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Abstract

The CHerenkov detectors In mine PitS (Chips) neutrino detector R&D
project aims to develop novel strategies and technologies for very large
yet ‘cheap as chips’ water Cherenkov neutrino detectors. Via deployment
in a body of water, use of commercially available components, and instru-
mentation coverage optimisation for the study of exclusively accelerator
beam neutrinos, Chips will enable megaton scale detectors to become a
reality at the cost of $200k-$300k per kt of sensitive mass. During the
summer of 2019 a prototype Chips detector, Chips-5, was deployed
into the Wentworth 2W disused mine pit in northern Minnesota, 7 mrad
off the NuMI beam axis. A novel data acquisition system was introduced
using cheap single-board computers and open-source software.

This work presents a novel approach to water Cherenkov neutrino
detector event reconstruction and classification. Three forms of a Con-
volutional Neural Network, a type of deep learning algorithm, have been
trained to reject cosmic muon events, classify beam events, and estimate
neutrino energies, all using only the raw detector event as input. When
evaluated on the expected distribution of Chips-5 events, this new
approach is shown to be robust and explainable as well as providing
a significant performance increase over the standard likelihood-based
reconstruction and simple neural network classification. Promisingly,
the performance presented here is comparable to the more complex (and
expensive) neutrino oscillation experiments within the field.
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Impact Statement

The impact of this work inside the domain of academia is straightforward
and explained in great detail throughout the thesis. A novel application
of modern machine learning techniques is made to reconstruct and
classify neutrino events within a water Cherenkov detector studying
neutrino oscillations. Although other experiments within the field have
conducted similar preliminary work, this is the first known comprehensive
application of such methods. Hopefully, this work will promote the use
of these techniques for water Cherenkov neutrino detectors more broadly.

Outside of academia, the impact of this work is less clear. Still, it
is probably most pronounced in the field of machine learning, which
promises to bring substantial societal advancements. Sometimes the
application of machine learning to real-world problems is seen as some-
what secondary to achieving marginally incremental improvements on
standardised challenges. Hopefully, this work contributes towards a
broader effort to make the application of machine learning methods
more central and broaden the scope of tasks considered. Currently,
the field is dominated by the commercial needs of a small number of
large technology companies, such as Google and Facebook, any work
that applies machine learning to a novel task can only help to broaden
the scope of the field and make it more applicable to a wider range of
real-world tasks.
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Preface

Here I outline my contributions to the work described in this thesis on a chapter by
chapter basis. Hopefully, this will make clear what is my own work and what is that
of others. Due to the relatively small number of core people involved with the Chips
project, I was somewhat unusually involved with a much broader scope of work than
usual for a HEP PhD student, as were the majority of the Chips team.

In Chapter 3 the Chips project and the Chips-5 detector are described. I was
personally heavily involved with developing the event generation, detector simulation,
and event reconstruction frameworks for Chips, alongside extensive detector optimisation
studies to inform the final configuration of the Chips-5 detector. I also contributed to
the Chips-5 construction efforts, primarily instrumentation testing, calibration, and
installation, amongst others.

Chapter 4 describes the data acquisition system developed and implemented for
Chips-5. I played a major role in the development, construction, testing, and installation
of this system. Specifically, I made a significant contribution to the development of the
networking solution, the high-level hardware implementation, the control and monitoring
software, and the development of the novel low-level Madison µDAQ and Beaglebone
system.

Chapter 5 and Chapter 6 describe the application of Convolutional Neural Networks
to the characterisation of neutrino events within Chips-5. The work in both these
chapters was solely conducted by me, representing the bulk of my efforts. I developed the
complete pipeline, from event generation, simulation, model development and training,
to comprehensive evaluation.
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Chapter 1

Introduction

It is abundantly evident that machine learning and the broader field of artificial intelligence
will play an ever-increasing role in the world around us over the coming years. Virtually
every industry and human on the planet are promised to be touched by their proliferation.
Within experimental particle physics, the application of modern machine learning methods
should bring significant progress; however, as with any technique, the inherent weaknesses
should always be kept in mind.

Already, a widespread revolution is underway across the field. From the way particle
interactions are simulated to the way recorded events are analysed, machine learning
techniques, usually deep learning algorithms, are yielding dramatic performance improve-
ments. This step-change is particularly true for the study of the vastly abundant yet
incredibly difficult to detect neutrino. Principally driven by the fact that the raw output
from neutrino detectors is well suited to the algorithms at the forefront of computer
vision research, many neutrino experiments now routinely use deep learning methods for
event analysis.

However, to date, a thorough end-to-end implementation of such techniques is not
yet in use for the reconstruction and classification of neutrino events within long-baseline
water Cherenkov detectors studying accelerator beam neutrinos. Without redress, this
lack of progress could have significant implications for the future of neutrino physics,
especially when such experiments are deemed a highly promising (and potentially cheap)
channel for answering some of the critical unsolved problems of the field.

This thesis presents a broad range of work conducted for one such experiment, the
CHerenkov detectors In mine PitS (Chips) neutrino detector R&D project. Chips
aims to develop very large yet ‘cheap as chips’ water Cherenkov detectors that can
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18 Introduction

be deployed into deep bodies of water on the Earth’s surface, allowing megaton scale
detectors to become a reality. The thesis’s principal work involves the novel application of
Convolutional Neural Networks, a type of deep learning algorithm, to the reconstruction,
classification, and energy estimation of neutrino events within the Chips-5 prototype
detector module.

It is hoped that the work presented in this thesis will achieve three principal goals.
Firstly, motivate the need for the Chips project and detail how it accomplishes its aims.
Secondly, show that Convolutional Neural Networks can be used to fully reconstruct and
classify neutrino events within water Cherenkov detectors in an explainable and robust
manner whilst also providing significant performance improvements. Finally, inform the
development of similar Convolutional Neural Network implementations for other water
Cherenkov neutrino detectors.

To begin, Chapter 2 introduces the history of neutrino physics, as well as the theoretical
background and current status of the field as motivation for the Chips project. A full
description of the Chips detector concept follows in Chapter 3, with a principal focus on
the Chips-5 prototype detector module deployed into the NuMI neutrino beam during
the autumn of 2019. A particularly detailed overview of the Chips-5 data acquisition
and monitoring systems is then given in Chapter 4.

Chapter 5 begins by introducing the standard reconstruction and classification methods
to be replaced alongside a review of the relevant neural network theory and current deep
learning applications within the field of neutrino physics. The chapter concludes by
detailing the three Convolutional Neural Networks that have been developed for Chips-5,
including that for cosmic muon rejection, beam event classification, and neutrino energy
estimation.

The thesis closes in Chapter 6 with a comprehensive evaluation of the new Convolu-
tional Neural Network approach. Firstly, the final combined performance is determined
and compared with similar experiments. Secondly, the inner workings of the trained
networks are explored. Thirdly, the robustness of the network outputs to distributional
changes in the input is studied. Finally, alternative implementations are discussed to
highlight the key factors driving performance.



Chapter 2

Neutrino physics

Vast numbers of neutrinos pass through everything that surrounds us each second, each
one incredibly unlikely to interact even once. Nearly a century since they were first
proposed [1], these mysterious particles have now conclusively been proven to undergo
oscillations between their flavour states. This profound discovery has opened the door to
physics beyond that initially conceived within the Standard Model, which may reveal
new, fundamental insights into the universe. This chapter aims to outline the historical
context, theoretical background, and open questions surrounding the neutrino to motivate
the Chips R&D project.

2.1 A history

2.1.1 Discovery of the neutrinos

In the early 20th century, beta decays were assumed to follow the simple two-body
process, A → B + e, where A spontaneously emits a single electron. To conserve both
energy and angular momentum, the ejected electron was believed to have discrete kinetic
energy defined by the difference in binding energies between A and B. However, in 1914,
J. Chadwick instead measured a continuous electron energy spectrum [2], placing this
assumption in doubt.

W. Pauli proposed a ‘desperate solution’ to this paradox in 1930 [1]. If a light,
neutrally charged, spin 1/2 particle was also produced in the interaction, the continuous
energy distribution could be explained. Initially, this peculiar new particle was named
the neutron. However, to avoid confusion with the heavy baryon of the same name

19



20 Neutrino physics

discovered in 1932, E. Fermi renamed it the neutrino when he formalised his theory of
beta decay in 1934 [3].

The same year, H. Bethe and R. Peierls [4] used Fermi’s work to estimate the
cross-section for the inverse beta decay process

ν̄ + p+ → n + e+. (2.1)

They calculated an upper limit of σ < 10−44cm2 for neutrinos of energy 2.3 MeV, an
incredibly small value. When summarising, they declared that ‘it seems highly improbable
that, even for cosmic ray energies, σ becomes large enough to allow the process to be
observed’. Although this estimation did not prove accurate, and extensive neutrino
observations have since been made, it hinted at the great difficulties experimentalists
would face measuring the neutrino in the years to come.

After an initial tentative identification in 1953, F. Reines and C. Cowan made the
first confirmed observation of the neutrino in 1956 [5]. Electron antineutrinos produced
within the Savannah River Plant nuclear reactor were detected via the inverse beta decay
process outlined in equation (2.1). In an underground room of the reactor building, a
‘club-sandwich’ detector was constructed containing three 1500 litre liquid scintillator
tanks interspersed with two 200 litre cadmium doped water target tanks. A total of
330 photomultiplier tubes then measured the characteristic signal for the interaction, a
positron annihilation followed shortly afterwards by a gamma-ray burst from the neutron
capture of the neutrino.

A second distinct neutrino, the muon neutrino, was discovered in 1962 at the
Brookhaven based Alternating Gradient Synchrotron (AGS) [6]. Protons from the
AGS beam incident upon a fixed target produced charged pions which then decayed
into a beam of muons and neutrinos. After passing through steel and lead absorbers to
remove the muons, neutrino interactions were detected in a series of downstream spark
chambers.

If only a single neutrino existed, both interactions

ν + p+ → µ+ + n, (2.2)

ν + p+ → e+ + n, (2.3)

were expected to occur at the same rate. However, predominantly single muons (alongside
backgrounds), identified by a single long track in the spark chambers were detected,
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Figure 2.1: Combined hadron production cross-section measurements around the Z0 resonance
from the LEP experiments. The curves show the predicted cross-section for two,
three, and four active neutrinos. Note how the data fits the three active neutrino
hypothesis incredibly well. Figure taken from reference [10].

confirming the existence of the muon neutrino. Not only was this experiment the first to
construct and use an artificial neutrino beam, but it also won the 1988 Nobel Prize in
Physics.

The Z0 and W ± bosons were discovered at the CERN based Super Proton Synchrotron
in 1983 [7, 8]. Crucially, as Z0 bosons were expected to decay to neutrinos, measurements
made to the decay width could strongly constrain the number of neutrino flavours. The
ALEPH, DELPHI, L3, and OPAL experiments at the LEP e+e− collider (see Figure 2.1),
as well as the Mark II experiment at SLAC [9], made such precise measurements in the
1990s, indicating that the number of light active neutrino flavours was 2.984 ± 0.008 [10].

This indication from LEP combined with the discovery of the charged tau lepton in
1975 [11] made the existence of a third tau neutrino extremely likely. The Fermilab based
DONUT experiment finally discovered this particle in 2001 using 800 GeV protons from
the Tevatron [12], completing the trio of neutrinos we know today. However, additional
sterile neutrino flavours which do not couple to the weak force are still a possibility, with
various hints to their existence having been observed [13].
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2.1.2 Discovery of neutrino oscillations

At the Homestake mine in the 1960s, a 400 000 litre tank, placed 1.5 km underground,
was filled with the dry cleaning fluid perchloroethylene (C4Cl8). Its goal was to measure
the electron neutrino flux incident upon the Earth from the Sun via the interaction

37Cl + νe → 37Ar + e−. (2.4)

This process (equation (2.4)) allowed the neutrino flux to convert the chlorine contained
within the tank into the noble gas argon. Every few weeks the tank was purged with
gaseous helium and the amount of argon generated, and indirectly the solar neutrino
flux, measured.

After analysis, the number of electron neutrino interactions per 37Cl per second, was
found to be no greater than 3 [14]. When compared to the predictions made by the
Standard Solar Model ranging between 4.4 and 22 [15], a deficit was observed. Dubbed the
solar neutrino problem, this was initially believed to be due to an unexplained experimental
flaw. However, other experiments, such as the water Cherenkov Kamiokande II [16] and
the SAGE and GALLEX galium based capture tanks also observed this discrepancy [17,
18].

A second deficit, the atmospheric neutrino anomaly, was also indirectly observed for
neutrinos generated in the Earth’s upper atmosphere by cosmic rays. Such neutrinos
formed a pivotal background to both the Kamiokande and IMB experiments, which
were primarily designed to measure proton decay. When evaluating their backgrounds, a
deficit in the number of muon neutrinos compared to electron neutrinos was observed [19,
20]. The successor to the Kamiokande experiment, Super-Kamiokande also measured a
similar deficit [21].

The phenomenon of neutrino oscillations was put forward as a solution to this problem.
If neutrinos could change flavour as they propagated, the measured deficits could be
explained. The SNO experiment finally confirmed such oscillations in 2001 [22].

SNO consisted of a 1 kt tank of deuterium (heavy water), equipped with 9500 photo-
multiplier tubes. Light from three separate neutrino interaction channels:

νi + e → νi + e, (2.5)

νi + d → p + n + νi, (2.6)
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Figure 2.2: The particles of the Standard Model. Figure taken from reference [23].

νe + d → p + p + e, (2.7)

was measured, where d is the deuterium nucleus. The first and second channels were
sensitive to all three neutrino flavours, but crucially only electron neutrinos could interact
via the third channel. By comparing the relative rates between the channels, SNO was
able to prove to 5.3 σ that electron neutrinos had oscillated to other flavours.

2.2 The Standard Model and neutrinos

The Standard Model of particle physics describes the thirty-seven (ignoring colour)
known fundamental subatomic particles and their interactions. Combining both quantum
chromodynamics (describing the strong force) and electroweak theory (describing the
electromagnetic and weak forces), the Standard Model is a gauge theory obeying the
local gauge symmetries of U(1) × SU(2) × SU(3). The particles, along with their various
properties, are outlined in Figure 2.2, all have an associated anti-particle where some of
the particles quantum numbers are inverted.

The twelve quarks (ignoring colour) and twelve leptons, all spin 1/2 particles, are
named fermions. Further divided into three generations (or flavours), they make up all
the Universe matter content. The quarks never exist in a free state and bind together
into mesons or baryons, such as pions and protons, respectively. Three massive charged
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particles, the electron, the muon, and the tau and their three corresponding (initially
assumed to be massless) neutrinos, make up the leptons alongside their antiparticles.

The spin 1 gauge bosons carry the electromagnetic, strong, and weak forces. The
photon carries the electromagnetic force (affecting all charged particles), the eight gluons
carry the strong force (binding the quarks together), and the massive Z0 and W ± carry
the weak force. The final particle, the Higgs, is a massive scalar boson. Via the process of
spontaneous symmetry breaking, the Higgs provides the mechanism to give the particles
their mass.

Within the Standard Model, neutrinos only interact via the weak force, exclusively
coupling to the Z0 and W ± bosons. As the weak interaction maximally violates parity,
in that it only couples to left-handed chiral particles, the original Standard Model only
contains left-handed neutrinos and their corresponding right-handed anti-neutrinos.

Although neutrinos were initially thought to be massless, and no direct detection of
their mass has been made, it is now believed that neutrinos are massive (albeit very
light) particles. This belief is due to the substantial amount of evidence in support of
neutrino oscillations, such as the result from SNO amongst others detailed in Section 2.5.
These oscillations require three distinct neutrino mass states, implying at least two are
non-zero.

The Standard Model does not strictly rule out massive neutrinos, which are permitted
as either Dirac or Majorana particles. If neutrinos are Dirac in nature, they acquire
their mass via a Yukawa coupling, just like the other fermions. This coupling mixes both
left-handed and right-handed fields, requiring the existence of right-handed neutrinos (left-
handed antineutrinos) that do not interact via the weak force. Conversely, if neutrinos
are Majorana in nature, a mass term can be introduced containing just the left-handed
neutrino states. This term requires that the neutrino is its own anti-particle, which as
neutrinos do not carry a charge, is possible [13].

Strongly model-dependent cosmological observations of the cosmic microwave back-
ground currently provide the best limit on the combined sum of the neutrino masses
at ∑mν < 0.12 eV [24]. However, more impressively, the KATRIN experiment has
been able to make model-independent direct measurements of the upper mass limit by
looking at the energy spectrum of electrons emitted from beta decay, giving a result of
mν < 1.1 eV [25].
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2.3 Neutrino oscillations

B. Pontecorvo, Z. Maki, M. Nakagawa, and S. Sakata developed the theory of neutrino
oscillations in the 1960s [26–28]. Fundamentally, it is a manifestation of the phenomenon of
quantum interference. If neutrinos are massive, their mass eigenstates are not necessarily
the same as their weakly interacting flavour eigenstates. Instead, the flavour states are
a superposition of the three mass states, each propagating as distinct waves evolving
differently with time. As a direct consequence, if a neutrino is created with a specific
flavour α, its flavour composition will change with time, such that it may later be detected
as having a flavour β. The probability of this change is found to be periodic (hence
oscillations) and dependent on the neutrino energy, the propagation distance, and a
rotational mixing matrix.

2.3.1 Neutrino mixing

The mixing between the flavour eigenstates |να〉, where α = e, µ, τ , and the mass
eigenstates |νk〉, where k = 1, 2, 3, is described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix U , such that

|να〉 =
3∑
k

U∗
αk |νk〉 , (2.8)

and vice-versa

|νk〉 =
3∑
α

Uαk |να〉 . (2.9)

The PMNS matrix is a unitary, complex, 3 × 3 matrix, similar to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix for quark mixing, and has the form


|νe〉

|νµ〉

|ντ 〉

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




|ν1〉

|ν2〉

|ν3〉

 . (2.10)

Three mixing angles and six complex phases can generally describe a 3 × 3 matrix such
as this. However, the majority of these phases can be removed without affecting any
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physical process. This leaves three mixing angles θ12, θ23, θ13 and a single phase δ which
if non-zero produces CP violation and so is commonly denoted δCP .

With sij = sin θij and cij = cos θij, the standard parametrisation of U assuming
neutrinos are Dirac particles is given by

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (2.11)

=


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 . (2.12)

If neutrinos are instead Majorana in nature two additional phases α21 and α31 are
required, such that the mixing matrix needs to be multiplied by

diag(1, e
iα21

2 , e
iα31

2 ). (2.13)

2.3.2 Oscillations in a vacuum

As the neutrino mass states are eigenstates of the Hamiltonian with energy eigenvalues
Ek:

H |νk〉 = Ek |νk〉 , (2.14)

their time evolution is described by the Schrödinger equation. Therefore, the neutrino
flavour state evolves with time t, such that

|να(t)〉 =
3∑
k

U∗
αke−iEkt |νk〉 . (2.15)

After a time t, the probability of finding |να〉 in the state |νβ〉 is then given by

P (να → νβ, t) = | 〈νβ|να(t)〉 |2 =
∣∣∣∣∣

3∑
k

U∗
αkUβke−iEkt

∣∣∣∣∣
2

(2.16)
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=
3∑
k

3∑
j

U∗
αkUβkUαjU

∗
βje

i(Ek−Ej)t. (2.17)

As neutrinos are ultrarelativistic (p ' E) the approximation can be made that

Ek =
√

~p 2
k + m2

k ' E + m2
k

2E
, (2.18)

where ~pk and mk are the neutrino momentum and energy, and E is the neutrino energy
without the mass. This allows the substitution

Ek − Ej ∼ ∆m2
kj

2E
, (2.19)

where ∆m2
kj is the squared mass difference (mass splitting) between the k and j mass

states. Additionally, the relativistic limit allows the simplification t = L, where L is the
distance from neutrino creation to detection. Combined, the oscillation probability can
be written as

P (να → νβ, t) = δαβ − 4
∑
k>j

Re(U∗
αkUβkUαjU

∗
βj) sin2

(
∆m2

kjL

4E

)

± 2
∑
k>j

Im(U∗
αkUβkUαjU

∗
βj) sin

(
∆m2

kjL

2E

)
, (2.20)

where the last term has a positive sign for neutrinos and a negative sign for anti-neutrinos.

From inspecting equation (2.20), the superposition of mass eigenstates is seen to drive
the oscillation of the flavour state, with the amplitude arising from the elements of the
PMNS matrix. Furthermore, as a fixed experimental location and neutrino source define
a constant L/E, the period of oscillation is determined by the squared mass difference
between the flavour states ∆m2

kj.

2.3.3 Oscillations in matter

As neutrinos propagate through matter, they undergo coherent forward scattering with
nucleons. These interactions do not change the neutrino state or momentum, but they
do impart an interaction potential onto the neutrinos. Two types of interaction can take
place, either through the exchange of a Z0 in a neutral-current (NC) interaction, or a
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W +

e−νe

e− νe

Figure 2.3: Feynman diagram of a charged-current coherent scattering interaction between
an electron neutrino and an electron.

W ± in a charged-current (CC) process. The two interaction potentials are given by:

VNC = ± 1√
2

GF nn, (2.21)

VCC = ±
√

2GF ne, (2.22)

were nn and ne are the number density of neutrons and electrons in the propagation
medium respectively and GF is Fermi’s constant. The sign of the potential is positive for
neutrinos and negative for anti-neutrinos.

Crucially, as matter is full of electrons but empty of muons or taus, only electron
neutrinos will interact via the CC channel as shown in Figure 2.3. Consequently, only
electron neutrinos are affected by the VCC potential, while all flavours are affected by the
VNC potential. When quantitatively applied as an additional potential to the vacuum
Hamiltonian, a resonance oscillation term is introduced which significantly modifies the
vacuum oscillation probabilities. This phenomenon is known as the Mikheev, Smirnov,
and Wolfenstein (MSW) effect [29, 30].

It is important to note two things. Firstly, the ± in the VCC potential introduces
a difference between neutrinos and anti-neutrinos. Secondly, the modified oscillation
probability is found to be non-symmetric with respect to the sign of the ∆m2

kj parameters.

2.4 Neutrino interactions

As outlined in Section 2.3.3, there are two types of weak neutrino interactions with
nucleons: charged-current (CC) and neutral-current (NC), occurring via the exchange of
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W +

l−νl

n P +

Figure 2.4: Feynman diagram of a charged-current quasi-elastic interaction between a neutrino
and a neutron. By identifying the flavour of the final state charged lepton the
flavour of the original neutrino can be determined.

Z0

νlνl

N N

Figure 2.5: Feynman diagram of a neutral-current interaction between a neutrino and a
nucleon. The flavour of the neutrino can not be identified as there is no charged
lepton in the final state.

a Z0 or W ± respectively. During a CC interaction, the neutrino is transformed into a
charged lepton of the same flavour, conserving charge, flavour, and lepton number as
shown in Figure 2.4. Contrastingly, during a NC interaction, there is no charge or flavour
exchange, and the neutrino continues into the final state as shown in Figure 2.5.

CC interactions provide the signal events for the majority of neutrino experiments as
the original neutrino flavour can be determined via identification of the charged lepton.
Conversely, NC interactions are commonly background events as there is no way to
identify the original neutrino given the absence of a charged lepton in the final state.

For Chips the relevant neutrino interaction energy regime is commonly referred to as
the transition region, covering a range of energies between 1 and 10 GeV. Both CC and
NC interactions within this regime fall into one of five main categories:

• Quasi-Elastic scattering (QEL) is the dominant channel for energies below 1 GeV
and involves the neutrino scattering off the entire nucleon. In the CC neutrino
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case, this converts the target neutron to a proton (reversed for antineutrinos). The
same process can also occur in a NC interaction, where it is referred to as elastic
scattering.

• Meson Exchange Current (MEC) provides an additional contribution to the
energy range dominated by QEL interactions, involving two nucleons and producing
two protons in the final state. Sometimes referred to as the 2p2h interaction, it has
become essential for explaining the discrepancy between theory and observations
within many modern neutrino experiments, and is now included by default in the
popular event generators [31].

• Resonant pion production (Res) is the dominant channel between 1 and 2 GeV
and involves the neutrino exciting the nucleon into a resonant state. The resonance
then decays the vast majority of the time to produce a single pion and nucleon.
Resonant production is responsible for the majority of NC π0 events within water
Cherenkov detectors such as Chips. This channel, as discussed further in Sec-
tion 3.1.2 forms an incredibly tricky component of the background as it can mimic
the event topology of a single electron.

• Coherent pion production (Coh) is a much rarer interaction mechanism where
the neutrino scatters coherently from the entire nucleus. This process transfers
negligible energy to the target and produces a significantly forward scattered single
pion with no nuclear recoil in the final state.

• Deep Inelastic Scattering (DIS) is dominant for neutrino energies above 3 GeV
with the additional energy allowing for the neutrino to resolve the individual quark
content of the nucleon. The subsequent scattering from an individual quark produces
a hadronic shower in the final state containing multiple pions which are often a
challenge to reconstruct.

The standard νe cross-sections (very similar to those for νµ) included with the Genie
event generator [32, 33] are shown in Figure 2.6 for both CC and NC interactions. For ντ

interactions the CC cross-sections differ considerably due to the large tau lepton mass,
as shown in Figure 2.7, only becoming non-negligible for energies above ∼ 5 GeV.
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Figure 2.6: Genie cross-sections on oxygen divided by neutrino energy for CC νe (left) and
NC νe (right). Shown are the total, as well as the Quasi-Elastic (QEL), Deep
Inelastic Scattering (DIS), Resonant (Res), Coherent (Coh), and Meson Exchange
Current (MEC) cross-sections. Note how the total cross-section approaches a
linear dependence on energy and the NC cross-sections are smaller than their CC
counterparts. See reference [33] for generation details.

Figure 2.7: The total CC interaction cross-section per nucleon divided by the neutrino energy
for νµ and ντ . Figure taken from reference [34].
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2.5 Current status and the future

The three-component representation of the PMNS matrix presented in equation (2.11)
splits our understanding of neutrino oscillations into three sectors. Historically, the
sectors corresponded to experiments observing different sources of neutrinos, from either
the Sun, atmosphere, or nuclear reactors. Hence the standard names given to each: the
solar sector, atmospheric sector, and reactor sector. However, it is perhaps more rigorous
to think of each sector as corresponding to the parameters they encompass: ∆m2

21 and
θ12 for solar, ∆m2

32 and θ23 for atmospheric, and θ13 for reactor.

During the last couple of decades, the focus of neutrino experiments across all sectors
has shifted from the discovery of neutrino fundamentals to the precise measurement of
oscillation parameters. This change has led to a corresponding shift into using increasingly
abundant neutrino sources (such as accelerator neutrino beams) and larger and larger
detectors. Here we outline the current status, open questions, and future for neutrino
physics.

