection as a framework to assess deviations of pa-
tients oculomotor behaviour from healthy controls. This work presents an alternative
approach for oculomotor biomarker discovery; instead of building models to identify
properties of the data that discriminate between the dementia and controls group,
| address the problem of measuring departures from a distribution of typical oculo-
motor patterns during instruction-less eye-tracking tests. The focus of this chapter
is exploratory, providing visualisations and interpretations of abnormal patterns of
eye movements of dementia patients and healthy controls. This work establishes
a starting-point for getting further insights into eye movement abnormalities relative to
normative data using cutting-edge computational techniques.

6.2 Future Directions

Standardised paper-and-pencil cognitive assessment tools are a key component
of the screening and diagnostic process of dementia patients, but have a number
of limitations. The work presenting in thesis introduces a more ecological valid as-
sessment of natural cognitive behaviour in dementia. It develops an instruction-less
paradigm for the assessment of multiple domains of cognition. This paradigm pro-
vides an alternative to lengthy batteries of individual tests that have different task
demands, properties and instructions. There are a number of specific ways in which
the research presented in this thesis could be taken forward to improve our knowl-
edge on oculomotor biomarkers in dementia and potentially be translated in a clinical
or standard research tool. These future advances can be broken down into a. improv-
ing data acquisition techniques, and b. data analysis methods, c. running large scale
tests for validation and performance assessment and d. considering instruction-less
tests alongside the battery of other clinical examinations.

6.2.1 Improving data acquisition techniques

The research presented in this thesis apart from improving analytical techniques
suitable for detecting hidden patterns in large eye-tracking datasets, could also guide
the future design of future cognitive tests involving eye-tracking. This could include
suggestions about the selection of stimuli given a specific population but also the
overall procedure of data collection during cognitive testing. For instance, as far as
anomaly detection is concerned, the more predictable and invariant the pattern of
normal behaviour elicited by a set of stimuli, the easier to detect gross anomalies.
From the various stimuli used in this thesis, reading tasks evoking a specific left-to-
right pattern of fixations and saccades seem to a stimuli recommended for future
investigations since it generates more predictable patterns. Future work could focus
on the appropriate selection of the duration of stimuli evaluating whether the abnormal
behaviour occurs in the beginning of the trials and therefore avoiding gathering a lot
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of data with limited discriminative power.

6.2.2 Improving data analysis methods

Integrating stimulus properties with physiological data

One particularly interesting possibility is a novel way of feature generation from
neuropsychological tests integrating stimulus properties with physiological data. In
particular, in the instruction-less eye-tracking battery, the response characteristics (x,
y and pupil size over time) could be augmented with two time series: the bottom-up
saliency and the semantics of gaze location over time. The bottom-up saliency time
series could be computed in ways similar to those in Chapter 3; calculating saliency
maps of the input image and then creating a time series of the value of saliency for
each gaze location over time. The semantics of eye movement over time could be im-
plemented by applying first a semantic segmentation algorithm to images (e.g. [190])
that labels each pixel of the stimulus images with a corresponding class. A categor-
ical time series of objects that the eyes looked at could be generated in this way.
Representation learning methods such the self-supervised learning or unsupervised
learning algorithms used in this thesis could be applied to the oculomotor, saliency
and semantics time series to extract features and then comparisons could be made
to investigate the source of abnormal behaviour of dementia patients (bottom-up, top-
down and oculomotor mechanisms).

Improving anomaly detection with clustering and generative modelling tech-
niques

Another interesting possibility that presents itself from Chapter 5, is the continu-
ation of the unsupervised representation learning of time series comparing different
deep learning for anomaly detection frameworks including variational autoencoders
and Generative Adversarial Networks (GAN) (e.g. [3, 133]) that have shown bet-
ter performance in anomaly detection problems when applied in image datasets.
These comparisons will shed light into which neural network architecture is the most
suitable for learning the distribution of normal behaviour of eye movements when
free-viewing at images. In particular, the skip-GANomaly model which employs an
encoder-decoder convolutional neural network with skip connections and an adver-
sarial training scheme that given the original input and the output of the autoencoder
discriminates between the real and the fake input, has potential in our application.
We believe that adapting the discriminator from a binary (fake vs real) to a multi-class
classifier (discriminating between the different cognitive tasks activities for real data
vs fake data) could help regularise better the network. Additionally, apart from detect-
ing anomalies in patient groups, the anomaly detection framework could be used in
control populations for data cleaning of eye-tracking data to improve data quality by
removing for further analysis participants with unknown oculomotor problems or trials
in which the sensor has tracking or calibration problems. Another potential research
direction that comes from this line of work, is the application of clustering methods
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on the latent space representations generated by the networks to identify patterns of
abnormality potentially grouped by stimuli, task or dementia subtype.

Incorporating multi-modal data with bayesian optimisation techniques

Another future direction might be the potential use of bayesian optimisation in
neuropsychological tasks and cognitively-relevant physiological data (e.g., pupil size,
electrodermal activity, heart rate) to provide a novel way of assessing cognitive func-
tion at the individual level [112]. Bayesian optimisation is a sequential method for
global parameter optimisation, using priors to turn objective functions into random
functions. The space of random functions is then sampled, and the resulting acquisi-
tion function used to update the prior space and determine the next sampling point,
eventually converging on the optimal point in space. Using this paradigm, highly mul-
tivariate multi-modal data can be analysed to examine questions such as: a) which bi-
ological variables optimally predict cognitive performance (mechanism identification),
b) in which measures an individual differs most from the norm (personalised outlier
detection), ¢) how real-time adaptations can be made to neuropsychological tests to
optimally elicit specific cognitive functions (the Automated Neuropsychologist).

6.2.3 Running large scale tests for validation and performance
assessment

Future investigation regarding whether the instruction-less eye-tracking battery is
clinically ready and potential improvements to be done might be of interest. Next
stages could involve the recruitment of a larger within-subtype dementia cohort which
will facilitate the evaluation of potential correlation of eye-tracking metrics from specific
cognitive tasks and the different dementia subtypes. Future evaluation of patients in
the early stages of dementia, with mild cognitive impairment or preclinical AD, might
determine whether this battery can be used for early detection of cognitive impairment
from eye movements.

6.2.4 Comparing with other clinical examinations

Once the stimuli and the methods used to analyse the data are optimised and the
instruction-less eye-tracking test is evaluated in large scale datasets, comparisons
with other clinical batteries are required before translating it into a research or clinical
tool. A comparison of this computerised test’s performance with results on estab-
lished paper-and-pencil neuropsychological tests and cognitive screening batteries
(e.g. MMSE) will indicate the actual value of the cognitive battery.
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