2.5.1 Current status

Global fits to neutrino oscillation data best summarise the current state of neutrino
physics. These aggregate the latest experimental results to constrain the neutrino
oscillation parameters. The best-fit results from one such fit, NuFIT [35, 36], are shown
in Figure 2.8. A detailed overview of other global fits is given in The Particle Data Group’s
2020 Review of Particle Physics (see reference [13]). Below, the solar, atmospheric, and
reactor best-fit parameters are presented alongside the latest experiments to contribute
to their values.

Solar parameters: θ12 and ∆m2
21

Current best fit results for the solar sector parameters yield θ12 ∼ 34◦ with ∼ 1.5◦ of
uncertainty, and ∆m2

21 ∼ 7.4 × 10−5eV2 with ∼ 0.4 × 10−5eV2 of uncertainty.

These results primarily come from a range of historical and currently running experi-
ments studying neutrinos generated by the Sun: the radiochemical chlorine-based Home-
stake [37]; the gallium-based GALLEX [38] and SAGE [39]; the deuterium Cherenkov
SNO [40]; the water Cherenkov Super-Kamiokande [41–44]; and the liquid scintillator
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Figure 2.8: Three-flavour results from the NuFIT v5.0 global fit as of July 2020, showing
both 1σ uncertainties and ±3σ ranges. The first column shows results for an
assumed normal hierarchy while the second for an inverted hierarchy, both of
which are introduced in Section 2.5.2. The lower section includes atmospheric
neutrino data from the Super-Kamiokande experiment, while the upper section
does not. Figure taken from reference [36].
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detector Borexino [45–47]. Most of which were mentioned previously in Section 2.1.2,
originally involved in studying the solar neutrino problem.

Additionally, by locating a 1 kt liquid scintillator detector between several nuclear
reactors, the KamLAND experiment has probed the solar sector in a terrestrial setting
using reactor antineutrinos [48]. Unlike solar neutrinos, which are heavily influenced by
the high electron density of the Sun and the subsequent MSW effect, the antineutrinos
detected by KamLAND were not influenced, removing any measurement ambiguity.

Atmospheric parameters: θ23 and ∆m2
32

Current best fit results for the atmospheric sector parameters yield θ23 ∼ 48◦ with ∼ 2◦

of uncertainty, and ∆m2
32 ∼ 2.45 × 10−3eV2 (assuming normal hierarchy as discussed in

Section 2.5.2) with ∼ 0.03 × 10−3eV2 of uncertainty. These results come from one of two
primary sources.

Firstly, experiments studying atmospheric neutrinos generated in the upper atmo-
sphere by cosmic rays, such as IceCube [49, 50] and the previously mentioned Super-
Kamiokande [51]. IceCube is a neutrino observatory based at the Amundsen-Scott South
Pole Station in Antarctica, consisting of strings of PMTs embedded deep within the ice.
Whilst, Super-Kamiokande is a large 50 kt water Cherenkov detector, equipped with
11000 PMTs, and located 1 km underground in Gifu Prefecture, Japan.

Furthermore, experiments measuring P (νµ → νµ) using accelerator beam generated
muon neutrinos over a long-baseline of many hundreds of kilometres are sensitive to the
atmospheric parameters. Such experiments include: MINOS [52, 53] (now complete) and
NOvA [54, 55] using a beam generated at Fermilab with detectors in northern Minnesota,
and T2K [56] using a beam generated at J-PARC (on the east coast of Japan) and using
the Super-Kamiokande detector described above.

Reactor parameter: θ13

The most recent parameter to be measured and found to be non-zero is θ13, with current
best fit results yielding a value of θ13 ∼ 8.5◦ with ∼ 0.25◦ of uncertainty (note that this
is now the most tightly constrained of all the PMNS mixing angles).

Primarily, θ13 measurements come from reactor experiments measuring electron
antineutrino disappearance, P (ν̄e → ν̄e). The Daya Bay [57, 58], RENO [59, 60], and
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Double Chooz [61] experiments located in China, South Korea, and France respectively
all published the strongest results for this measurement at a similar time.

Long-baseline accelerator experiments are also sensitive to θ13 through the electron
neutrino appearance channel P (νµ → νe). Measurements have been made by MINOS [53],
T2K [62], and NOvA [63] but with much greater uncertainties than reactor experiments.

2.5.2 Open questions

There are still many open questions (mainly ambiguities) regarding the parameters of
the PMNS matrix. Chips and other long-baseline accelerator experiments can help
resolve those discussed below by studying the appearance of electron neutrinos in a muon
neutrino beam. The approximate oscillation probability for this transition, including the
MSW effect, takes the form [13]:

P (νµ → νe, ν̄µ → ν̄e) ∼ 4 sin2 θ13 sin2 θ23
sin2 ∆

(1 − A)2

+ α2 sin2 2θ12 cos2 θ23
sin2A∆

A2

+ 8αJ cos(∆ ± δCP )sin ∆A

A

sin ∆(1 − A)
(1 − A) , (2.23)

with

J = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13, (2.24)

∆ = ∆m2
31L

4Eν

, (2.25)

A = ±2EνV

∆m2
31

, (2.26)

α = ∆m2
21

∆m2
31

, (2.27)

where V is the effective matter potential of the Earth’s crust, and ± is positive for
neutrinos and negative for antineutrinos.
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Octant of θ23

The mixing angle θ23 is known to be non-zero and large. Initially thought to be maximal
such that θ23 = π/4 = 45◦, there are now indications that this may not be the case [54].
Naturally, this possibility raises the question of whether θ23 < 45◦ or θ23 > 45◦, commonly
referred to as the octant. Although θ23 is easily measured be studying νµ disappearance,
a degeneracy in the oscillation probability removes the ability to determine the octant.
However, νe appearance via the first term in equation (2.23) allows for the octant to be
resolved. Current results suggest the θ23 > 45◦ octant is preferred; however, a significant
measurement is yet to be made.

Mass hierarchy

The value of ∆m2
21 is known to be small and positive, meaning that m2 > m1 where m1

is defined to be the dominant mass state of the electron neutrino [40]. However, the
sign of ∆m2

32 is still currently unknown. This allows for two possible scenarios, either
m1 < m2 < m3, known as the normal hierarchy, or m3 < m1 < m2, known as the
inverted hierarchy, as illustrated in Figure 2.9. Resolving this ambiguity will significantly
improve the ability of experiments to both determine the value of δCP (discussed next)
and discover if neutrinos are Dirac or Majorana in nature.

Oscillations in vacuum are not sensitive to the sign of the ∆m2
kj parameters. However,

matter effects allow for the sign to be determined. Long-baseline νe appearance is sensitive
to the sign of ∆m2

32 via the ∆, A, and α parameters in equation (2.23). Alternatively,
determining the hierarchy is also possible using future reactor experiments such as
JUNO [64].

CP violation

The current level of CP violation observed in the quark sector does not fully explain the
matter-antimatter asymmetry of the universe. However, if CP violation is shown to exist
in the leptonic sector, leptogenesis models of the early universe allow this to go some
way to resolving the issue. Neutrino CP violation, when P (να → νβ) 6= P (ν̄α → ν̄β), is
possible in the PMNS matrix when δCP is not 0 or π. νe appearance, sensitive to δCP via
the third term in equation (2.23) is the most promising channel for measurement. The
oscillation probabilities are seen to change significantly with δCP , as shown in Figure 2.10.
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Figure 2.9: Diagram of the two possible neutrino mass hierarchies. The atmospheric (atm)
and solar (sol) naming convention is used for the mass differences. ∆m2

21 (sol) is
small and positive, while ∆m2

32 (atm) is large and its sign is unknown. Figure
taken from reference [65].
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Figure 2.10: Appearance probability for νe oscillating from νµ at a baseline of 712 km. The
oscillations are show for three different values of δCP .

Current results from both NOvA [54] and T2K [66] hint at a possible non-zero value;
however, a significant measurement is yet to be made.
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2.5.3 The future

The current generation of long-baseline accelerator experiments (NOvA and T2K) are not
expected to unambiguously determine the octant of θ23, the mass hierarchy, or the value
of δCP . To finally answer these questions, primarily two next-generation experiments
are planned. The USA based Deep Underground Neutrino Experiment (DUNE) and
Hyper-Kamiokande in Japan. Both will have rich neutrino physics programs alongside
their primary goals, studying atmospheric and supernova neutrinos, as well as nucleon
decay.

DUNE [67, 68], will consist of four 10 kt liquid argon time projection chambers
(LArTPCs) located 1.5 km underground at the Sanford Underground Research Facility,
South Dakota. This location is the same as the Homestake mine chlorine experiment
previously mentioned in Section 2.1.2. LArTPCs have been chosen as they provide
excellent track reconstruction and particle identification performance.

The DUNE experiment will also use a new high intensity beam constructed at
Fermilab (1285 km away) named the Long-Baseline Neutrino Facility (LBNF). Replacing
the current 700 kW NuMI (Neutrinos at the Main Injector) beam, LBNF is initially
planned to run at 1.2 MW, but will eventually reach 2.4 MW.

The initial cost estimate for DUNE combined with LBNF was forecast at between
$1.26 billion and $1.86 billion [69]. However, due to rising underground excavation costs,
this has recently risen to approximately $2.6 billion [70], an extremely high cost for a
neutrino experiment.

Hyper-Kamiokande [71, 72], will be the next-generation replacement for the currently
running Super-Kamiokande detector. When completed, it will consist of a cylindrical
water Cherenkov detector, 60 m in height and 74 m in diameter, built under 650 m of
rock at the Tochibora mine in Japan, close to the current Super-Kamiokande location.
New high-efficiency photomultiplier tubes will be used, covering 40% of the detector
walls to record the Cherenkov radiation emitted from neutrino events.

Moreover, there will be upgrades to the existing J-PARC neutrino beam currently
used by T2K. Primarily this will increase the beam power from the current record of
515 kW to 1.3 MW. In total, the Hyper-Kamiokande project is expected to cost nearly
$700 million [73].



Chapter 3

The CHIPS R&D project

In pursuit of answers to the open questions presented in the previous chapter, neutrino
experiments are becoming increasingly, and possibly prohibitively, expensive and imprac-
tical. This trend is particularly true of the next generation of long-baseline experiments,
DUNE and Hyper-Kamiokande, with cost estimates reaching billions of dollars and
construction times of greater than half a decade. It is also telling that the vast majority
of global research effort goes into just these two future projects, such is their complexity,
cost, and lead time.

It is evident that for detectors to remain practical and affordable into the future, a
novel design strategy is highly desirable. This approach is especially the case if megaton
scale detectors are ever to become a reality. While instrumentation will continue to
improve with time steadily, the statistics of low event counts will always limit neutrino
experiments until vastly larger detectors can be built. Therefore, R&D efforts must focus
on such detectors now, whilst also attempting to complement the current and upcoming
generation of experiments.

The Chips R&D project aims to develop novel strategies and technologies for very
large yet practical ‘cheap as chips’ water Cherenkov detectors [74]. Primarily aimed for
deployment in long-baseline accelerator beam scenarios, Chips aims to lower the cost per
kt of sensitive mass to between $200k-$300k. For comparison, the Super-Kamiokande
detector cost approximately $4 million per kt to build. As physics sensitivity depends
on more than just sensitive mass, this comparison is not entirely rigorous; however, it
highlights the scale of possible cost savings.

This chapter aims to describe the fundamental aspects of the Chips R&D project in
detail and explain how it achieves its goals. Firstly, the Chips concept will be outlined
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along with both neutrino beam and Cherenkov detector physics for context. The design,
construction, deployment, and status of the Chips-5 prototype detector will then follow.
Finally, a description of the Monte Carlo methods used to simulate Chips detectors is
given, alongside how the input neutrino events are generated.

3.1 The CHIPS concept

The Chips concept is to deploy cylindrical water Cherenkov detector modules into deep
bodies of water on the Earth’s surface such as lakes, reservoirs, and flooded mine pits.
Initially constructed on land, Chips detectors can be floated into position before being
sunk. The water above the sunken detector provides a modest overburden from cosmic
rays, whilst the surrounding water provides support for a lightweight structure. By
removing the need for underground excavation and expensive structural support, the
cost of construction can be dramatically reduced.

Additionally, the common practice of building majority bespoke components is re-
placed by using modern commercially available components wherever possible. The
number of expensive elements, such as photomultiplier tubes are also reduced by only con-
sidering multi-GeVaccelerator beam neutrino events, such that full high-density detector
instrumentation is not required.

Furthermore, Chips detectors are not only designed to be cheap, but practical. Easy
to build, quick to deploy, and upgradable once operational, multiple detector modules
can be flexibly combined depending on available resources and funding. When compared
to DUNE and Hyper-Kamiokande both which require a large upfront budget and many
years to construct, cheap Chips detector modules can be deployed as needed in under a
year by a relatively small team.

To date, Chips R&D efforts have been based in the USA to exploit the NuMI beam
before the end of its lifetime. Plans are focused on the scaling of Chips detectors for the
deployment of multiple modules within the LBNF beam once operational. Collaborators
from primarily University College London, The University of Wisconsin Madison, and
Nikhef are focused on multiple R&D efforts, each aiming to prove the viability of a crucial
component of the Chips concept:

• Detector construction: Aiming to prove that the construction and deployment of
Chips concept detector modules are possible. Two prototype detectors have so far
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been deployed. Firstly, the small Chips-M module shown in Figure 3.1, deployed
into a flooded mine pit in northern Minnesota during the summer of 2014 [75–77].
Secondly, the much larger 5 kt Chips-5 module, deployed into the same pit during
the summer of 2019 and detailed in Section 3.2.

• Water filtration: Aiming to prove that adequate water purity can be achieved
using cheap, commercially available filtration. Extensive studies have proven that
by filtering water directly from bodies of water on the Earth’s surface (including
flooded mine pits), adequate photon attenuation lengths of greater than 100 m are
achievable [78, 79].

• Physics sensitivity: Aiming to prove that Chips concept detector modules (even
the prototypes) can provide significant physics contributions alone or alongside the
current and next generation of experiments. Single modules in the current NuMI
beam (discussed in Section 3.1.1) and multiple modules in the future LBNF beam
have been studied [77, 80, 81].

• Data acquisition: Aiming to prove that a cheap data acquisition (DAQ) system
using commercially available components and software is viable [82]. Outlined in
Chapter 4, Chips implements a novel use of cheap single-board computers to collect
photomultiplier tube data.

• Event reconstruction and classification: Aiming to prove that deep learning
techniques can be successfully applied to the reconstruction and classification of
neutrino events from large water Cherenkov concepts such as Chips. The primary
contribution of this thesis (detailed in Chapter 5 and Chapter 6), this work feeds
directly into both the physics sensitivity studies mentioned above and detector
design optimisation.

3.1.1 The neutrino beam

Chips detectors will primarily study the appearance of νe oscillating from νµ over a
long-baseline. To generate a sufficient number of GeV scale νµ, a high-intensity accelerator
beam is required. Currently, only two such beams exist, the J-PARC based beam in
Japan used by the T2K experiment and the NuMI beam in the USA used by NOvA.
Here we describe the NuMI beam [83] as it is directly relevant to current Chips efforts.
However, it is essential to note that Chips detectors are designed to be deployed into
any high-intensity neutrino beam, including the future NuMI replacement, LBNF.



42 The CHIPS R&D project

Figure 3.1: Picture of the 3.3 m high Chips-M detector just before deployment. Temporary
floatation bags are attached to the top rim of the detector, while the umbilical
cord carrying data, power, and filtered water is attached to the base.

Figure 3.2: Schematic of the main components of the NuMI beamline. The MINOS and
NOvA near detectors and the MINERvA experiment are located just to the right
of what is shown. Figure taken from reference [83].

The NuMI beam is an accelerator muon neutrino beam produced at Fermilab near
Chicago in the USA. Beginning operation in 2005 for the MINOS experiment, NuMI
was upgraded in 2013 to provide a higher intensity and energy beam, principally to
achieve a peak in neutrino energy near the ∼1.5 GeV νµ → νe oscillation maximum for
NOvA. Currently, the NuMI beam achieves an intensity of 700 kW (740 kW at peak)
making it the most powerful such beam in the world. A schematic of the NuMI beamline
configuration is shown in Figure 3.2.

Every 1.33 seconds a 10 µs long spill of protons accelerated to 120 GeV by the Main
Injector ring is directed towards a stationary graphite target. The resulting interactions
create a shower of hadrons containing predominantly pions and kaons. The hadrons
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are passed through a focusing system of two magnetic horns tuned principally to focus
positively charged pions along the beamline while rejecting other particles. After focusing,
any surviving hadrons are allowed to decay in flight to a beam of muon neutrinos in a
675 m long decay pipe via the processes:

π+ → µ+ + νµ, (3.1)

K+ → µ+ + νµ. (3.2)

The resulting muons also decay such that µ+ → e+ + νe + ν̄µ, producing an intrinsic νe

component as well as wrong sign νµ contamination.

Alternatively, the polarity of the horns can be used to switch the dominant sign of
the hadrons focused, allowing NuMI to operate as either a neutrino or antineutrino beam.
These two modes of operation are called forward horn current and reverse horn current,
for primarily a neutrino or antineutrino beam composition respectively. Any remaining
hadrons, alongside electrons, muons, and surviving primary protons are absorbed by rock
downstream of the decay pipe, leaving just the neutrino components of the beam.

Long-baseline neutrino experiments typically consist of a near detector to measure the
neutrino composition at source and a much larger far detector to measure the oscillated
composition after many hundreds of kilometres. The NuMI beamline contains three
detectors after 300 m of rock: The MINERvA spectrometer [84], the near detector for
MINOS (now used by MINERvA), and the near detector for NOvA. Chips prototypes
within the NuMI beam (such as Chips-5) will not have a dedicated near detector;
therefore, data from the above detectors will be crucial for physics analysis in order to
constrain the beam composition and flux.

The NuMI neutrino beam passes through the Earth’s crust until it finally emerges
in northern Minnesota. This is where the MINOS, NOvA, and prototype Chips far
detectors are located (used to be located in the MINOS case), as shown in Figure 3.3.
The Minnesota state nickname ‘land of 10,000 lakes’ is not an overstatement, with a
vast number of potential lakes for Chips detector deployment. Additionally, intense iron
ore mining on the ‘Iron Range’ provides many suitable, disused (and now flooded) mine
pits. The exact Chips-5 prototype detector location is discussed in greater detail within
Section 3.2.1.

Due to the kinematics of pion decay, whether the far detector is placed directly on
the beam axis or not can have a significant impact on the observed energy spectrum of
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Figure 3.3: Map of the MINOS, NOvA and Chips locations in the NuMI beam as it surfaces
in northern Minnesota. Shown (the z-axis) is the expected neutrino event rate
per kt per year assuming no oscillations, with lines of constant L/E indicated
with contours. The western extent of Lake Superior can be seen in the lower right
of the map for reference. Image taken from reference [74].

beam neutrinos, as shown in Figure 3.4. For neutrinos directly on the beam axis, there
is a strong dependence on the energy of the parent pion within equation (3.1). However,
as the off-axis angle increases, the neutrino energy becomes less and less dependent on
the parent pion energy and is restricted to a narrowing range of decreasing energies.

Known as the off-axis effect this phenomenon is used by both NOvA and T2K to
create a narrow energy peak focused on the important νµ → νe oscillation maximum. By
reducing the tail of high energy neutrinos, the number of background NC events can also
be greatly reduced, as is the case for the 7 mrad off-axis Chips-5 detector module.

3.1.2 Water Cherenkov detectors

The Chips detector concept is based upon the water Cherenkov technique for neutrino
detection. A large body of target water is instrumented with photomultiplier tubes
(PMTs) to record the Cherenkov radiation produced by sufficiently relativistic charged
particles produced in neutrino interactions. By using readily available water as the target
material and only instrumenting the surface of the volume, water Cherenkov detectors
provide the best detection methodology for maximising volume and reducing cost.
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Figure 3.4: Muon neutrino flux for different NuMI detectors at different off-axis angles. Shown
are the neutrino energy spectrums for MINOS (on-axis), Chips-5 (7 mrad off-axis),
and NOvA (14 mrad off-axis). Figure taken from reference [74].

Cherenkov radiation is emitted by all electrically charged particles travelling faster
than the local phase velocity of light in a dielectric medium. Similar to the sonic boom
created by a supersonic aircraft, Cherenkov radiation forms a shock wave of coherent
light, as shown in Figure 3.5. Typically, the emitted light has wavelengths in the optical
to ultraviolet range (∼ 400 nm). When projected onto the detector wall, the resulting
cone of radiation generates a distinctive ring shape. The cone opening angle (the angle
at which light is emitted) θc, is given by

cos θc = 1
βn(λ) , (3.3)

where β = v/c and n is the refractive index of the medium [13]. Note that n is a function
of the wavelength of emission λ, and so is the opening angle. As the refractive index of
water is ∼ 1.33 for typical wavelengths of emission, and using the ultrarelativistic limit
β ∼ 1, the opening angle is found to be ∼ 41◦.

In equation (3.3) there is no Cherenkov emission when cos θc > 1, which is the case
when βn(λ) < 1. Therefore, a Cherenkov energy threshold Et, exists for charged particles.
When expressed in terms of the particle mass m, the threshold is given by

Et = γm = m√
1 − (1/n)2

. (3.4)

Again using n ∼ 1.33, a Cherenkov emission threshold energy of ∼ 1.5 m is typical.
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Figure 3.5: Diagram of Cherenkov radiation emission and wavefront angles. In a dispersive
medium photons propagate at the group velocity vg and the Cherenkov emission
opening angle η is not equal to θc. Figure taken from reference [13]

The number of Cherenkov photons emitted by a particle of charge ze, per unit
wavelength per unit path length is given by

d2N

dλdx
= 2παz2

λ2

(
1 − 1

1 − β2n2(λ)

)
, (3.5)

where α is the fine structure constant (∼ 1/137) [13]. Integrating over the range of
wavelengths for which PMTs are typically sensitive, 350 nm to 650 nm, and using β ∼ 1
and n ∼ 1.33 gives approximately 240 photons emitted per cm travelled by the charged
particle [85].

By analysing the Cherenkov rings of light recorded by the PMTs on the walls of the
detector, information about the charged particles within an event can be determined.
The underlying neutrino interaction can then be understood indirectly. Primarily, the
challenge for accelerator beam water Cherenkov detectors is the identification and
reconstruction of an electron or muon ring likely to have been produced from a beam
neutrino and not a cosmic ray. This event topology indicates a beam CC νe or CC νµ

event respectively, rejecting NC and cosmic events.

The basic shape of a Cherenkov ring can be used to tell which charged particle created
it. Muons are long-lived and typically travel many metres within the detector, producing
a clean ring with sharp edges as shown in Figure 3.6. Conversely, electrons almost
immediately initiate an electromagnetic shower; therefore, the observed ring is the sum
of multiple rings produced from the individual electrons and positrons within the shower.
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Figure 3.6: Event display of a simulated beam CC νµ quasi-elastic event with a single muon
in the final state of energy 2.36 GeV. Both the unrolled barrel and endcaps
are shown with every entry representing a hit PMT with the colour indicating
the collected charge. The purple ring indicates the true muon Cherenkov cone
boundary projected onto the detector walls.

As a consequence, when compared to a muon ring, electron rings are characteristically
fuzzy, as shown in Figure 3.7. Additionally, a factor of this difference can be seen in
Figure 3.8, which shows how the total amount of Cherenkov radiation is emitted for both
electrons and muons as a function of distance from the interaction vertex.

The situation quickly becomes complicated when multiple charged particles above the
Cherenkov threshold are involved, common at multi-GeV energies. In this case, multiple
overlapping rings are observed, making reconstruction difficult. The worst-case scenario
is when two rings overlap entirely, removing any ability to tell them apart. This topology
is often the case for NC interactions producing a π0 in the final state, forming the primary
background for the signal CC νe appearance channel.

π0 particles decay to a pair of photons with a 98.82% branching ratio, both of which
almost immediately initiate an electromagnetic shower, just like an electron [13]. This
process leads to the formation of two electron like rings separated by an angle θij, given
by

(1 − cos θij) = m2
π

2EiEk

, (3.6)
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Figure 3.7: Event display of a simulated beam CC νe quasi-elastic event with a single electron
in the final state of energy 1.05 GeV. Both the unrolled barrel and endcaps are
shown with every entry representing a hit PMT with the colour indicating the
collected charge. The purple ring indicates the true electron Cherenkov cone
boundary projected onto the detector walls.
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Figure 3.8: Fraction of the total number of Cherenkov photons emitted as a function of the
distance from the interaction vertex for both electrons and muons with an initial
energy of 2.5 GeV. Multiple particles within the electron-induced electromagnetic
shower emit their Cherenkov radiation over a short distance and in slightly
different directions (fuzzy). Conversely, a muon travels relatively much further
emitting an approximately constant level of Cherenkov radiation as it does so
(clean).
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where mπ is the invariant mass of the π0 and Ei and Ej are the energies of the two
photons in the lab frame, respectively. Therefore, for a π0 decaying to two 1 GeV photons,
there is just 8◦ of separation between the rings, making them difficult to tell apart. This
distinction is especially hard when electron like rings are also fuzzy. Alternatively, if the
two photons have an unequal energy distribution, such that one is much more energetic
than the other, the higher energy photon ring can dominate, and the other can not be
identified, leading to what looks like a single electron ring, producing a misidentification.

3.2 CHIPS-5

Chips-5 is the first large scale prototype detector module for the Chips project. Cylin-
drical in shape with dimensions of 25 m in diameter and 12 m in height, Chips-5 has an
inner surface area of 1924 m2 and a total target mass of 5.9 kt. Via the process of design,
construction, deployment, and data taking, Chips-5 primarily aims to refine the Chips
concept for future full-scale (∼15 kt) modules. Consequently, Chips-5 is designed such
that the details outlined in this section are entirely characteristic of what a full-sized
Chips module is envisioned to be.

First, the location, structure, instrumentation, and water filtration are detailed for the
complete detector. A discussion of the construction and deployment procedure follows
before the current status is presented. The Chips-5 DAQ implementation is detailed
separately in Chapter 4.

For clarity, neutrinos from the NuMI beam are assumed to enter the Chips-5 detector
through the upstream wall of the cylindrical barrel, parallel to the floor and travelling
towards the opposite downstream wall. Their direction of travel (the direction of the
beam) is referred to as being along the x-axis for the rest of this work. The corresponding
y-axis is the perpendicular horizontal axis, and the z-axis is vertical through the barrel,
with the coordinate origin located at the centre of the detector.

3.2.1 Location

Chips-5 is located at the Wentworth 2W pit in northern Minnesota, USA, near the small
town of Hoyt Lakes. A disused and flooded surface Taconite ore (a type of iron ore) mine
pit, Wentworth 2W is located 7 mrad off the NuMI axis at a distance of 712 km from the
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Construction	Site

PolyMet	Building

Deployment	Location

Shore	Huts

Figure 3.9: Satellite view of the Wentworth 2W flooded mine pit in northern Minnesota,
showing key Chips-5 locations. The PolyMet building, shore huts, construction
site, and deployment location are shown. For both the construction site and
deployment location, the red circle shows the true Chips-5 detector size to scale.

beam target. Roughly 0.8 km by 1.2 km in size with a maximum depth of 60 m (±3 m
throughout the year), the pit allows for a water overburden of approximately 50 m above
Chips-5 when resting on the bottom. With an average daily low temperate of −24◦C in
January, the pit freezes over during winter, therefore, work is only possible during the
summer months of May to October.

A sizeable earthen ramp on the south side of Wentworth 2W is used for detector
construction. The construction site is easily accessible by road and well connected to
power due to the heavy infrastructure in place for mining. Additionally, the nearby
PolyMet mining administration building is used as a laboratory environment for the
construction and testing of individual components before their installation within the
detector. A labelled satellite view of Wentworth 2W is given in Figure 3.9 for context,
with an aerial picture of the construction site shown in Figure 3.10.
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Figure 3.10: Aerial picture of the Chips-5 construction site facing south. The Wentworth
2W pit is in the lower half of the image, with the part built Chips-5 detector
visible at the bottom of the earthen construction ramp. The two white shore
huts can be seen halfway up the ramp.

Figure 3.11: Picture of the Chips-5 structural frame with humans for scale. The endcaps can
be seen separated by steel struts. Rows of stainless steel stringers are attached
to the inside of each endcap for instrumentation mounting.

3.2.2 Structure

The structure of Chips-5 consists primarily of two 26 m diameter and 1.3 m high
lightweight stainless steel circular endcaps that form the top and bottom of its cylindrical
shape. During construction the conveniently named top-cap is held above the bottom-cap
by 1.5 m long steel struts as shown in Figure 3.11. This configuration allows for the
endcap instrumentation, detailed in Section 3.2.3, to be easily installed.
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Figure 3.12: Graphical rendering of the fully deployed and expanded Chips-5 detector module
with a section of the liner cutaway. The bottom endcap and wall instrumentation
is visible, as well as the top endcap structure and floatation. The green lines
indicate the Dyneema cables holding the endcaps together.

The two endcaps are connected by 28 Dyneema cables attached around their perimeter,
each 12 m in length. Additionally, a total of 48 air-filled Polyvinyl Chloride (PVC) pipes,
each 40 cm in diameter, are attached to the frame of the top-cap to make it buoyant.
Once deployed into the pit, the bottom-cap sinks while the top-cap floats, pulling the
Dyneema cable taut and forming the final expanded detector shape shown in Figure 3.12.

A lightproof and watertight liner is also installed to surround the fully expanded
structure. Designed to isolate the clean internal water from the external pit water
and to prevent non-Cherenkov light from reaching the PMTs, the liner is made from
geomembrane, a flexible reinforced polymer membrane. Commercially available in large
rolls, the liner is welded together during construction to form the top, bottom, and sides.
Note that when fully deployed, the liner does not take any of the structural strain.

3.2.3 Instrumentation

Chips-5 is instrumented with PMTs arranged within distinct plane like structures called
Planar Optical Modules (Poms), which take inspiration from the Digital Optical Modules
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used by IceCube and KM3NeT [86, 87]. Each Pom is a roughly 2 m by 3 m array of
watertight PVC tubing equipped with between 15 to 30 PMTs, as well as the lowest level
of DAQ electronics. Commercially available PVC piping and connectors are used to form
the structure of each plane, glued together with standard PVC primer and cement.

There are two types of Pom used within Chips-5, differentiated by the PMTs and
DAQ electronics they use and named after the institution at which they were primarily
developed. Firstly, Nikhef Poms use 88 mm in diameter HZC PMTs [88], with electronics
developed for the KM3NeT experiment [89, 90]. Secondly, Madison Poms use 76 mm
in diameter Hamamatsu PMTs [91], donated from the NEMO-3 experiment [92], with
electronics developed by Chips in collaboration with the Wisconsin IceCube Particle
Astrophysics Centre (WIPAC) in Madison, Wisconsin.

The HZC PMTs have a high ratio of output electrons to incident photons (quantum
efficiency) of 24.4% at a wavelength of 400 nm, compared to the low 12.0% ratio achieved
by the Hamamatsu PMTs. Furthermore, the photon hit time resolution is ∼2 ns and
∼5 ns for the HZC and Hamamatsu PMTs respectively.

In total 6114 HZC, and 450 Hamamatsu PMTs are arranged into 226 Nikhef and 30
Madison Poms. Every PMT is housed within an assembly as shown in Figure 3.13 for
the Nikhef case and Figure 3.14 for the Madison case. Importantly, to increase the level
of light collection, each Nikhef PMT is equipped with a light-cone consisting of a circular
reflective surface at 45° to the PMT normal. The Madison PMT assembly is similar but
has no light-cone. For Poms attached to either endcap, their PMTs are angled at 45°
facing the direction of the beam to optimise light collection.

All PMTs within a Pom are connected to the lowest level of DAQ electronics contained
within a dedicated onboard electronics box, either made from aluminium or PVC in the
Nikhef or Madison case, respectively. A flexible PVC pigtail is attached to each Pom
electronics box containing connections to the higher level DAQ and power supply. A
water-block within each pigtail ensures that if either the external link or Pom becomes
flooded, the other is still capable of withstanding the 6 atm of water pressure at the
bottom of the pit. A fully assembled and installed Nikhef Pom is shown in Figure 3.15
for reference.

The Poms are tiled next to each other on the detector walls, attached to either the
stainless steel stringers on the top-cap and bottom-cap, or clipped to the Dyneema cables
on the vertical walls of the barrel. As mentioned previously, full high-density detector
instrumentation is not required for Chips detector modules, for two main reasons.
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(a) Disassembled (b) Assembled

Figure 3.13: Disassembled (a) and assembled (b) Nikhef PMT assembly components. The
assembly comprises of a black PVC insert, a HZC PMT, a transparent acrylic
cover, and a reflective light-cone. The PMT is glued to the inside surface of the
cover using a silicone-based optical gel, and a watertight seal is made between
the insert and cover using an O-ring. The reflective light-cone is clipped to the
front of the cover, and the whole assembly is glued into the Pom PVC structure.

(a) Outside (b) Inside

Figure 3.14: A Hamamatsu PMT outside (a) and inside its insert (b). The PMT is potted
inside its black PVC insert to create a watertight seal that can withstand the
6 atm of water pressure at the bottom of the pit. A µDAQ detailed in Chapter 4,
is seen attached to the base of the PMT in (a).
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Figure 3.15: Picture of a single Nikhef full-density Pom installed on the top-cap of the
Chips-5 detector. Both the inward-facing and veto PMTs are visible as well as
the aluminium electronics container and pigtail, whose end is covered in green
tape.

Firstly, only highly directional accelerator beam events are to be studied. Therefore,
the vast majority of neutrino interaction Cherenkov radiation is deposited on a relatively
small downstream region of the detector walls. Secondly, beam neutrinos predominantly
have multi-GeV energies, yielding a relatively large amount of Cherenkov radiation.
Therefore, a smaller number of PMTs are required to capture adequate Cherenkov
radiation from each interaction.

Consequently, the photocathode coverage, defined as the fraction of the complete
detector wall area covered by the PMT photocathodes (the elements which the photons
initially strike), is optimised within Chips-5 to reduce the total number of PMTs used.
The detector is split into three distinct regions of PMT photocathode coverage, whose
boundaries are defined by their azimuth angle φ from the centre of the downstream wall
(where φ = 0◦) using the centre of the detector as the origin. Each boundary is chosen
by inspecting the fraction of beam Cherenkov photons that hit the detector walls as
a function of φ. This distribution, generated by the detector simulation (outlined in
Section 3.3.1), is shown in Figure 3.16 alongside the chosen boundaries.

Firstly, there is a full-density Nikhef Pom region in the most downstream φ = ±75◦

region of the detector with a ∼ 3% photocathode coverage. Secondly, a half-density
Nihkef Pom region covering the φ = ±75◦ to φ = ±180◦ region of the endcaps and
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Figure 3.16: Fraction of beam event Cherenkov photons that hit the detector walls as a
function of the hit PMT position angle φ. The different photocathode coverage
regions are indicated.

the φ = ±75◦ to φ = ±140◦ region of the barrel with a ∼ 1.5% photocathode coverage.
Finally, a half-density Madison Pom region covering the φ = ±140◦ to φ = ±180◦

upstream region of the barrel with a ∼ 0.8% photocathode coverage.

Simulation studies have shown that this configuration, requiring just 60% of the PMTs
compared to full high-density coverage, leads to only an 8% reduction in the average
amount of total collected photoelectrons per event. This reduction corresponds to a
decrease in the signal CC νe selection efficiency of just ∼ 2% and a degradation in the
CC νe energy reconstruction resolution of ∼ 5%, acceptable given the vast reduction in
cost. It is important to note that these studies were performed using the standard event
reconstruction and classification presented in Section 5.2 and should be revisited in the
future with the new CNN implementation.

The Chips-5 detector module is equipped with a veto region within the top-cap
frame structure to aid cosmic muon rejection. Separated from the main detector volume
by a geomembrane liner, the 1.3 m high region allows for the rejection of predominantly
downward going cosmic muons by detecting the Cherenkov radiation they produce.
A total of 324 upward-facing HZC veto PMTs within the top-cap Nikhef Poms give
a veto photocathode coverage of ∼ 0.6%. A graphical rendering of the full top-cap
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Figure 3.17: Graphical rendering of the top-cap Poms. Both the different photocathode
coverage regions and the veto PMTs (contained within the top-cap Poms)
are visible. The manifolds connecting the Poms with the higher level DAQ
components are also shown in pink and orange.

instrumentation, showing the different density regions and veto PMTs, is shown in
Figure 3.17.

All Chips-5 instrumentation receives power and is connected to the highest level
DAQ systems through a 500 m long flexible PVC umbilical resting on the pit floor. The
umbilical contains a single optical fibre for data and two shielded gauge 10 cables for
power. One end of the umbilical is attached to the bottom-cap of the detector while
the other enters a hut onshore containing the master power supply and onshore DAQ
equipment.

3.2.4 Filtration

Though surprisingly clear, the Wentworth 2W pit water requires filtration to reach the
necessary 30 m photon attenuation length for adequate light collection. Therefore, a high
volume pump is used to continually pull the internal detector water through a 500 m
long pipe to a filtration hut on the shore. After filtration, the water is returned to the
detector through a second such pipe.

Within the hut, ten parallel sets of filters are installed in order to achieve a reasonable
flow rate, allowing for the full detector volume to be filtered every ten days. Each filter
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Figure 3.18: Picture of the Chips-5 filtration system within one of the shore huts. The pipes
to and from the detector can be seen entering and exiting the hut respectively
via a gap in the back wall.

set consists of a 51 cm long 10 µm carbon block filter followed by a 51 cm long 0.5 µm
polypropylene filter, as shown in Figure 3.18. This configuration is found to achieve
a photon attenuation length of 133(2) m after approximately two months of constant
filtering [79].

3.2.5 Construction and deployment

The construction and deployment of any Chips detector module is a bespoke process
that is relatively complex when compared to other experiments. This complexity is
primarily due to a body of water being used for activities rather than solid ground. Below
a simplified version of the Chips-5 construction and deployment procedure is outlined.

1. An earthen barrier is built separating the main body of Wentworth 2W from the
construction area. As the pit water level rises during the summer, this acts as a
dam preventing the construction area from flooding (at least in theory).

2. The bottom-cap liner is welded together before the endcap structural frames are
constructed above, resulting in that shown in Figure 3.11.

3. The barrel liner is partly constructed starting from the detector base. Using a
vertical liner roll for each of the 28 sides, the barrel liner is welded up to the height
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of the top-cap, as is shown in Figure 3.19. The top-cap liner is also installed but
not welded to the barrel liner.

4. A strongly buoyant floating-dock, made from steel and large plastic floats, is con-
structed surrounding the detector. The bottom-cap is attached with metal chains
to winches on the floating-dock and with the Dyneema cables to winches on the
top-cap.

5. The pre-assembled and tested endcap Poms are installed along with their associated
power and data connections as well as other high-level DAQ components.

6. The earthen barrier is removed and the construction area flooded, causing the
detector and floating-dock structure to float. The detector is towed by a boat to its
deployment location.

7. The detector is slowly filled with water at the same time as being lowered using the
winches on the floating-dock. This process continues until the top-cap reaches the
surface of the water and begins the float. At this point, the steel struts separating
the endcaps are removed.

8. The barrel Poms are installed in layers, brought to the detector location by boat.
The gap between the barrel and top-cap liner allows this to happen. After a
complete layer has been installed the bottom-cap is lowered using the winches on
the floating-dock and top-cap and the barrel liner is correspondingly welded to a
greater height before the procedure repeats.

9. After all the Poms layers have been installed, the barrel and top-cap liner are
welded together, the detector umbilical attached, and the whole detector lowered
until it rests at the bottom of the pit.

10. The water within the detector volume is filtered for approximately two months until
a stable photon attenuation length is reached. Once complete, filtering continues to
maintain the water clarity and data taking runs begin.

3.2.6 Current status

During the summer of 2018 and 2019 extensive Chips-5 construction work was carried
out by a team of 10 to 15 collaborators at any one time. Given the novel nature of the
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Figure 3.19: Picture of the Chips-5 detector module with liner welded up to the height of
the top-cap. A section of the floating-dock can also be seen in the foreground.

(a) Cornerstone placement. (b) Floatation production.

Figure 3.20: Some Chips-5 construction work.

project, most tasks, some of which are pictured in Figure 3.20 and Figure 3.21, proved
both challenging and time consuming.

By late summer 2019, it became apparent that deployment of a fully instrumented
Chips-5 would be impossible before the pit started to freeze over in October. Therefore,
the decision was taken to only partially instrument the endcaps, leave the barrel walls
bare, not include the veto separation liner, and reduce the module height to 8 m. In
October 2019 this version of Chips-5, shown in Figure 3.22, was deployed into the
Wentworth 2W pit.
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(a) Connection testing. (b) Pom installation.

Figure 3.21: More Chips-5 construction work.

Analysis of preliminary data was successful in isolating individual cosmic muon events,
one of which is shown in Figure 3.23. However, extensive data taking was paused due
to a deployment induced tear in the liner preventing filtration of the internal water.
Given the outbreak of the worldwide SARS-CoV-2 pandemic, all plans for work over the
summer of 2020 were suspended, including essential repairs and instrumentation of the
barrel walls. Plans for summer 2021 are currently under review.

3.3 Detector simulation and event generation

To describe Chips-5 and other Chips concept detectors in a simulated environment,
a Monte Carlo simulation framework is used. Monte Carlo detector simulation and
event generation methods are an indispensable tool within high energy particle physics.
This is particularly true during the design and prototyping phase of an experimental
project when no real-world data is available, as is predominantly the case with Chips.
By matching the observables of a real-world detector as close as possible, these methods
allow for the optimisation of detector design, the testing of reconstruction techniques,
and the study of physics sensitivities.

Here, a description of the detector simulation and the beam and cosmic event gen-
eration procedures used by Chips are described. All are employed extensively for the
principal work of this thesis presented in Chapter 5 and Chapter 6.
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Figure 3.22: Inside picture of Chips-5 just before deployment, with a section of the total
instrumentation shown. In total 56 Nikhef and 6 Madison Poms were installed.
Instead of being mounted on the upstream detector walls the Madison Poms
were mounted on the bottom-cap and can be seen in the foreground of the image.
The flexible PVC tube pigtails and manifolds can also be seen connecting each
Pom to the higher level DAQ electronics and power supply.
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Figure 3.23: A cosmic muon event recorded within Chips-5, found by clustering hits in time.
PMT hits from both the top-cap (left) and bottom-cap (right) are shown with
the colour indicating the measured ToT value (described in Section 4.2). Due to
the small attenuation length of unfiltered water, only a single bottom-cap Pom
has significant activity.

3.3.1 Detector simulation

The detector simulation uses the WCSim water Cherenkov simulation package [93] built
on top of the Geant4 simulation framework [94–96]. Developed initially to simulate
possible water Cherenkov detectors in the LBNF beam, WCSim is now used more widely
in the field. The Chips version of WCSim allows for generic water Cherenkov detector
geometries to be easily loaded at runtime via a series of simple XML configuration files.
These changes allow for a broad range of detector geometries to be quickly considered
without recompilation of the code.

The simulation builds an n-sided, regular polygonal prism consisting of two endcaps
and a barrel, filled with water and lined with a low reflectivity blacksheet. The geometry
is separated into regions within both the barrel and endcaps, defined either by a list of
barrel sides or an opening angle, respectively. Each region is filled with a unique base
unit of geometry known as the unit cell, as shown in Figure 3.24.

The unit cell defines a pattern of any number of PMTs, including their relative
positions and in which direction they face. The final geometry is built by tiling the
defined regions with their respective unit cell scaled to match the required regional
photocathode coverage. Note that although exact detector PMT positions are not
explicitly defined using this procedure, a given configuration will always generate the
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Figure 3.24: Illustrative diagram of a WCSim detector geometry. The endcap and barrel
regions, tiled unit cells, and PMTs within a unit cell are all shown. Figure taken
from reference [97].

same geometry (it is deterministic). In this work, the Chips-5 geometry is generated
with 28 sides and regions matching the boundary angles and photocathode coverage
detailed in Section 3.2.3.

The geometry shape, regions, and unit cells are defined in a configuration file. Addi-
tionally, a file for PMT definitions containing their shape, time resolution, and quantum
efficiency is also used. Light-cones are described by a list of radial profile points in a
further file. Although the underlying Geant4 material properties are mostly hardcoded
(taken from the original WCSim implementation using proven Super-Kamiokande values),
another configuration file is used to scale them. This scaling controls the water absorption,
scattering (Rayleigh and Mie) lengths, and both the blacksheet and PMT glass reflectivity.
Throughout this work (including that presented in Chapters 5 and 6) a conservative
photon attenuation length of 50 m at 405 nm is used alongside negligible scattering [79],
with the PMT glass reflectivity set to 24% [98], and the blacksheet reflectivity kept at
the WCSim default of 4%.

A veto volume can also be defined. The veto is built as either a concentric shell
around the whole inner volume with a given thickness or solely above the top-cap with
a given height. Any PMTs defined as facing outwards within a unit cell look into the
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veto volume instead of the inner volume. In this work, the Chips-5 geometry is given a
top-cap veto of height 1.3 m with a photocathode coverage matching that described in
Section 3.2.3.

Once the full generation of the Geant4 geometry is complete, the final state tracks
for each successive event to be simulated are loaded from either the beam or cosmic
event generator files described in Section 3.3.2 and Section 3.3.3. Beam event vertices are
randomly placed within the inner detector volume, while cosmic vertices are set at 1 m
above the detector volume. WCSim then simulates the passage of all particles through
the detector materials, with interactions, decays, and Cherenkov emission all considered.

Whenever a photon is calculated to have hit the photocathode of a PMT, an angular
dependent acceptance efficiency is applied to see if it is recorded [98]. If accepted, all
hits within 200 ns windows are grouped to form a single recorded hit, with a smeared
first hit time used as the recorded time. The standard WCSim methodology is used to
determine the total output charge of the hit, given the number of incident photons. This
procedure involves a single photoelectron charge distribution being repeatedly probed for
each photon, before the combined sum is returned [99].

By sampling this procedure multiple times, the output charge probability distribution
given the number of incident photons can be generated, as shown in Figure 3.25. The
reverse likelihood function of an actual number of incident photons given a measured
digitised charge is also shown (with a lower value being more likely). The reverse likelihood
function is used for the standard reconstruction methods outlined in Section 5.2.1.

The simulated PMT hits for each event are stored in an output file along with truth
information and track descriptions. A full event takes approximately three seconds to
simulate on a standard batch farm computing node.

3.3.2 Beam event generation

The expected flux of beam neutrinos at the Chips-5 detector location, shown in Fig-
ure 3.26, is generated using the existing beam simulation written for the NuMI experi-
ments. Using the generated fluxes as input, the Genie neutrino event generator (version
3.0.6) [32, 33] is used to generate beam neutrino events. Default neutrino cross-sections
on water provided by Genie are used during generation. All initial, intermediate, and
final state particle tracks for each event are stored as output in a NUANCE formatted
file for use in the detector simulation. Note that unoscillated input fluxes are used such
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Figure 3.25: The probability of a digitised output charge given an incident number of photons
used within the detector simulation is shown in (a). The reverse function, showing
the likelihood of a number of incident photons given the digitised charge, is
shown in (b). The digitised charge is given in units of p.e (photoelectrons),
representing the ‘measured’ PMT charge pulse scaled to a corresponding number
of initial electrons given the known parameters of the PMT.
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that analyses samples must be later weighted to match the desired oscillated neutrino
composition.
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3.3.3 Cosmic event generation

The Cosmic-Ray Shower Library (CRY) [100, 101] is used for cosmic ray event generation.
Both the solar cycle and Earth’s geomagnetic field are taken into account, with the
Chips-5 latitude (47.56◦ N) and deployment date (30th October 2019) used as input.
Single muons are generated at sea level by CRY within a 1 km by 1 km area, with
the detector at it’s centre. Note that only single muon events (the dominant cosmic
component) are considered for simplicity.

Assuming a Chips-5 overburden of 50 m and a 2.2 MeV/cm2 muon energy loss in
water as suggested by reference [102], the muon parameters are updated to estimate
their values at 1 m above the detector. All muons whose path do not cross the detector
volume or do not have sufficient energy to reach the detector are discarded [103]. All
accepted muon tracks are stored as output in a NUANCE formatted file for use in the
detector simulation.

To use generated cosmic events in analysis, studies have looked at the likely cosmic
rate for Chips detector modules at different water overburden depths [104]. In this
work, the fits shown in Figure 3.27 for a cylindrical detector of both height and diameter
equal to 24 m are used to estimate a Chips-5 cosmic muon rate of 11.8 KHz at 50 m of
overburden.

Given the 10 µs long NuMI beam spill occurring every 1.33 seconds, an in spill cosmic
rate of 2.1 ± 0.2 million events per year is calculated with an in spill occupancy of 9%.
Considering a typical event takes ∼100 ns to unfold, there is approximately a 0.3% chance
that any beam event overlaps with a cosmic muon. This low coincidence shows just how
powerful a short beam spill can be at reducing the significant cosmic background.
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Figure 3.27: The expected cosmic muon rate as a function of water overburden depth (h0) for
a 24 m in height and 24 m in diameter Chips detector module. Shown are single
(blue) and double (red) exponential function fits to work originally conducted in
reference [105]. Importantly, in the region of interest at h0 ∼ 50 m both models
are consistent. Figure taken from reference [104].



Chapter 4

Data acquisition for CHIPS

The primary task of any data acquisition system is the processing of low-level signals
measuring real-world physics and their transfer to permanent storage for further analysis.
Commonly, this procedure also includes decision making as to whether the signal is
deemed interesting enough to record, known as a trigger. Both of these tasks can make
DAQ systems incredibly complex, especially when they must operate efficiently and
resiliently for vast amounts of data in real-time, whilst also providing detector control
and monitoring.

In the context of the Chips project, the DAQ system records all PMT hits, timestamps
them using a common clock, and transfers them out of the detector for processing. A
trigger is applied to select those hits that fall within the interesting NuMI beam spill
time window before the selected hits are moved to permanent storage for further analysis.
Alongside these processes, the DAQ system also configures the detector and provides
hardware and data quality monitoring.

Although relatively simple when compared to the incredibly complex and time-
pressured DAQ systems of the LHC experiments, the DAQ system developed for the
Chips project contains some unique approaches to solve the goals of the Chips concept.
Namely, deployment within a body of water and a limited resource budget. In this
chapter, the DAQ system for Chips as applied to the Chips-5 prototype detector module
is described. The description is presented in two broad categories, hardware and software,
with a short description of the timing system to begin.

69
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4.1 White Rabbit timing

To ensure PMT hit times are synchronised throughout Chips detectors, a common
clock must be shared across all timestamping electronics. For this purpose, Chips uses
a White Rabbit (WR) network [106]. Initially developed at CERN, the open-source
WR project provides an ethernet-based time distribution network with sub-nanosecond
synchronisation accuracy between nodes. By using two-way exchanges of WR messages,
precise adjustment of individual node clock phases and offsets are possible, across
thousands of devices separated by tens of kilometres. All of this is achieved alongside a
standard data transfer network capable of 1 Gb speeds.

All nodes are synchronised to the clock of a GrandMaster node, typically a WR switch,
the most common WR hardware component. As input, the GrandMaster switch receives
an IRIG-B (Inter-Range Instrumentation Group timecode B) and a 10 MHz signal from
a GPS disciplined oscillator. These inputs allow for synchronisation of the GrandMaster
clock to International Atomic Time. As Chips detector modules require synchronisation
to accelerator clocks many hundreds of kilometres away to determine the arrival time of
beam spills, this GPS disciplined timing is essential.

WR hardware is commercially available from many vendors. Within Chips-5, two
WR devices are used for time synchronisation and data transfer, both shown in Figure 4.1.
Firstly, a compact version of the standard WR switch [107], specially developed for the
Chips project at Nikhef [108]. Secondly, a WR-LEN (Lite Embedded Node) from Seven
Solutions [109].

All WR components within Chips-5 are connected using 1 Gb bi-directional optical
fibre connections, using the 1310 nm and 1550 nm wavelengths via Small Form-Factor
Pluggable Transceivers (SFPs). Figure 4.2 shows the WR synchronised pulse per second
rising edges for two Chips-5 WR switches separated by 500 m of optical fibre. With
the vertical ticks representing single nanoseconds, sub-nanosecond time synchronisation
accuracy between the switches is observed.

4.2 Hardware

The hardware of the Chips-5 DAQ system is split into two distinct implementations at
its lower levels (closest to the PMTs), corresponding to the Nikhef and Madison Pom
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(a) White Rabbit Switch (b) White Rabbit LEN

Figure 4.1: Pictures of the White Rabbit timing hardware used within Chips-5. The compact
WR switch specially designed for Chips is shown in (a), while the White Rabbit
Lite Embedded Node (WR-LEN) from Seven Solutions is shown in (b).

Figure 4.2: Oscilloscope display measuring the pulse per second output signal from two WR
switches shown in pink and yellow at either end of a 500 m long optical fibre. The
vertical ticks are in nanoseconds showing the sub-nanosecond synchronisation
possible with the WR timing network.
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types. Chips R&D efforts have principally developed the novel Madison implementation
with the view of using this hardware exclusively. However, as a safe stepping stone,
while development and testing are still ongoing, Chips-5 mainly contains proven Nikhef
hardware developed for the KM3NeT experiment [90].

The complete DAQ and power distribution system for Chips-5 is diagrammatically
shown in Figure 4.3. The following subsections describe each component, starting from
the lowest level and working upwards. The Nikhef and Madison descriptions are separated
for clarity in addition to the high-level combined hardware systems, part of which is not
physically located within the detector but in an electronics hut onshore.

As a general overview, the DAQ system within the detector follows a tree-like structure.
Starting from the lowest level (the leaves), individual PMTs are arranged into Poms.
Groups of Poms, spatially close within the detector, are then connected to a small number
of group-specific interface containers (either a Nikhef-container or Madison-container),
holding networking and power supply devices for each group. All interface containers
are attached to a central aggregation box (junction-box) which feeds connections into a
single umbilical (the tree trunk) to shore.

Common to both low-level hardware implementations is the Time over Threshold
(ToT) method for PMT signal digitisation. Each analogue PMT pulse is fed to a ToT
discriminator coupled with a Time to Digital Converter (TDC) to generate each digitised
recorded hit, as shown in Figure 4.4. Compared to the more common Analogue to Digital
Converter (ADC) readout, ToT values do not scale linearly with charge. Instead, they
follow a logarithmic-like function. Due to measurement uncertainties, this prevents the
ToT method from distinguishing between high values of deposited charge, corresponding
to approximately ten incident photons or greater per PMT per event for the PMTs used
by Chips-5.

However, as the maximum expected incident photons within Chips-5 are relatively
low (only a few), the impact of the ToT non-linearity is small, and the values are very
consistent with those recorded using an ADC readout. Consequently, the use of ToT
electronics is expected to have only a limited impact on the detector’s performance whilst
being much simpler to implement and notably cheaper.
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Figure 4.4: Illustrative diagram showing how a ToT value is measured. As soon as the rising
edge of a PMT charge pulse rises above a given threshold (goes below in the
negative charge case) a time is recorded t1, when the falling edge later falls below
the threshold a second time t2 is recorded. The difference in time between t1 and
t2 is output by the electronics as a digitised ToT value.

4.2.1 Nikhef hardware

All Nikhef HZC PMTs are attached directly to a simple readout board containing a high-
voltage generating Cockcroft-Walton circuit [110]. Up to 30 such PMTs are connected
to two fanout Calamares boards within the electronics box of each Nikhef Pom via
standard cables with RJ45 connectors, as shown in Figure 4.5. Both Calamares boards
are directly attached to a Central Logic Board (CLB) [87, 111]. The CLB contains the
ToT discriminators and TDCs used to digitise the recorded signals, as well as an FPGA
(Field-Programmable Gate Array) programmed to provide additional logic and WR clock
synchronisation for timestamping. Each Nikhef Pom electronics box also contains an
AC to DC power converter (AC/DC) whose output is fed into the CLB for distribution.

Every Nikhef Pom is connected via a single optical fibre and a single power connection
to an interface Nikhef-container, the contents of which are labelled in the bottom half
of Figure 4.6. An aluminium structure holds two WR switches within each container
specially designed to remove heat from the switch components and transfer it to the
colder outer shell. Both switches are powered by independent AC to DC converters and
connected via a single optical fibre each to the higher level DAQ systems. An additional
connection is made between each switch to ensure that if one higher-level connection
fails, the other can still be used for networking.

Each Nikhef-container also holds a relay board to control the power supply to
individual Poms. The relay board control electronics are powered via an AC to DC
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Central	Logic	Board

Calamares	Boards

Pigtail	Attachment

PMT	Cables

Figure 4.5: Labelled picture of the Nikhef Pom electronics box without its aluminium casing.
Both ends of the PMT cables can be seen, either at the PMT mounting points or
entering the electronics box and not yet plugged into Calamares boards.
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Figure 4.6: Labelled picture of the high-level non Pom components of the Chips-5 DAQ
system arranged on a table at the PolyMet mining administration building.

converter and connected to one of the switches via a media converter for networking.
The media converter is required to convert the optical fibre WR switch connection to a
standard RJ45 copper cable connection. A total of five Nikhef-containers are present
within Chips-5.

4.2.2 Madison hardware

Every Madison Hamamatsu PMT is directly attached to a high-voltage generating
Cockcroft-Walton board followed by a signal processing µDAQ, as shown in Figure 3.14.
The µDAQ is a small microcontroller developed for both IceCube and Chips at WIPAC
in Madison. Capable of timestamping and digitising signals directly at the PMT level,
the µDAQ also sets the PMT operating voltage by controlling the driving frequency of
the Cockcroft-Walton board [82].

Up to 16 µDAQs receive power, networking, and WR synchronised IRIG-B and
10 MHz timing signals from a badger-board, as shown in Figure 4.7. Standard cables with
RJ45 connectors are used for these connections. The badger-board is located within the
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µDAQI/O

Badger-board

Figure 4.7: Labelled picture of the components of the Madison Pom electronics box.

electronics box of each Madison Pom and acts as a simple fanout and power control
board. For logic, each badger-board has an attached mezzanine Beaglebone [112]. This
single-board Linux machine (very similar to a Raspberry Pi) controls the power supply
to, and receives hits from, the attached µDAQs.

Similarly, up to 16 Madison Pom badger-boards receive power, networking, and WR
synchronised IRIG-B and 10 MHz timing signals from a danout-board located within a
single interface Madison-container. Again, standard cables with RJ45 connectors are
used for these connections. The full contents of the Madison-container are shown in
Figure 4.8. Similar to the badger-board, the danout-board acts as a simple fanout and
power control board with an attached mezzanine Beaglebone. However, in this case, the
attached Beaglebone acts only to control the power provided by the danout-board.

PMT hits and other data are instead routed through the danout-board into a net-
working stack. Consisting of a WR-LEN, a router (required due to the limited WR-LEN
routing table size), and a switch (non-WR), the stack provides networking to the higher-
level DAQ via a single optical fibre. The WR clock synchronised IRIG-B and 10 MHz
timing signals are output by the WR-LEN to the danout-board for forwarding to the
lower-level components. Additionally, two AC to DC converters provide power for both
the devices within the container and all lower-level components via the danout-board.

Compared to the Nikhef hardware the Chips developed Madison implementation has
a few key advantages, primarily driven by the core Chips concept of reducing cost:
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Figure 4.8: Labelled picture of the Madison-container components. The blue and grey cables
exiting the left hand side of the image go to individual Madison Poms connecting
to the I/O port shown in Figure 4.7. An optical fibre connection into the left
SFP port of the WR-LEN is used in reality rather than the copper connection
shown here.

• Commercially available and cheap (∼ £50 each) Beaglebones are leveraged for Pom
level processing and logic instead of expensive, FPGA based CLBs. Not only are
they cheap but Beaglebones provide a fully configurable general-purpose Linux
machine that can easily be enhanced with new features once deployed. This is in
comparison to CLBs which can be only be reconfigured via remote reprogramming
of the FPGA.

• PMT hit processing and logic is pushed right to the lowest-level PMTs themselves
via the use of µDAQs. Although not currently fully realised this can have significant
implications for the DAQ system as a whole. For example, future updates will allow
for beam spill hit triggering to be performed on the µDAQ, drastically reducing the
capacity requirements of the rest of the DAQ system, further reducing costs.

• The number of expensive WR switches is reduced, with much cheaper WR-LENs
taking their place. Although this change removes WR clock time synchronisation
from the Pom level, tests have shown that achievable cable length time corrections
still allow for sub-nanosecond synchronisation accuracy to be reached.
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Figure 4.9: Picture of a Nikhef Pom to Nikhef-container manifold (in white) attached to the
top-cap of the Chips-5 detector. In the left of the image, two unattached Nikhef
Pom pigtail connections are seen, both covered in green tape and a plastic bag.
The manifolds can also be seen in the graphical rendering of the top-cap shown
in Figure 3.17.

4.2.3 Combined systems

Each interface container is connected to a single junction-box, labelled in Figure 4.6.
This central container acts as the interface between the detector electronics and the
umbilical, carrying data and power between the shore and the detector.

Due to the unique Chips constraint of complete submersion within water, all connec-
tions to the junction-box (as well as those between Poms and the interface containers)
are made within watertight, flexible PVC tubing called manifolds. These tubes span all
corners of the Chips-5 detector, as shown in Figure 4.9, usually attached to the endcap
frames. Additionally, as is done for the individual Poms, water-blocks are placed between
all interface containers and the junction-box to compartmentalise the higher-level DAQ
components and prevent a single leak from taking down the whole system.

For networking the junction-box contains a Coarse Wavelength Division Multiplexing
(CWDM) multiplexer/demultiplexer (MUX/DEMUX). This device supports 32 wave-
lengths for a total of 16 bi-directional 1 Gb connections over the single 500 m long
umbilical optical fibre. Each WR-LEN or WR switch within the detector uses one of
these channels exclusively with the corresponding wavelength SFP.

The two umbilical power connections are distributed via two thick copper plates to
all the relay channels within the junction-box. Two relay boards are used to provide a
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Figure 4.10: Labelled picture of the high-level onshore components of the Chips-5 DAQ
system arranged on a table at the PolyMet mining administration building.

sufficient number of output channels, with their control electronics powered by separate
AC to DC converters and each connected to one of the MUX/DEMUX networking
channels via a media converter (optical fibre to RJ45). Each relay channel also has a
built-in trip gate to immediately power-off the channel if a current surge is detected.
This protection is particularly crucial for Chips-5 as water leaks are possible.

The contents of the DAQ electronics Shore Hut are shown in Figure 4.10. The
single umbilical optical fibre connection passes through a MUX/DEMUX before each
of the wavelength-specific channels are passed into one of two WR switches. Multiple
Virtual Local Area Networks (VLANs) are configured on each switch such that for each
wavelength channel only a single paired port on the other physical side of the switch
carries that channels data to and from the standard networking switch (these connections
are not present within Figure 4.10). Of the two WR switches, one is configured to be the
GrandMaster with connections to a GPS disciplined oscillator. A single connection is
also made between the WR switches for clock synchronisation.

The standard network switch provides 10 Gb connections to each of the Shore DAQ
computing machines whose specific roles are detailed in Section 4.3. Each machine is
also connected to a second switch providing connections to the external internet and
DAQ components located at Fermilab. At Fermilab, a DAQ machine (Fermi DAQ-1)
performs two main roles. Firstly, it forwards NuMI beam spill timing information from a
Time Distribution Unit attached to the Main Injector clock to Chips-5. Secondly, it
receives recorded detector data and places it into long-term storage.
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An uninterruptible power supply provides power to all devices within the Shore Hut,
supplying power for up to 15 minutes after a power cut, sadly quite a common occurrence.
This protection gives all Shore Hut devices plenty of time to appropriately close any open
data files and power down safely. The two detector umbilical power connections do not
use the uninterruptible supply and instead draw power directly from the master supply.

4.3 Software and the flow of data

The software of the Chips-5 DAQ system provides three main functionalities: control of
the detector instrumentation, the handling of recorded PMT hits, and the monitoring
of hardware and data quality. Each of these functions are discussed within a specific
subsection below alongside the corresponding software processes (applications) that
perform them. Only the high-level software components (physically processed onshore)
are detailed, with the low-level CLB, Beaglebone, and µDAQ software implementations
omitted for brevity. An in-depth discussion of the CLB software can be found in
reference [113], while the Beaglebone and µDAQ software implementation can be found
at reference [114].

The DAQ software itself is mainly written in C++ and can be found at reference [115].
The system is comprised of multiple processes containing multiple components each
(usually processed on separate threads), as is shown within Figure 4.11, expressed in
terms of the flow of data between components. All DAQ processes make extensive use
of multithreading and asynchronous communication, principally implemented using the
low-level Boost Asio (asynchronous input/output) library [116].

All high-level processing takes place on one of three machines: Shore DAQ-1 for hit
handling, Shore DAQ-2 for control and monitoring, and Fermi DAQ-1 for NuMI spill
forwarding and storage. As the processing of PMT hits is the principal software task, hit
handling takes place exclusively on Shore DAQ-1 to ensure maximum available processing
power. Both Shore DAQ machines have a corresponding backup machine (Shore DAQ-3
and Shore DAQ-4) to take over their functions immediately in case of a fault.
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Figure 4.11: Diagram of the Chips-5 software system in terms of the flow of data between
components. Beaglebone is abbreviated to BB.
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Figure 4.12: Diagram of the allowed states and transitions of the Chips-5 FSM. The command
signal names for each transition are shown in brackets.

4.3.1 Control

All DAQ processes and low-level DAQ devices (CLBs and Beaglebones) conform to a
global Finite State Machine (FSM) schema. The schema defines a finite set of states,
shown in Figure 4.12, for which a DAQ process can only be in one at any given time.
Specifically allowed transitions, triggered by a command signal, allow each process to
move between states. During transition, the process performs the specific actions required
to achieve the desired state. Every DAQ process makes its current internal state publicly
known via constant publishing over a standard inter-process communication socket (Unix
domain socket).

A singleton FSM process both issues the transition signals to and monitors the state
of all DAQ processes. The FSM process defines the global state of the DAQ system, only
transitioning to a new state once all children DAQ processes have reached the desired
state. Currently, no control scheduling system is implemented to automatically configure
the detector and conduct a given set of runs. Therefore, a simple command-line interface
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is used to issue state transition commands to the FSM process manually. Viewing the
DAQ system as a whole, the actions performed at each state transition are as follows:

• Initialising occurs automatically when the DAQ system is started. During this
transition all processes conduct the basic actions required for them to be able to
function, such as opening inter-process communication channels, validating CLB
and Beaglebone connections, and starting worker threads.

• Configuring occurs when the configure command is issued. During this transition
the desired detector configuration is read from a human-readable file and all DAQ
devices configured accordingly. This procedure primarily consists of setting the
desired high-voltage level and ToT thresholds for each PMT via communication
with all CLBs and Beaglebones.

• Starting Data occurs when the start_data command is issued. During this
transition commands are sent to all CLBs and Beaglebones to start the flow of
PMT hit and monitoring data.

• Stopping Data occurs when the stop_data command is issued. During this
transition commands are sent to all CLBs and Beaglebones to stop the flow of PMT
hit and monitoring data.

• Starting Run occurs when the start_run command is issued. During this transition
the handling of PMT hit data is started, with the resulting data saved to file. This
procedure includes the selection of hits according to the NuMI beam spill trigger,
as detailed in Section 4.3.2.

• Stopping Run occurs when the stop_run command is issued. During this transition
the handling of PMT hit data is stopped, and the run data file closed.

For control of the detector devices, a DAQ-control process issues commands to and
monitors the state of all CLBs and Beaglebones. For communication, all messages are
exchanged using standard TCP (Transmission Control Protocol) packets over ethernet.
A DHCP server on Shore DAQ-2 assigns predefined static IP addresses to all devices to
allow this to happen easily.

A single DAQ-control controller thread receives commands from the FSM process
and instructs separate CLB and Beaglebone controller threads to issue the appropriate
implementation-specific ‘slow-control’ commands for the given transition. A simple retry
mechanism ensures that multiple attempts are made to achieve the desired state on each
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device. However, a CLB or Beaglebone is dropped after a maximum number of attempts
have been made in order not to block the global DAQ transition due to a single faulty
device.

4.3.2 Hit handling

As is done within the KM3NeT experiment, an ‘all-data-to-shore’ approach to PMT
hit acquisition is taken, where all recorded hit data is sent via the WR network to the
machines onshore. No triggering takes place within the detector. This is conducted by
collecting all PMT hits within 10 ms long time windows. At the end of each window,
collected hits are packaged along with a header into UDP (User Datagram Protocol)
packets and sent to shore. This process occurs on both the CLBs and Beaglebones when
in either the Started or Running FSM state.

Jumbo UDP packets of maximum size 9000 bytes are used instead of typical 1500 byte
packets. This is done to both reduce the proportion of bandwidth taken up by headers,
and reduce the total network traffic (number of packets), leading to a decrease in the
overall proportion of dropped packets. Although UDP does not contain the error-checking
and correction features built into TCP, the proportion of lost packets is negligible and
the increased bandwidth desirable.

PMT hit packets are handled by the DAQ-onite process, named after the Taconite
ore that used to be extracted from the Wentworth 2W pit. The primary function of
DAQ-onite is to store incoming PMT hits whose timestamp matches a NuMI beam spill
trigger window and discard those that do not. This is complicated by the fact that the
exact NuMI spill time is not known in advance.

Whenever the Main Injector at Fermilab releases a spill of protons for the NuMI beam,
the accurate timestamp of this event is only published as it happens. Therefore, by the
time the Fermilab based Spill Server and Spill Forwarder processes have received and
forwarded the signal to the Shore DAQ-1 machine running DAQ-onite, approximately
0.5 seconds have passed since the neutrino spill passed Chips-5.

To counter this problem DAQ-onite implements a Spill Scheduler prediction mecha-
nism which uses the periodicity of the spill trigger signal to continually predict the time
of multiple spill windows (each 100 ms long) in advance. As PMT hits are processed,
they are either attached to a matching predicted Spill or immediately discarded. This
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process is conducted by a series of CLB and Beaglebone specific handling threads which
decode the raw PMT hit packets across a range of input ports to increase throughput.

Once the accurate timestamp for a beam spill has been received and a configurable
period has passed to catch any late-arriving hits, the spill window is closed. Once closed,
the attached PMT hits are combined and sorted using a Merge-sorter algorithm before
being saved to file. In addition to the PMT hit data, each data file includes context
metadata and flags indicating data faults. All new data files are periodically forwarded
to long-term storage at Fermilab for further analysis.

During the initial Chips-5 DAQ commissioning in late 2019, a very high average PMT
hit rate of 100 KHz was observed across all PMTs. This was expected due to both the
extended period the PMTs had been exposed to direct sunlight during construction, and
the presence of a light leak through a tear in the detector liner. Somewhat beneficially,
this allowed for load testing of the DAQ hit handling system with to a peak WR
network throughput of 5.66 Gb per second of hit data. DAQ-onite was found to behave
as expected, with only negligible data loss.

4.3.3 Monitoring

Chips-5 DAQ monitoring is comprised of two principal functions: the monitoring of
hardware components and the monitoring of PMT hit data quality. The first of these
aims to check that all hardware is alive and performing efficiently without error, whilst
the second ensures that the recorded hit data is consistent with what is expected. Both
of these functions are conducted within Chips-5 using an implementation built around a
central Elasticsearch database [117].

Elasticsearch is an open-source JSON (JavaScript Object Notation) document based
search engine and database. One of its primary applications is for logging, infrastructure
observation, and application performance monitoring, making it a perfect fit for use
here. Elasticsearch sits within the broader range of open source tools called the Elastic
Stack [118], including those to both ingest data and produce visualisations. All Elastic-
search data is stored within collections of related JSON documents known as indices,
which share a common set of key to value pairs.

Monitoring data is continually ingested into Elasticsearch from a wide range of sources
across the Chips-5 DAQ system:
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• DAQ-monitor receives and handles the monitoring data produced by the CLBs
and Beaglebones. At the end of every 10 ms long PMT hit data taking window
both CLBs and Beaglebones produce UDP monitoring data packets. Included
within the packets are general Pom wide status indicators such as temperate and
humidity, as well as PMT specific hit rate values. DAQ-monitor decodes this data
and continuously pushes it to Elasticsearch using a set of asynchronous indexing
threads.

• The current FSM state of all the DAQ software processes in addition to the global
state is frequently pushed to Elasticsearch by the FSM process.

• The status of the Fermilab based Spill Server and Spill Forwarder alongside general
NuMI beam metrics are forwarded to Elasticsearch using the Spill Watchdog process
operating on the Fermi DAQ-1 machine.

• All DAQ network devices are constantly ‘pinged’ to check they are alive by the
Heartbeat process which forwards this data to Elasticsearch.

• Shore DAQ machine system metrics (CPU usage for example) as well as system
logs and data input and output rates are frequently forwarded to Elasticsearch from
instances of the Metricbeat process running on each DAQ machine.

• Any logs produced by the DAQ software are asynchronously logged to Elasticsearch.

The Kibana browser-based user interface application is used to visualise the monitoring
data stored within Elasticsearch [119]. A series of preconfigured dashboards, one of which
is shown in Figure 4.13, summarise the current and historical monitoring data in an
easy to digest fashion. The primary advantage of using Kibana over the more typical
bespoke implementations used by HEP experiments is that it is both easily configurable
by non-experts and only requires a browser and an internet connection to use from
anywhere (in addition to authentication).

Furthermore, an alerting system using the ElastAlert framework [120] provides
automatic notification of events for human attention. The ElastAlert process continuously
checks the Elasticsearch monitoring data for any breaches of predefined rules (x events in
y time, for example). Upon the occurrence of a rule trigger, multiple forms of notification
(email and Slack messages) are sent to appropriate recipients for further analysis.

Not only is the Chips-5 monitoring system extensible and easy to use it also has the
advantage of leveraging the efforts of an active open source community. With no additional
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Figure 4.13: Screenshot of a Kibana monitoring dashboard for Chips-5. The dashboard
pulls live monitoring data from the Elasticsearch database for its visualisations.
The status of the various DAQ software components are shown in the top
left above an average hit rate plot for each Pom and the colour coded status
indicators for various DAQ devices. A plot of the network data rates is also
shown alongside global average indicators. The right hand side of the dashboard
contains visualisations to monitor the overall status and specific hit rates of
PMTs.

effort by the members of the Chips collaboration, the monitoring implementation will
continue to improve with time as updates are made to the underlying Elastic Stack
software. This is likely to include both performance improvements alongside new ways
of quickly ingesting data and creating visualisations. The monitoring approach firmly
achieves one of the driving principles of the Chips project, using commercially available,
cheap (free in this case) components, wherever possible.



Chapter 5

Convolutional neural networks for
CHIPS

For the majority of HEP experiments, event analysis entails the separation of signal from
background, the identification of particle types, the discovery of spatial properties, and
the estimation of energies. The same is true for Chips detectors, with the primary aims
being the selection of appeared CC νe signal events from a sizeable background, and the
estimation of associated neutrino energies.

For this purpose, the Chips project has so far relied on a likelihood-based recon-
struction algorithm and a simple classification neural network driven by hand-engineered
features. Both suffer from only considering what has been implemented in software and
consequently what features are explicitly extracted from the data. This restriction makes
them prone to ignoring the wide range of edge cases not contained within the bulk of
neutrino events and unable to use all the underlying informative features of the data.

The work outlined in this chapter presents a replacement event analysis methodology
for Chips. As with any implementation, this new methodology comes with its own
limitations and difficulties; however, it is found to provide a significant performance
improvement. Three Convolutional Neural Networks (CNNs) [121], a type of deep
learning [122] neural network have been developed to achieve the primary aims outlined
above, amongst others. One for cosmic muon rejection, one for beam event classification,
and one for neutrino energy estimation. For evaluation purposes, only the implementation
as applied to the Chips-5 detector module is considered in this work.

After mentioning previous implementations of deep learning for neutrino experiments,
a description of the current (standard) techniques are given, before the theoretical

89



90 Convolutional neural networks for CHIPS

Figure 5.1: The number of artificial intelligence papers submitted to arXiv, broken down by
sub-category. Note the particularly large increase in Computer Vision (CV) and
pattern recognition papers. Figure taken from reference [124].

background of CNNs is outlined. The baseline implementation for Chips is then described,
followed by the specific implementations for each of the three networks. A comprehensive
evaluation of the trained networks is presented separately in the following chapter
(Chapter 6).

5.1 Previous applications of deep learning for
neutrino experiments

Over the last few years, neutrino experiments have started to adopt deep learning
techniques for a range of event analysis tasks [123]. This trend has closely followed
the general explosion of interest in the field amongst the global research community,
especially within the sub-field of computer vision, as can be seen in Figure 5.1.

In 2016 the NOvA experiment applied a CNN to the task of classifying the interaction
type of events within their sampling calorimeter detector [125]. Two views of raw
detector data were used as input to train a network based on the popular GoogLeNet
architecture [126] (discussed in Section 5.3.3). Further NOvA iterations have since been
applied to both the classification of individual energy deposit clusters [127] and νe and
e− energy reconstruction [128].

CNNs have also been applied to liquid argon time-projection chambers. The Micro-
BooNE experiment [129] has shown that in addition to classification tasks, the spatial
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localisation of single particles within events is possible [130]. Furthermore, the DUNE
collaboration has designed a network to output both the interaction class and counts
of different particle types within an event [68, 131]. This approach is called multi-task
learning and is discussed in detail within Section 5.4.3.

Applications to water Cherenkov detectors have also been made by both the Daya Bay
experiment [132] and the KM3NeT/ORCA collaboration [133]. Furthermore, a type of
CNN known as a variational autoencoder has been shown to approximate the distribution
of simulated water Cherenkov data well [134]. If further such studies prove successful,
this could allow for training on ‘real’ data to mitigate experimental uncertainties and
vastly increase the speed of simulated data generation.

5.2 Standard event reconstruction and classification

It is essential to outline the standard event reconstruction and classification methods
used by the Chips project until now. This is for two reasons. Firstly, to highlight their
main weaknesses as motivation for the new CNN approach. Secondly, to provide context
for the performance comparisons made in Chapter 6.

A likelihood method based on that implemented by MiniBooNE [135] is used for event
reconstruction, while a simple neural network built using the TMVA package [136] is used
for event classification. Both methods are representative of the mainstream approach
used by the majority of water Cherenkov neutrino experiments for event analysis. A
prime example is the fiTQun algorithm developed for the Super-Kamiokande detector,
used for both atmospheric [137] and T2K [138] analyses.

5.2.1 Likelihood-based reconstruction

The event reconstruction methodology is simple in theory: for a given set of hypothesised
charged particle tracks, the number of Cherenkov photoelectrons and the time at which
the first of these is recorded for each PMT in the detector is predicted. By comparing
this prediction with the measured hit charges and times the likelihood that the given
track hypothesis produced the measured signals can be calculated. The parameters that
describe the hypothesised tracks are then varied until the negative logarithm of the
likelihood is minimised, identifying the best-fit parameters. A brief description of the
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full procedure is given below, however, for a detailed description see reference [97] and
reference [85]. The full C++ software implementation can also be found in the repository
at reference [139].

Seeding

The first stage of event reconstruction is the effective seeding of tracks that are then used
in the full likelihood fit. The seeding methods aim to provide a good starting point for
the minimisation, both to increase the efficiency of finding the optimal track parameters
and also to avoid a false local minimum from being returned.

Firstly, the PMT hits are sliced in both space and time. Gaps in the time ordering of
hits are used to separate the event into time slices. Each of these slices then undergoes
basic clustering to remove outlying hits and ensure only the dominant collections of hits
are considered. This procedure involves removing all hits that fall outside of clusters
containing at least 50 hits. Clusters are generated by finding all hits that fall within
2 m of each other. Each cleaned slice is then run through simple geometric vertex
finding algorithms to estimate the interaction position and time, in addition to the initial
direction of the track.

A circular Hough transform algorithm, traditionally used for water Cherenkov ring
finding is then applied [140]. As output, the voting-based transformation produces a
space within which rings of PMT hits exist as peaks. The track direction values are
further refined using this space before a search for secondary peaks is carried out to
indicate if multiple particles are likely to be involved. This process results in a list of
seeds, each with a score related directly to the height of the associated peak in Hough
transform space.

Likelihood fit

Each particle track in a fit hypothesis comprises a vector of parameters ~x, containing the
following:

• the track interaction vertex position (x0, y0, z0) and time (t0);

• the initial track direction (dθ, dφ);

• the initial kinetic energy of the particle (E); and
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• the particle type (muon, electron or photon).

For a photon hypothesis the distance between the interaction vertex and the beginning
of the electromagnetic shower is also included as a parameter.

The hypothesised tracks are then initialised using the list of seeds found in the seeding
procedure in descending order of Hough peak height score. As the seeding algorithms
do not estimate the particle energy, a default value equal to the average particle energy
observed within a sample run of the simulation is assigned. Additionally, constraints can
be placed on a multi-track hypothesis to reduce the number of free parameters.

As an example, consider the NC π0 case, where a multi-track two-photon hypothesis
is used. Firstly, the initial parameters for the two photons are assigned from the two
highest-scoring seeds from the seeding procedure. Secondly, the vertex position for both
tracks is constrained to remain the same, and the directions and energies are set to be
constrained by the invariant mass of the π0.

In its simplest form the likelihood L(~x), is a simple product of two terms:

L(~x) = Lunhit(~x)Lhit(~x) =
∏

unhit

Punhit(~x)
∏
hit

Pcharge(~x)Ptime(~x), (5.1)

where the first (unhit) term gives the likelihood that the hypothesis ~x will not predict a
hit on the PMTs that do not have a measured hit, and the second (hit) term gives the
likelihood that ~x produces the observed photoelectrons and hit times on the measured
hit PMTs.

By considering the negative logarithm of the likelihood the computation can be
simplified into a sum of logarithms over the PMTs, such that

− log L(~x) = −
∑

unhit

log(Punhit(~x)) −
∑
hit

log(Pcharge(~x)) −
∑
hit

log(Ptime(~x)). (5.2)

This form has the effect of separating the charge (number of photoelectrons) and time
prediction components, which can then be dealt with separately computationally. In
the actual likelihood calculation the Punhit(~x) and Pcharge(~x) components are combined,
where the probability of an unhit PMT is treated as a PMT with an observed charge
equal to zero.

The Minuit2 algorithm contained within the ROOT software package [141] is used
for the minimisation process. At each iteration, the charge and hit time predictions are
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made, and the negative logarithm of the likelihood is calculated. The track parameters
are then varied to minimise the likelihood before the next iteration begins. Through a
series of stages, each fixing and freeing specific parameters, the minimisation process
converges to the best-fit parameters for the given hypothesis. This procedure typically
takes two minutes on a standard batch farm computing node.

Downsides

The charge and hit time predictions and their associated likelihood contributions depend
on a series of low-level inputs. Generally, these inputs describe how Cherenkov light is
emitted from specific particles and how it propagates through the detector to be detected
by the PMTs. Examples of these inputs include:

• the number of Cherenkov photons emitted by a particle of a specific type and
energy;

• the fraction of Cherenkov light emitted at each step along a specific particle’s track
length;

• the angular distribution of Cherenkov photon emission for each type of particle;

• the survival probability of photons within the detector medium as a function of
distance and energy;

• a detailed description of the PMT positions and directions;

• the angular efficiency of each PMT relative to the incident photon angle; and

• the probability of a measured charge given the predicted number of photoelectrons
(see Figure 3.25b).

The above list demonstrates a fundamental problem with the likelihood-based ap-
proach. Namely, it is dependent on a finite list of inputs that must be implemented in
software. If a physical process is overlooked, then the algorithm has access to a reduced
amount of information with which to predict the PMT hit charges and times, impacting
the performance of the best-fit track parameters. Additionally, the large amount of
effort required to implement an input correctly and determine how it is used can make a
likelihood-based approach time-consuming.
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Moreover, the likelihood-based approach requires a predefined track hypothesis per
fit. This restriction is at odds with the broad array of neutrino events expected within
Chips detector modules. Many possible combinations of final state particles are possible,
making the implementation of an approach where all possible events are considered,
challenging. For example, the very similar Super-Kamiokande fiTQun algorithm attempts
multiple fits for each event, sequentially adding charged particles to the hypothesis until
the best-fit is found. This technique not only vastly increases the time required to analyse
a single event, but can never be fully rigorous as it still ignores some scenarios.

5.2.2 Event classification

As the standard event reconstruction is based on the calculation of a likelihood (analogous
to a goodness-of-fit), the likelihood ratio between different hypotheses can be used for event
classification tasks. Additional hand-engineered features derived from the reconstruction
outputs are also found to have power in classifying the event type.

Two simple neural networks are used, the first for CC νe - CC νµ separation and
the second for CC νe - NC separation. Both contain a single hidden layer (as described
in the following Section 5.3) with the number of neurons equal to the number of input
parameters plus five. Output variables from both a single electron track and single muon
track hypothesis fit are used for both networks, including:

• the ∆ log L between e and µ hypothesis for both time and charge components;

• the total number of hit PMTs (Nhits) and total collected charge;

• ∆ log Lcharge

Nhits
;

• the fraction of hits inside, within, and outside the ring for both the e and µ

hypotheses;

• the fraction of predicted charge outside the ring for both the e and µ hypotheses;

• the ratio of the total predicted charged to the total measured charge for both the e

and µ hypothesis;

• the ratio of the reconstructed energy to the total measured charge for both the e

and µ hypotheses;

• the reconstructed track direction under the e hypothesis;
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• the fraction of hits in the downstream half of the detector;

• the number of seeds generated by the Hough transform seeding algorithm; and

• the peak height score of the first and last seeds found by the Hough transform
seeding algorithm.

A sample of CC νe and CC νµ beam events characteristic of those expected to be
seen within Chips-5 are used to train the first classifier, and a corresponding sample of
CC νe and NC events for the second. The output values from both networks can then be
used to select CC νe events from the background. Note that only the selection of CC νe

events has been implemented, no CC νµ selection has been developed.

The principal limitation of this approach is that the input features are restricted
to those that have been imagined (requiring extensive domain knowledge) and then
implemented in software. The current list is undoubtedly non-exhaustive of all the possible
variables and combinations of variables that can, in theory, be used for discrimination
between events. Additionally, any systematic uncertainties in the likelihood-based
reconstruction and, therefore, input variables to the neural networks, can lead to incorrect
classification of events.

5.3 The theory of neural networks

There are many machine learning techniques: linear regression, logistic regression, k-
nearest neighbours, decision trees, random forests, support vector machines, amongst
others, all of which learn to make predictions about data. However, none has been
as successful, especially in recent years, as the deep neural network. As both the size
of datasets and the amount of available computing power has increased, deep neural
networks have proved incredibly powerful for many tasks, as they are well suited to this
paradigm.

Here we discuss the application of neural networks for supervised learning, one of two
broad machine learning categories concerned with using labelled example data to train
algorithms. The other broad category of unsupervised learning, where the properties of
the dataset are inferred without labelled data is not discussed, however, will be used for
network explainability in Section 6.2.
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Figure 5.2: Illustration of a simple neural network. There is a single input layer (yellow), two
hidden layers (blue), and an output layer (green). Each node corresponds to a
neuron except for the input layer.

5.3.1 Neural network basics

A neural network is a type of algorithm inspired by the repeating cell structure of neurons
within our brains. The basic building block of a neural network is a neuron, which takes
a vector of k inputs ~x = (x1, x2, . . . , xk) and outputs a scalar a(~x). Individual neurons
are arranged into layers, with the input of one layer being the output from the previous
layer. The first layer is commonly referred to as the input layer, the middle layers as
hidden layers, and the final layer as the output layer, as illustrated in Figure 5.2. In
general, this simple neural network structure is referred to as fully-connected, as all the
neurons in each layer have connections to all the neurons in the previous and following
layers.

Input variables (traditionally hand-engineered features extracted from the raw data)
are passed into the network via the input layer. Any number of hidden layers containing
any number of neurons can then follow. The neurons contained within these layers are
trained so that collectively their a(~x) functions solve the task at hand. For a regression
task, the output layer returns a continuous decimal value. Conversely, for a classification
task, a probability value between zero and one is output for each class. The forward
passing of information from one layer to the next is why neural networks can also be
referred to as feed-forward graphs.
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Figure 5.3: Common non-linear activation functions used for the neurons within neural
networks.

For a neuron i, ai(~x) can be decomposed into a neuron specific linear operation,
followed by a non-linear operation which is the same across all neurons. The linear
operation consists of the dot product of the input vector ~x with a vector of weights
~w(i) = (w(i)

1 , w
(i)
2 , . . . , w

(i)
k ), plus a bias term b(i):

z(i) = ~w(i) · ~x + b(i). (5.3)

After applying the non-linear operation σi, commonly referred to as the activation
function, the final neuron output can be written as

ai(~x) = σi(z(i)). (5.4)

Traditionally, a step-function (for networks called perceptrons) was used for the
activation function. However, as is shown in Section 5.3.2, a non-zero gradient (only
valid at x = 0 for a step-function) is required for the practical training of neural networks.
In fact, the choice of activation function can greatly affect how the network trains and
performs.

Therefore, common activation function choices have been the hyperbolic tangent and
the sigmoid functions, primarily because they are bounded and differentiable at all points.
Recently, the ReLU and other similar functions have become popular, mainly due to
their avoidance of vanishing gradients which occur when the tanh and sigmoid functions
become saturated at large values of x. All of these functions are shown in Figure 5.3 for
reference.
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5.3.2 Training neural networks

Supervised neural network training uses labelled example data to iteratively find the
optimal weights and biases (the network parameters) to maximise output performance.
A loss function E(~w), is defined to quantify the difference between the network output
and truth label for each example, where ~w is the vector of network parameters. For a
given input example (~xi, yi), with ~xi being the input parameters and yi the known truth
label, the network generates an output ŷi(~w). Using this notation, we can construct loss
functions suitable for different tasks.

In the case of simple binary classification the most commonly used function is the
binary cross-entropy, where

E(~w) = −
n∑

i=1
yi log ŷi(~w) + (1 − yi) log[1 − ŷi(~w)], (5.5)

with the number of examples given by n. For a classification task where the number of
classes is greater than two y can instead take on M values. In this case we redefine each
example so that y is instead a vector yim, such that

yim =

1 if yi = m,

0 otherwise.
(5.6)

This is commonly named a one-hot vector. The cross-entropy then becomes the categorical
cross-entropy, given by

E(~w) = −
n∑

i=1

M−1∑
m=0

yim log ŷim(~w) + (1 − yim) log[1 − ŷim(~w)]. (5.7)

For a regression task predicting a continuous output variable, the mean-squared error is
most often used as the loss function, with

E(~w) = 1
n

n∑
i=1

(yi − ŷi(~w))2. (5.8)

To find the optimal network parameters for the given task the loss function output
(the loss) is iteratively minimised until it converges to the minimum (or in reality a local
minimum that performs well). This is done by updating the network parameters at each
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Figure 5.4: Illustrative diagram of the gradient descent procedure. Shown is the case for a
loss function dependent on a single weight.

iteration t, to move in the direction of the loss gradient, using the update rule

~wt+1 = ~wt − ηt∇~wE(~w), (5.9)

where ηt is the learning rate which determines the size of the step taken at each iteration.
This methodology is known as gradient descent and is illustrated in Figure 5.4.

Therefore, to use gradient descent, we require that the gradient of the loss function
with respect to the parameters of the network can be calculated. Doing this for each
parameter at every iteration would render neural networks impossible to train due to the
vast computational requirements. Instead, an innovative application of the chain rule, in
an algorithm called backpropagation is used [142]. Here we follow the derivation of the
four main backpropagation equations given in reference [143].

For a network containing L layers, we can index the individual layers using l = 1, . . . , L.
The weight associated with the connection between the k-th neuron in layer l − 1 and
the j-th neuron in layer l can be denoted as wl

jk, with the bias of the layer l neuron
correspondingly written as bl

j . The activation of the j-th neuron in layer l is then related
to the outputs from the previous layer by

al
j = σ(zl

j) = σ

(∑
k

wl
jkal−1

k + bl
j

)
, (5.10)
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where σ is the non-linear activation function.

The change in the loss function with respect to the linear weighted sum zL
j of the

j-th neuron in the last layer L, defines the error ∆L
j , such that

∆L
j = ∂E

∂zL
j

. (5.11)

Using the chain rule and the fact that aL
j = σ(zL

j ), the error is found to be equivalent to

∆L
j = ∂E

∂aL
j

σ′(zL
j ), (5.12)

where σ′(zL
j ) denotes the derivative of the non-linear activation function at zL

j . This
(equation (5.12)) is the first of the backpropagation equations.

The error ∆l
j, of the j-th neuron in layer l can be expressed in terms of the error in

the following layer l + 1, by using

∆l
j = ∂E

∂zl
j

,

=
∑

k

∂E

∂zl+1
k

∂zl+1
k

∂zl
j

,

=
∑

k

∆l+1
k

∂zl+1
k

∂zl
j

,

=
(∑

k

∆l+1
k wl+1

kj

)
σ′(zl

j). (5.13)

The chain rule has again been used in addition to the fact that

zl+1
k =

∑
j

wl+1
kj σ(zl

j) + bl+1
k , (5.14)

to give the second of the backpropagation equations (equation (5.13)).

As ∂bl
j/∂zl

j = 1, the error can also be viewed as the partial derivative of the loss
function with respect to the bias, such that

∆l
j = ∂E

∂zl
j

= ∂E

∂bl
j

∂bl
j

∂zl
j

= ∂E

∂bl
j

, (5.15)

giving the third of the backpropagation equations (equation (5.15)).
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The final backpropagation equation is given by the differential of the cost function
with respect to the weight wl

jk, which can be written as

∂E

∂wl
jk

= ∂E

∂zl
j

∂zl
j

∂wl
jk

= ∆l
ja

l−1
k . (5.16)

The full backpropagation algorithm then proceeds as follows:

1. After calculating the activations a1
j for all neurons in the input layer, use the

feed-forward architecture of the network to calculate all the activations at every
layer using equation (5.10).

2. Use equation (5.12) to calculate the errors of the last layer neurons, requiring both
the derivatives of the loss and activation functions.

3. Use equation (5.13) to ‘backpropagate’ the error through the network from the last
layer to the input layer, calculating all ∆l

j values.

4. Calculate the gradient of the loss function for all the weights and biases using
equation (5.15) and equation (5.16).

A single activation finding forward pass followed by a single error propagating backward
pass is all that’s required to calculate the gradients for all weights and biases within the
network. This incredibly efficient procedure allows for the use of gradient descent when
training neural networks.

5.3.3 Convolutional neural networks

The broad category of deep learning covers multiple neural network techniques spanning
a range of application fields such as computer vision, speech recognition, and natural
language processing. By stacking many layers on top of each other to form a ‘deep’
network, these methods offer increased problem solving capacity by allowing higher-order
non-linear functions to form throughout the network. As a direct consequence, instead
of requiring hand-engineered features as input, deep networks can learn to extract the
most powerful features for a given task from raw data. Here we outline just the specific
deep learning technique used in this work; the CNN.
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CNN operations

At their core, CNNs make use of a mathematical operation called convolution, which
either entirely or in part replaces the simple vector multiplication seen in the fully-
connected networks of Section 5.3.1. This difference makes CNNs incredibly powerful for
applications with grid-like input data such as computer vision tasks.

Using standard CNN terminology, the discrete convolution between the input x, and
the kernel w, is given by

fi = (x ∗ w)i =
∞∑

j=−∞
xjwi−j, (5.17)

where i and j denote the set of discrete values and f is commonly referred to as the
feature map. In typical applications, the input is a two-dimensional array X. Therefore,
both the kernel W , and the resulting feature map F , also become two-dimensional. In
this case the convolution operation becomes

Fi = (X ∗ W )i,j =
∑
m

∑
n

Xi+m,j+nWm,n, (5.18)

where the infinite sum in equation (5.17) has been replaced with a discrete sum over
two-dimensional elements. Analogous to the simple neural network weights ~w, first
described in equation (5.3), the elements of Wm,n are trained to minimise the loss, with
the output feature maps passed through a non-linear activation function at each layer.

To illustrate the convolution operation, Figure 5.5 displays examples of a 4 × 4 input
grid and a 3 × 3 kernel. The output feature map is generated by sliding the kernel across
both dimensions of the input grid, summing the products of all associated elements at
each step according to equation (5.18), as shown in Figure 5.6.

Two additional parameters impacting the feature map output size are introduced in
Figure 5.6. The stride and padding. The stride S, governs how far the kernel moves at
each step while the padding P , decides how the input grid is padded with zeros around
its border. If L is the size of the input (both height and width) and K is the kernel size,
the output feature map size O, is given by

O = (L − K + 2P )
S

+ 1. (5.19)
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Figure 5.5: Example of an input grid (left) and kernel (right). The specific kernel shown is
sensitive to x-shaped features
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Figure 5.6: Example of a stride = 1 convolution operation involving the input grid and kernel
from Figure 5.5. Both the operation for the case of valid (top) and same (bottom)
padding are shown. The blue square in the top-left of the output feature maps
indicates the output generated from the specific operation shown on the left, also
in blue.
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Figure 5.7: Example of both a max and average 2 × 2 pooling operation with stride = 2.

The other essential operation used within CNNs is pooling. Pooling layers coarse-grain
the spatial information of the input to reduce the number of network parameters. Max
pooling or average pooling are the two common ways this is achieved. In both cases, the
input is first divided into rectangular regions, and then either the maximum or average
value of the region is returned as output, for max or average pooling, respectively. Both
pooling procedures are illustrated in Figure 5.7.

Taking inspiration from how neurons behave in the visual cortex of animals [144],
small kernels are typically used to only scan over a small patch of the input at a time.
Combined with the loss of absolute position information from pooling, a key feature of
CNNs is highlighted. They exhibit translational invariance and respect the local structure
contained within the input. In simpler terms, they do not care wherein the input image
a particular feature exists, just that it exists.

CNN architectures

In 2012 the AlexNet CNN lowered the error rate of the ubiquitous ImageNet classification
task [145] from 28% to 16% [146]. Since this breakthrough, the standard CNN has
adopted a similar architecture to AlexNet. Multiple convolutional layers are stacked on
top of each other, periodically interspersed with pooling layers. Once the output feature
map size no longer allows for additional pooling, one or more fully-connected layers are
appended before the output layer, as is illustrated in Figure 5.8.
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Figure 5.8: Illustration of a typical CNN architecture containing convolutional, pooling,
and fully-connected layers before the final output layer. Figure taken from
reference [147].

Led primarily by large research teams at the technology giants, improvements upon
this standard architecture have since been made. Initially, this process involved the
addition of extra convolutional layers to form deeper and deeper networks, as was done
by the VGG architecture in 2014 [148]. Another approach was the introduction of the
inception module within the GoogLeNet [126] architecture, allowing for different feature
scales to be considered.

ResNet introduced residual connections in 2016 [149, 150]. By adding connections
skipping specific layers, a larger gradient could reach the lower layers of the network,
increasing learning. Recently, the inception module and ResNet concepts have been
combined [151], and there has been a significant push for efficient rather than just deeper
networks [152, 153]. The common repeating layer patterns that form the above networks
are shown in Figure 5.9 for reference.

5.3.4 Regularisation

A key challenge when training supervised machine learning models is ensuring that they
can generalise to new, previously unseen data, not within the training dataset. With
networks typically containing millions of trainable parameters, it can become effortless for
them to learn specific features and noise of the training dataset, rather than generalisable
features. This unwanted learning, called overfitting, is ubiquitous when training CNNs.
Methods used within this work to prevent overfitting are outlined below, all of which are
commonly referred to as regularisation techniques.
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Figure 5.9: Common repeating layer blocks used within CNN architectures, taking x as input
and producing x̃ as output through operations whose forward pass is shown
with the arrows. The blue and red boxes represent convolutional (conv) and
max-pooling (m-pool) layers respectively, with the size of the operation shown.
The circular yellow R indicates the use of the ReLU activation function.

Stochastic gradient descent

The gradient descent update equation outlined in equation (5.9) updates the network
weights at each training iteration using the gradient calculated over the full training
dataset. This procedure is called batch training. It is instead much more common to
calculate an approximation to the complete gradient at each iteration using a minibatch
of the full dataset. This is done by considering just a subset of the training data with
a size commonly referred to as the batch size and typically equal to a power of two for
computational reasons.

This modification to standard batch training gradient descent is called stochastic
gradient descent as it introduces stochasticity to the training process, providing two main
advantages. Firstly, the computational time of each iteration is significantly reduced, and
crucially the memory requirements lowered. Secondly, the addition of minibatch specific
noise decreases the chance that the minimisation will get stuck in a local minimum suited
to overfitting the training dataset.

Early stopping

Early stopping is another simple regularisation procedure. During training, the training
dataset is commonly iterated over multiple times, with each full iteration called an
epoch. By evaluating the error on an independent validation dataset at the end of each
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Figure 5.10: Illustration of the early stopping procedure. Initially both the training and test
error decrease, but, at some point the test error will start to increase due to
overfitting, at this point the training is stopped.

epoch, the point at which overfitting starts to occur can be determined, as illustrated in
Figure 5.10. At the determined epoch, the training is stopped to return the best possible
generalised model. In practice, it is common only to stop training after n epochs have
passed with no validation error improvement.

Batch normalisation

The training of a neural network is found to work best when the inputs of each neuron
are centred on zero with respect to the bias of the neuron. This is because large input
values can cause saturation of the activation function and subsequent vanishing of the
associated gradient, reducing the ability of the network to learn. To counter this, batch
normalisation introduces layers that standardise their inputs by using both the mean
and variance of each minibatch [154]. This modification not only speeds up training
by preventing the vanishing of gradients but also reduces overfitting by again using the
stochasticity of the minibatch.

Dropout

Dropout is another simple technique to reduce overfitting [155]. At each training iteration,
each neuron has a probability pd, to be dropped out and ignored for that iterations
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Figure 5.11: Example of dropout applied to the network shown in Figure 5.2. Neurons are
randomly dropped out and not considered for a training step. This reduces the
strong connections between neurons that can lead to overfitting.

calculation. This is illustrated in Figure 5.11. By ignoring a subset of neurons at each
iteration, it is difficult for the network to form the particularly strong connections that
are usually responsible for overfitting, leading to greater generalisation.

5.4 A baseline implementation for CHIPS

The raw output from a water Cherenkov detector, such as those envisioned by the Chips
concept, is a simple image of each event where two channels of information are known
for each PMT: the number of collected photoelectrons, and the associated hit times.
Therefore, it is a natural fit to use CNNs primarily developed for image-based computer
vision tasks for Chips event analysis.

For this purpose, a Python-based software package named chipsnet [156] has been
built. By using the high-level Application Programming Interfaces (APIs) provided by
the Tensorflow framework (version 2.3.0) [157], a full pipeline including data preparation,
network training, and performance evaluation has been implemented. In this section,
the baseline CNN implementation built into chipsnet is outlined. The specific network
implementations described in Section 5.5 share this common baseline with a few specific
differences.
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Figure 5.12: Difference between the true and seed estimated vertex position, split by com-
ponent. The large negative tail for the x component shows the tendency of
the seeding procedure to estimate the x component closer to the downstream
detector wall than reality.

5.4.1 Baseline inputs

The primary difficulty in the application of CNNs to Chips is determining how to map
an event captured on a cylindrical surface to a two-dimensional grid. Furthermore, this
must be done in such a way as not to distort the underlying Cherenkov emission topology,
which could inhibit network learning. As a solution, this work takes inspiration and then
builds upon the ideas outlined in reference [158]. Simply put, an event is mapped onto a
two-dimensional grid as though it is viewed from its estimated interaction vertex position.
The primary motivation behind this is to remove any detector shape effects and to focus
on the underlying event topology and Cherenkov emission profiles.

To estimate each event’s interaction vertex position, the top-scoring seed from the
seeding procedure introduced in Section 5.2.1 is used. This process, unlike the full
likelihood fit, requires no predefined track hypothesis and typically takes under 0.1 seconds
per event on a standard batch farm computing node. The difference between the true
and seed estimated vertex position for a sample of expected beam events are shown in
Figure 5.12. The x component (along the direction of the beam) is commonly estimated
closer to the downstream wall of the detector than reality, however, as the y and z

components perpendicular to the beam primarily drive event distortions, the impact on
event topology is small.

Using θ and φ components calculated as viewed from the estimated interaction vertex
position facing along the x-axis (downstream), hit PMTs are mapped onto a 64 × 64
grid. This procedure is used to generate two event maps. Firstly, a hit-charge map where
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Event map Cap-point Capped percentage

hit-charge 25 p.e 0.10%
hit-time 120 ns 0.15%
hough-height 3500 p.e 0.23%

Table 5.1: Table showing the input event map cap-points (maximum value of the encoded
range) and the associated percentage of bin values that are capped at the maximum
8-bit value of 255 as a consequence. The cap-points are specifically chosen so that
the capped percentage is approximately 0.1%, keeping any information loss small.

each grid bin is given by the total collected photoelectrons from all PMTs mapped to
that bin. Secondly, a hit-time map where each grid bin is given by the first hit time
(in nanoseconds) across all PMTs mapped to that bin. Each hit-time map is further
corrected so that the first hit time across all bins lies at zero. Note that within this work
veto PMTs are ignored for simplicity.

By design, the Hough transform within the seeding procedure uses the estimated
interaction vertex position to generate the transform space. Therefore, by re-binning the
transform space to a 64 × 64 grid, a third hough-height map is generated for each event.
This event map aims to provide a complementary but different representation of the
event where Cherenkov rings are instead represented as peaks, allowing for additional
discriminating features to be learnt.

All three event maps: hit-charge, hit-time, and hough-height are down-sampled
using 8-bit encoding by converting each 32-bit float value to an integer between 0 and
255. Encoding not only significantly reduces storage requirements but also dramatically
increases the speed with which data can be loaded during training (which turns out
to be the primary bottleneck). For each map type, a range over which to encode
from zero up to a cap-point is chosen to minimise the number of bin values that are
capped at the maximum encoded value of 255. Table 5.1 shows the cap-points and the
associated percentage of bin values capped for each map type, while Figure 5.13 shows
the distribution of bin values for each event map across the encoded range.

Event maps for example events generated using the above procedure are shown
in Figure 5.14 for a CC resonant νe event, in Figure 5.15 for a CC DIS νµ event, in
Figure 5.16 for a NC DIS event, and in Figure 5.17 for a cosmic muon event.
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Figure 5.13: The distribution of encoded 8-bit values for the hit-charge, hit-time and hough-
height event maps.

0 16 32 48 64

φ bins

0

16

32

48

64

θ
b

in
s

Hit-charge

0 16 32 48 64

φ bins

Hit-time

0 16 32 48 64

φ bins

Hough-height

0

100

200

Figure 5.14: Three map representation of a CC resonant νe event. Initiated by a νe of energy
3.3 GeV the final state particles above the Cherenkov threshold include a e− of
energy 2.8 GeV and a 0.3 GeV π0.
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Figure 5.15: Three map representation of a CC DIS νµ event. Initiated by a νµ of energy
3.5 GeV the final state particles above the Cherenkov threshold include a µ− of
energy 1.9 GeV, a proton of energy2.0 GeV, and a 0.2 GeV π−.
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Figure 5.16: Three map representation of a NC DIS event. Initiated by a νe of energy 9.3 GeV
the final state particles above the Cherenkov threshold include a proton of energy
2.6 GeV and a 2.5 GeV π−.
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Figure 5.17: Three channel representation of a cosmic muon event, containing a µ− of energy
2.9 GeV.

5.4.2 Baseline architecture

An illustrative diagram of the baseline chipsnet architecture is shown in Figure 5.18. Based
on the VGG network previously mentioned in Section 5.1 and detailed in reference [148]
there are a few key differences from the literature defined network:

• Each of the three event maps: hit-charge, hit-time, and hough-height are initially
fed into three separate branches. Each branch contains two VGG blocks with two
convolutional layers each (four convolutional layers in total). The outputs from
each branch are merged using a concatenation layer before being fed to the rest of
the network. This configuration allows for event map specific features to be learnt
independently before combined features are learnt by the rest of the network.

• Batch normalisation as described in Section 5.3.4 is included before the activation
(ReLU) function for every convolutional layer.

• Squeeze-and-excitation units, as detailed in reference [159] are included after the
max-pooling operation in all VGG blocks. These units introduce extra parameters
to model the interdependencies between output feature maps, allowing the network
to learn how to weight each feature map effectively.

• Dropout is included at the end of each VGG block as well as after the final fully-
connected layer. Instead of dropping individual kernel elements, the dropout within
the VGG blocks drops entire kernels at each training iteration, this is commonly
called two-dimensional spatial dropout. The dropout after the fully-connected layers
is standard, in that it drops out individual fully-connected neurons.
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Figure 5.18: Illustrative diagram of the baseline chipsnet architecture. The three input event
maps are separately passed through two VGG blocks each before their outputs
are combined and passed through a further three VGG blocks together. The
flattened VGG blocks outputs are then concatenated with five seed parameters
(seed pars) and passed through two fully-connected (FC) layers of 512 neurons
each before the output layer. Both the number of convolutional units (1st
value) and kernels (2nd value) is shown for each block. The detailed VGG block
structure is shown within the grey box. The circular yellow R and Bn indicate
the use of the ReLU activation function and batch normalisation, respectively.
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• Five output parameters from the seeding process (seed pars) are concatenated
with the flattened layer before the fully-connected layers. Included are the three
components of the estimated interaction vertex position (sx, sy, sz), and the two
components of the estimated track direction (sθ, sφ). These parameters provide the
network with spatial context as to where in the detector the input event maps have
been generated and the dominant direction of PMT activity.

The chipsnet baseline architecture is implemented using the Keras API built into
Tensorflow [160]. Keras allows for predefined common layers such as a two-dimensional
convolution or a max-pooling layer to be easily structured into a full network definition.

5.4.3 Baseline outputs

Many CNN applications are found to benefit from learning multiple tasks at the same
time. This is believed to be the case as training with multiple tasks tends to return a
network with an improved generalised representation of the inputs, with features learnt
for one task improving the performance of another. Additionally, multiple tasks work
to prevent any one output from overfitting. Commonly named multi-task learning, this
methodology is used extensively in this work.

To train a network with multiple tasks (outputs), a loss function Etot, must be defined
to combine the individual loss functions for each task Ei. The simplest way to do this is
via a linear weighted sum, such that

Etot =
i=N∑
i=1

wiEi, (5.20)

where N is the number of tasks and wi are the associated weights. In this work this is
referred to as the simple multi-task loss.

However, the final network performance can strongly depend on the relative weighting
between loss functions, especially when the values returned by each differ by many order
of magnitude (common when combining regression and classification tasks). Therefore,
finding the optimal wi weights can be both difficult and time-consuming. Another
approach outlined in reference [161] remedies this problem by learning the optimal
weighting between loss functions. This is done by introducing an additional trainable
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parameter σi, for each loss function, such that

Etot =
i=N∑
i=1

1
2σ2

i

Ei + log σi. (5.21)

In this work we refer to this as the learnt multi-task loss.

The specific number and nature of outputs for the specific networks are detailed in
Section 5.5. Although physically motivated to some degree, the exact set of tasks and
the loss combination technique used is mainly driven by extensive trial-and-error. The
chipsnet software is specifically designed to enable this process by making it easy to
configure the network outputs via a simple configuration file.

5.4.4 Baseline training

All networks are trained on an 18 core CPU (36 thread) machine equipped with four
NVIDIA GeForce RTX 2080 graphics processing units (GPUs). The Tensorflow dataset
API is used to create an efficient input data pipeline where data is loaded on-the-fly at
training time. This procedure ensures all CPU threads are utilised loading, decoding,
and preprocessing data for the primary GPU based network calculations before being
needed, maximising computational efficiency.

During preprocessing, all 8-bit input event map values are converted to 32-bit float
values bounded between zero and one. Furthermore, a random factor scaling is applied
to each map bin. Generated from a normal distribution centred on one with a standard
deviation of σr, by fluctuating the bin values the network is forced to focus less on the
absolute bin values and more on the underlying event topology. Not only does this
process provide valuable regularisation to reduce overfitting, but also makes the trained
networks robust to small changes within the input (explored within Section 6.3).

A minibatch training strategy of minibatch size of nb, using the Adam optimiser [162]
(β1 = 0.9, β2 = 0.999, and ε = 1e − 7) is used. The exact training sample size and
composition for each specific network are given in Section 5.5, but for all networks a
95% training to 5% validation data split is employed across the full training sample.
Consequently, early stopping is used. The learning rate for each epoch ηe, is set to
decrease throughout training according to

ηe = η0

1 + cd(e − 1) , (5.22)
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where η0 is the initial learning rate, e is the epoch number (starting at one), and cd is
the learning rate decay coefficient.

Therefore, when training each network, there is a list of tunable hyperparameters,
all of which are optimised using the SHERPA hyperparameter tuning framework [163].
To maximise performance, SHERPA uses a random search algorithm to select random
configurations of hyperparameters which are then tested by training the network for five
epochs on the available training data. Each configuration’s performance is assessed by
using a metric detailed for each network in Section 5.5. The search space is confined to a
specific range or selection of choices for each hyperparameter, with:

• the initial learning rate η0, in a range from 0.00005 to 0.001;

• the learning rate decay coefficient cd, in a range from 0.2 to 0.8;

• the dropout probability pd, in a range from 0.0 to 0.5;

• the random scaling size σr, in a range from 0.0 to 0.1;

• the minibatch size nb, choosing from either 32, 64, 128, or 256; and

• the multi-task loss combination strategy, choosing from either simple or learnt.

5.5 Specific implementations for CHIPS

The specific CNN implementations for cosmic rejection, beam classification, and energy
estimation are outlined below. It is important to note that the exact configuration of
networks outlined here is the result of extensive testing designed to maximise the selection
of a pure and efficient sample of appeared CC νe beam events whose neutrino energy can
also be accurately determined.

As an example of an alternative implementation, if cosmic rejection and beam
classification are combined into a single network, both objectives see a reduction in
performance. The same is also true if either cosmic rejection or beam classification is
combined with neutrino energy estimation. However, specific secondary outputs such
as counting the number of primary particles in conjunction with beam classification are
seen to improve performance. It is clear, therefore, that the multi-task approach only
works for tasks that require a similar learnt representation of the inputs. Put simply; the
tasks must be similar.
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Figure 5.19: Number of training events per category for the cosmic rejection network. All
beam event interaction types are shown, however, all are classed as beam events
(blue) in training against the cosmic events (red).

5.5.1 Cosmic rejection

The cosmic rejection network aims to prevent the vast cosmic muon background from
contaminating the final selected sample of beam events. Therefore, the primary task is a
simple binary classification between beam and cosmic events. Additionally, training the
network to also separate events where the primary charged lepton escapes the detector
volume or not, is found to improve cosmic rejection performance. As a large proportion
of cosmic muons are relatively high in energy and, therefore, escape the detector in this
fashion, there is motivation as to why this additional task is helpful.

The network is trained on a sample of 3.15 million simulated events produced using
the detector simulation and event generation methods outlined in Section 3.3. Roughly
1/3rd are νµ beam events, 1/3rd νe beam events, and 1/3rd cosmic muon events, the counts
of which are shown in Figure 5.19. All beam events (both νµ and νe) are generated using
the expected unoscillated Chips-5 νµ energy spectrum to closely mimic the dominant νµ

beam component and appeared νe signal. Every event in the sample is used for training
with no preselection, as this is found to be the best for cosmic rejection performance.

There are two outputs to the cosmic rejection network:
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Figure 5.20: Total loss and cosmic score accuracy for both the training sample (solid) and
validation sample (dashed) throughout training for the cosmic rejection network.
The final network weights are taken at epoch six, as shown by the vertical black
line.

1. Cosmic score (1 classification neuron): Returns a score between zero and one
corresponding to whether the event is beam or cosmic like. The binary cross-entropy
loss function in equation (5.5) is used for training with a simple multi-task weight
of 1.

2. Escapes score (1 classification neuron): Returns a score between zero and one
corresponding to whether the charged lepton in an event is contained or escapes
the detector. The binary cross-entropy loss function in equation (5.5) is used for
training with a simple multi-task weight of 1. NC beam events without a charged
lepton are masked (do not contribute to the loss) during training for this output.

The network is allowed to train for up to 30 epochs using the SHERPA optimised
hyperparameters: η0 = 0.00005, cd = 0.7, pd = 0.1, σr = 0.02, and nb = 128, with a
simple multi-task loss combination as given in equation (5.20). The cosmic score accuracy
metric, defined as the fraction of validation sample events that are correctly classified
when a cut value of 0.5 on the cosmic score output is used to determine the classification
of each event, is used for SHERPA optimisation and early stopping. Typically, only
6 epochs are required to reach the maximum validation sample cosmic score accuracy,
with early stopping halting training after 11 epochs (taking 15 hours), as can be seen in
Figure 5.20.



Convolutional neural networks for CHIPS 121

5.5.2 Beam classification

The beam classification network aims to separate beam events by their neutrino and
interaction type to primarily select a pure and efficient sample of appeared νe events,
but also a sample of survived CC νµ events. Therefore, the principal task is a categorical
classification between CC νe, CC νµ, and NC events. No attempt is made to separate
the appeared CC νe and intrinsic beam CC νe components as they are impossible to tell
apart, except for their distribution in neutrino energy.

Similar to the implementation used by DUNE [131], alongside the core classification
additional classification and particle counting tasks outlined below are included to improve
performance. Note that the particle counting tasks are not used in this work for anything
but increasing the primary classification performance. Future work, however, could
exploit any ability to separate exclusive final states, deduced from these particle counts,
to reduce both energy resolution and systematic errors. As an example of a method
already in use, NOvA use their ability to accurately determine the hadronic energy
of an event to split their CC νµ sample into populations of different energy resolution.
Each population can then be treated separately in the analysis before being combined,
increasing overall performance [164].

The network is trained on a sample of 1.67 million simulated events produced using
the detector simulation and event generation methods outlined in Section 3.3. Roughly
half are νµ beam events, with the other half being νe beam events, as shown in Figure 5.21.
All events (both νµ and νe) are generated using the expected unoscillated Chips-5 νµ

energy spectrum to closely mimic the dominant νµ beam component and appeared νe

signal. All events are used for training with no preselection as this is found to be the
best for beam classification performance, especially NC rejection.

There are nine outputs to the beam classification network:

1. Combined category (3 classification neurons): Returns a classification prob-
ability score between zero and one for each of CC νe, CC νµ, and NC (summing
to one). The categorical cross-entropy loss function in equation (5.7) is used for
training with a simple multi-task weight of 1.

2. CC category (6 classification neurons): Returns a classification probability
score between zero and one for each of CC-QEL, CC-Res, CC-DIS, CC-Coh, CC-
MEC, and CC-other (summing to one). The categorical cross-entropy loss function
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Figure 5.21: Number of training events per category for the beam classification network. All
beam event interaction types are shown.

in equation (5.7) is used for training with a simple multi-task weight of 1. NC
events are masked (do not contribute to the loss) during training for this output.

3. NC category (4 classification neurons): Returns a classification probability
score between zero and one for each of NC-Res, NC-DIS, NC-Coh, and NC-other
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1. CC events are masked (do
not contribute to the loss) during training for this output.

4. Electron count (4 classification neurons): Returns a classification probability
score between zero and one for each of 0, 1, 2, and 3+ electrons in the final state
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

5. Muon count (4 classification neurons): Returns a classification probability
score between zero and one for each of 0, 1, 2, and 3+ muons in the final state
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

6. Proton count (4 classification neurons): Returns a classification probability
score between zero and one for each of 0, 1, 2, and 3+ protons in the final state
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(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

7. π± count (4 classification neurons): Returns a classification probability score
between zero and one for each of 0, 1, 2, and 3+ charged pions in the final state
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

8. π0 count (4 classification neurons): Returns a classification probability score
between zero and one for each of 0, 1, 2, and 3+ neutral pions in the final state
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

9. Photon count (4 classification neurons): Returns a classification probability
score between zero and one for each of 0, 1, 2, and 3+ photons in the final state
(summing to one). The categorical cross-entropy loss function in equation (5.7) is
used for training with a simple multi-task weight of 1.

The network is allowed to train for up to 30 epochs using the SHERPA optimised
hyperparameters: η0 = 0.0002, cd = 0.5, pd = 0.1, σr = 0.02, and nb = 128, with a
simple multi-task loss combination as given in equation (5.20). The combined category
accuracy metric, defined as the fraction of validation sample events that are correctly
classified when the highest scoring combined category output neuron is used to determine
the classification of each event, is used for SHERPA optimisation and early stopping.
Typically, only 7 epochs are required to reach the maximum validation sample combined
category accuracy, with early stopping halting training after 12 epochs (taking 15 hours),
as can be seen in Figure 5.22.

5.5.3 Energy estimation

Accurate neutrino energy estimation is accomplished using multiple networks trained on
separate samples of νe and νµ events across multiple CC interaction types. It is found
that separation such as this results in greater performance compared to if a single energy
estimation network or even separate νe and νµ networks are trained. This is expected as
a single set of network weights is unlikely to be able to capture the specific topological
features that contribute to the energy for all types of event.
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Figure 5.22: Total loss and combined category accuracy for both the training sample (solid)
and validation sample (dashed) throughout training for the beam classification
network. The final network weights are taken at epoch seven, as shown by the
vertical black line.

Alongside the primary neutrino energy regression task, additionally learning the
primary charged lepton energy and the interaction vertex position and time are found to
improve performance. Although this improvement is relatively small for neutrino energy
estimation, it dramatically improves primary charged lepton energy estimation when
compared to being predicted alone. With two energy tasks, the network is encouraged
to learn how the primary charged lepton and neutrino energies are related. As the
interaction vertex position within the detector and hence distance from the instrumented
wall can impact the number of deposited photoelectrons, there is motivation as to why
this additional task is also helpful.

Separate networks are trained for each of CC-QEL (and CC-MEC), CC-Res, and
CC-DIS for both νe and νµ events (6 in total) using 250000 corresponding simulated
events each. All events (both νµ and νe) are produced using the detector simulation and
event generation methods outlined in Section 3.3. The expected unoscillated Chips-5 νµ

energy spectrum is used to generate all events to closely mimic the dominant νµ beam
component and appeared νe signal. Only events for which the primary charged lepton
is fully contained within the detector volume are used for training, with no additional
preselection applied. Note that CC-QEL and CC-MEC energy estimation is combined
into a single network as both have incredibly similar final state topologies (a single
charged lepton).
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There are six outputs to each of the energy estimation networks:

1. Neutrino energy (1 regression neuron): Returns the estimated neutrino energy.
The mean-squared error loss function in equation (5.8) is used for training.

2. Charged lepton energy (1 regression neuron): Returns the estimated primary
charged lepton energy. The mean-squared error loss function in equation (5.8) is
used for training.

3. Interaction vertex x-position (1 regression neuron): Returns the estimated
interaction vertex x-position. The mean-squared error loss function in equation (5.8)
is used for training.

4. Interaction vertex y-position (1 regression neuron): Returns the estimated
interaction vertex y-position. The mean-squared error loss function in equation (5.8)
is used for training.

5. Interaction vertex z-position (1 regression neuron): Returns the estimated
interaction vertex z-position. The mean-squared error loss function in equation (5.8)
is used for training.

6. Interaction time (1 regression neuron): Returns the estimated interaction
time relative to the first PMT hit for each event. The mean-squared error loss
function in equation (5.8) is used for training.

Each network is allowed to train for up to 30 epochs using the SHERPA optimised
hyperparameters: η0 = 0.0002, cd = 0.5, pd = 0.1, σr = 0.0, and nb = 128, with a learnt
multi-task loss combination as given in equation (5.21). The neutrino energy mean
absolute error metric, defined as the average difference between the true and estimated
neutrino energies across all validation sample events, is used for SHERPA optimisation
and early stopping. Early stopping typically halts training after approximately 20 epochs
(taking 2 hours). An example of how an energy estimation networks training typically
proceeds is given in Figure 5.23.
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Figure 5.23: Total loss and neutrino energy mean absolute error for both the training dataset
(solid) and validation dataset (dashed) throughout training for the energy esti-
mation network trained on CC-QEL and CC-MEC νe events. The final network
weights are taken at epoch sixteen as shown by the vertical black line.



Chapter 6

Network evaluation

This chapter provides a comprehensive evaluation of how the new CNN approach behaves.
Four categories of understanding are explored (each a section of this chapter):

1. determining the beam selection and energy estimation performance;

2. explaining the inner workings of the trained networks;

3. studying how robust the network outputs are to changes in the input; and

4. exploring alternative implementations to see which factors drive performance.

Beforehand, a hugely impactful advantage of the CNN approach must be highlighted.
Although the time taken to train the CNNs in this work is approximately two days,
once trained the time required to calculate all network outputs (inference time) for a
single event is on the order of 2 ms. When combined with event seeding and event map
generation, the total time taken to fully reconstruct and classify a raw event is less than
0.1 seconds. Compared to the ∼15 minutes required for each event using the standard
reconstruction and classification methods (with multiple hypotheses), the difference is
stark.

Armed with this incredible speed, the time taken to fully process a large dataset
containing millions of events becomes a matter of hours, compared to the many weeks
typically required. This change has far-reaching implications for how physics analysis is
conducted. By removing the processing bottleneck, larger datasets can be used without
worry, new techniques can be tested quickly, and overall analysis turnover increased.

127
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6.1 Performance

Here the performance of the CNN approach is presented and compared to that achieved
by the standard Chips methods as well as comparable experiments. Primarily this
focuses on the principal aim of selecting an efficient and pure appeared CC νe signal
sample with accurate neutrino energy estimation. However, the survived CC νµ selection
is also presented for completeness.

6.1.1 Evaluation sample and preselection

An independent sample of events is used to evaluate the combined performance of the
trained CNNs. The evaluation sample consists of 400000 beam and 350000 cosmic muon
events produced in the same way as the training and validation events, using the detector
simulation and event generation methods outlined in Section 3.3. The beam events
include the expected νµ, ν̄µ, νe and ν̄e components as well as events generated to mimic
the appeared (sometimes referred to as App) νe component. Only the neutrino mode
(forward horn current) of NuMI beam operation is considered here. During the evaluation,
the intrinsic neutrino and antineutrino components of the beam are considered the same
for simplicity.

All evaluation events are weighted to match the expected spectrum at the Chips-5
detector using the unoscillated flux, cross-sections, and oscillation probabilities (derived
from the NuFIT oscillation parameters shown in Figure 2.8, assuming the normal
hierarchy, and including matter effects). Additional weighting also scales the sample to
match data taking in the NuMI beam for a single year, corresponding to 6 × 1020 protons
on target (POT). Cosmic muon events are weighted according to the 11.8 kHz expected
Chips-5 rate outlined in Section 3.3.3. The final weighted spectrum of events is shown
in Figure 6.1 with the combination of underlying beam neutrino interaction types shown
in Figure 6.2.

Separate from the CNN driven work, a simple preselection is applied to all evaluation
sample events. Designed to reject cosmic and NC events while keeping the selection
efficiency of CC beam events high, the preselection consists of four simple cuts, shown
in Figure 6.3. Firstly, the total number of collected photoelectrons (charge) across all
PMTs in the event must be greater than 250. Secondly, the maximum Hough transform
space height must be greater than 250 photoelectrons. Thirdly, the seeding procedure
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Figure 6.1: Weighted spectrum of events contained within the evaluation sample. The
weighting is designed to mimic the expected event spectrum of the Chips-5
detector. Beam events are weighted by combining the expected unoscillated flux
with cross-sections and standard oscillation probabilities, while cosmic events are
weighted using the expected cosmic rate. Shown in blue, green, and olive are the
surviving CC νµ, appearing CC νe, and intrinsic beam CC νe spectra respectively,
binned in terms of their neutrino energy. Shown in red is the NC event spectra,
binned in terms of the energy of the hadronic component (excluding the outgoing
neutrino energy) to represent more accurately the energy visible to the detector.
Finally, shown in black is the cosmic muon event spectra binned in terms of the
muon energy.



130 Network evaluation

0 2 4 6 8 10

E (GeV)

0

50

100

150

200
E

ve
nt

s/
6
×

10
20

P
O

T
/2

50
M

eV CC-DIS

CC-Res(1π)

CC-QEL

CC-MEC

CC-Coh

CC-Other

NC

Figure 6.2: Weighted spectrum of νµ and νe beam events contained within the evaluation
sample separated by interaction type. CC events are binned in terms of the
true neutrino energy while NC events are binned in terms of the true hadronic
component energy.

cos(θ) direction must be between ±0.7. Finally, the seeding procedure φ direction must
be between ±1.1 radians. The first two cuts reject low energy events which are usually
NC, while the last two reject events whose activity is not along the beamline, typically
cosmic.

6.1.2 Cosmic rejection and containment

Cosmic score

The cosmic score output from the trained cosmic rejection network shows an excellent
separation between beam (output close to zero) and cosmic (output close to one) events,
as can be seen in Figure 6.4. Notably, 99.2% of beam events are associated with a score
incredibly close to zero (< 0.0001) as is more clearly shown in Figure 6.5. Given this
fact, a cosmic score of below 0.0001 is chosen to select beam-like events. Out of the
total 350000 cosmic events in the evaluation sample, all are rejected by this cut alongside
preselection.
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Figure 6.4: Distribution of cosmic score output values from the trained cosmic rejection
network for the different event categories. A score close to one signifies a cosmic-
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classify.
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Figure 6.5: Distribution of cosmic score output values from the trained cosmic rejection
network close to zero for the different event categories. The cosmic rejection
cut value is shown at 0.0001 with the arrow indicating selected events. Only
preselected events are shown to better highlight the events this output aims to
classify. No cosmic events are within the shown range due to the limitations of
the evaluation sample.
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Escapes score

It is crucial for accurate neutrino energy estimation that the activity of an event is fully
contained within the volume of the detector. If charged event particles instead leave
the detector and emit Cherenkov radiation not captured by PMTs, it can be incredibly
difficult to estimate the resulting missing energy and hence neutrino energy. Within the
Chips-5 detector, this is particularly important for long track CC νµ events for which
only 44% of the primary charged muons are fully contained within the detector volume.

Therefore, the second output from the cosmic rejection network, escapes score is also
used to select events. Although this output only considers the primary charged lepton,
instead of all event particles, it still acts as a reasonable proxy for event containment. The
distribution of escapes score output values for each event category is shown in Figure 6.6.

An escapes score value below 0.33 is chosen to select events for which the primary
charged lepton is deemed to be fully contained within the detector. This cut value is
chosen to maximise the fraction of CC νµ events which are correctly classified as having
their primary charged lepton contained or not within the detector, leading to 96.8 ± 0.1%
of CC νµ events being classified correctly. As expected, the vast majority (97.2 ± 0.1%)
of the short track CC νe and NC events are selected by this cut.

For comparison with other experiments, the escapes cut effectively works as a quasi
fiducial volume cut, for an energy-dependent region near the downstream wall of the
detector. Fiducial volume cuts are common in HEP experiments to remove events whose
activity is close to the detector walls and, therefore, can not be reconstructed well.
Future work should explore how a fully implemented fiducial cut using the reconstructed
interaction vertex position, impacts performance.

Combined rejection

The total number of expected events per year that pass each successive cut (including
preselection) for each event category is shown in Table 6.1. Both CC νe categories are
selected with an efficiency greater than 92%, relative to the total number of expected
events, while CC νµ events are reduced to a 38.9±0.1% selection efficiency, mainly by the
escapes score cut (as desired). Furthermore, NC events are found to be primarily rejected
by the preselection, while cosmic events are heavily rejected by both the preselection
and cosmic score cuts.
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Figure 6.6: Distribution of escapes score output values from the trained cosmic rejection
network for the different event categories. A score close to one signifies an escaped
primary charged lepton like event, while a score close to zero corresponds to a
contained primary charged lepton like event. The containment cut value is shown
at 0.33 with the arrow indicating the events that are selected.

A future data-driven estimate, using actual Chips-5 data collected outside of the
NuMI beam spill window, could allow for a much-improved understanding of the cosmic
muon background rate. However, for now, an upper limit of < 2 cosmic muon events
per year passing all the cuts is determined1, showing that the cosmic muon rejection
works well. Crucially, of all the true cosmic muon events with a cosmic score less than
0.9, none would be classified as signal CC νe events by the beam classification detailed
in Section 6.1.3. Therefore, the expected cosmic muon contamination of both beam
selections (CC νe and CC νµ) is expected to be negligible relative to the selected number
of signal events for each and ignored for the rest of this performance evaluation.

6.1.3 Beam classification

The output values from each of the combined category neurons of the trained beam
classification network give the probability score that an event belongs to the corresponding
category. As the neuron output scores collectively sum to one, the highest-scoring neuron
can be used to classify events as either CC νe, CC νµ, or NC. Figure 6.7 shows the
resulting classification matrix using this approach.

1Using the Neyman confidence interval on a poisson distribution.
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Selection App CC νe CC νµ Beam CC νe NC Cosmic

Total events 44.17 ± 0.15 2045.9 ± 5.8 35.06 ± 0.08 354.7 ± 2.4 2100000 ± 4200
+ Preselection 41.21 ± 0.14 1889.5 ± 5.6 33.52 ± 0.08 243.2 ± 2.0 430000 ± 1900
+ Cosmic cut 41.10 ± 0.14 1874.4 ± 5.5 33.35 ± 0.08 241.6 ± 2.0 < 2
+ Escapes cut 40.68 ± 0.14 795.7 ± 3.5 32.86 ± 0.08 233.0 ± 2.0 < 2

Cuts Eff 92.1 ± 0.1% 38.9 ± 0.1% 93.7 ± 0.1% 65.7 ± 0.3% < 9.5 × 10−7

Table 6.1: The total number of expected (weighted) events and the number that pass successive
selection cuts for the different event categories. The preselection, cosmic score cut,
and escapes score cut numbers are shown. The selection efficiency relative to the
total number of events after all the cuts have been applied is also shown for each
event category. As zero out of the 350000 cosmic events in the evaluation sample
are selected after the cosmic score cut, an upper limit on the values is instead
given. The given errors correspond to the statistical uncertainty only.
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Figure 6.7: Classification matrix for the combined category output of the trained beam
classification network. Events are simply classified using the categorical score for
which they have the highest value. The numbers shown are the fraction of true
category events classified into each of the three possible categories.
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Figure 6.8: Distribution of combined category CC νe scores from the trained beam classification
network for the different event categories. A score close to one signifies a CC
νe like event. The FOM-νe optimised cut value is shown at 0.8 with the arrow
indicating the events that are selected. The y-axis has been truncated so that the
CC νµ and NC components are not fully visible to better show the distribution of
signal CC νe events.

To assess the beam classification performance more rigorously, a selection score for
each of the output categories, found by maximising a figure-of-merit (FOM), is instead
calculated. All events with a score above this optimised value are then deemed signal.
To minimise the expected measurement statistical error, the value of efficiency × purity
(proportional to the square of s/

√
s + b) is optimised as the FOM [165]. Below, the

results for both appeared CC νe and survived CC νµ selections using this methodology
are presented.

CC νe selection

The distribution of CC νe scores for the different event categories are shown in Figure 6.8.
A strong separation between appeared CC νe signal and both CC νµ and NC background
events is achieved. As no attempt is made to separate the appeared CC νe signal
component from the intrinsic beam CC νe background, both are clustered with scores
close to one as expected.

The efficiency, purity, and their product (the FOM-νe) for CC νe events (both appeared
and beam) as a function of selecting events above a certain CC νe score are shown in
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Figure 6.9: CC νe efficiency, purity, and efficiency × purity (FOM-νe) curves for different
values of CC νe score selection. The maximum FOM-νe value of 0.519 ± 0.004 is
indicated at a CC νe score of 0.8 by the star.

Figure 6.9. The FOM-νe is optimised by selecting events with a CC νe score above 0.8,
achieving a value of 0.519 ± 0.004. Note that the FOM-νe is optimised considering both
the appeared and beam CC νe components as signal due to their indistinguishable nature.

The total number of events, those selected by the previously mentioned cuts, and
those furthermore selected by the FOM-νe optimised selection are shown in Table 6.2
for each event category alongside the corresponding selection efficiencies and appeared
CC νe signal and combined CC νe purities. The purities are defined as the fraction
of events within the selection that are true signal events. The final FOM-νe selected
appeared CC νe signal purity of 38.3 ± 0.3% may appear low, but this is mainly due to
the indistinguishable intrinsic beam CC νe contamination, note that when both CC νe

components are considered signal, the selection purity becomes 70.9 ± 0.6%.

The FOM-νe optimised CC νe selection efficiency, relative to the total number of
events as a function of energy for the different event categories, is shown in Figure 6.10
alongside the signal purity. From low neutrino energies, both CC νe category selection
efficiencies rise to a plateau of approximately 80% beginning at 4 GeV. This is expected
as low energy CC νe events have less well-defined electron Cherenkov rings, leading to
their rejection. Problematically, this turn-on behaviour cuts into the true appeared CC
νe distribution, especially around the 1.5 GeV oscillation maximum. Future work should
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Selection CC νe sig CC νµ bkg CC νe bkg NC bkg Purity sig Purity CC νe

Total events 44.17 ± 0.15 2045.9 ± 5.8 35.06 ± 0.08 354.7 ± 2.4 1.78 ± 0.02% 3.19 ± 0.03%
+ Cuts 40.68 ± 0.14 795.7 ± 3.5 32.86 ± 0.08 233.0 ± 2.0 3.69 ± 0.02% 6.67 ± 0.03%
+ FOM-νe 31.27 ± 0.12 6.0 ± 0.3 26.69 ± 0.07 17.8 ± 0.6 38.3 ± 0.3% 70.9 ± 0.6%

Cuts Eff 92.1 ± 0.1% 38.9 ± 0.1% 93.7 ± 0.1% 65.7 ± 0.3% - -
FOM-νe Eff 70.8 ± 0.2% 0.29 ± 0.02% 76.1 ± 0.1% 5.0 ± 0.2% - -

Table 6.2: Table showing CC νe selected event numbers and corresponding efficiencies for
the various event categories as well as associated purities. Shown are the total
event numbers, those after the preselection, cosmic score cut, and escapes score
cut (Cuts), in addition to the numbers after the FOM-νe optimised selection with
the efficiencies relative to the total number of events shown for both. Both the
appeared signal CC νe purity and the joint appeared and beam CC νe purity are
shown for each selection. The given errors correspond to the statistical uncertainty
only.

explore whether a CC νe selection cut that varies with energy can lead to a greater
proportion of these low energy events being selected.

Due to the abundance of selected intrinsic beam CC νe events at higher energies, the
appeared CC νe purity is observed to peak at approximately 2.5 GeV (reasonably close
to the oscillation maximum) before declining. Importantly, within the key signal region
from 2 to 4 GeV, the appeared CC νe purity is > 55%, larger than the 38.3 ± 0.3% across
the full evaluation sample. The NC efficiency is seen to slowly increase, approaching
15% for hadronic component energies above 5 GeV; this is likely due to misidentification
of high energy pions or protons as electrons. Crucially, however, within the key signal
region, NC selection efficiency remains low.

The best way to understand the relative performance of the CNN CC νe classification
is by comparison with the standard event selection presented in Section 5.2.2. The
distribution of output scores from both simple neural networks used in the standard
selection are shown in Figure 6.11. By optimising the selection values for both networks,
0.91 and 0.78 respectively, to maximise efficiency × purity, the standard CC νe selected
sample is found. All events that pass the preselection, not just those shown in Figure 6.11
are used in this optimisation.

A maximum efficiency × purity of 0.132 ± 0.005 is achieved; only ∼ 25% the value
reached by the CNN approach. Both the combined appeared and beam CC νe efficiency
of 34.7±0.8% compared to 73.4±0.2% and purity of 39.3±1.2% compared to 70.9±0.6%
are considerably lower than that provided by the new CNN classification.
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Figure 6.10: FOM-νe selection efficiencies relative to the total number of events for the
different event categories as well as appeared CC νe purity as a function of
energy. All CC categories are shown in terms of the true neutrino energy, while
NC events are shown in terms of the true hadronic component energy. The
survived CC νµ efficiency is so low it is barely visible near zero. For reference,
the true appeared CC νe neutrino energy distribution is shown in green.

Furthermore, the new appeared CC νe signal efficiency of 70.8±0.2% compares well to
the 62% and 64% achieved by the NOvA and T2K CC νe selections, respectively. However,
purity is significantly lower at 38.3 ± 0.3% compared to the 78% and 80% reached by
NOvA and T2K [54, 166]. A large proportion of this difference can be explained by the
lower neutrino energies and greater off-axis angles at which these experiments operate.
Not only does this increase the proportion of easy to identify CC-QEL events, but it also
reduces the indistinguishable beam CC νe contamination.

CC νµ selection

The distribution of CC νµ scores for the different event categories are shown in Figure 6.12.
Excellent separation between appeared CC νµ signal and both CC νe components and
NC background is achieved. For high CC νµ scores (close to one) the difference between
signal and background event counts is approximately three orders of magnitude.

The efficiency, purity, and their product (the FOM-νµ) for CC νµ events as a function
of selecting events above a certain CC νµ score are shown in Figure 6.13. FOM-νµ

is optimised by selecting events with a CC νµ score above 0.315, achieving a value of
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Figure 6.11: Distributions of CC νe vs CC νµ (left) and CC νe vs NC (right) output scores
from the two standard event selection neural networks for the different event
categories. A score close to one signifies a CC νe like event in both cases. Each
plot shows events which have passed both the preselection and the optimised
cut from the other network. This is done to better show the events which the
network in question rejects. Selected CC νe events are shown by the arrows.
The y-axis for the CC νe vs CC νµ distributions has been truncated so that the
CC νµ component is not fully visible to better show the distribution of signal
CC νe events. Due to the long reconstruction time required, a smaller evaluation
sample is used here.
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Figure 6.12: Distribution of combined category CC νµ scores from the trained beam classifi-
cation network for the different event categories. A score close to one signifies a
CC νµ like event. The FOM-νµ optimised cut value is shown at 0.315 with the
arrow indicating the events that are selected.
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Figure 6.13: CC νµ efficiency, purity, and efficiency × purity (FOM-νµ) curves for different
values of CC νµ score selection. The maximum FOM-νµ value of 0.365 ± 0.002
is indicated at a CC νµ score of 0.315 by the star.

0.365 ± 0.002. The total number of events, those selected by the previously mentioned
cuts, and those furthermore selected by the FOM-νµ optimised selection are shown in
Table 6.3 for each event category alongside the corresponding selection efficiencies and
CC νµ signal purity.

The signal efficiency of 37.0 ± 0.1% compares well to the 31% and 36% achieved by
the NOvA and T2K CC νµ selections, respectively [54, 166]. This is also the case for
the signal purity of 96.0 ± 0.1% compared to the 98.6% and 94% purities of the NOvA
and T2K selections. Although the final signal efficiency is low, this is desirable to ensure
events are fully contained for energy estimation. When considering just those CC νµ

events for which the primary charged muon is contained within the detector volume at
the truth level, an 87.5 ± 0.1% selection efficiency is achieved.

The FOM-νµ optimised CC νµ selection efficiency, relative to the total number of
events as a function of energy for the different event categories, is shown in Figure 6.14.
Survived CC νµ selection efficiency peaks at just below 2 GeV before slowly declining, this
is explained by higher energy events being less likely to have their primary charged muon
fully contained within the detector. Of interest is the expected dip in the otherwise very
high (> 90%) CC νµ purity at approximately 1.5 GeV, corresponding to the oscillation
maximum (shown in Figure 2.10). As in the CC νe selection case, the NC efficiency is
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Selection CC νµ sig App CC νe bkg Beam CC νe bkg NC bkg Purity sig

Total events 2045.9 ± 5.8 44.17 ± 0.15 35.06 ± 0.08 354.7 ± 2.4 82.5 ± 0.2%
+ Cuts 795.7 ± 3.5 40.68 ± 0.14 32.86 ± 0.08 233.0 ± 2.0 72.2 ± 0.2%
+ FOM-νµ 756.4 ± 3.4 1.293 ± 0.03 1.315 ± 0.02 29.0 ± 0.7 96.0 ± 0.1%

Cuts Eff 38.9 ± 0.1% 92.1 ± 0.1% 93.7 ± 0.1% 65.7 ± 0.3% -
FOM-νµ Eff 37.0 ± 0.1% 2.9 ± 0.1% 3.8 ± 0.1% 8.2 ± 0.2% -

Table 6.3: Table showing CC νµ selected event numbers and corresponding efficiencies for the
various event categories as well as the associated signal purity. Shown are the total
event numbers, those after the preselection, cosmic score cut, and escapes score
cut (Cuts), in addition to the numbers after the FOM-νµ optimised selection with
the efficiencies relative to the total number of events shown for both. The CC νµ

signal purity is also shown for each selection. The given errors correspond to the
statistical uncertainty only.
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Figure 6.14: FOM-νµ selection efficiencies relative to the total number of events for the
different event categories as well as the survived CC νµ purity as a function
of energy. All CC categories are shown in terms of the true neutrino energy,
while NC events are shown in terms of the true hadronic component energy. For
reference, the true survived CC νµ neutrino energy distribution is shown in blue.

seen to rise with energy, again likely due to misidentification of energetic protons and
pions.
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Figure 6.15: Classification matrix for the CC category output of the trained beam classification
network. Shown are events that have either been selected by the CC νe or CC νµ

selection. Events are simply classified using the categorical score for which they
have the highest value. The numbers shown are the fraction of true category
events classified into each of the six possible categories.

Interaction type classification

Using the CC category output of the trained beam classification network, the CC
interaction type (used for energy estimation in Section 6.1.4) for both CC νe and CC
νµ selected events can be determined. As in the combined category output case, the
highest-scoring neuron can be used for classification, resulting in the matrix shown in
Figure 6.15. Note that only events which are selected by either the CC νe or CC νµ

selection are shown.

Reasonable classification accuracy greater than 60% is achieved across the three
dominant interaction types, CC-QEL, CC-Res, and CC-DIS. The less common CC-Coh
and CC-MEC types are found to be commonly misidentified as CC-Res and CC-QEL
respectively, likely due to the imbalanced training dataset and their corresponding
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Figure 6.16: Classification matrix for the NC category output of the trained beam classification
network. Events are simply classified using the categorical score for which they
have the highest value. The numbers shown are the fraction of true category
events classified into each of the four possible categories.

topological similarities. Background NC events which pass either CC νe or CC νµ

selection (commonly high in energy) are found to be typically classified as CC-DIS; this
is expected as they commonly contain multiple energetic particles in the final state.

For completeness, the NC category classification matrix is shown in Figure 6.16 for
events that are neither classified as CC νe or CC νµ. As in the CC case, the dominant
interaction types NC-Res and NC-DIS are classified well, with NC-Coh events typically
being classified as NC-Res. Of the CC events that are not selected, the vast majority are
classified as NC-DIS events. Similarly to before, this is likely due to multiple energetic
particles in the final state, for which the beam classification network determined no clear
charged lepton.

6.1.4 Energy and vertex estimation

By using the CC interaction type classification just presented, the differences between
CC interaction types can be exploited to improve neutrino energy, charged lepton energy,
and interaction vertex position and time estimation. For events classified as either CC νe
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Figure 6.17: Distributions of true and CNN estimated neutrino energy for CC νe (left) and
CC νµ (right) beam events. Only true CC νe and CC νµ events that are also
selected by the CC νe and CC νµ selections respectively are shown.

or CC νµ with an associated CC category interaction type, the corresponding bespoke
trained network outlined in Section 5.5.3 is used for estimation.

Only three networks for each neutrino type are trained, one for each of the dominant
interaction types CC-QEL (and CC-MEC), CC-Res, and CC-DIS. For events not classified
by the CC category output as one of these categories, such as CC-Coh or CC-Other, the
CC-Res network is used as it is the most topologically similar interaction type.

Energy estimation

The distributions of CNN estimated (neutrino energy output) and true νe and νµ neutrino
energies for true CC νe and CC νµ events respectively that are also selected by their
corresponding CC selection are shown in Figure 6.17. The CNN estimated distributions
match the truth well across the full range of neutrino energies expected within Chips-5,
except in the peak regions where the truth distribution shape is not fully captured.

As the training samples contain a spectrum of events typical of the beam, it is
important to check that the CNN neutrino energy estimation is not simply predicting an
energy close to the expected peak beam energy. The probability of a CNN estimated
neutrino energy given a true neutrino energy is shown in Figure 6.18 for both CC νe and
CC νµ events. CNN estimated energy is found to be roughly equivalent to the true energy
across the full range of expected Chips-5 beam energies, proving the desired response.
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Figure 6.18: Probability of CNN estimated neutrino energy given a true neutrino energy for
CC νe (left) and CC νµ (right) beam events, with their equality shown in blue.
Only true CC νe and CC νµ events that are also selected by the CC νe and CC
νµ selections respectively are shown.

Event type All QEL component Res component DIS component

CC νe 24.0 ± 0.3% 16.4 ± 0.4% 24.3 ± 0.2% 31.9 ± 0.2%
CC νµ 29.4 ± 0.4% 14.1 ± 0.3% 27.2 ± 0.3% 34.9 ± 0.3%

Table 6.4: Summary of CC νe and CC νµ neutrino energy FWHM values. Shown for each
sample are the FWHM values for all selected signal events and the three dominant
interaction type components, QEL, Res, and DIS. The FWHM values are calcu-
lated from the fractional energy difference distributions shown in Figure 6.19 and
Figure 6.20, and given as a fractional percentage. The given errors correspond to
the statistical uncertainty only.

To fully understand CNN energy estimation performance, histograms of ratios of
differences between CNN estimated (reco) and true neutrino energy to true neutrino
energy for both true CC νe and CC νµ beam events that are also selected by their full
corresponding CC selection (including preselection, escapes, and cosmic cuts) are shown
in Figure 6.19. Similar distributions splitting the signal components by interaction type
are shown in Figure 6.20. Furthermore, the Full Width Half Maximum (FWHM) values
derived from these plots for both CC νe and CC νµ events are shown in Table 6.4, given
as a fractional percentage.
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Figure 6.19: Distributions of (reco-true)/true neutrino energies for both selected CC νe (left)
and CC νµ (right) signal beam events.
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Figure 6.20: Distributions of (reco-true)/true neutrino energies for both selected CC νe (left)
and CC νµ (right) signal beam events by interaction type. The relative number
of events between interaction types has been scaled for clearer comparison.
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The interaction type FWHM values follow the expected pattern, with the simple
to reconstruct single charged lepton QEL interactions achieving a smaller value than
multi-particle DIS events. Furthermore, when the approximate resolution is derived from
the FWHM values2 the resolutions of 10.2 ± 0.2% and 12.5 ± 0.2% for CC νe and CC νµ

respectively are comparable to the resolutions obtained by NOvA of 10.7% and 9.1% [54].

The energy dependence of the energy resolution is explored by finding the means
and FWHM values of the (reco-true)/true signal neutrino energy distributions shown
in Figure 6.20 in 1 GeV wide true neutrino energy bins. These values are shown in
Figure 6.21 and Figure 6.22 for CC νe and CC νµ events respectively, split by interaction
type.

Reasonably significant bias in the means is observed with respect to the true neutrino
energy for both CC νe and CC νµ events. This is particularly true of DIS events, but still
significant for Res and QEL events. As the energy spectrum of events used for training
peaks, this is expected. Any future energy estimation work should consider using a flat
energy spectrum for training, as done in reference [128].

The FWHM is seen to decrease with true neutrino energy for all interaction types,
except for energies above the flux peak. Again, this is most likely due to the spectrum of
events used in the training sample. A contributing factor, however, will be due to the
inability of PMTs to distinguish between numbers of incident photons at higher counts,
more likely at higher energies.

As in the CC νe selection case, the best way to understand the relative performance of
the energy estimation is by comparison with the standard Chips reconstruction presented
in Section 5.2.1. Although the standard reconstruction does not attempt to estimate the
neutrino energy, the energy of the primary charged lepton in each CC event is predicted.
The value can be compared to the charged lepton energy output of the energy estimation
CNNs. Histograms of ratios of differences between CNN estimated (reco) and true
charged lepton energy to true charged lepton energy for both CC νe and CC νµ beam
QEL events are shown in Figure 6.23.

A significant improvement is made using the new CNN approach. FWHM lepton
energy values 30% and 39% the size of the standard reconstruction values for CC νe

and CC νµ QEL events respectively is achieved, at 10.0 ± 0.1% and 9.0 ± 0.1%, in their
fractional percentage form. When the approximate resolution is found from the CC νe

2The approximate resolution, given by the standard deviation σ is found by dividing the FWHM by
2
√

2 ln 2 ≈ 2.355.
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Figure 6.21: Means (left) and FWHM (right) values from distributions of (reco-true)/true
neutrino energy for CC νe events across a range of 1 GeV wide true neutrino
energy bins and split by interaction type. The true distribution of CC νe events
is shown in green.
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Figure 6.22: Means (left) and FWHM (right) values from distributions of (reco-true)/true
neutrino energy for CC νµ events across a range of 1 GeV wide true neutrino
energy bins and split by interaction type. The true distribution of CC νµ events
is shown in blue.
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Figure 6.23: Distributions of (reco-true)/true primary charged lepton energies for both CC
νe (left) and CC νµ (right) beam events for both the new CNN approach and
standard (old) methods. Only QEL events are shown for clearer comparison with
the standard reconstruction methods. The FWHM values of each distribution
are indicated in the legends.

FWHM value (4.2 ± 0.1%), it compares well to the ∼ 2.5% CC QEL charged lepton
energy resolution reached by the Super-Kamiokande fiTQun algorithm [137]. Impressive,
given the significant differences in detector design.

Interaction vertex estimation

The interaction vertex x-position, interaction vertex y-position, interaction vertex z-
position, and interaction time outputs from the energy estimation networks can also be
used. Although not employed in this work, future analyses may require accurate fiducial
volume cuts or separation of events in time, therefore, strong performance is desirable.
The CNN estimated (reco) minus truth distributions are shown for selected signal CC νe

and CC νµ QEL events in Figure 6.24 and Figure 6.25, respectively, with the standard
reconstruction method distributions shown for comparison.

Comparable resolutions are achieved for CC νe events, while CC νµ events display
considerable improvements in interaction vertex z-position and time prediction. The
Super-Kamiokande fiTQun algorithm reaches a resolution on their interaction vertex reco
minus true distributions of 20 cm for CC νe and 15 cm for CC νµ events [137], compared
to the approximately 50 cm and 70 cm from this work. Although these are large absolute
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Figure 6.24: Reco-true distributions for the interaction vertex position components and time
for CC νe QEL events. Both the distributions for the new CNN approach and
standard (old) reconstruction methods are shown. The FWHM values of each
distribution are indicated in the legends.

differences, relative to the detector size, they still allow for sufficient localisation of
interaction vertices.

The charged lepton energy, interaction vertex position, and interaction vertex time
resolutions also display the clear advantage of the CNN approach. Long tails and biased
means are common in the distributions associated with the standard reconstruction
methods when compared to the generally symmetric distributions of the CNN approach.
This difference, which is particularly stark for non-QEL event types, highlights how
both the limited inputs of the standard reconstruction and the need for a predefined
hypothesis can easily bias the outputs and not generalise well to all event types.
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Figure 6.25: Reco-true distributions for the interaction vertex position components and time
for CC νµ QEL events. Both the distributions for the new CNN approach and
standard (old) reconstruction methods are shown. The FWHM values of each
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Figure 6.26: Distribution of CNN reconstructed νe energies for CC νe selected events. The
appeared CC νe signal component as well as the intrinsic beam CC νe, NC and
survived CC νµ background components are shown stacked to generate the full
distribution. Expected totals are show in each bin for δCP = −π/2, 0, and +π/2.

6.1.5 Combined performance

By combining CC νe and CC νµ selections with neutrino energy estimation, the final
selected spectrum of events within Chips-5 running for a year can be estimated. These
are shown in Figure 6.26 and Figure 6.27 for CC νe and CC νµ selections respectively.
Although a detailed Chips-5 sensitivity analysis is not included in this work, the expected
curves for different values of δCP are shown in the CC νe case for interest.

6.2 Explainability

A common and justified concern with CNNs is their tendency to be used as a black
box (inputs in, outputs out) with no understanding of their inner working. For detailed
physics analyses, this can have significant confidence implications for the final results.
Although difficult quantitatively, qualitative assessments of the trained networks can go
a long way to proving they behave as desired. Here, a collection of studies, which aim to
explain the inner workings of the trained CNNs presented in this work are described.
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Figure 6.27: Distribution of CNN reconstructed νµ energies for CC νµ selected events. The
survived CC νµ signal component as well as the appeared CC νe, intrinsic beam
CC νe, and NC background components are shown stacked to generate the full
distribution.

6.2.1 Feature map visualisation

Visualisations of the output feature maps from the first, second, and third VGG blocks for
each of the trained networks (cosmic rejection, beam classification, and energy estimation)
are shown in Figure 6.28, using the event shown in Figure 6.29 as input. Learnt Cherenkov
ring features are observed: ring edges, ring holes, outlying hits, Hough peaks, and a
myriad of combinations are seen. Furthermore, there are clear differences between the
specific networks, proving each network learns those features found to be important for
its tasks.

6.2.2 t-SNE visualisation

Another technique to analyse trained CNNs is t-Distributed Stochastic Neighbour Em-
bedding (t-SNE) [167]. The t-SNE procedure is an unsupervised learning algorithm to
visualise the learnt high-dimensional feature-space of a trained network in a lower number
of dimensions. It accomplishes this by clustering events with similar features nearby in
two-dimensional space and separating events with dissimilar features. Here, the outputs
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(a) Cosmic rejection (b) Beam classification (c) Energy estimation

Figure 6.28: Visualisations of the feature map outputs, using as input the event shown in
Figure 6.29. Shown are all the activated feature map outputs from the first
(top), the second (middle), and the third (bottom) VGG blocks for each of the
trained network types, with each small box representing an individual feature
map. A chipsnet architecture with only a single branch and all three input event
maps stacked into a single three-channel input image is used for simplicity.



156 Network evaluation

0 16 32 48 64

φ bins

0

16

32

48

64

θ
b

in
s

hit-charge

0 16 32 48 64

φ bins

hit-time

0 16 32 48 64

φ bins

hough-height

Figure 6.29: Three map representation of a CC quasi-elastic νe event. Initiated by a νe of
energy 2.4 GeV with a final state e− of energy 1.6 GeV.

from the last fully connected layer before the output layer (with 512 dimensions) are
used as input, as they provide the final representation of the learnt network features.

Visualisations of the t-SNE algorithm outputs, when applied to both the trained cosmic
rejection and beam classification networks, are shown in Figure 6.30 and Figure 6.31,
respectively. The very strong cosmic-like to beam-like separation presented in Section 6.1.2
is clear from the cosmic rejection visualisation. Conversely, for the beam classification
network, the separation is weaker, with major overlap between categories, especially for
CC νe and NC events.

For the beam classification network, three events, labelled in the t-SNE space of
Figure 6.31, are shown in Figure 6.32. Each event is highly representative of its class,
achieving a high respective combined category score. Both the CC νe and NC events are
typical of that expected. However, the CC νµ event contains a primary charged lepton
that escapes the detector volume, identified by the central peak. This topology suggests
that strongly classified CC νµ events can be identified by this ‘escaping’ feature rather
than the shape of the muon ring. Future work, therefore, should explore using only fully
contained events during beam classification training.

6.3 Robustness

Recent CNN research has focused on another concern; they tend to not generalise well
under distributional changes within the input data [168]. As the CNNs presented in this
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Figure 6.30: Two dimensional probability space of beam and cosmic events generated using
the t-SNE procedure on the final fully-connected layer of the trained cosmic
rejection network.
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Figure 6.31.
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work are trained and evaluated on simulated Monte Carlo events, this effect is of particular
relevance. If the neutrino events used differ from those measured by the real Chips-5
detector, the network outputs may not be reliable. An effective calibration procedure
and simulation improvements can ensure any discrepancy is minimised; however, a small
distributional difference is inevitable.

A selection of studies are presented here to help prove the robustness of the trained
CNNs to such changes within the input. Broadly, the CNN inputs can be characterised
as being dependent on three sets of PMT information: the hit times, the hit charges,
and the hit positions. An accurate PMT position is deemed unimportant to the trained
networks as the 64 × 64 input grid roughly corresponds to bins of size 2.5 m in θ by
2.0 m in φ within the Chips-5 detector. As this binning is much larger than the actual
distance between PMTs, resolving individual PMTs becomes impossible.

Consequently, changes in only the PMT hit times and hit charges are considered in
three discrete studies: the smearing of hit times, the smearing and shifting of hit charges,
and the addition of random noise. In reality, detector data would be influenced by a
convolution of these effects; however, here, they remain separate to develop a detailed
understanding of how each individually affects the CNN output. Future work should
explore how a combination of such changes affects performance.

Five classification performance metrics are used for comparison during this section
and the next (Section 6.4):

1. Max FOM: The optimised figure-of-merit (efficiency × purity) value for CC νe

events. As the FOM is proportional to the square of s/
√

s + b which increases
linearly with detector exposure, an improvement in the FOM value decreases the
exposure time required to reach the same physics sensitivity.

2. High Score Eff (Pur): The CC νe selection efficiency (purity) using the simple
highest-scoring output neuron classification methodology. The simple classification
strategy is used here instead of the FOM selection as it is less susceptible to trading
off between efficiency and purity, making for easier comparison.

3. ROC Integral: The area under the Receiver Operating Characteristic (ROC) curve;
a standard tool for classification performance comparison. The curve corresponds
to the signal CC νe efficiency plotted against the background efficiency as the CC
νe score cut value is varied. A curve which reaches closer to the top-left (high signal
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efficiency, low background efficiency) signifies a stronger classification performance.
An example ROC curve is shown for the smearing of hit times in Figure 6.34.

4. PR Integral: The area under the Precision-Recall (PR) curve; another standard
tool for classification performance comparison. The curve corresponds to the signal
CC νe purity plotted against the signal efficiency as the CC νe score cut value is
varied. A curve closer to the top-right (high signal purity, high signal efficiency)
signifies a stronger classification performance. For imbalanced class frequencies such
as those expected within the Chips-5 detector, the PR curve is seen as a more
reliable indicator of performance than the ROC curve [169]. An example PR curve
is shown for the smearing of hit times in Figure 6.34.

6.3.1 Time smearing

The smearing of input hit times is found to produce a minimal reduction in output
performance. For every event, each hit-time bin for which there is an entry not equal to
zero is smeared using an absolute time randomly generated using a normal distribution
with a mean of zero and a standard deviation of σ nanoseconds. The cases when
σ = 0 ns (no smearing), σ = 2 ns, and σ = 5 ns are considered. As the HZC PMTs
used predominantly within Chips-5 have a photon hit time resolution of ∼2 ns (already
modelled in the simulation) and other timing error effects (such as cable length calibration)
are expected to remain < 2 ns, these values represent a realistic range of time smearing
values that could be seen within Chips-5.

The actual smearing values used are scaled to the zero to one input range, and any
post smearing out-of-range values are clipped to the range boundaries. For each case
of σ, the resulting efficiency, purity, and their product (the FOM) for CC νe events as
a function of selecting events above a particular CC νe score is shown in Figure 6.33.
The classification performance metrics are presented in Table 6.5 with the ROC and PR
curves shown in Figure 6.34. Cosmic rejection and energy estimation performance are
not presented, as the resulting output changes are negligible.

With an effective calibration, a realistic discrepancy in hit times of less than 2 ns
should be expected. Given this, it is promising to observe that for the smearing of
σ = 2 ns the beam classification performance change is minimal. At σ = 5 ns more sig-
nificant degradation starts to occur; however, there is no dramatic fall-off in performance.
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Figure 6.33: CC νe efficiency, purity, and efficiency × purity at different values of CC νe score
selection for different levels of hit-time smearing. The σ = 0 ns curves are shown
by the solid lines, σ = 2 ns curves by the dashed lines, and σ = 5 ns curves by
the dotted lines.

Metric σ = 0 ns σ = 2 ns σ = 5 ns

Max FOM 0.520 ± 0.004 0.513 ± 0.004 0.487 ± 0.004
High Score Eff 0.835 ± 0.001 0.827 ± 0.001 0.798 ± 0.001
High Score Pur 0.552 ± 0.004 0.555 ± 0.004 0.563 ± 0.004
ROC Integral 0.828 ± 0.015 0.828 ± 0.015 0.826 ± 0.015
PR Integral 0.756 ± 0.014 0.751 ± 0.014 0.730 ± 0.013

Table 6.5: Classification performance metrics for different levels of hit-time smearing. The
highest scoring values for each metric are indicated in bold. The ROC and PR
integrals are taken from under the curves shown in Figure 6.34. The given errors
correspond to the statistical uncertainty only.
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Figure 6.34: ROC (left) and PR (right) curves for different levels of hit-time smearing. The
σ = 0 ns curves are shown by the solid lines, σ = 2 ns curves by the dashed
lines, and σ = 5 ns curves by the dotted lines.

Interestingly, the High Score Pur is seen to increase with greater hit-time smearing,
indicating that CC νe signal events are proportionally more robust to hit-time input
smearing than background events.

6.3.2 Charge smearing and shifting

The smearing and shifting of input hit charges behave as expected and produce no
significant reduction in output performance. For every event, each hit-charge and hough-
height bin is scaled by a factor randomly drawn from a normal distribution with a mean
of µ and a standard deviation of σ. This methodology differs from the absolute hit-time
smearing above by modifying bins proportional to their charge, instead of using an
absolute value. Any post modification bin values outside the zero to one input range are
clipped to the range boundaries.

Alongside the default case when µ = 1.0 and σ = 0.0, two smearing and two
shifting cases are considered: µ = 1.0, σ = 0.2 and µ = 1.0, σ = 0.4 for smearing; and
µ = 1.2, σ = 0.2 and µ = 1.4, σ = 0.2 for shifting. Note that a standard deviation of
σ = 0.2 is used to introduce some width to the distribution from which the shift value
is sampled for the shifting cases. With an effective PMT calibration, it is realistic to
assume differences on the order of a few per cent for the hit-charge and hough-height
inputs [170]. Therefore, the cases outlined above represent smearing and shifting cases
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Figure 6.35: CC νe efficiency, purity, and efficiency × purity curves at different values of CC
νe score selection for different levels of hit-charge smearing where µ = 1.0. The
σ = 0.0 curves are shown by the solid lines, σ = 0.2 curves by the dashed lines,
and σ = 0.4 curves by the dotted lines.

Scaling (µ, σ) (1.0, 0.0) (1.0, 0.2) (1.0, 0.4) (1.2, 0.2) (1.4, 0.2)

Max FOM 0.520 ± 0.004 0.512 ± 0.004 0.454 ± 0.004 0.518 ± 0.004 0.498 ± 0.004
High Score Eff 0.835 ± 0.001 0.820 ± 0.001 0.772 ± 0.001 0.829 ± 0.001 0.820 ± 0.001
High Score Pur 0.552 ± 0.004 0.565 ± 0.004 0.558 ± 0.004 0.549 ± 0.004 0.533 ± 0.004
ROC Integral 0.828 ± 0.015 0.827 ± 0.015 0.825 ± 0.015 0.827 ± 0.015 0.825 ± 0.015
PR Integral 0.756 ± 0.014 0.751 ± 0.014 0.707 ± 0.013 0.750 ± 0.014 0.756 ± 0.013

Table 6.6: Classification performance metrics for different levels of hit-charge smearing and
shifting. The highest scoring values for each metric are indicated in bold. The
given errors correspond to the statistical uncertainty only.

much larger than expected within Chips-5. However, these values are presented here to
demonstrate when charge smearing and shifting start to impact performance.

For each smearing case, the resulting efficiency, purity, and their product (the FOM)
for CC νe events as a function of selecting events above a particular CC νe score is
shown in Figure 6.35. The equivalent plot for each shifting case is shown in Figure 6.36.
The classification performance metrics are presented in Table 6.6, with distributions of
(reco-true)/true CC QEL νe energies for each case also shown in Figure 6.37. Cosmic
rejection performance is not presented as the resulting output changes are negligible.
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Figure 6.36: CC νe efficiency, purity, and efficiency × purity curves at different values of CC
νe score selection for different levels of hit-charge shifting. The µ = 1.0 curves
are shown by the solid lines, µ = 1.2 curves by the dashed lines, and µ = 1.4
curves by the dotted lines.
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Network evaluation 165

The extensive input modifications made here (40% shifts, for example) still produce
only relatively small reductions in beam classification performance (up to a ∼ 4% reduc-
tion in maximum FOM value); therefore, a negligible effect can be assumed. Interestingly,
smearing of σ = 0.4 is seen to impact performance to a greater degree than shifting
with µ = 1.4. This behaviour can be explained by the overall relative event topology
remaining consistent under a shift compared to when smeared.

For neutrino energy estimation, the impact of smearing is small, but shifting is seen
to produce significant changes. This is understandable when assuming that the energy
estimation (even for a CNN) relies principally on the counting of the deposited charge for
each event, as is the case for most experimental particle physics predictions. Therefore,
any systematic shift in the measured input data is always expected to bias the output
prediction heavily. However, for realistic input differences on the order of a few per cent,
only small output changes should be expected here.

6.3.3 Random noise

Random PMT noise added to the input is found to have a negligible impact on output
performance. For every event hit-charge bin, a normal distribution with a mean of zero
and a standard deviation of µ photoelectrons is randomly sampled. If a value greater than
that corresponding to a single photoelectron is returned, the bin charge is incremented
by the returned value. Furthermore, for each modification made, the corresponding
hit-time bin is updated by randomly sampling a uniform time distribution and choosing
the earliest of the return value and the already set bin time. Alongside the default case
with no noise (0.0%), values of µ are chosen here so that either 2.3% or 6.7% of bins are
modified by random noise in each event.

Testing has shown that at room temperature, the Nikhef Pom HZC PMTs produce
a dark noise rate of ∼1 KHz. Therefore, only ∼ 0.02% of event map bins are expected
to be affected by PMT noise throughout a typical 100 ns event. Therefore, the cases
outlined above represent PMT noise rates more than two orders of magnitude greater
than expected within Chips-5. However, these values are presented here in order to
demonstrate when random noise starts to impact performance.

For each case, the resulting efficiency, purity, and their product (the FOM) for CC
νe events as a function of selecting events above a particular CC νe score is shown in
Figure 6.38. The classification performance metrics are presented in Table 6.7. Cosmic
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Figure 6.38: CC νe efficiency, purity, and efficiency × purity curves at different values of CC
νe score selection for different levels of random noise. The 0.0% curves are shown
by the solid lines, 2.3% curves by the dashed lines, and 6.7% curves by the
dotted lines.

Metric 0.0% 2.3% 6.7%

Max FOM 0.520 ± 0.004 0.503 ± 0.004 0.440 ± 0.003
High Score Eff 0.835 ± 0.001 0.823 ± 0.001 0.802 ± 0.001
High Score Pur 0.552 ± 0.004 0.544 ± 0.004 0.487 ± 0.004
ROC Integral 0.828 ± 0.015 0.827 ± 0.015 0.822 ± 0.015
PR Integral 0.756 ± 0.014 0.740 ± 0.013 0.681 ± 0.012

Table 6.7: Classification performance metrics for different levels of random noise. The highest
scoring values for each metric are indicated in bold. The given errors correspond
to the statistical uncertainty only.

rejection and energy estimation performance are not presented as the resulting output
changes are negligible. Excellent beam classification robustness is observed, with the
small reduction in performance seen for the 2.3% case indicating any output changes
with realistic PMT noise levels would be negligible.
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6.4 Alternative implementations

Here a sample of alternative (but ultimately unsuccessful) Chips CNN implementations
are presented and compared to the final implementation used. Those chosen highlight
interesting factors that are found to drive (or not drive) performance. Only the beam
classification performance, specifically the primary CC νe selection is considered here
for comparison; however, these findings also translate to cosmic rejection and energy
estimation performance.

6.4.1 Alternative inputs

How the raw PMT hits of an event are represented is found to impact performance
significantly. Three different representations are considered. Firstly, the (successful)
vertex view, where event maps are generated in θ and φ as viewed from the seed estimated
interaction vertex position. Secondly, the origin raw view, where event maps are generated
in θ and φ as viewed from the centre of the detector (the origin). Finally, the origin iso
view, where event maps are generated using a PMT position parametrisation in X+ and
X− as viewed from the centre of the detector.

The origin iso view follows the parametrisation from reference [171], used for ex-
ploratory Super-Kamiokande (and Hyper-Kamiokande) CNN studies. This mapping
attempts to equally distribute PMT density across the whole two-dimensional input
representation. The PMT positions in cylindrical coordinates (ρ, φ, z) are mapped to two
dimensions, X+ and X− using

X± =

1 − χ∓ (z ≥ 0)

χ± (z < 0),
(6.1)

where

χ± = W (ρ, z)π ± φ

2π
, (6.2)

and

W (ρ, z) =

√√√√ρ2 − 2R|z| + RH

R2 + RH
, (6.3)
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Figure 6.39: Example CC resonant νe event shown for each of the three input representations,
with the hit-charge (top) and hit-time (bottom) event maps shown for each. The
event is initiated by a νe of energy 3.3 GeV with the final state particles above
the Cherenkov threshold including a e− of energy 2.8 GeV and a 0.3 GeV π0.

with R and H being the radius and height of the cylindrical detector respectively.

The same example CC resonant νe event for each representation is shown in Fig-
ure 6.39 for reference. The example event highlights the advantages of representing the
event as viewed from its estimated interaction vertex position. The emitted Cherenkov
radiation and resulting ring are viewed without detector or representation parametrisation
distortions, showing their true physical topology. This clarity allows the CNN to solely
learn the underlying topological differences between event types instead of also having to
untangle distortions.

A beam classification network is trained for each representation. Only the hit-charge
and hit-time event maps are used as input as the hough-height map can only be generated
from the seed estimated interaction vertex position. For each representation the resulting
efficiency, purity, and their product (the FOM) for CC νe events as a function of selecting
events above a particular CC νe score is shown in Figure 6.40. Performance comparison
metrics are also presented in Table 6.8.
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Figure 6.40: CC νe efficiency, purity, and efficiency × purity curves for different values of CC
νe score selection for the three input representations. The vertex view curves
are shown by the solid lines, the origin raw view curves by the dashed lines, and
the origin iso view curves by the dotted lines.

Metric Vertex View Origin Raw View Origin Iso View

Max FOM 0.461 ± 0.004 0.422 ± 0.003 0.419 ± 0.003
High Score Eff 0.878 ± 0.001 0.874 ± 0.001 0.867 ± 0.001
High Score Pur 0.354 ± 0.002 0.291 ± 0.002 0.298 ± 0.002
ROC Integral 0.825 ± 0.015 0.822 ± 0.015 0.821 ± 0.015
PR Integral 0.707 ± 0.013 0.675 ± 0.012 0.670 ± 0.012

Table 6.8: Classification performance metrics for the three input representations. The highest
scoring values for each metric are indicated in bold. The given errors correspond
to the statistical uncertainty only.

A significant reduction in performance is observed when using either origin view
representation, quantifying the qualitative description using the example event given
above. Interestingly, both origin view representations result in a very similar performance,
showing that a uniform PMT distribution across the input representation does not provide
an improvement. Future work should consider other methods to reduce distortions, such
as the smearing of hits across nearby bins to reduce isolated peaks and an improved
interaction vertex position estimation procedure.
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Figure 6.41: The number of training events per category for the uniform beam classification
training sample, with roughly equal numbers of CC νe, CC νµ, and NC training
events. All beam event interaction types are shown.

6.4.2 Alternative training samples

The relative proportions of training sample interaction types should match the expected
sample as closely as possible. Three different training samples are considered. Firstly, the
(successful) flux sample representative of the expected spectrum. Secondly, a uniform
sample, using a roughly similar number of events per interaction type as shown in
Figure 6.41. Finally, a both sample using an equivalent combination of both.

A beam classification network is trained using each of the samples with an equal
number of events. For each sample the resulting efficiency, purity, and their product (the
FOM) for CC νe events as a function of selecting events above a particular CC νe score
is shown in Figure 6.42. Performance comparison metrics are also presented in Table 6.9.

Using the uniform training sample is found to reduce beam classification performance
significantly. Given that the both sample performance lies between the uniform and
flux cases, it can be assumed that as the training sample tends towards the expected
distribution of events, the performance increases. This finding highlights a key feature of
CNNs; they play the game of statistics and only statistics, making them less smart than
they may first appear.
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Figure 6.42: CC νe efficiency, purity, and efficiency × purity curves for different values of CC
νe score selection for the different training samples. The flux sample curves are
shown by the solid lines, the uniform sample curves by the dashed lines, and
the both curves by the dotted lines.

Metric Flux Uniform Both

Maximum FOM 0.465 ± 0.004 0.339 ± 0.003 0.386 ± 0.003
High Score Eff 0.877 ± 0.001 0.799 ± 0.001 0.834 ± 0.001
High Score Pur 0.369 ± 0.003 0.347 ± 0.003 0.368 ± 0.003
ROC Integral 0.826 ± 0.015 0.815 ± 0.015 0.820 ± 0.015
PR Integral 0.712 ± 0.013 0.568 ± 0.011 0.634 ± 0.012

Table 6.9: Classification performance metrics for the different training samples. The highest
scoring values for each metric are indicated in bold. The given errors correspond
to the statistical uncertainty only.
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In the beam classification case, the CNN learns to minimise the categorical cross-
entropy loss function, maximising the fraction of total training events that are classified
correctly. An easy way to do this is to become heavily biased by the averages of the
sample used during training, such that the final performance does not generalise well to
a different evaluation sample.

For the flux training sample case, less common event classes are ignored by the network
during training, as solely focusing on the dominant classes is found to be the easiest way
to minimise the loss. The effect of this can be seen in the interaction type classification
matrices in Section 6.1.3 for CC-Coh and CC-MEC events. Future work should consider
the use of a different loss function to promote learning for the less common interaction
types and to maximise the physics sensitivity rather than majority accuracy.

6.4.3 Alternative architectures

The choice of CNN architecture is found to have a minimal impact on performance.
Four different network architectures are considered: the default VGG based chipsnet
architecture, an Inception (GoogLeNet) based architecture [126], a ResNet based archi-
tecture [150], and an Inception-ResNet based architecture [151]. Each is modified to fit
the standard chipsnet pattern with separate initial branches for each event map followed
by a series of combined layers. For a fair comparison, each network is scaled so that they
all have approximately the same number of trainable parameters as the default VGG
based architecture.

A beam classification network is trained using each network architecture with individ-
ually optimised hyperparameters (using SHERPA). For each network architecture, the
classification performance metrics are presented in Table 6.10 along with the number of
trainable parameters (Number of pars) and the time taken in milliseconds to complete a
single training iteration step (Iter time).

Only small performance differences are observed across the different CNN architectures,
with the simplest and least modern, the VGG architecture, proving the highest performing.
Furthermore, the VGG architecture provides the fastest training step iteration time by a
significant margin, leading to drastically lower overall training times.

The other architectures are primarily the result of advances aimed at improving
the classification of real-world objects, such as cars, trees, and dogs, with image sizes
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Metric VGG Inception ResNet Inception-ResNet

Number of pars 17,225,296 16,893,216 16,526,288 17,145,238
Iter time (ms) 88 ± 3 192 ± 8 122 ± 5 209 ± 10
Maximum FOM 0.465 ± 0.004 0.459 ± 0.004 0.445 ± 0.004 0.445 ± 0.004
High Score Eff 0.877 ± 0.001 0.870 ± 0.001 0.870 ± 0.001 0.874 ± 0.001
High Score Pur 0.369 ± 0.003 0.373 ± 0.003 0.374 ± 0.003 0.349 ± 0.003
ROC Integral 0.826 ± 0.015 0.825 ± 0.015 0.824 ± 0.015 0.824 ± 0.015
PR Integral 0.712 ± 0.013 0.706 ± 0.013 0.688 ± 0.012 0.699 ± 0.012

Table 6.10: Classification performance metrics for the different network architectures. The
highest scoring values for each metric are indicated in bold. The given errors
correspond to the statistical uncertainty only.

typically 256×256 pixels or greater. Therefore, it is likely that the task of learning subtle
changes in Cherenkov ring topologies, with a relatively limited number of classes, on
small 64 × 64 images, does not require the advanced feature representation they provide.
Using the increased complexity models instead introduces additional bias, acting to
decrease performance instead of providing additional discriminating power.
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Chapter 7

Summary and conclusion

This thesis presented a range of work for the Chips neutrino detector R&D project.
Chips puts forward a novel water Cherenkov based concept to counter the vast expense,
increased complexity, and long construction time expected from future long-baseline
neutrino oscillation experiments. As detailed, this feat is possible via a series of steps:
deploying detector modules in bodies of water on the Earth’s surface rather than deep
underground; using commercially available rather than bespoke components wherever
possible; and optimising photocathode coverage to study accelerator beam neutrinos
exclusively. These steps reduce the total cost per kt of sensitive mass to between
$200k-$300k and should allow for megaton scale detectors to become a reality.

Moreover, Chips detector modules are expected to be relatively easy to build, quick
to deploy, and can be upgraded once operational, making them a much more attractive
proposition when resources are constrained. It is hoped that future Chips detectors will
be able to help answer some of the key unsolved questions of neutrino physics, such as
the mass hierarchy ambiguity and the search for CP violation in neutrino oscillations.

During the summer of 2019 a Chips prototype, Chips-5 was deployed into the
Wentworth 2W disused mine pit in northern Minnesota, USA. Although Chips-5 is not
yet fully proven and future plans are still in flux, the amount of knowledge gained during
its construction, deployment, and initial commissioning can not be overstated. Alongside
proving that a large Chips detector module can be constructed and deployed, Chips-5
acted as a brilliant testbed for the development of the Chips data acquisition system.

Notably, the use of commercially available single-board Beaglebone machines and the
open-source Elasticsearch monitoring solution were found to be highly successful. Within
both future Chips detectors, and hopefully the broader experimental particle physics
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field, bespoke components should continue to be phased out, with commercially available
or open-source components used instead. Not only does this drastically reduce the
implementation effort required by collaborators and cost, but leads to a much improved
final result due to the pooling of resources.

As is the case within the world around us, future Chips concept detectors will
also make ever-increasing use of modern deep learning techniques. This comes as a
direct result of the dramatic improvement in Chips-5 reconstruction and classification
performance brought about by the principal work presented in this thesis. Three forms of
a Convolutional Neural Network have been trained to reject cosmic muon events, classify
beam events, and estimate neutrino energies, all using only the raw detector event as
input. This new approach replaces the standard likelihood-based reconstruction and
simple neural network classification, greatly increasing generalisability and processing
speed.

With the primary goal of selecting an efficient and pure appeared CC νe sample for
which the neutrino energy can be accurately determined, the new CNN-based approach
is found to provide excellent performance. In some cases, the performance is comparable
with similar experiments, impressive given the significant differences in detector design.
The vast cosmic muon background of Chips-5 is found to be accepted by only a factor
of < 9.5 × 10−7 (without the help of a veto), equivalent to < 2 cosmic muon events
contaminating the beam sample per year, of which none are expected to be classified as
CC νe events.

Furthermore, the key performance metrics for both the CC νe and CC νµ beam
selections are summarised in Table 7.1, with a comparison of the metrics available for
the old likelihood-based approach given in Table 7.2. The new CNN approach is found
to improve the primary CC νe selection signal efficiency by an impressive 212 ± 5%, and
the corresponding signal purity by 180 ± 6%. Energy estimation is also significantly
improved with the approximate energy resolution for CC νe QEL event electrons 30 ± 4%
that provided by the old likelihood-based method.

Not only are the trained CNNs found to provide excellent performance, but some
insight into their inner workings was achieved, and their outputs are found to be robust
to a sample of tested distributional changes in the input. These findings go some way
to answering the common and justified concern that they are too often used as a black
box (input in, outputs out). Cherenkov ring and Hough peak features are extracted from
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Selection Signal Efficiency Signal Purity Approximate ν Energy Resolution

CC νe 73.4 ± 0.2% 70.9 ± 0.6% 10.2 ± 0.2%
CC νµ 37.0 ± 0.1% 96.0 ± 0.1% 12.5 ± 0.2%

Table 7.1: The key performance metrics for both the CC νe and CC νµ beam selections using
the new CNN-based approach. The signal efficiency relative to the total number of
expected events, the signal purity defined as the fraction of selected events which
are signal, and the approximate signal neutrino energy resolution. The values
considering both the appeared and beam CC νe components as signal are given for
the CC νe selection.

Metric Likelihood-based (old) CNN-based (new) Percentage Change

Max FOM-νe 0.132 ± 0.005 0.519 ± 0.004 393 ± 15%
CC νe Efficiency 34.7 ± 0.8% 73.4 ± 0.2% 212 ± 5%
CC νe Purity 39.3 ± 1.2% 70.9 ± 0.6% 180 ± 6%

QEL νe lepton energy res 14.1 ± 1.7% 4.2 ± 0.1% 30 ± 4%
QEL νµ lepton energy res 9.9 ± 1.6% 3.8 ± 0.1% 39 ± 6%

Table 7.2: Comparison of performance metrics between the old likelihood-based approach and
the new CNN-based approach with the percentage change given for reference. The
maximum FOM value metric alongside the signal efficiency and purity are given
for the CC νe beam selection, as well as the QEL event approximate lepton energy
resolutions for both CC νe and CC νµ selected signal events.
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the input images, resulting in a learnt representation of the inputs seen to have strong
discriminating power between categories when visualised using the t-SNE technique.
Additionally, realistic modifications to the input hit times and charges and the addition
of random noise are all found to have a negligible effect on output performance.

It is sincerely hoped that other water Cherenkov neutrino experiments will take
inspiration from and then build upon the work presented in this thesis for their own
Convolutional Neural Network implementations. Although the results presented in
this work are incredibly compelling, there are still clear avenues for exploration and
improvement. These are all principally related to the critical performance drivers outlined
within this thesis.

Firstly, generating the input event maps to focus on the underlying Cherenkov profiles
is incredibly important; therefore, any methodology to remove distortions further or more
accurately determine the interaction vertex position will be beneficial. Secondly, the
distribution of events (in energy or type) used within the training sample heavily impacts
performance; thus, a comprehensive study of this behaviour could optimise the sample
used. Finally, multi-task learning clearly shows promise, with further trial-and-error or a
more generalised approach likely to uncover additional valuable tasks.

Likely, the true potential of these methods is just beginning to be realised. As is
always the case, only time will tell.
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